Introduction to Asymptotics and Special Functions F. W. J. Olver

ACADEMIC PRESS, INC. A Subsidiary of Harcourt Brace Jovanovich, Publishers

INTRODUCTION TO ASYMPTOTICS AND SPECIAL FUNCTIONS This page intentionally left blank

INTRODUCTION TO ASYMPTOTICS AND SPECIAL FUNCTIONS

F. W. J. Olver

Institute for Fluid Dynamics and Applied Mathematics University of Maryland College Park, Maryland and National Bureau of Standards Washington, D.C.

ACADEMIC PRESS New York and London 1974

A Subsidiary of Harcourt Brace Jovanovich, Publishers

COPYRIGHT © 1974, BY ACADEMIC PRESS, INC. ALL RIGHTS RESERVED. NO PART OF THIS PUBLICATION MAY BE REPRODUCED OR TRANSMITTED IN ANY FORM OR BY ANY MEANS, ELECTRONIC OR MECHANICAL, INCLUDING PHOTOCOPY, RECORDING, OR ANY INFORMATION STORAGE AND RETRIEVAL SYSTEM, WITHOUT PERMISSION IN WRITING FROM THE PUBLISHER.

ACADEMIC PRESS, INC. 111 Fifth Avenue, New York, New York 10003

United Kingdom Edition published by ACADEMIC PRESS, INC. (LONDON) LTD. 24/28 Oval Road, London NW1

Library of Congress Cataloging in Publication Data

Olver, Frank W J Date Introduction to asymptotics and special functions.

Comprises the first seven chapters of the author's Asymptotics and special functions. Bibliography: p. 1. Functions, Special. 2. Asymptotic expansions. 3. Differential equations-Numerical solutions. 1. Title. QA351.0482 515'.5 73-21948 ISBN 0-12-525856-9

AMS(MOS) 1970 Subject Classifications: 33-XX, 34A10, 34E05, 41A60

PRINTED IN THE UNITED STATES OF AMERICA

CONTENTS

Preface		ix	
Preface to Asymptotics and Special Functions		xi	
1	Intr	oduction to Asymptotic Analysis	
	1	Origin of Asymptotic Expansions	1
	2	The Symbols \sim , o, and O	4
	3	The Symbols \sim , o, and O (continued)	6
	4	Integration and Differentiation of Asymptotic and Order	
		Relations	8
	5	Asymptotic Solution of Transcendental Equations:	
		Real Variables	11
	6	Asymptotic Solution of Transcendental Equations:	
		Complex Variables	14
	7	Definition and Fundamental Properties of Asymptotic	
		Expansions	16
	8	Operations with Asymptotic Expansions	19
	9	Functions Having Prescribed Asymptotic Expansions	22
	10	Generalizations of Poincaré's Definition	24
	11	Error Analysis; Variational Operator	27
		Historical Notes and Additional References	29
2	Intr	roduction to Special Functions	
	1	The Gamma Function	31
	2	The Psi Function	39
	3	Exponential, Logarithmic, Sine, and Cosine Integrals	40
	4	Error Functions, Dawson's Integral, and Fresnel Integrals	43
	5	Incomplete Gamma Functions	45
	6	Orthogonal Polynomials	46
	7	The Classical Orthogonal Polynomials	48
	8	The Airy Integral	53

9	The Bessel Function $J_{y}(z)$	55
10	The Modified Bessel Function $I_{v}(z)$	60
11	The Zeta Function	61
	Historical Notes and Additional References	64

3 Integrals of a Real Variable

1	Integration by Parts	66
2	Laplace Integrals	67
3	Watson's Lemma	71
4	The Riemann–Lebesgue Lemma	73
5	Fourier Integrals	75
6	Examples; Cases of Failure	76
7	Laplace's Method	80
8	Asymptotic Expansions by Laplace's Method; Gamma	
	Function of Large Argument	85
9	Error Bounds for Watson's Lemma and Laplace's Method	89
10	Examples	92
11	The Method of Stationary Phase	96
12	Preliminary Lemmas	98
13	Asymptotic Nature of the Stationary Phase Approximation	100
14	Asymptotic Expansions by the Method of Stationary Phase	104
	Historical Notes and Additional References	104

4 Contour Integrals

1	Laplace Integrals with a Complex Parameter	106
2	Incomplete Gamma Functions of Complex Argument	109
3	Watson's Lemma	112
4	Airy Integral of Complex Argument; Compound	
	Asymptotic Expansions	116
5	Ratio of Two Gamma Functions; Watson's Lemma for Loop	
	Integrals	118
6	Laplace's Method for Contour Integrals	121
7	Saddle Points	125
8	Examples	127
9	Bessel Functions of Large Argument and Order	130
10	Error Bounds for Laplace's Method; the Method of Steepest	
	Descents	135
	Historical Notes and Additional References	137

5 Differential Equations with Regular Singularities; Hypergeometric and Legendre Functions

1	Existence Theorems for Linear Differential Equations:	
	Real Variables	139
2	Equations Containing a Real or Complex Parameter	143
3	Existence Theorems for Linear Differential Equations:	
	Complex Variables	145
4	Classification of Singularities; Nature of the Solutions	
	in the Neighborhood of a Regular Singularity	148
5	Second Solution When the Exponents Differ by an Integer	
	or Zero	150
6	Large Values of the Independent Variable	153
7	Numerically Satisfactory Solutions	154
8	The Hypergeometric Equation	156
9	The Hypergeometric Function	159
10	Other Solutions of the Hypergeometric Equation	163
11	Generalized Hypergeometric Functions	168
12	The Associated Legendre Equation	169
13	Legendre Functions of General Degree and Order	174
14	Legendre Functions of Integer Degree and Order	180
15	Ferrers Functions	185
	Historical Notes and Additional References	18 9

6 The Liouville–Green Approximation

The Liouville Transformation	190
Error Bounds: Real Variables	193
Asymptotic Properties with Respect to the Independent	
Variable	197
Convergence of $\mathscr{V}(F)$ at a Singularity	200
Asymptotic Properties with Respect to Parameters	203
Example: Parabolic Cylinder Functions of Large Order	206
A Special Extension	208
Zeros	211
Eigenvalue Problems	214
Theorems on Singular Integral Equations	217
Error Bounds: Complex Variables	220
Asymptotic Properties for Complex Variables	223
Choice of Progressive Paths	224
Historical Notes and Additional References	228
	Error Bounds: Real Variables Asymptotic Properties with Respect to the Independent Variable Convergence of $\mathscr{V}(F)$ at a Singularity Asymptotic Properties with Respect to Parameters Example: Parabolic Cylinder Functions of Large Order A Special Extension Zeros Eigenvalue Problems Theorems on Singular Integral Equations Error Bounds: Complex Variables Asymptotic Properties for Complex Variables Choice of Progressive Paths

7 Differential Equations with Irregular Singularities; Bessel and Confluent Hypergeometric Functions

1	Formal Series Solutions	229
2	Asymptotic Nature of the Formal Series	232
3	Equations Containing a Parameter	236
4	Hankel Functions; Stokes' Phenomenon	237
5	The Function $Y_{y}(z)$	241
6	Zeros of $J_{\nu}(z)$	244
7	Zeros of $Y_{\nu}(z)$ and Other Cylinder Functions	248
8	Modified Bessel Functions	250
9	Confluent Hypergeometric Equation	254
10	Asymptotic Solutions of the Confluent Hypergeometric	
	Equation	256
11	Whittaker Functions	260
12	Error Bounds for the Asymptotic Solutions in the General	
	Case	262
13	Error Bounds for Hankel's Expansions	266
14	Inhomogeneous Equations	270
15	Struve's Equation	274
	Historical Notes and Additional References	277
Answers	to Exercises	279A
Reference	ces	281A
Index of	^c Symbols	289A
General	Index	291A

PREFACE

This book comprises the first seven chapters of the author's *Asymptotics and Special Functions*. It is being published separately for the benefit of students needing only an introductory course to the subject. Since the chapters are self-contained they are reprinted without change of pagination; each of the few forward references to Chapters 8 to 14 that occur may be ignored, because the referenced matter is of a supplementary nature and does not affect the logical development. The *Answers to Exercises, References, Index of Symbols*, and *General Index* have been curtailed by omission of entries not pertaining to the first seven chapters, and to avoid confusion the letter A has been added to the page numbers assigned to these sections.

This page intentionally left blank

PREFACE TO ASYMPTOTICS AND SPECIAL FUNCTIONS

Classical analysis is the backbone of many branches of applied mathematics. The purpose of this book is to provide a comprehensive introduction to the two topics in classical analysis mentioned in the title. It is addressed to graduate mathematicians, physicists, and engineers, and is intended both as a basis for instructional courses and as a reference tool in research work. It is based, in part, on courses taught at the University of Maryland.

My original plan was to concentrate on asymptotics, quoting properties of special functions as needed. This approach is satisfactory as long as these functions are being used as illustrative examples. But the solution of more difficult problems in asymptotics, especially ones involving uniformity, necessitate the use of special functions as approximants. As the writing progressed it became clear that it would be unrealistic to assume that students are sufficiently familiar with needed properties. Accordingly, the scope of the book was enlarged by interweaving asymptotic theory with a systematic development of most of the important special functions. This interweaving is in harmony with historical development and leads to a deeper understanding not only of asymptotics, but also of the special functions. Why, for instance, should there be four standard solutions of Bessel's differential equation when any solution can be expressed as a linear combination of an independent pair? A satisfactory answer to this question cannot be given without some knowledge of the asymptotic theory of linear differential equations.

A second feature distinguishing the present work from existing monographs on asymptotics is the inclusion of error bounds, or methods for obtaining such bounds, for most of the approximations and expansions. Realistic bounds are of obvious importance in computational applications. They also provide theoretical insight into the nature and reliability of an asymptotic approximation, especially when more than one variable is involved, and thereby often avoid the need for the somewhat unsatisfactory concept of generalized asymptotic expansions. Systematic methods of error analysis have evolved only during the past decade or so, and many results in this book have not been published previously.

The contents of the various chapters are as follows. Chapter 1 introduces the basic concepts and definitions of asymptotics. Asymptotic theories of definite integrals containing a parameter are developed in Chapters 3, 4, and 9; those of ordinary linear differential equations in Chapters 6, 7, 10, 11, 12, and 13; those of sums and

sequences in Chapter 8. Special functions are introduced in Chapter 2 and developed in most of the succeeding chapters, especially Chapters 4, 5, 7, 8, 10, 11, and 12. Chapter 5 also introduces the analytic theory of ordinary differential equations. Finally, Chapter 14 is a brief treatment of methods of estimating (as opposed to bounding) errors in asymptotic approximations and expansions.

An introductory one-semester course can be based on Chapters 1, 2, and 3, and the first parts of Chapters 4, 5, 6, and 7.[†] Only part of the remainder of the book can be covered in a second semester, and the selection of topics by the instructor depends on the relative emphasis to be given to special functions and asymptotics. Prerequisites are a good grounding in advanced calculus and complex-variable theory. Previous knowledge of ordinary differential equations is helpful, but not essential. A course in real-variable theory is not needed; all integrals that appear are Riemannian. Asterisks (*) are attached to certain sections and subsections to indicate advanced material that can be bypassed without loss of continuity. Worked examples are included in almost all chapters, and there are over 500 exercises of considerably varying difficulty. Some of these exercises are illustrative applications; others give extensions of the general theory or properties of special functions which are important but straightforward to derive. On reaching the end of a section the student is strongly advised to read through the exercises, whether or not any are attempted. Again, a warning asterisk (*) is attached to exercises whose solution is judged to be unusually difficult or time-consuming.

All chapters end with a brief section entitled *Historical Notes and Additional References.* Here sources of the chapter material are indicated and mention is made of places where the topics may be pursued further. Titles of references are collected in a single list at the end of the book. I am especially indebted to the excellent books of de Bruijn, Copson, Erdélyi, Jeffreys, Watson, and Whittaker and Watson, and also to the vast compendia on special functions published by the Bateman Manuscript Project and the National Bureau of Standards.

Valuable criticisms of early drafts of the material were received from G. F. Miller (National Physical Laboratory) and F. Stenger (University of Utah), who read the entire manuscript, and from R. B. Dingle (University of St. Andrews), W. H. Reid (University of Chicago), and F. Ursell (University of Manchester), who read certain chapters. R. A. Askey (University of Wisconsin) read the final draft, and his helpful comments included several additional references. It is a pleasure to acknowledge this assistance, and also that of Mrs. Linda Lau, who typed later drafts and assisted with the proof reading and indexes, and the staff of Academic Press, who were unfailing in their skill and courtesy. Above all, I appreciate the untiring efforts of my wife Grace, who carried out all numerical calculations, typed the original draft, and assisted with the proof reading.

[†] For this reason, the first seven chapters have been published by Academic Press as a separate volume, for classroom use, entitled *Introduction to Asymptotics and Special Functions*.

INTRODUCTION TO ASYMPTOTICS AND SPECIAL FUNCTIONS This page intentionally left blank

1

INTRODUCTION TO ASYMPTOTIC ANALYSIS

1 Origin of Asymptotic Expansions

1.1 Consider the integral

$$F(x) = \int_0^\infty e^{-xt} \cos t \, dt$$
 (1.01)

for positive real values of the parameter x. Let us attempt its evaluation by expanding $\cos t$ in powers of t and integrating the resulting series term by term. We obtain

$$F(x) = \int_0^\infty e^{-xt} \left(1 - \frac{t^2}{2!} + \frac{t^4}{4!} - \cdots \right) dt$$
 (1.02)

$$=\frac{1}{x}-\frac{1}{x^3}+\frac{1}{x^5}-\cdots.$$
 (1.03)

Provided that x > 1 the last series converges to the sum

$$F(x)=\frac{x}{x^2+1}\,.$$

That the attempt proved to be successful can be confirmed by deriving the last result directly from (1.01) by means of two integrations by parts; the restriction x > 1 is then seen to be replaceable by x > 0.

Now let us follow the same procedure with the integral

$$G(x) = \int_0^\infty \frac{e^{-xt}}{1+t} dt.$$
 (1.04)

We obtain

$$G(x) = \int_0^\infty e^{-xt} (1 - t + t^2 - \cdots) dt$$

= $\frac{1}{x} - \frac{1!}{x^2} + \frac{2!}{x^3} - \frac{3!}{x^4} + \cdots$ (1.05)