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PREFACE 

This volume collects the invited addresses given at a symposium on fluid interfaces 
of the Mathematics Research Center of the University of Wisconsin in Madison in 
October 1982. The articles survey many different aspects of recent research develop-
ments, from nonlinear instabilities of classical interfaces to the physical structure of 
real interfaces and the new challenges they pose to our intuition about fluids. They 
concern theory and experiment, and touch on many applications of acute interest in 
technology and medicine. Collectively, they illuminate a multifaceted subject in 
rapid progress. 

I am greatly indebted to the authors for the excellence of their articles outlining so 
many recent advances in which they have played a decisive part. The Mathematics 
Research Center also wishes to thank the United States Army, which sponsored the 
conference under its Contract No. DAAG29-80-C-0041, the National Science Foun-
dation, which supported it by Grants MEA-8212157 and MCS-7927062(2) of its 
Mechanical Engineering and Applied Mechanics and its Mathematical and Computer 
Sciences Divisions, and to the United States Department of Energy, which supported 
it by Grant DE-FG02-82ER13020 of its Applied Mathematical Sciences Division in 
the Office of Basic Energy Sciences. My personal thanks go to Gladys Moran for the 
expert handling of yet another symposium and to Elaine DuCharme for assembling 
the volume and index. 

Richard E. Meyer 
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FINITE-AMPLITUDE INTERFACIAL WAVES 

P. G. Saffman 

1. INTRODUCTION. 

We consider gravity waves at the interface between two 

uniform, unbounded fluids of different densities in the 

presence of a current or relative horizontal velocity U. 

The fluids are supposed to be immiscible, incompressible and 

inviscid, and the motion is assumed to be irrotational. We 

are concerned with the properties and existence of finite 

amplitude two-dimensional, periodic waves of permanent form 

which propagate steadily without change of shape. By two-

dimensional, we mean that the flow field depends only on the 

horizontal direction of propagation, which will be the x-

axis, and the vertical y-direction. In the field of surface 

gravity waves, which is the limit of the present study when 

the density of the upper fluid is zero, it has been found 

recently that three-dimensional waves of permanent form 

exist and are observed experimentally (see e.g. [5]). It is 

expected that such waves will also exist and be important 

for interfacial waves, but they will not be considered in 

the present work. 

For the purpose of calculating steady waves, there is 

no loss of generality in taking the speed of propagation 

c parallel to the current U, as an arbitrary constant 

transverse velocity may be linearly superposed on any 
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2 P. G. Saffman 

two-dimensional steady wave without affecting its properties 

(the stability characteristics would, however, be 

affected). The wave can be reduced to rest by choosing a 

frame of reference moving with the wave. The problem is 

then to calculate steady irrotational solutions of the Euler 

equations which satisfy continuity of pressure across a 

common streamline. It follows from dimensional analysis 

that apart from scaling factors all flow variables will 

depend upon three dimensionless parameters: 

T T2 

■k Po Po u 

L ' ρχ ' P l gL ' U ' 1 ; 

where h is the height of the wave defined as the vertical 

distance between crest and trough, L is the wavelength 

(the horizontal distance over which the flow field repeats 

itself which in the present work will be the distance 

between crests), P9 and ρΊ are the densities of the 

upper and lower fluid respectively, and g is the 

acceleration due to gravity. For example, the speed of the 

waves is given by 

TT2 

c = (eL/2.)1/2C(|, -ξ, -ή^) (1.2) 

where C is a dimensionless function of its arguments. For 

surface waves, where p^ = 0 and there is dependence on 

only one parameter, namely h/L, it is known that many 

interesting and unexpected phenomena exist, especially when 

the wave steepness becomes large. When there is dependence 

on three parameters, it is to be expected that many more 

phenomena are likely. However, in the absence of exact 

solutions for large h/L, it is a highly non-trivial task 

to search a three-dimensional parameter space. The results 

to be presented below are limited to those phenomena which 

seem currently to be of the most interest. 

In contrast to the voluminous work on surface waves, 

relatively little seems to have been done on interfacial 

waves of permanent form, and that work seems to have been 

confined to the case of zero current, i.e. U = 0. Tsuji 
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and Nagata [7] calculated Stokes type expansions to order 

(h/L) , and Holyer [3] used the computer to compute the 

coefficients in such an expansion to order (h/L) , and 

then used Padé approximants to estimate the behavior for 

large h/L. We are not aware of any work for waves with 

current. 

For the mathematical formulation, there is no loss of 

generality in taking g = 1, L = 2π, and p = 1. The 

mathematical problem is to determine the x-periodic velocity 

potentials and stream functions, for the lower and upper 

fluid respectively, which satisfy Laplace's equation and are 

harmonic conjugate pairs, so that at the unknown interface 

y = Y(x), 

Ψ1(χ,Υ(χ)) = 0, ψ2(χ,Υ(χ)) = 0 , (1.3) 

I (νφχ)
2 + Y(x) + b = i- Ρ2(

νΦ2)
2 + ΡΒ

γ(χ> · (1-4) 

In general, p = p2, but we allow for the possibility of 

Boussinesq waves (in which the inertia of the two fluids is 

the same and density differences only matter when multiplied 

by 9) by setting p. = 1 and p_ = 0. Surface tension is 

neglected throughout. The quantity b is the Bernoulli 

constant, which by suitable choice of the origin of pressure 

may be set equal to zero in the lower fluid. Infinitely far 

from the interface, we have 

φχ Cx, φ2 - (U - c)x . (1.5) 

The vertical origin is set by requiring that the mean 

elevation of the interface is zero and the horizontal origin 

can be fixed by placing the crest at x = 0. This problem 

now appears to be free of arbitrary constants and the wave 

is determined by the crest to trough height h. It is 

expected that isolated families of solutions exist in 

connected regions in (h,p2#U) space, although this does 

not yet appear to have been proved. 

One question of considerable interest is the domain of 

parameter space in which solutions exist. Suppose that we 

consider a fixed value of p2 and vary h and U. It is 

found that as U increases with h kept constant the 
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system of equations describing steady solutions fails to 

have a solution, even though the 'limiting* wave profile is 

smooth and exhibits no singular properties. For U > 0 

there are, when solutions exist, at least two physically 

distinct waves corresponding to the two wave speeds for 

propagation with and against the current. As U increases, 

the wave propagating against the current is 'entrained' by 

the current and at a certain value of U, which depends 

on h and p~, the two waves become identical and for 

larger U there are no real solutions of the equations. 

Mathematically, this is like the disappearance of roots of a 

quadratic). We shall term this factor which limits 

existence a 'dynamical limit*. 

The second factor is what we term a 'geometrical 

limit'. The mathematical formulation remains well-behaved 

but the solutions cease to make physical sense as the wave 

profiles cross themselves. This occurs for fixed U and 

increasing h. Examples of this phenomenon are found in 

pure capillary and capillary-gravity waves [2,1] for which 

the wave profile crosses itself at a critical value of h. 

If U * 0, this limit is going to be different for the two 

solutions of waves moving with and against the current. In 

the case of surface waves, this limit corresponds to a 120° 

cusp. It is easy to see that except for two special cases 

(see §4), this cannot happen for interfacial waves. Holyer 

[3] identified the geometrical limit for U = 0 with the 

existence of a vertical tangent. We shall present evidence 

that waves can exist with a vertical tangent and significant 

overhang, and the evidence indicates that the geometrical 

limit is associated with the wave crossing itself when it is 

sufficiently high for U > 0. 

2. WEAKLY NONLINEAR WAVES. 

The properties of weakly nonlinear steady waves may be 

obtained by using the Stokes expansion in which all 

variables are expanded as power series in h/L. However, 

the algebra can be simplified somewhat by using Whitham's 

variational approach. Proceeding in the usual manner, one 

finds after some algebra that the average Lagrangian is 
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L - è <PB - D i j h 2 + a2) 

+ Tëk [ ω 2 + ρ2<
υ*-ω>23 - Ô + l î ) i > 2 + ρ2(^-ω)2] 

h2a 
- -jg2- [ω2 - P2(Uk-W)

2] + 0(h6) (2.1) 

for the wave with interface shape 

Y(x) = j cos(kx - oit) + a2cos 2(kx - ut) (2.2) 

The value of a2 is found from 3L/3a2 = 0 to be 

a2 - 8(1 - p ) [ g 2 - p 2 ( U - C ) 2 ] + ° ( h 4 ) ' B 

where C = ω/k is the phase speed. The dispersion relation 

for the weakly nonlinear wave then follows from 3L/3h = 0: 

C2 + p2(U - C )
2 

= (1 - pB)[l + |Í (r-§4- - ! ) 2 + T-] + 0(h4) . (2.4) 
B 

For U = 0, the values of C agree with those in [7] 

The values of the energy, momentum and action densities 

and fluxes follow from the expression (2.1) for L in the 

usual way. In particular, the total energy density E is 

given by 

E = kCL - L . (2.5) 
ω 

It is to be noted that for U > 0, the energy is measured 

relative to the energy of the uniform state with a flat 

interface. Negative energies may therefore exist and mean 

that the energy of the state with waves is less than that of 

the undisturbed flow. 

It follows from the dispersion relation (2.4) that for 

linear waves (h ■► 0) and given values of p2 and U, 

there are two solutions corresponding to the two roots of 

the quadratic equation for C in terms of p2 and U. We 

denote these two solutions by C. and C_, where 
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C+ > C_. For the linear case, steady solutions cease to 

exist when U exceeds a critical value OQQ given by 

Uc0 = C ( 1 + p 2 ) ( 1 - p B ) / p 2 ] l / 2 ( 2 · 6 ) 

for which the two wave speeds are equal with the value 

c+ = c_ = P 2U C 0/(I + p2). 

The v a l u e s of C+ and C_ a r e 

P2U ± [p 2 U 2 - (1 + P 2 ) ( P 2 U 2 - 1 + P B ) ] 1 / 2 . ( 2 . 7 ) 

For U = 0, the values are equal and opposite. As U 

increases, the speed of the wave propagating with the 

current originally increases but eventually decreases. 

The speed of the wave propagating against the current 

increases monotonically (in the algebraic sense), becomes 
1/2 zero when U = [(1 - P R)/P«] and then increases to 

equal C+ when U is given by (2.6). According to 

the linear approximation, the energy density E equals 
1 2 2 
g- h [C (1+r) - rCU], and it is interesting that the energy 

becomes negative when the direction of the C_ waves 

changes. 

For finite amplitude waves, the two solutions 

corresponding to C+ and C_ waves continue into two 

families of solutions marked by wave speeds C (h,p~,U) and 

C_(h,p«,U). For any given value of h and p2, there 

will again be a critical current Uc beyond which steady 

solutions no longer exist. For the weakly nonlinear 

approximation, this value is given by 

h2 " + ft 1/2 
uc = u c o [ 1 + r 7 — 7 1 · ( 2 · 9 ) 

(1 + p2) 

It is noteworthy that increasing h increases Uc. 

3. NUMERICAL METHODS. 

For values of h that are not small, it is necessary 

to employ numerical methods. Three different techniques 

were employed. The first was to compute in physical space, 

i.e. the interface, potentials and stream function were 

expanded as Fourier series in x with coefficients which 
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are exponential in y. The series were truncated to N 

modes and the boundary conditions were then satisfied at 

N + 1 equally horizontally spaced points on the 

interface. This procedure gives 3N + 4 equations for 

3N + 4 unknowns. These equations were solved by Newton's 

method, using continuation in either U or h to give the 

first guesses. Note that this formulation is essentially 

equivalent to calculating numerically the coefficients of 

the Stokes expansion as done in [3]. 

The second method used the potential and stream 

function as the independent variables and expands the 

physical coordinates as series in these. The boundary 

conditions are now satisfied at equally spaced values of the 

velocity potential and the resulting system of 3N + 3 

equations in 3N + 3 variables, the expansions being 

truncated to N modes, was also solved by Newton's method 

with continuation in U and h employed to give a first 

guess. 

The third method used a vortex sheet representation in 

which the unknowns are the shape of the interface and the 

dipole strength of the equivalent double layer. This gives 

a nonlinear integrodifferential equation, which was solved 

by discretization and collocation, the resulting system of 

nonlinear equations again being solved by Newton's method 

with continuation. 

For details, see [4,5]. All methods worked extremely 

well for small values of h/L, which generally meant 

h < 0.6, with some dependence on p« and U. (With our 

scaling, the surface wave of greatest height has h = 0.89). 

The first method was the first to fail as h increased. It 

is of course clear that this approach of working in physical 

space must fail when the wave becomes very steep, but the 

failure, marked by the apparent failure of the Fourier 

series to converge, seemed to be due to other causes. What 

actually happened was that the singularities of the analytic 

continuation of the lower velocity potential, say, into the 

upper half plane moved down below the crest. In this case, 

the expansion of the velocity potential would have to 

diverge near the crest, even though the solution was 
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perfectly well behaved and physically meaningful. This 

difficulty would not affect the other two methods which were 

used for values of h up to 1.2 for various values of p~ 

and U. For large values of h, 100 modes were used in the 

second method and this seemed adequate except for the 

largest h. The vortex sheet method with 65 intervals was 

employed for this case. This method offers in principle the 

advantage of being able to concentrate points near regions 

of high curvature, although this was not done. 

The accuracy of the calculations was checked by 

comparing the results of the somewhat different methods with 

each other in regions of apparent validity and by performing 

the usual tests of internal consistency by investigating the 

dependence on number of retained modes. The calculations 

were carried out on a PRIME 750 and the CRAY-1 at NCAR. 
4 · A SPECIAL CLASS OF SOLUTIONS. 

It is interesting to note that a special class of 

solutions exist which are simple transformations of the 

well-known surface permanent wave solutions, which have been 

extensively studied both numerically and theoretically by 

many authors. For each value of p2, these solutions 

describe the shape of the interface for the C + case when 

C + = U = (1 - p B)
l / 2 C s (h) (4.1) 

where Cs(h) is the wave speed of the surface wave of 

permanent frm for the given wave height h. Since C + = U, 

the upper fluid is stagnant in the wave-fixed coordinates. 

The dynamic boundary condition for the motion in the lower 

fluid then becomes that for surface waves with a reduced 
1/2 

gravity g(l - p_) ' . The velocities and wave speed are 

therefore those of the surface wave multiplied by the factor 

u - ^'\ 
For the C_ branch, special solutions exist with 

c_ = o, u = [ ( i - P B ) / p 2 J 1 / 2 c
s < n > · <4-2> 

In this case, the lower fluid is stagnant and the dynamic 

boundary condition on the motion of the upper fluid is that 

with a reduced upside down gravity. The wave profiles are 


