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The first International Conference on Computer Aided Geometric Design 
(CAGD) was held at The University of Utah March 18-21, 1974, for the purpose 
of displaying the latest advances in CAGD. The word geometric distinguishes 
this field from computer aided logical design. This book is the edited Proceed
ings of the Conference. 

At the conclusion of the Navy Workshop at Annapolis in 1971, Philip J. 
Davis proposed that there be a conference on "graphics and mathematics", a 
project that Leila Bram of the Office of Naval Research encouraged. Distin
guished representatives in Europe and North America from universities, industry, 
and government laboratories were sought. Both researchers and users of the 
research were invited. The conference had an informal tone and ample time for 
discussion, with about 120 participants. There were talks and computer graphics 
demonstrations at The University of Utah and at Evans and Sutherland Corpora
tion. 

P. Bezier and S. A. Coons have played fundamental roles in CAGD, as was 
evidenced by the fact that most of the speakers referred to their pioneering work. 
The principal topics covered in the Proceedings are Coons patches, Bezier curves, 
and splines, with their applications to CAGD. 

The editors express their sincere appreciation to the contributing authors, 
and to A. R. Forrest, W. J. Gordon, J. A. Gregory, and R. J. McDermott for 
their help. Proofreading and presentations of most of the papers were carried out 
by graduate students in Mathematics and Computer Science. The editors also 
thank C. Jensen, L. Merrell, and M. Holbrook for their typing and layout work, 
and A. R. Barnhill and L. Williams for artwork in the Proceedings. 
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PREFACE 

The Conference and the Proceedings were sponsored by the Office of Naval 
Research and the Dean of Science at The University of Utah. Support was pro
vided by the Departments of Mathematics and Computer Science at The Univer
sity of Utah. 

ROBERTE. BARN H ILL 
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SURFACE PATCHES AND B-SPLINE CURVES 

S.A. Coons 
Syracuse University 

Introduction. 

This paper begins with a review of the surface 
patch equation, which may or may not be familiar to 
the reader. The properties of surface patches are 
described, but without proof. However, it is rela
tively simple to verify them by actual algebraic 
calculations. 

Following this, the notion of "uniform cubic 
B-spline curves" is introduced, again without either 
derivation or verification of the B-spline formula. 
Such matters are dealt with elsewhere (see for in
stance Riesenfeld, deBoor, and others). These (com
pound) curves are then used to define the boundary 
conditions of surface patches, and also to describe 
the "blending functions" which appear in the surface 
patch equation. An interesting consequence of 
B-spline curves as boundaries of a patch is that 
boundaries with slope discontinuities (cusps) can be 
introduced, without inducing sharp folds or creases in 
the interior of the patch. This is an interesting, 
seemingly paradoxical result. 

Surface Patches. 

A surface "patch" is a segment of a surface, and 
it is expedient to represent it as the locus of a 
point [ x y z] moving in space with two degrees of 
freedom, u and w. We say that the point is a 
vector function of two independent parametric 
variables. 
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S. A. COONS 

We can write 

P(u,w) - [Px(u,w) P (u,w) Pz(u,w)] 

where the P ,P ,P are arbitrary functions. We x y z 
can restrict the variables u and w to take on 
values between zero and one, simply to make the 
arithmetic more tractable. The vector quantities 
P(0,w) and P(l,w) then, are point loci with a 
single degree of freedom, represented by w, and are 
thus curves. 

Similarly P(u,0) and P(u,l) are curves. 
These four curves define the boundaries of a surface 
segment or patch. Now we agree upon the following 
simplified notation: 

P(u,w) = uw 
P(0,w) = Ow 
P(l,w) = lw 
P(u,0) = uO 
P(u,l) = ul 

We introduce some univariate functions and their 
special notation: we show it for u, but it also 
applied to the variable w: 

F0(u) = F0u 

G0(u) = G0u 
G.(u) = GlU. 

Here we simply eliminate the parentheses. These 
have come to be known in the trade as "blending 
functions", because loosely speaking they "mix" or 
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COMPUTER AIDED GEOMETRIC DESIGN 

"blend" the shapes of boundary curves, to produce 
internal curves that define, or delineate, the 
surface. 

A particular surface can now be defined as 
follows: 

uw = [ F u F u GQu G^u] Ow 
lw 
Ow u 
lw 
u 
u 

+ [ uO ul uO ul 1 F0w 
F w 

V 

- [ FQu FJU GQU GJU] 00 
10 
00 u 
10 u 

01 
11 
01 u 
11 u 

00 
10 v 
00 

i 
10 

w 
w 
uw 
uw 

01 w 
11 w 01 i 
11 uw uw 

" v" 
FjW 

V ! 
G1W 

Gordon calls it a "Boolean sum surface" and he 
also calls it a "transfinite Lagrangian interpolant 
in two variables". He has extended it to interpolate 
curve networks. 

In the equation, uO ul Ow and lw are simply 
the vector functions that define the boundary curves. 
uO ul Ow w w u and lw are the normal vectors "across1 u these boundaries. Thus in particular, for example, 

uO = w 
3(uw) 
3w w = 0 

The quantities in the square matrix (actually a 
tensor, since every element is a 3 component vector) 
are constants, obtainable from the boundary curve 
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S. A. COONS 

functions and the derivative functions. The partition 
in the lower right hand corner contains elements that 
are cross derivatives of the vectors. Thus, for in
stance 

00 9 (uw) 
uw 3u3w u 

w 
0 
0 

We have come to call such quantities the "twists" of 
the surface at the corners, because it rather well 
describes the geometric implications. We call this 
lower right hand partition of the matrix the "twist 
partition". It consists of four vectors, obtainable 
by differentiating, for instance, Ow with respect 
to w, and then subsequently setting w = 0 (or 1, 
of course) in the result, 
01 ). 
uw 

This would give 00 uw (or 

It's clear that in some sense the square matrix 
(tensor) is redundant, since the boundary conditions 
already contain sufficient information to specify the 
corner conditions. We need to know something (but not 
very much about the blending functions Έ F 0 "0 
and G., . Accordingly, we will make some rather weak 
stipulations on these functions. Consider F.j, a 
symbol that means FQOJ or F01, or F..0, or F-,1· 
Similarly, consider G.j, i = 0,1, and again with 
j = 0,1. Then X 

L G i j 

Fj j 

GiJ 

FVj " 

o j [ J _ 
'<» 

0 

0 

«*J 

0 

0 

δ.. is of course the Kronecker delta symbol. The 
prime marks indicate differentiation with respect to 
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COMPUTER AIDED GEOMETRIC DESIGN 

the independent variable. We can draw pictures of F 
and G functions that satisfy these conditions, as in 
Figure 1. 

The "internaln shape 
of these functions is 
not immediately im
portant; we only care 
about the behavior of 
the functions and 
their first and 
second derivatives at 
0 and 1. 

When the F and G functions obey the Kronecker 
delta conditions, it turns out that the resulting 
surface has the benign property of "containing" or 
passing through the boundary curves; with tangent 
vector functions "containing" the boundary derivative 
functions uO ul Ow and lw , and with second w w u u 
derivatives on the boundaries which are blended (or 
weighted) combinations of the second derivatives at 
the 0 and 1 ends of the boundary. We call such 
second derivative boundary vectors "intrinsic" to the 
surface. The implied consequence is that we can 
adjoin two such surfaces, and guarantee that they will 

2 be C continuous (curvature continuous) across their 
mutually shared boundary. Two such patches, or an 
array, a mosaic, of such patches, thus provides a 
compound surface that is everywhere at least curvature 
continuous, provided only that the boundary curves are 
themselves everywhere curvature continuous. 

Figure 1 
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S. A. COONS 

A Special Default Condition. 

If we do not want to specify the boundary tangent 
vectors, but wish to specify the corner twists, so as 
to avoid the pseudoflats that a null twist partition 
will yield, the surface patch equation becomes 

uw = [ Fnu F- u] 

- [FQu Fju] 

+ [GQu GjU] 

The four vectors in the square tensor of the last term 
can be adjusted so as to remove the pseudo-flats. 

B-Splines 

Now it turns out that an extremely attractive 
curve form can define the uO ul Ow lw uO ul 

w w Ow lw boundary vector quantities. Since we plan 
to describe these curves in a somewhat simplistic way, 
we present the following formula to describe what we 
call "uniform cubic B-splines,!. 

A point vector for a B-spline curve is: 

P(u) = [s3 s2 s 1] ì 

Ow 
lw + [ uO ul] 

F0w 
F ^ 

00 01 1 
L 10 11 J 
00 01 uw uw 
10 11 uw uw 

V 
G0w 
G-jW 

1 
3 
3 
1 

3 
-6 

0 
4 

-3 
3 
3 
1 

1 
0 
0 
0 

v . ] 
1 

v i + i 
Vi+2 

1+3 J 
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