Computer Science and Applied Mathematics
ASYMPTOTICSAND
SPECIAL
FUNCTIONS

This is a volume in COMPUTER SCIENCE AND APPLIED MATHEMATICS
A Series of Monographs and Textbooks

This series has been renamed COMPUTER SCIENCE AND SCIENTIFIC COMPUTING

Editor: WERNER RHEINBOLT

A complete list of titles in this series is available from the Publishers upon request.

ASYMPTOTICS AND SPECIAL FUNCTIONS

F. W. J. Olver

Institute for Fluid Dynamics and Applied Mathematics
University of Maryland
College Park, Maryland
and
National Bureau of Standards
Washington, D.C.

ACADEMIC PRESS, INC.
Harcourt Brace Jovanovich, Publishers
Boston San Diego New York
London Sydney Tokyo Toronto

This book is printed on acid-free paper. ©

```
Copyright © 1974, by Academic Press, Inc.
ALL RIGHTS RESERVED.
NO PART OF THIS PUBLICATION MAY bE REPRODUCED OR
TRANSMITTED IN ANY FORM OR BY ANY MEANS, ELECTRONIC
OR MECHANICAL, INCLUDING PHOTOCOPY, RECORDING, OR ANY
INFORMATION STORAGE AND RETRIEVAL SYSTEM, WITHOUT
PERMISSION IN WRITING FROM THE PUBLISHER.
```

ACADEMIC PRESS, INC.
1250 Sixth Avenue, San Diego, CA 92101

United Kingdom Edition published by ACADEMIC PRESS LIMITED.
24-28 Oval Road, London NW1 7DX

Library of Congress Cataloging-in-Publication Data

Olver, Frank W J Date
Asymptotics and special functions.
(Computer science and applied mathematics)
Bibliography: p.

1. Functions, Special. 2. Asymptotic expansions.
2. Differential equations-Numerical solutions.
I. Title.

QA351.048 515'.5 72-12192
ISBN 0-12-525850-X

AMS (MOS) 1970 Subject Classifications: 33-XX, 34A10, 34E05, 41 A60

PRINTED IN THE UNITED STATES OF AMERICA

To the memory of my daughter Linda (1953-1965)
Preface $x v$
1 Introduction to Asymptotic Analysis
1 Origin of Asymptotic Expansions 1
2 The Symbols \sim, o, and O 4
3 The Symbols \sim, o, and O (continued) 6
4 Integration and Differentiation of Asymptotic and Order Relations 8
5 Asymptotic Solution of Transcendental Equations: Real Variables 11
6 Asymptotic Solution of Transcendental Equations: Complex Variables 14
7 Definition and Fundamental Properties of Asymptotic Expansions 16
8 Operations with Asymptotic Expansions 19
9 Functions Having Prescribed Asymptotic Expansions 22
10 Generalizations of Poincaré's Definition 24
11 Error Analysis; Variational Operator 27
Historical Notes and Additional References 29
2 Introduction to Special Functions
1 The Gamma Function 31
2 The Psi Function 39
3 Exponential, Logarithmic, Sine, and Cosine Integrals 40
4 Error Functions, Dawson's Integral, and Fresnel Integrals 43
5 Incomplete Gamma Functions 45
6 Orthogonal Polynomials 46
7 The Classical Orthogonal Polynomials 48
8 The Airy Integral 53
9 The Bessel Function $J_{v}(z)$ 55
10 The Modified Bessel Function $I_{v}(z)$ 60
11 The Zeta Function 61
Historical Notes and Additional References 64
3 Integrals of a Real Variable
1 Integration by Parts 66
2 Laplace Integrals 67
3 Watson's Lemma 71
4 The Riemann-Lebesgue Lemma 73
5 Fourier Integrals 75
6 Examples; Cases of Failure 76
7 Laplace's Method 80
8 Asymptotic Expansions by Laplace's Method; Gamma Function of Large Argument 85
9 Error Bounds for Watson's Lemma and Laplace's Method 89
10 Examples 92
11 The Method of Stationary Phase 96
12 Preliminary Lemmas 98
13 Asymptotic Nature of the Stationary Phase Approximation 100
14 Asymptotic Expansions by the Method of Stationary Phase 104
Historical Notes and Additional References 104
4 Contour Integrals
1 Laplace Integrals with a Complex Parameter 106
2 Incomplete Gamma Functions of Complex Argument 109
3 Watson's Lemma 112
4 Airy Integral of Complex Argument; Compound Asymptotic Expansions 116
5 Ratio of Two Gamma Functions; Watson's Lemma for Loop Integrals 118
6 Laplace's Method for Contour Integrals 121
7 Saddle Points 125
8 Examples 127
9 Bessel Functions of Large Argument and Order 130
10 Error Bounds for Laplace's Method; the Method of Steepest Descents 135
Historical Notes and Additional References 137
5 Differential Equations with Regular Singularities; Hypergeometric and Legendre Functions
1 Existence Theorems for Linear Differential Equations: Real Variables 139
2 Equations Containing a Real or Complex Parameter 143
3 Existence Theorems for Linear Differential Equations: Complex Variables 145
4 Classification of Singularities; Nature of the Solutions in the Neighborhood of a Regular Singularity 148
5 Second Solution When the Exponents Differ by an Integer or Zero 150
6 Large Values of the Independent Variable 153
7 Numerically Satisfactory Solutions 154
8 The Hypergeometric Equation 156
9 The Hypergeometric Function 159
10 Other Solutions of the Hypergeometric Equation 163
11 Generalized Hypergeometric Functions 168
12 The Associated Legendre Equation 169
13 Legendre Functions of General Degree and Order 174
14 Legendre Functions of Integer Degree and Order 180
15 Ferrers Functions 185
Historical Notes and Additional References 189
6 The Liouville-Green Approximation
1 The Liouville Transformation 190
2 Error Bounds: Real Variables 193
3 Asymptotic Properties with Respect to the Independent Variable 197
4 Convergence of $\mathscr{V}(F)$ at a Singularity 200
5 Asymptotic Properties with Respect to Parameters 203
6 Example: Parabolic Cylinder Functions of Large Order 206
7 A Special Extension 208
8 Zeros 211
9 Eigenvalue Problems 214
10 Theorems on Singular Integral Equations 217
11 Error Bounds: Complex Variables 220
12 Asymptotic Properties for Complex Variables 223
13 Choice of Progressive Paths 224
Historical Notes and Additional References 228
7 Differential Equations with Irregular Singularities; Bessel and Confluent Hypergeometric Functions
1 Formal Series Solutions 229
2 Asymptotic Nature of the Formal Series 232
3 Equations Containing a Parameter 236
4 Hankel Functions; Stokes' Phenomenon 237
5 The Function $Y_{v}(z)$ 241
6 Zeros of $J_{v}(z)$ 244
7 Zeros of $Y_{v}(z)$ and Other Cylinder Functions 248
8 Modified Bessel Functions 250
9 Confluent Hypergeometric Equation 254
10 Asymptotic Solutions of the Confluent Hypergeometric Equation 256
11 Whittaker Functions 260
12 Error Bounds for the Asymptotic Solutions in the General Case 262
13 Error Bounds for Hankel's Expansions 266
14 Inhomogeneous Equations 270
15 Struve's Equation 274
Historical Notes and Additional References 277
8 Sums and Sequences
1 The Euler-Maclaurin Formula and Bernoulli's Polynomials 279
2 Applications 284
3 Contour Integral for the Remainder Term 289
4 Stirling's Series for $\ln \Gamma(z)$ 293
5 Summation by Parts 295
6 Barnes' Integral for the Hypergeometric Function 299
7 Further Examples 302
8 Asymptotic Expansions of Entire Functions 307
9 Coefficients in a Power-Series Expansion; Method of Darboux 309
10 Examples 311
11 Inverse Laplace Transforms; Haar's Method 315
Historical Notes and Additional References 321
9 Integrals: Further Methods
1 Logarithmic Singularities 322
2 Generalizations of Laplace's Method 325
3 Example from Combinatoric Theory 329
4 Generalizations of Laplace's Method (continued) 331
5 Examples 334
6 More General Kernels 336
7 Nicholson's Integral for $J_{v}^{2}(z)+Y_{v}^{2}(z)$ 340
8 Oscillatory Kernels 342
9 Bleistein's Method 344
10 Example 346
11 The Method of Chester, Friedman, and Ursell 351
12 Anger Functions of Large Order 352
13 Extension of the Region of Validity 358
Historical Notes and Additional References 361
10 Differential Equations with a Parameter: Expansions in Elementary Functions
1 Classification and Preliminary Transformations 362
2 Case I: Formal Series Solutions 364
3 Error Bounds for the Formal Solutions 366
4 Behavior of the Coefficients at a Singularity 368
5 Behavior of the Coefficients at a Singularity (continued) 369
6 Asymptotic Properties with Respect to the Parameter 371
7 Modified Bessel Functions of Large Order 374
8 Extensions of the Regions of Validity for the Expansions of the Modified Bessel Functions 378
9 More General Forms of Differential Equation 382
10 Inhomogeneous Equations 386
11 Example: An Inhomogeneous Form of the Modified Bessel Equation 388
Historical Notes and Additional References 391
11 Differential Equations with a Parameter: Turning Points
1 Airy Functions of Real Argument 392
2 Auxiliary Functions for Real Variables 394
3 The First Approximation 397
4 Asymptotic Properties of the Approximation; Whittaker Functions with m Large 401
5 Real Zeros of the Airy Functions 403
6 Zeros of the First Approximation 405
7 Higher Approximations 408
8 Airy Functions of Complex Argument 413
9 Asymptotic Approximations for Complex Variables 416
10 Bessel Functions of Large Order 419
11 More General Form of Differential Equation 426
12 Inhomogeneous Equations 429
Historical Notes and Additional References 433
12 Differential Equations with a Parameter: Simple Poles and Other Transition Points
1 Bessel Functions and Modified Bessel Functions of Real Order and Argument 435
2 Case III: Formal Series Solutions 438
3 Error Bounds: Positive ζ 440
4 Error Bounds: Negative ζ 443
5 Asymptotic Properties of the Expansions 447
6 Determination of Phase Shift 449
7 Zeros 451
8 Auxiliary Functions for Complex Arguments 453
9 Error Bounds: Complex u and ζ 457
10 Asymptotic Properties for Complex Variables 460
11 Behavior of the Coefficients at Infinity 462
12 Legendre Functions of Large Degree: Real Arguments 463
13 Legendre Functions of Large Degree: Complex Arguments 470
14 Other Types of Transition Points 474
Historical Notes and Additional References 478
13 Connection Formulas for Solutions of Differential Equations
1 Introduction 480
2 Connection Formulas at a Singularity 480
3 Differential Equations with a Parameter 482
4 Connection Formula for Case III 483
5 Application to Simple Poles 487
6 Example: The Associated Legendre Equation 490
7 The Gans-Jeffreys Formulas: Real-Variable Method 491
8 Two Turning Points 494
9 Bound States 497
10 Wave Penetration through a Barrier. I 501
11 Fundamental Connection Formula for a Simple Turning Point in the Complex Plane 503
12 Example: Airy's Equation 507
13 Choice of Progressive Paths 508
14 The Gans-Jeffreys Formulas: Complex-Variable Method 510
15 Wave Penetration through a Barrier. II 513
Historical Notes and Additional References 516
14 Estimation of Remainder Terms
1 Numerical Use of Asymptotic Approximations 519
2 Converging Factors 522
3 Exponential Integral 523
4 Exponential Integral (continued) 527
5 Confluent Hypergeometric Function 531
6 Euler's Transformation 536
7 Application to Asymptotic Expansions 540
Historical Notes and Additional References 543
Answers to Exercises 545
References 548
Index of Symbols 561
General Index 563

PREFACE

Classical analysis is the backbone of many branches of applied mathematics. The purpose of this book is to provide a comprehensive introduction to the two topics in classical analysis mentioned in the title. It is addressed to graduate mathematicians, physicists, and engineers, and is intended both as a basis for instructional courses and as a reference tool in research work. It is based, in part, on courses taught at the University of Maryland.

My original plan was to concentrate on asymptotics, quoting properties of special functions as needed. This approach is satisfactory as long as these functions are being used as illustrative examples. But the solution of more difficult problems in asymptotics, especially ones involving uniformity, necessitate the use of special functions as approximants. As the writing progressed it became clear that it would be unrealistic to assume that students are sufficiently familiar with needed properties. Accordingly, the scope of the book was enlarged by interweaving asymptotic theory with a systematic development of most of the important special functions. This interweaving is in harmony with historical development and leads to a deeper understanding not only of asymptotics, but also of the special functions. Why, for instance, should there be four standard solutions of Bessel's differential equation when any solution can be expressed as a linear combination of an independent pair? A satisfactory answer to this question cannot be given without some knowledge of the asymptotic theory of linear differential equations.

A second feature distinguishing the present work from existing monographs on asymptotics is the inclusion of error bounds, or methods for obtaining such bounds, for most of the approximations and expansions. Realistic bounds are of obvious importance in computational applications. They also provide theoretical insight into the nature and reliability of an asymptotic approximation, especially when more than one variable is involved, and thereby often avoid the need for the somewhat unsatisfactory concept of generalized asymptotic expansions. Systematic methods of error analysis have evolved only during the past decade or so, and many results in this book have not been published previously.

The contents of the various chapters are as follows. Chapter 1 introduces the basic concepts and definitions of asymptotics. Asymptotic theories of definite integrals containing a parameter are developed in Chapters 3, 4, and 9; those of ordinary linear differential equations in Chapters 6, 7, 10, 11, 12, and 13; those of sums and
sequences in Chapter 8. Special functions are introduced in Chapter 2 and developed in most of the succeeding chapters, especially Chapters $4,5,7,8,10,11$, and 12. Chapter 5 also introduces the analytic theory of ordinary differential equations. Finally, Chapter 14 is a brief treatment of methods of estimating (as opposed to bounding) errors in asymptotic approximations and expansions.

An introductory one-semester course can be based on Chapters 1, 2, and 3, and the first parts of Chapters $4,5,6$, and $7 .{ }^{\dagger}$ Only part of the remainder of the book can be covered in a second semester, and the selection of topics by the instructor depends on the relative emphasis to be given to special functions and asymptotics. Prerequisites are a good grounding in advanced calculus and complex-variable theory. Previous knowledge of ordinary differential equations is helpful, but not essential. A course in real-variable theory is not needed; all integrals that appear are Riemannian. Asterisks $\left(^{*}\right)$ are attached to certain sections and subsections to indicate advanced material that can be bypassed without loss of continuity. Worked examples are included in almost all chapters, and there are over 500 exercises of considerably varying difficulty. Some of these exercises are illustrative applications; others give extensions of the general theory or properties of special functions which are important but straightforward to derive. On reaching the end of a section the student is strongly advised to read through the exercises, whether or not any are attempted. Again, a warning asterisk $\left(^{*}\right.$) is attached to exercises whose solution is judged to be unusually difficult or time-consuming.

All chapters end with a brief section entitled Historical Notes and Additional References. Here sources of the chapter material are indicated and mention is made of places where the topics may be pursued further. Titles of references are collected in a single list at the end of the book. I am especially indebted to the excellent books of de Bruijn, Copson, Erdélyi, Jeffreys, Watson, and Whittaker and Watson, and also to the vast compendia on special functions published by the Bateman Manuscript Project and the National Bureau of Standards.

Valuable criticisms of early drafts of the material were received from G. F. Miller (National Physical Laboratory) and F. Stenger (University of Utah), who read the entire manuscript, and from R. B. Dingle (University of St. Andrews), W. H. Reid (University of Chicago), and F. Ursell (University of Manchester), who read certain chapters. R. A. Askey (University of Wisconsin) read the final draft, and his helpful comments included several additional references. It is a pleasure to acknowledge this assistance, and also that of Mrs. Linda Lau, who typed later drafts and assisted with the proof reading and indexes, and the staff of Academic Press, who were unfailing in their skill and courtesy. Above all, I appreciate the untiring efforts of my wife Grace, who carried out all numerical calculations, typed the original draft, and assisted with the proof reading.

[^0]
1

INTRODUCTION TO ASYMPTOTIC ANALYSIS

1 Origin of Asymptotic Expansions

1.1 Consider the integral

$$
\begin{equation*}
F(x)=\int_{0}^{\infty} e^{-x t} \cos t d t \tag{1.01}
\end{equation*}
$$

for positive real values of the parameter x. Let us attempt its evaluation by expanding $\cos t$ in powers of t and integrating the resulting series term by term. We obtain

$$
\begin{align*}
F(x) & =\int_{0}^{\infty} e^{-x t}\left(1-\frac{t^{2}}{2!}+\frac{t^{4}}{4!}-\cdots\right) d t \tag{1.02}\\
& =\frac{1}{x}-\frac{1}{x^{3}}+\frac{1}{x^{5}}-\cdots \tag{1.03}
\end{align*}
$$

Provided that $x>1$ the last series converges to the sum

$$
F(x)=\frac{x}{x^{2}+1}
$$

That the attempt proved to be successful can be confirmed by deriving the last result directly from (1.01) by means of two integrations by parts; the restriction $x>1$ is then seen to be replaceable by $x>0$.

Now let us follow the same procedure with the integral

$$
\begin{equation*}
G(x)=\int_{0}^{\infty} \frac{e^{-x t}}{1+t} d t \tag{1.04}
\end{equation*}
$$

We obtain

$$
\begin{align*}
G(x) & =\int_{0}^{\infty} e^{-x t}\left(1-t+t^{2}-\cdots\right) d t \\
& =\frac{1}{x}-\frac{1!}{x^{2}}+\frac{2!}{x^{3}}-\frac{3!}{x^{4}}+\cdots \tag{1.05}
\end{align*}
$$

This series diverges for all finite values of x, and therefore appears to be meaningless.
Why did the procedure succeed in the first case but not in the second? The answer is not hard to find. The expansion of $\cos t$ converges for all values of t; indeed it converges uniformly throughout any bounded t interval. Application of a standard theorem concerning integration of an infinite series over an infinite interval ${ }^{\dagger}$ confirms that the step from (1.02) to (1.03) is completely justified when $x>1$. In the second example, however, the expansion of $(1+t)^{-1}$ diverges when $t \geqslant 1$. The failure of the representation (1.05) may be regarded as the penalty for integrating a series over an interval in which it is not uniformly convergent.
1.2 If our approach to mathematical analysis were one of unyielding purity, then we might be content to leave these examples at this stage. Suppose, however, we adopt a heuristic approach and try to sum the series (1.05) numerically for a particular value of x, say $x=10$. The first four terms are given by

$$
\begin{equation*}
0.1000-0.0100+0.0020-0.0006 \tag{1.06}
\end{equation*}
$$

exactly, and the sum of the series up to this point is 0.0914 . Somewhat surprisingly this is very close to the correct value $G(10)=0.09156 \ldots{ }^{\ddagger}$

To investigate this unexpected success we consider the difference $\varepsilon_{n}(x)$ between $G(x)$ and the nth partial sum of (1.05), given by

$$
\varepsilon_{n}(x)=G(x)-g_{n}(x)
$$

where

$$
g_{n}(x)=\frac{1}{x}-\frac{1!}{x^{2}}+\frac{2!}{x^{3}}-\cdots+(-)^{n-1} \frac{(n-1)!}{x^{n}} .
$$

Here n is arbitrary, and $\varepsilon_{n}(x)$ is called the remainder term, error term, or truncation error of the partial series, or, more precisely, the nth such term or error. Since

$$
\frac{1}{1+t}=1-t+t^{2}-\cdots+(-)^{n-1} t^{n-1}+\frac{(-)^{n} t^{n}}{1+t}
$$

substitution in (1.04) yields

$$
\begin{equation*}
\varepsilon_{n}(x)=(-)^{n} \int_{0}^{\infty} \frac{t^{n} e^{-x t}}{1+t} d t \tag{1.07}
\end{equation*}
$$

Clearly,

$$
\begin{equation*}
\left|\varepsilon_{n}(x)\right|<\int_{0}^{\infty} t^{n} e^{-x t} d t=\frac{n!}{x^{n+1}} \tag{1.08}
\end{equation*}
$$

In other words, the partial sums of (1.05) approximate the function $G(x)$ with an error that is numerically smaller than the first neglected term of the series. It is also

[^1]clear from (1.07) that the error has the same sign as this term. Since the next term in (1.06) is 0.00024 , this fully explains the closeness of the value 0.0914 of $g_{4}(10)$ to that of $G(10)$.
1.3 Thus the expansion (1.05) has a hidden meaning: it may be regarded as constituting a sequence of approximations $\left\{g_{n}(x)\right\}$ to the value of $G(x)$. In this way it resembles a convergent expansion, for example (1.03). For in practice we cannot compute an infinite number of terms in a convergent series; we stop the summation when we judge that the contribution from the tail is negligibly small compared to the accuracy required. There are, however, two important differences. First, $\varepsilon_{n}(x)$ cannot be expressed as the sum of the tail. Secondly, by definition the partial sum of a convergent series becomes arbitrarily close to the actual sum as the number of terms increases indefinitely. With (1.05) this is not the case: for a given value of x, successive terms $(-)^{s} s!/ x^{s+1}$ diminish steadily in size as long as s does not exceed $[x]$, the integer part of x. Thereafter they increase without limit. Correspondingly, the partial sums $g_{n}(x)$ at first approach the value of $G(x)$, but when n passes [x] errors begin to increase and eventually oscillate wildly. ${ }^{\dagger}$

The essential difference, then, is that whereas the sum of a convergent series can be computed to arbitrarily high accuracy with the expenditure of sufficient labor, the accuracy in the value of $G(x)$ computed from the partial sums $g_{n}(x)$ of (1.05) is restricted. For a prescribed value of x, the best we can do is to represent $G(x)$ by $g_{[x]}(x)$. The absolute error of this representation is bounded by $[x]!/ x^{[x]+1}$, and the relative error by about $[x]!/ x^{[x]}$.

Although the accuracy is restricted, it can be extremely high. For example, when $x=10,[x]!/ x^{[x]} \fallingdotseq 0.36 \times 10^{-3}{ }^{\ddagger}$ Therefore when $x \geqslant 10$, the value of $G(x)$ can be found from (1.05) to at least three significant figures, which is adequate for some purposes. For $x \geqslant 100$, this becomes 42 significant figures; there are few calculations in the physical sciences that need accuracy remotely approaching this.

So far, we have considered the behavior of the sequence $\left\{g_{n}(x)\right\}$ for fixed x and varying n. If, instead, n is fixed, then from (1.08) we expect $g_{n}(x)$ to give a better approximation to $G(x)$ than any other partial sum when x lies in the interval $n<x<n+1$. 8 Thus, no single approximation is "best" in an overall sense; each has an interval of special merit.
1.4 The expansion (1.05) is typical of a large class of divergent series obtained from integral representations, differential equations, and elsewhere when rules governing the applicability of analytical transformations are violated. Nevertheless, such expansions were freely used in numerical and analytical calculations in the eighteenth century by many mathematicians, particularly Euler. In contrast to the foregoing analysis for the function $G(x)$ little was known about the errors in approximating functions in this way, and sometimes grave inaccuracies resulted.

[^2]Early in the nineteenth century Abel, Cauchy, and others undertook the task of placing mathematical analysis on firmer foundations. One result was the introduction of a complete ban on the use of divergent series, although it appears that this step was taken somewhat reluctantly.

No way of rehabilitating the use of divergent series was forthcoming during the next half century. Two requirements for a satisfactory general theory were, first, that it apply to most of the known series; secondly, that it permit elementary operations, including addition, multiplication, division, substitution, integration, differentiation, and reversion. Neither requirement would be met if, for example, we confined ourselves to series expansions whose remainder terms are bounded in magnitude by the first neglected term.

Both requirements were satisfied eventually by Poincaré in 1886 by defining what he called asymptotic expansions. This definition is given in $\S 7.1$ below. As we shall see, Poincare's theory embraces a wide class of useful divergent series, and the elementary operations can all be carried out (with some slight restrictions in the case of differentiation).

2 The Symbols ~, o, and 0

2.1 In order to describe the behavior, as $x \rightarrow \infty$, of a wanted function $f(x)$ in terms of a known function $\phi(x)$, we shall often use the following notations, due to Bachmann and Landau. ${ }^{\dagger}$ At first, we suppose x to be a real variable. At infinity $\phi(x)$ may vanish, tend to infinity, or have other behavior-no restrictions are made.
(i) If $f(x) / \phi(x)$ tends to unity, we write

$$
f(x) \sim \phi(x) \quad(x \rightarrow \infty)
$$

or, briefly, when there is no ambiguity, $f \sim \phi$. In words, f is asymptotic to ϕ, or ϕ is an asymptotic approximation to f.
(ii) If $f(x) / \phi(x) \rightarrow 0$, we write

$$
f(x)=o\{\phi(x)\} \quad(x \rightarrow \infty)
$$

or, briefly, $f=o(\phi)$; in words, f is of order less than ϕ :
(iii) If $|f(x) / \phi(x)|$ is bounded, we write

$$
f(x)=O\{\phi(x)\} \quad(x \rightarrow \infty)
$$

or $f=O(\phi)$; again, in words, f is of order not exceeding ϕ.
Special cases of these definitions are $f=o(1)(x \rightarrow \infty)$, meaning simply that f vanishes as $x \rightarrow \infty$, and $f=O(1)(x \rightarrow \infty)$, meaning that $|f|$ is bounded as $x \rightarrow \infty$.

[^3]As simple examples

$$
(x+1)^{2} \sim x^{2}, \quad \frac{1}{x^{2}}=o\left(\frac{1}{x}\right), \quad \sinh x=O\left(e^{x}\right)
$$

2.2 Comparing (i), (ii), and (iii), we note that (i) and (ii) are mutually exclusive. Also, each is a particular case of (iii), and when applicable each is more informative than (iii).

Next, the symbol O is sometimes associated with an interval $[a, \infty)^{\dagger}$ instead of the limit point ∞. Thus

$$
\begin{equation*}
f(x)=O\{\phi(x)\} \quad \text { when } \quad x \in[a, \infty) \tag{2.01}
\end{equation*}
$$

simply means that $|f(x) / \phi(x)|$ is bounded throughout $a \leqslant x<\infty$. Neither the symbol \sim nor o can be used in this way, however.

The statement (2.01) is of existential type: it asserts that there is a number K such that

$$
\begin{equation*}
|f(x)| \leqslant K|\phi(x)| \quad(x \geqslant a) \tag{2.02}
\end{equation*}
$$

without giving information concerning the actual size of K. Of course, if (2.02) holds for a certain value of K, then it also holds for every larger value; thus there is an infinite set of possible K 's. The least member of this set is the supremum (least upper bound) of $|f(x) / \phi(x)|$ in the interval $[a, \infty)$; we call it the implied constant of the O term for this interval.
2.3 The notations $o(\phi)$ and $O(\phi)$ can also be used to denote the classes of functions f with the properties (ii) and (iii), respectively, or unspecified functions with these properties. The latter use is generic, that is, $o(\phi)$ does not necessarily denote the same function f at each occurrence. Similarly for $O(\phi)$. For example,

$$
o(\phi)+o(\phi)=o(\phi), \quad o(\phi)=O(\phi)
$$

It should be noted that many relations of this kind, including the second example, are not reversible: $O(\phi)=o(\phi)$ is false. Relations involving \sim are always reversible, however.

An instructive relation is supplied by

$$
\begin{equation*}
e^{i x}\{1+o(1)\}+e^{-i x}\{1+o(1)\}=2 \cos x+o(1) \tag{2.03}
\end{equation*}
$$

This is easily verified by expressing $e^{ \pm i x}$ in the form $\cos x \pm i \sin x$ and recalling that the trigonometric functions are bounded. The important point to notice is that the right-hand side of (2.03) cannot be rewritten in the form $2\{1+o(1)\} \cos x$, for this would imply that the left-hand side is exactly zero when x is an odd multiple of $\frac{1}{2} \pi$. In general this is false because the functions represented by the $o(1)$ terms differ.

[^4]Ex. 2.1 ${ }^{\dagger}$ If v has any fixed value, real or complex, prove that $x^{y}=o\left(e^{x}\right)$ and $e^{-x}=o\left(x^{y}\right)$.
Prove also that ${ }^{\ddagger} \ln x=o\left(x^{v}\right)$, provided that $\operatorname{Re} v>0$.
Ex. 2.2 Show that

$$
x+o(x)=O(x), \quad\{O(x)\}^{2}=O\left(x^{2}\right)=o\left(x^{3}\right) .
$$

Ex. 2.3 Show that

$$
\cos \left\{O\left(x^{-1}\right)\right\}=O(1), \quad \sin \left\{O\left(x^{-1}\right)\right\}=O\left(x^{-1}\right)
$$

and

$$
\cos \{x+\alpha+o(1)\}=\cos (x+\alpha)+o(1)
$$

where α is a real constant.
Ex. 2.4 Is it true that

$$
\{1+o(1)\} \cosh x-\{1+o(1)\} \sinh x=\{1+o(1)\} e^{-x} ?
$$

Ex. 2.5 Show that

$$
O(\phi) O(\psi)=O(\phi \psi), \quad O(\phi) O(\psi)=o(\phi \psi), \quad O(\phi)+O(\psi)=O(|\phi|+|\psi|) .
$$

Ex. 2.6 What are the implied constants in the relations

$$
(x+1)^{2}=O\left(x^{2}\right), \quad\left(x^{2}-\frac{1}{2}\right)^{1 / 2}=O(x), \quad x^{2}=O\left(e^{x}\right),
$$

for the interval $[1, \infty)$?
Ex. 2.7 Prove that if $f \sim \phi$, then $f=\{1+o(1)\} \phi$. Show that the converse holds provided that infinity is not a limit point of zeros of ϕ.
Ex. 2.8 Let $\phi(x)$ be a positive nonincreasing function of x, and $f(x) \sim \phi(x)$ as $x \rightarrow \infty$. By means of the preceding exercise show that

$$
\sup _{t \in(x, \infty)} f(t) \sim \phi(x) \quad(x \rightarrow \infty)
$$

3 The Symbols ~, o, and O (continued)

3.1 The definitions of $\S 2.1$ may be extended in a number of obvious ways. To begin with, there is no need for the asymptotic variable x to be continuous; it can pass to infinity through any set of values. Thus

$$
\sin \left(\pi n+\frac{1}{n}\right)=O\left(\frac{1}{n}\right) \quad(n \rightarrow \infty)
$$

provided that n is an integer.
Next, we are not obliged to concern ourselves with the behavior of the ratio $f(x) / \phi(x)$ solely as $x \rightarrow \infty$; the definitions (i), (ii), and (iii) of $\S 2.1$ also apply when x tends to any finite point, c, say. For example, if $c \neq 0$, then as $x \rightarrow c$

$$
\frac{x^{2}-c^{2}}{x^{2}} \sim \frac{2(x-c)}{c}=O(x-c)=o(1)
$$

[^5]We refer to c as the distinguished point of the asymptotic or order relation.
3.2 The next extension is to complex variables. Let \mathbf{S} be a given infinite sector $\alpha \leqslant \operatorname{ph} z \leqslant \beta, \operatorname{ph} z$ denoting the phase or argument of z. Suppose that for a certain value of R there exists a number K, independent of $\mathrm{ph} z$, such that

$$
\begin{equation*}
|f(z)| \leqslant K|\phi(z)| \quad(z \in \mathbf{S}(R)) \tag{3.01}
\end{equation*}
$$

where $\mathbf{S}(R)$ denotes the intersection of \mathbf{S} with the annulus $|z| \geqslant R$. Then we say that $f(z)=O\{\phi(z)\}$ as $z \rightarrow \infty$ in \mathbf{S}, or, equivalently, $f(z)=O\{\phi(z)\}$ in $\mathbf{S}(R)$. Thus the symbol O automatically implies uniformity with respect to $\mathrm{ph} z{ }^{\dagger}$ Similarly for the symbols \sim and o.

For future reference, the point set $\mathbf{S}(R)$ just defined will be called an infinite annular sector or, simply, annular sector. The vertex and angle of \mathbf{S} will also be said to be the vertex and angle of $S(R)$.

The least number K fulfilling (3.01) is called the implied constant for $\mathbf{S}(R)$. Actually there is no essential reason for considering annular sectors, the definitions apply equally well to any region (that is, point set in the complex plane) having infinity or some other distinguished point as a limit point; compare Exercise 3.2 below.

3.3 An important example is provided by the tail of a convergent power series:

Theorem 3.1 Let $\sum_{s=0}^{\infty} a_{s} z^{s}$ converge when $|z|<r$. Then for fixed n,

$$
\sum_{s=n}^{\infty} a_{s} z^{s}=O\left(z^{n}\right)
$$

in any disk $|z| \leqslant \rho$ such that $\rho<r$.
To prove this result, let ρ^{\prime} be any number in the interval (ρ, r). Then $a_{s} \rho^{\prime s} \rightarrow 0$ as $s \rightarrow \infty$; hence there exists a constant A such that

$$
\left|a_{s}\right| \rho^{\prime s} \leqslant A \quad(s=0,1,2, \ldots) .
$$

Accordingly,

$$
\left|\sum_{s=n}^{\infty} a_{s} z^{s}\right| \leqslant \sum_{s=n}^{\infty} A \frac{|z|^{s}}{\rho^{\prime s}}=\frac{A \rho^{\prime(1-n)}|z|^{n}}{\rho^{\prime}-|z|} \leqslant \frac{A \rho^{\prime(1-n)}}{\rho^{\prime}-\rho}|z|^{n}
$$

This establishes the theorem.
A typical illustration is supplied by

$$
\ln \{1+O(z)\}=O(z) \quad(z \rightarrow 0)
$$

3.4 An asymptotic or order relation may possess uniform properties with respect to other variables or parameters. For example, if u is a parameter in the interval $[0, a]$, where a is a positive constant, then

$$
e^{(z-u)^{2}}=O\left(e^{z^{2}}\right)
$$

\dagger Not all writers use O and the other two symbols in this way.
as $z \rightarrow \infty$ in the right half-plane, uniformly with respect to u (and $\mathrm{ph} z$). Such regions of validity are often interdependent: $u \in[-a, 0]$ and the left half of the z plane would be another admissible combination in this example.

Ex. 3.1 If δ denotes a positive constant, show that $\cosh z \sim \frac{1}{2} e^{z}$ as $z \rightarrow \infty$ in the sector $|\operatorname{ph} z| \leqslant$ $\frac{1}{2} \pi-\delta$, but not in the sector $|\mathrm{ph} z|<\frac{1}{2} \pi$.

Ex. 3.2 Show that $e^{-\sinh z}=o(1)$ as $z \rightarrow \infty$ in the half-strip $\operatorname{Re} z \geqslant 0,|\operatorname{Im} z| \leqslant \frac{1}{2} \pi-\delta<\frac{1}{2} \pi$.
Ex. 3.3 If p is fixed and positive, calculate the implied constant in the relation $e^{-z}=O\left(z^{-p}\right)$ for the sector $|\mathrm{ph} z| \leqslant \frac{1}{2} \pi-\delta<\frac{1}{2} \pi$, and show that it tends to infinity as $\delta \rightarrow 0$.

Ex. 3.4 Assume that $\phi(x)>0, p$ is a real constant, and $f(x) \sim \phi(x)$ as $x \rightarrow \infty$. With the aid of Theorem 3.1 show that $\{f(x)\}^{p} \sim\{\phi(x)\}^{p}$ and $\ln \{f(x)\} \sim \ln \{\phi(x)\}$, provided that in the second case $\phi(x)$ is bounded away from unity.

Show also that $e^{f(x)} \sim e^{\phi(x)}$ may be false.
Ex. 3.5 Let x range over the interval $[0, \delta]$, where δ is a positive constant, and $f(u, x)$ be a positive real function such that $f(u, x)=O(u)$ as $u \rightarrow 0$, uniformly with respect to x. Show that

$$
\{x+f(u, x)\}^{1 / 2}=x^{1 / 2}+O\left(u^{1 / 2}\right)
$$

as $u \rightarrow 0$, uniformly with respect to x.

4 Integration and Differentiation of Asymptotic and Order Relations

4.1 As a rule, asymptotic and order relations may be integrated, subject to obvious restrictions on the convergence of the integrals involved. Suppose, for example, that $f(x)$ is an integrable function of the real variable x such that $f(x) \sim x^{\nu}$ as $x \rightarrow \infty$, where v is a real or complex constant. Let a be any finite real number. Then as $x \rightarrow \infty$, we have

$$
\begin{equation*}
\int_{x}^{\infty} f(t) d t \sim-\frac{x^{v+1}}{v+1} \quad(\operatorname{Re} v<-1) \tag{4.01}
\end{equation*}
$$

and

$$
\int_{a}^{x} f(t) d t \sim \begin{cases}\text { a constant } & (\operatorname{Re} v<-1) \tag{4.02}\\ \ln x & (v=-1) \\ x^{v+1} /(v+1) & (\operatorname{Re} v>-1)\end{cases}
$$

To prove, for example, the third of (4.02), we have $f(x)=x^{\nu}\{1+\eta(x)\}$, where $|\eta(x)|<\varepsilon$ when $x>X>0, X$ being assignable for any given positive number ε. Hence if $x>X$, then

$$
\int_{a}^{x} f(t) d t=\int_{a}^{x} f(t) d t+\frac{1}{v+1}\left(x^{v+1}-X^{v+1}\right)+\int_{X}^{x} t^{v} \eta(t) d t,
$$

and so

$$
\frac{v+1}{x^{v+1}} \int_{a}^{x} f(t) d t-1=\frac{v+1}{x^{v+1}} \int_{a}^{x} f(t) d t-\frac{X^{v+1}}{x^{v+1}}+\frac{v+1}{x^{\nu+1}} \int_{X}^{x} t^{\nu} \eta(t) d t .
$$

The first two terms on the right-hand side of the last equation vanish as $x \rightarrow \infty$, and the third term is bounded by $|v+1| \varepsilon /(1+\operatorname{Re} v)$. The stated result now follows.

The results (4.01) and (4.02) may be extended in a straightforward way to complex integrals.
4.2 Differentiation of asymptotic or order relations is not always permissible. For example, if $f(x)=x+\cos x$, then $f(x) \sim x$ as $x \rightarrow \infty$, but it is not true that $f^{\prime}(x) \rightarrow 1$. To assure the legitimacy of differentiation further conditions are needed. For real variables, these conditions can be expressed in terms of the monotonicity of the derivative:

Theorem 4.1^{\dagger} Let $f(x)$ be continuously differentiable and $f(x) \sim x^{p}$ as $x \rightarrow \infty$, where $p(\geqslant 1)$ is a constant. Then $f^{\prime}(x) \sim p x^{p-1}$, provided that $f^{\prime}(x)$ is nondecreasing for all sufficiently large x.

To prove this result, we have $f(x)=x^{p}\{1+\eta(x)\}$, where $|\eta(x)| \leqslant \varepsilon$ when $x>X$, assignable and positive, ε being an arbitrary number in the interval (0,1). If $h>0$, then

$$
\begin{aligned}
h f^{\prime}(x) & \leqslant \int_{x}^{x+h} f^{\prime}(t) d t=f(x+h)-f(x) \\
& =\int_{x}^{x+h} p t^{p-1} d t+(x+h)^{p} \eta(x+h)-x^{p} \eta(x) \\
& \leqslant h p(x+h)^{p-1}+2 \varepsilon(x+h)^{p} .
\end{aligned}
$$

Set $h=\varepsilon^{1 / 2} x$. Then we have

$$
f^{\prime}(x) \leqslant p x^{p-1}\left\{\left(1+\varepsilon^{1 / 2}\right)^{p-1}+2 p^{-1} \varepsilon^{1 / 2}\left(1+\varepsilon^{1 / 2}\right)^{p}\right\} \quad(x>X) .
$$

Similarly,

$$
f^{\prime}(x) \geqslant p x^{p-1}\left\{\left(1-\varepsilon^{1 / 2}\right)^{p-1}-2 p^{-1} \varepsilon^{1 / 2}\right\} \quad\left(x>X /\left(1-\varepsilon^{1 / 2}\right)\right)
$$

The theorem now follows.
Another result of this type is stated in Exercise 4.4 below. It should be appreciated, however, that monotonicity conditions on $f^{\prime}(x)$ are often difficult to verify in practice because $f^{\prime}(x)$ is the function whose properties are being sought.
4.3 In the complex plane, differentiation of asymptotic or order relations is generally permissible in subregions of the original region of validity. An important case is the following:

Theorem 4.2^{\ddagger} Let $f(z)$ be holomorphic ${ }^{\S}$ in a region containing a closed annular sector S, and

$$
\begin{equation*}
f(z)=O\left(z^{p}\right) \quad\left(\text { or } \quad f(z)=o\left(z^{p}\right)\right) \tag{4.03}
\end{equation*}
$$

[^6]as $z \rightarrow \infty$ in \mathbf{S}, where p is any fixed real number. Then
\[

$$
\begin{equation*}
f^{(m)}(z)=O\left(z^{p-m}\right) \quad\left(o r \quad f^{(m)}(z)=o\left(z^{p-m}\right)\right) \tag{4.04}
\end{equation*}
$$

\]

as $z \rightarrow \infty$ in any closed annular sector \mathbf{C} properly interior to \mathbf{S} and having the same vertex.

The proof depends on Cauchy's integral formula for the m th derivative of an analytic function, given by

$$
\begin{equation*}
f^{(m)}(z)=\frac{m!}{2 \pi i} \int_{\mathscr{C}} \frac{f(t) d t}{(t-z)^{m+1}} \tag{4.05}
\end{equation*}
$$

in which the path \mathscr{C} is chosen to be a circle enclosing $t=z$. The essential reason z is restricted to an interior region in the final result is to permit inclusion of \mathscr{C} in \mathbf{S}.

Since $\mid z$-constant $\left.\right|^{p} \sim|z|^{p}$, the vertex of S may be taken to be the origin without loss of generality. Let S be defined by $\alpha \leqslant \operatorname{ph} z \leqslant \beta,|z| \geqslant R$, and consider the annular sector \mathbf{S}^{\prime} defined by

$$
\alpha+\delta \leqslant \operatorname{ph} z \leqslant \beta-\delta, \quad|z| \geqslant R^{\prime}
$$

where δ is a positive acute angle and $R^{\prime}=R /(1-\sin \delta)$; see Fig. 4.1. By taking δ small enough we can ensure that \mathbf{S}^{\prime} contains \mathbf{C}. In (4.05) take \mathscr{C} to be $|t-z|=|z| \sin \delta$. Then

$$
|z|(1-\sin \delta) \leqslant|t| \leqslant|z|(1+\sin \delta)
$$

Hence $t \in \mathbf{S}$ whenever $z \in \mathbf{S}^{\prime}$. Moreover, if K is the implied constant of (4.03) for \mathbf{S}, then

$$
\left|f^{(m)}(z)\right| \leqslant \frac{m!}{(|z| \sin \delta)^{m}} K|z|^{p}(1 \pm \sin \delta)^{p}
$$

the upper or lower sign being taken according as $p \geqslant 0$ or $p<0$. In either event $f^{(m)}(z)$ is $O\left(z^{p-m}\right)$, as required. The proof in the case when the symbol O in (4.03) and (4.04) is replaced by o is similar.

We have shown, incidentally, that the implied constant of (4.04) in \mathbf{S}^{\prime} does not

Fig. 4.1 Annular sectors S, S^{\prime}.
exceed $m!(\csc \delta)^{m}(1 \pm \sin \delta)^{p} K$, but because this bound tends to infinity as $\delta \rightarrow 0$, we cannot infer that (4.04) is valid in S.

Ex. 4.1 Show that if $f(x)$ is continuous and $f(x)=o\{\phi(x)\}$ as $x \rightarrow \infty$, where $\phi(x)$ is a positive nondecreasing function of x, then $\int_{a}^{x} f(t) d t=o\{x \phi(x)\}$.

Ex. 4.2 It may be expected that in the case $\operatorname{Re} v=-1, \operatorname{Im} v \neq 0$, the result corresponding to (4.02) would be $\int_{a}^{x} f(t) d t=O(1)$. Show that this is false by means of the example $f(x)=$ $x^{\prime \mu-1}+(x \ln x)^{-1}$, where μ is real.

Ex. 4.3 If u and x lie in $[1, \infty)$, show that

$$
\int_{x}^{\infty} \frac{d t}{t\left(t^{2}+t+u^{2}\right)^{1 / 2}}=\frac{1}{x}+O\left(\frac{1}{x^{2}}\right)+O\left(\frac{u^{2}}{x^{3}}\right) .
$$

Ex. 4.4 Suppose that $f(x)=x^{2}+O(x)$ as $x \rightarrow \infty$, and $f^{\prime}(x)$ is continuous and nondecreasing for all sufficiently large x. Show that $f^{\prime}(x)=2 x+O\left(x^{1 / 2}\right)$.
[de Bruijn, 1961.]
Ex. 4.5 In place of (4.03) assume that $f(z) \sim z^{\nu}$, where v is a nonzero real or complex constant. Deduce from Theorem 4.2 that $f^{\prime}(z) \sim v z^{v-1}$ as $z \rightarrow \infty$ in C.

Ex. 4.6 Let \mathbf{T} and \mathbf{T}^{\prime} denote the half-strips

$$
\begin{array}{rll}
\mathbf{T}: & \alpha \leqslant \operatorname{Im} z \leqslant \beta, & \operatorname{Re} z \geqslant \rho \\
\mathbf{T}^{\prime}: & \alpha+\delta \leqslant \operatorname{Im} z \leqslant \beta-\delta, & \operatorname{Re} z \geqslant \rho
\end{array}
$$

where $0<\delta<\frac{1}{2}(\beta-\alpha)$. Suppose that $f(z)$ is holomorphic within \mathbf{T}, and $f(z)=O\left(e^{z}\right)$ as $z \rightarrow \infty$ in T. Show that $f^{\prime}(z)=O\left(e^{z}\right)$ as $z \rightarrow \infty$ in \mathbf{T}^{\prime}.
Ex. 4.7 Show that the result of Exercise 4.6 remains valid if both terms $O\left(e^{z}\right)$ are replaced by $O\left(z^{p}\right)$, where p is a real constant.

Show further that $f^{\prime}(z)=O\left(z^{p-1}\right)$ is false by means of the example $z^{p} e^{i z}$.

5 Asymptotic Solution of Transcendental Equations: Real Variables

5.1 Consider the equation

$$
x+\tanh x=u
$$

in which u is a real parameter. The left-hand side is a strictly increasing function of x. Hence by graphical considerations there is exactly one real root $x(u)$, say, for each value of u. What is the asymptotic behavior of $x(u)$ for large positive u ?

When x is large, the left-hand side is dominated by the first term. Accordingly, we transfer the term $\tanh x$ to the right and treat it as a "correction":

$$
x=u-\tanh x
$$

Since $|\tanh x|<1$, it follows that

$$
\begin{equation*}
x(u) \sim u \quad(u \rightarrow \infty) \tag{5.01}
\end{equation*}
$$

This is the first approximation to the root. An immediate improvement is obtained by recalling that $\tanh x=1+o(1)$ as $x \rightarrow \infty$; thus

$$
\begin{equation*}
x=u-1+o(1) \quad(u \rightarrow \infty) \tag{5.02}
\end{equation*}
$$

To derive higher approximations we expand $\tanh x$ in a form appropriate for large x, given by

$$
\tanh x=1-2 e^{-2 x}+2 e^{-4 x}-2 e^{-6 x}+\cdots \quad(x>0)
$$

and repeatedly substitute for x in terms of u. From (5.02). it is seen that $e^{-2 x}=O\left(e^{-2 u}\right) .^{\dagger}$ Hence with the aid of Theorem 3.1 we obtain

$$
x=u-1+O\left(e^{-2 x}\right)=u-1+O\left(e^{-2 u}\right)
$$

The next step is given by

$$
\begin{align*}
x & =u-1+2 \exp \left\{-2 u+2+O\left(e^{-2 u}\right)\right\}+O\left(e^{-4 x}\right) \\
& =u-1+2 e^{-2 u+2}+O\left(e^{-4 u}\right) \tag{5.03}
\end{align*}
$$

Continuation of the process produces a sequence of approximations with errors of steadily diminishing asymptotic order. Whether the sequence converges as the number of steps tends to infinity is not discernible from the analysis, but the numerical potential of the process can be perceived by taking, for example, $u=5$ and ignoring the error term $O\left(e^{-4 u}\right)$ in (5.03). We find that $x=4.0006709 \ldots$, compared with the correct value $4.0006698 \ldots$, obtained by standard numerical methods. ${ }^{\ddagger}$
5.2 A second example amenable to the same approach is the determination of the large positive roots of the equation

$$
x \tan x=1
$$

Inversion produces

$$
x=n \pi+\tan ^{-1}(1 / x)
$$

where n is an integer and the inverse tangent has its principal value. Since the latter is in the interval ($-\frac{1}{2} \pi, \frac{1}{2} \pi$), we derive $x \sim n \pi$ as $n \rightarrow \infty$.

Next, when $x>1$,

$$
\tan ^{-1} \frac{1}{x}=\frac{1}{x}-\frac{1}{3 x^{3}}+\frac{1}{5 x^{5}}-\frac{1}{7 x^{7}}+\cdots
$$

Hence $x=n \pi+O\left(x^{-1}\right)=n \pi+O\left(n^{-1}\right)$. The next two substitutions produce

$$
x=n \pi+\frac{1}{n \pi}+O\left(\frac{1}{n^{3}}\right), \quad x=n \pi+\frac{1}{n \pi}-\frac{4}{3(n \pi)^{3}}+O\left(\frac{1}{n^{5}}\right) .
$$

And so on.
5.3 A third example is provided by the equation

$$
\begin{equation*}
x^{2}-\ln x=u \tag{5.04}
\end{equation*}
$$

in which u is again a large positive parameter. This differs from the preceding
examples in that the "correction term" $\ln x$ is unbounded as $x \rightarrow \infty$. To assist with (5.04) and similar equations we establish the following simple general result:

Theorem 5.1 Let $f(\xi)$ be continuous and strictly increasing in an interval $a<\xi<\infty$, and

$$
\begin{equation*}
f(\xi) \sim \xi \quad(\xi \rightarrow \infty) \tag{5.05}
\end{equation*}
$$

Denote by $\xi(u)$ the root of the equation

$$
\begin{equation*}
f(\xi)=u \tag{5.06}
\end{equation*}
$$

which lies in (a, ∞) when $u>f(a)$. Then

$$
\begin{equation*}
\xi(u) \sim u \quad(u \rightarrow \infty) \tag{5.07}
\end{equation*}
$$

Graphical considerations show that $\xi(u)$ is unique, increasing, and unbounded as $u \rightarrow \infty$. From (5.05) and (5.06) we have $u=\{1+o(1)\} \xi$ as $\xi \rightarrow \infty$, and therefore, also, as $u \rightarrow \infty$. Division by the factor $1+o(1)$ then gives $\xi=\{1+o(1)\} u$, which is equivalent to (5.07).
5.4 We return to the example (5.04). Here $\xi=x^{2}$ and $f(\xi)=\xi-\frac{1}{2} \ln \xi$. Therefore $f(\xi)$ is strictly increasing when $\xi>\frac{1}{2}$, and the theorem informs us that $\xi \sim u$ as $u \rightarrow \infty$; equivalently,

$$
x=u^{1 / 2}\{1+o(1)\} \quad(u \rightarrow \infty)
$$

Substituting this approximation into the right-hand side of

$$
\begin{equation*}
x^{2}=u+\ln x \tag{5.08}
\end{equation*}
$$

and recalling that $\ln \{1+o(1)\}$ is $o(1)$, we see that

$$
x^{2}=u+\frac{1}{2} \ln u+o(1)
$$

and hence (Theorem 3.1)

$$
x=u^{1 / 2}\left\{1+\frac{\ln u}{4 u}+o\left(\frac{1}{u}\right)\right\}
$$

As in $\S \S 5.1$ and 5.2 , the resubstitutions can be continued indefinitely.
Ex. 5.1 Prove that the root of the equation $x \tan x=u$ which lies in the interval $\left(0, \frac{1}{2} \pi\right)$ is given by

$$
x=\frac{1}{2} \pi\left(1-u^{-1}+u^{-2}\right)-\left(\frac{1}{2} \pi-\frac{1}{24} \pi^{3}\right) u^{-3}+O\left(u^{-4}\right) \quad(u \rightarrow \infty) .
$$

Ex. 5.2 Show that the large positive roots of the equation $\tan x=x$ are given by

$$
x=\mu-\mu^{-1}-\frac{2}{3} \mu^{-3}+O\left(\mu^{-5}\right) \quad(\mu \rightarrow \infty),
$$

where $\mu=\left(n+\frac{1}{2}\right) \pi, n$ being a positive integer.
Ex. 5.3 For the example of $\S 5.1$, show that when $u>0$

$$
x=u-1+2 g_{1} e^{-2 u+2}
$$

and hence that

$$
x=u-1+2 e^{-2 u+2}-10 g_{2} e^{-4 u+4},
$$

where ϑ_{1} and ϑ_{2} are certain numbers in the interval $(0,1)$.

[^0]: \dagger For this reason, the first seven chapters have been published by Academic Press as a separate volume, for classroom use, entitled Introduction to Asymptotics and Special Functions.

[^1]: \dagger Bromwich (1926, §§175-6). This theorem is quoted fully later (Chapter 2, Theorem 8.1).
 \ddagger Obtainable by numerical quadrature of (1.04) or by use of tables of the exponential integral; compare Chapter 2, §3.1.

[^2]: \dagger For this reason, series of this kind used to be called semiconvergent or convergently beginning.
 \ddagger Here and elsewhere the sign \fallingdotseq denotes approximate equality.
 § Since (1.08) gives a bound and not the actual value of $\left|\varepsilon_{n}(x)\right|$, the interval in which $g_{n}(x)$ gives the best approximation may differ slightly from $n<x<n+1$.

[^3]: \dagger Landau (1927, Vol. 2, pp. 3-5).
 \ddagger In cases in which $\phi(x)$ is not real and positive, some writers use modulus signs in the definition, thus $f(x)=o(|\phi(x)|)$. Similarly in Definition (iii) which follows.

[^4]: \dagger Throughout this book we adhere to the standard notation (a, b) for an open interval $a<x<b ;[a, b]$ for the corresponding closed interval $a \leqslant x \leqslant b ;(a, b]$ and $[a, b)$ for the partly closed intervals $a<x \leqslant b$ and $a \leqslant x<b$, respectively.

[^5]: \dagger In Exercises 2.1-2.5 it is assumed that large positive values of the independent variable x are being considered.
 $\ddagger \ln x \equiv \log _{e} x$.

[^6]: \dagger de Bruijn (1961, §7.3).
 \ddagger Ritt (1918).
 § That is, analytic and free from singularity.

