

Advanced
Programming
Methodologies

This is volume 3 0 in A . P . I . C . Studies in Data Processing
General Editors: M. J . R . Shave and I. C. Wand
A complete list of titles in this series appears at the end of this volume

Α.p.I .e. Studies in Data Processing
No. 30

Advanced
Programming
Methodologies

Edited by

GIANNA CIONI
Istituto di Analisi dei Sistemi ed Informatica,

Consiglio Nazionale delle Ricerche, Romey Italy

and

A N D R Z E J SALWICKI
Institute of Informatics, University of Warsaw,

Warsaw, Poland

ACADEMIC PRESS
Harcourt Brace Jovanovich, Publishers

London San Diego New York Berkeley
Boston Sydney Tokyo Toronto

ACADEMIC PRESS LIMITED
24/28 Oval Road

London NWl 7DX

United States Edition published by
ACADEMIC PRESS, INC.

San Diego, CA92101

Copyright © 1989 by
ACADEMIC PRESS LIMITED

All Rights Reserved
No part of this book may be reproduced or transmitted in any form or by any means, electronic
or mechanical, including photocopy, recording, or any information storage and retrieval system

without permission in writing from the publisher

ISBN 0-12-174690-9

Printed in Great Britain by St Edmundsbury Press Ltd, Bury St Edmunds, Suffolk

Preface

The present volume is the result of a Summer School on Advanced Progran
ming Methodologies which took place in Rome, 17-24 September 1987. Th
work of the school concentrated on modern tools of software production. I
motto was ''practice and theory should go together''. Therefore, new pn
gramming tools, as well as new theoretical foundations for the production (
software, have been presented.

The inspiration for the school came from the Institute of Informatic
University of Warsaw and Istituto di Analisi dei Sistemi ed Informatic
(lASI), CNR of Rome. The school was organized jointly by these Institut«
and by Centro Interdipartimentale di Calcolo Scientifico, University <
Rome "La Sapienza".

One of the aims of that School was to attract the participants' attention 1
the new, not well-known tools of advanced programming, in order to hel
the diffusion of new ideas. One of the subjects, and in our opinion the mo
relevant, was object-oriented programming which is slowly gaining ti
attention of programmers. Its efficiency, its power in describing systems ar
its intrinsic modularity should be appreciated by all programmers. Neve
theless, twenty years after the first definition of the ideas of class and objec
these notions are not in wide use. This approach deserves more attentioi
Until now, only a few research papers, devoted to the properties of class<
and their objects, have been published. (Note that the number of pape
devoted to the semantics of procedures are in thousands.) And this researc
is most definitely non-trivial! The eventual results will be appreciated t
those who know objects and would like to apply them in accordance to thei
yet to be completely discovered, laws.

The Advanced Programming Methodologies School consisted of lecture
demos and practical experiments. The participants had opportunities to ga
experience in using the environments and languages presented during tl
lectures. This fact, we believe, made the statements of lectures moi
convincing.

The production of software is slow, the products are to be debugged wii
pain and costs. This is a well known fact. One can state that the softwai
production is like manufacturing, a question of skills rather than of scienc

On the other hand we are aware of new techniques which can essential

vi Advanced Programming Methodologies

change the work of programmers. These techniques, both of theoretical and
software engineering aspects, are poorly known to the public. Moreover,
the new tools of theoretical character are not introduced yet in the process of
software production.

The new programming tools are still awaiting appropriate theoretical
research.

From the above remarks it follows that we can profit from the methods
offered by new programming languages, new environments etc. We should
take also into account the challenge of new theoretical questions inspired by
the new programming tools.

This book contains, as its part one, the collected papers prepared by the
lecturers of the School. The second part, prepared by G. Cioni and A.
Kreczmar, presents more detailed information on problems connected with
implementation and application of high level programming languages. As
one can see from the contents of the book the authors discuss mostly
environments, modularity and methodology. We hope that readers will find
the presented ideas and tools useful and inspiring. We are sure that the effort
of learning new methods will be repaid by the results in the practice of
programming. We would like to call the reader's attention to the
LOGLAN'82 programming language. It offers all the possibilities already
known and surpasses them by providing the programmers with many new
tools. It seems worth mentioning that modules of programs (especially of
LOGLAN programs) can be derived from algorithmic specification to
gether with the proofs of their correctness.

The book is aimed at a broad circle of readers. It can be used during
various courses on Methodology of programming. It can also be used by
advanced students of Computer Science. The editors hope that the reader
will appreciate and take up an invitation to study and research theoretical
and software problems mentioned in the book.

We wish to express our sincere thanks to the I AS I for the excellent
organization of the School and for the computer facilities made available
during the school. The school itself would never have taken place without
the work of Mirella Schaerf whom all the lecturers and participants of the
school wish to thank warmly. We thank the publisher for the encouragement
to write the book and the patience with which they accepted our delays.

The Editors

Contributors

p. ATZENI
Dipartimento di Informatica e
Sistemistica, Universita degli
Studi di Napoliy Napoli, Italy

G. CIONI
Istituto di Analisi dei Sistemi ed
Informatica, Consiglio
Nazionale delle Ricerche, Viale
Manzoni 30, 00185 Roma, Italy

A. CORRADI
Dipartimento di Elettronica,
Informatica e Sistemistica, Viale
Risorgimento 2, 40136 Bologna,
Italy

A. FUGGETTA
Dipartimento di Elettronica
Politecnico di Milano, Piazza L.
da Vinci 32, 20133 Milano, Italy

C. GHEZZI
Dipartimento di Elettronica
Politecnico di Milano, Piazza L.
da Vinci 32, 20133 Milano, Italy

A. KRECZMAR
Institute of Informatics,
University of Warsaw, 00901
Warszawa, Poland

D. MANDRIOLI
Dipartimento di Elettronica
Politecnico di Milano, Piazza L.
da Vinci 32, 20133 Milano, Italy

A. MIOLA
Dipartimento di Informatica e
Sistemistica, Universita di Roma
La Sapienza, via Buonarroti
12, 00185 Roma, Italy

A. MORZENTI
Dipartimento di Elettronica
Politecnico di Milano, Piazza L.
da Vinci 32, 20133 Milano, Italy

A. NATALI
Dipartimento di Elettronica,
Informatica e Sistemistica, Viale
Risorgimento 2, 40136 Bologna,
Italy

A. PETTOROSSI
Electronics Institute, Rome
University, Via Orazio
Raimondo, 00173 Roma, Italy

D. SACCA
Dipartimento di Sistemi,
Universita della Calabria,
87030 Rende, Italy

viü Advanced Programming Methodologies

Α. SALWICKI
Institute of Informaticsy
University of Warsaw, 00901
Warsaw, Poland,

M. SHERMAN
Information Technology Center,
Carnegie-Mellon University,
Pittsburgh, PA 15213, USA

R. VITALE
Dipartimento di Informatica e
Sistemistica, Universita degli
Studi di Roma ''La Sapienza'\
Via Eudossiana 18, 00184 Roma,
Italy

C. ZANIOLO
Microelectronics and Computer
Technology Corporation,
Austin, TX 78759, USA

Contents

Preface ν
Contributors vii

Part One
Development of Software from Algorithmic Specifications
A. Salwicki 1

Toward Flexible Specification Environments
A. Fuggettüy C. Ghezziy D. Mandrioli and A, Morzenti 41

Object Oriented Programming: a SpeciaHzation of Smalltalk?
A, Natali and A. Corradi 77

A Description and Evaluation of Paragon's Type Hierarchies for
Data Abstraction
M. Sherman 111

On Inheritance Rule in Object Oriented Programming
A. Kreczmar 141

Derivation of Programs which Traverse their Input Data Only Once
A. Pettorossi 165

Functional Programming Approach to Modularity in Large
Software Systems
A. Miola 185

Languages for Databases
P. Atzeni 205

Relational Algebra and Fixpoint Computation for Logic
Programming Implementation
D. Saccäy C. Zaniolo 223

χ Advanced Programming Methodologies

Part Two
Modules in High Level Programming Languages
G. Cioni, A. Kreczmar 247

Storage Management
G. Cioniy A. Kreczmar and R, Vitale 341

247

Index 367

Development of Software
from Algorithmic Specifications

A n d r z e j Salwicki

Institute of Informatics

University of Warsaw

PKiN room 850

00901 Warsaw POLAND

1. Introduction

Loglan is a name of a software project which contains as its kernel

a universal programming language Loglan'82. The main objectives of

the project were the tools for quick production of software and the

application of scientific methods thus making software production a

real technological process.

The speed in offering new software products, the possibility of

introducing quickly improvements, are of importance. The eventual

profits are of economical, technological and structural character. It is

characteristic, for the present state of software "manufacturer's" pro

duction, that most of the big systems have been delivered with essen

tial delays and that they are generally unreliable. This phenomenon

is the best evidence of our thesis that the era of industrial production

of software is before us yet. In our opinion one will recognize this era

when at least two conditions will be satisfied:

1. when the production of software will be based on fundamental

sciences, like civil engineering which is based on mathematics and

physics,

2. when software systems will be assembled from subsystems, like

cars are assembled from parts coming from different factories.

ADVANCED PROGRAMMING METHODOLOGIES Copyright © 1989 by Academic Press, Limited
ISBN 0-12-174690-9 Ail rights of reproduction in any form reserved.

2 Advanced Programming Methodologies

Is there a hope to satisfy these conditions in a future? Have we to

wait long for this era? Our answer is: no, it is quite easy to meet the

two criteria. The community of programmers and computer scientists

knows enough many facts and has enough skill to arrive at the desired

solution. Below, we shall present a point of view elaborated at Insti

tute of Informatics, University of Warsaw. The opinions presented

here are based on two projects which have been conducted in our In

stitute for many years. The first one was a theoretical project named

Algorithmic Logic (AL) . The goals of AL are to learn basic laws of

computing which are independent of specific computer, programming

language, data etc. The results of the research allow to use them as

a methodology of software production. A similar research has been

conducted with certain delay in West Europe and US, but the aims

of Algorithmic Logic were wider than just Logic. There is enough

evidence for the thesis that AL can serve as a tool for the formulation

of the specification of software, as a deductive system for analysis

of modules of programs, etc. Making use of the language of Algo

rithmic Logic we are able to provide complete axiomatic descriptions

of data types, either "real" primitive data types of a programming

language, or abstract ones. It turned out that such axiomatizations

makes the analysis of correctness and of other semantical properties

easier. Moreover, we found a formal counterpart of implementation

notion. If one algorithmic theory is interpretable within another, then

the corresponding data structure (its model) is implemented in the

second structure.

Project Loglan brought a second factor: the possibility to com

pose, extend and apply modules of software which come from various

producers.

The possibility of storing algorithms in libraries of procedures is well

known. What the community needs is the possibility of storing, han

dling, composing etc. of modules which implement systems. Such a

Development of Software 3

Abstract
pfogratn

Implementing
module

The only link between these two pieces of software should consists of

Specification of
data strucure

possibility is offered by packages of ADA programming language. But

we are sorry to say that much more general tool has been overlooked.

It is the prefixing invented years ago by the designers of Simula. The

virtues of prefixing are numerous, making programming in Simula

highly efficient, but also totally different from programming in other

languages. On the other hand, the Simula's implementation of pre*

fixing, has many limitations which seem to contradict its potential

profit.

2 . Methodology of Programming
2 . 1 A b s t r a c t d a t a t y p e s

In the majority of the cases we have to develop a piece of software

which performs certain operations not available in a moment. In other

words, our future program is to be executed in a data structure other

than supplied by hardware and system software. In 1972 C.A.R.Hoare

|2| remarked that in such case one should factorize the goal onto two

subgoals:

i) to specify and implement a data structure,

ii) to design, analyse and use a "abstract" program.

According to this advice we should develop two modules

4 Advanced Programming Methodologies

Two teams of programmers can be created for the work on two mod

ules. A team developing the abstract program should base only on the

specification. That is, the semantical properties of program should be

deduced only from the axioms contained in the specification. An im

plementing team uses the specification as a criterion of correctness of

the implementation. The virtues of this method are manyfold. The

principle of factorization makes possible to execute the abstract pro

gram in the presence of diff'erent implementing modules. However

a correct program doesn't need to be adjusted. It will be the same

for all implementing modules. We can gain or loose, on efficiency of

computations depending on our choice of implementation for the data

structure. Another advantage of the method consists in the possibility

of multiple applications of once created implementing module.

The module can be conceived as an implementation of a new language.

The work should have at least three visible stages:

a) formulation of a specification, i.e. an axiomatization of the data

structure,

b) design of abstract program and its verification basing on the spec

ification,

c) realization of the data structure and verification of its correctness

(also basing on specification we verify the validity of its axioms in

a given implementation).

2 .2 S y s t e m s

It is of importance to be able to handle systems, very much like we

are able to handle algorithms today. In this place many readers can

protest: well, we have built many systems already. That's correct.

But are these systems decomposable? Is it easy to exchange certain

part of it? etc. What we really need are modules of software which

can be taken from shelves like one takes now modules of hardware

Development of Software 5

and assembles them. We need also encapsulated systems.

What we understand by a system? Any collection consisting of a

set of elements, the universe, and of a set of operations and relations.

Therefore a system is an algebraic structure, the fundamental notion

of the mathematics. The practice imposes additional requirements,

and it may be difficult to express them in the language of mathematics.

Below, we shall list a few of them. The universe doesn't need to be

homogeneous. It is frequently the case that the universe is partitioned

onto disjoint subsets called sorts. In an example of the system of

stacks we consider two sorts: Ε of elements, and S of stacks. The

operations can require that the arguments should be of definite sorts,

e.g. the first argument of sort Ε and the second of sort S, the result of

the operation being of sort, say, S. Moreover it is important to create

systems which have a better degree of dynamicity and then that the

objects of the systems can perform their own actions. This option can

be demanded on three ascending levels:

a) In the case objects are passive, it has however to be possible to

perform an action on demand of certain active agent. Why it is

desirable? One good reason is that it enables to write clear ex

pressions. Another justification comes from the observation that

this way of work with objects allows to save on the time and space

of parameter's passing. But the most important outcome of such

system is that it is a "system". More seriously, it is of importance

to be able to collect into one module the definitions of data and

of operations on them. ^Compare the PASCAL approach and the

Loglan one.

E X A M P L E

{pascal} {loglan}

type comp = record unit comp: class (re, imireal)

re,im : real

6 Advanced Programming Metliodologies

end record;

function add(z,t:comp):comp;

var addtemp: comp;

begin

addtemp:= new comp;

addtemp.re:= z.re-ht.re;

addtemp ,im:= z.im-ht.im;

add:= addtemp

end add;

function mult(z,t:comp):comp;

...{ details omitted)

end mult;

unit add:function(z:comp):comp;

begin

result :=newcomp (re-i-z.r€,im-hz.im)

end add;

unit mult:function(z:comp):comp;

begin

result:=newcomp(re *z.re

' im *z. im, re *z. im -h im *z. re)

end mult;

end comp;

The similarities are visible, the differences require a word of com

ment. On the left side we find a collection of three modules which

are supposed to work together. But what will happen when an inad

vertent programmer will move two of them into certain place of his

program leaving the third module alone? We are to keep in mind that

the three form an entity. On the right side we have an encapsulated

module. We don't need to worry about its structure. When we are

going to use it, we use its full text. We can gain on execution time

since the operations add and mult defined in the class comp require

only half of memory access operations in comparison with those ex

ecuted in the left side. The functions add and mult, being local in

the class comp, can utilize the local attributes re and im of comp ob

ject. Finally, it is interesting to compare two expressions which use

different implementations. Suppose we have the declaration

var z,t,u,v: comp

then the expressions are

Development of Software 7

{pascal} {loglan}

mult(add(z,t), add(u,v)) 2.add(t).mult(u.add(v))

Remark the differences in syntax. In the second case one can write

expressions in an infix notation. One can also economize the number

of parameters passed.

b) In programming of games, in simulation packages etc. we often

wish to create objects which can be activated from time to time.

Just like players in a game, certain objects are called to resume

their actions at the latest reactivation point and when they per

form actions which correspond to one step in a game, they re

nounce their activity till they are awakened again. Here one can

differentiate among the schemes which demand that a name of the

activated object is given explicitly (this is the case of coroutines),

and another case in which an active object returns the processing

ability to the object which activated it without knowing its name

(this is the case of semicoroutines).

c) The third level is encountered when a system to be created should

be able to deal with situations in which many objects execute their

actions simultaneously. This demand causes the need for objects

being concurrent processes.

In all three cases objects are not only manipulated from outside.

They are not only objects but they are also sovereign subjects on their

own.

2 .3 Hierarch ies

It is well known that big, complicated systems can be designed,

realized and maintained if and only if a hierarchy is imposed. The

hierarchy may concern various aspects of the systems. Sometimes it

8 Advanced Programming Methodologies

and other attributes corresponding to a specific case. One can define

various subsets of the set of the set of bills e.g.

bills.for.energy, bills.for.telephone, ...

The structure of the subsets can be further developed into a tree-like

structure, e.g.

bilLelectricity bill-gaz billJntern.calls

It seems important to have the ability to treat common features of

bills by common algorithms. In order to do so we require that the

rules of compatibility of types will allow to assign an object of type,

say, bill-gaz to a variable of type bill. But not conversely. It would

be dissLStrous if we allow to perform an operation proper for the type

bill^az on an object which is enable to interpret its data in accordance

is enough to consider a hierarchy of subsets of a certain universe of

objects. Consider for example a general notion of bill. Every bill

contains certain common attributes like:

amount.to.be.paid: currency

paid: boolean

year.montk.day: date

Development of Software 9

with the structure of bill^^az.

Obviously one can consider also hierarchies of subsystems not only of

subsets.

2 .4 P r o t o c o l s , a x i o m s , behav iours

It is of importance to have the possibility to enforce certain ax

ioms, protocols or behaviours on the systems and their elements. As

an example we would like to quote: the ability to create entry proce

dures of monitors in a way guaranteeing that the protocol of mutual

exclusion will be observed. Other examples of synchronization tools

are easy to imagine.

A quite different demand may appear when we expect that all

objects of certain system will satisfy specific axioms throughout its

lifetime cycle, e.g. one can demand that all objects of certain type Τ

are "normalized". This property can be inadvertently destroyed by

a user. For example, how to make sure that when working with lists

we shall never turn a list into a ring? How to ensure the integrity

constraints of a data base? How to enforce objects that represent

players in a game that they behave according to rules of game?

In all these cases we would like to have predefined frames of behaviour,

which one can develop according to his need but preserving some

axioms, or, if you wish, invariants.

2 . 5 Signal ing a n d except iona l s i tua t ions

It is frequently so that elements of systems communicate by send

ing and receiving signals. An arriving signal can interrupt the normal

flow of calculations. The signals are either binary, just presence or

absence of a signal, or they convey a complicated structured message.

