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Preface 

This volume collects the invited lectures presented at an Advanced Seminar 
on Singular Perturbation and Asymptotics in Madison, Wisconsin on May 
28-30, 1980 under the auspices of the Mathematics Research Center of the 
University of Wisconsin—Madison, sponsored by the United States Army 
under Contract No. DAAG29-80-C-0041 and supported by the Office of Naval 
Research, U.S. Navy, under grant N00014-80-G-0108. 

The subject of singular perturbations, not to mention asymptotics, is too large 
for a single conference, and the selection of topics reflects both areas of recent 
research activity and advances and areas of interest to Professor Wolfgang 
Wasow, in whose honor this advanced seminar was organized. We are indebted 
to the contributors for achieving not only a high level of excellence in individual 
contributions, but also a coherent, cooperative survey of an influential field of 
applied mathematics. 

We also thank Gladys Moran for the expert handling of the conference details 
and Elaine DuCharme for putting the volume together and compiling the index. 

Richard E. Meyer 
Seymour V. Parter 
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On Some Basic Concepts in the Analysis 
of Singular Perturbations 
Wiktor Eckhaus 

The methods and techniques of singular perturbations 
have been extremely successful in dealing with problems from 
many branches of sciences. Originating in fluid dynamics, 
the study of singular perturbations has spread into a large 
and diversified population of scientists, with interests 
ranging from engineering and biology to almost pure 
mathematics. 

The frequent occurrence of singular perturbations in 
applications can be explained by the observation that 
whenever some basic mathematic model of some phenomena is 
improved by incorporating some of the effects that were 
first neglected, the improved model is most likely to be a 
problem of singular perturbations. On the other hand, the 
theoretical interest comes from the fact that the analysis 
of singular perturbations is not a straight-forward gene
ralization and extension of classical asymptotic analysis and 
perturbation theory, but rather an entirely new discipline. 

Every practitioner of singular perturbations uses, 
implicitely or explicitely, certain concepts which are 
commonly accepted as the basis for the method of analysis. 
In this lecture we shall discuss the basic concepts (in a 
formulation taken from [1]), which will also lead us to 
certain essential and still open questions. 

SINGULAR PERTURBATIONS AND ASYMPTOTICS Copyright • 1980 by Academic Press, Inc. 
All rights of reproduction in any form reserved. 
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2 WIKTOR ECKHAUS 

1. CLASSICAL PERTURBATION ANALYSIS. 

What are problems of singular perturbations? The adjec
tive "singular" is a negation of "regular", let us there
fore first look briefly at "regular" problems. 

Let V and F be two linear spaces of functions and L£ 
some given mapping of V into F , usually a differential 
operator that contains a "small" parameter e. We are concer
ned with the problem of determining an element $ e V such 
that for some given F G F one has 

L£<£> = F. 

For simplicity of exposition we suppose here that any 
boundary conditions, or initial conditions imposed on $ are 
incorporated in the definition of the space V. This, of 
course, is only possible if the boundary conditions or 
initial conditions are linear and homogeneous. In the 
classical perturbation analysis L£ is decomposed into 

L = A + ? 
e £ 

where A is independent of e, and P£ is considered as a 
perturbation. One thus has 

A$ = F - P£<£>, <s> e v , F e F . 

Furthermore, the decomposition must be such that the inverse 
A""

1
 : F -> V exists, at least locally. One can then write 

$ = A"
1
 [ F-P£$] . 

It is now natural to suppose that an approximation of $ will 
be given by the function 

$ = A
 1
F . 

as 
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Indeed one has 

<£> - $ = A

_ 1
[ F-P $] - A "

1
 F as e 

and it should be clear that if the perturbation P£$ can be 
expected to be small in some suitable sense, and A

 1
 is a 

continuous operator with sufficiently nice properties, then 
one should be able to prove that <£> - $ is small. This last 

as step can be accomplished by proving convergence of an 
obvious iteration procedure, or in a more abstract setting, 
by using a contraction argument in a suitably defined Banach 
space. All that is needed for the analysis are properties 
of the operators A

 1
 and P£, which are both given by 

construction. 
In singular perturbation problems a decomposition of 

the operator L£ as described above is generally impossible 
and the classical procedure fails at the outset. 
Let us illustrate this by an example. 

We consider first the problem of determining 
$(x,e), x e P C E

N
, as the solution of 

A $ - eq (x) 4> = F / x G V 

where A is the Laplace operator, q(x) a continuous function 
and V a bounded domain, on the boundary of which we impose 
$ = 0. Then obviously the classical procedure holds, with 
A = A , and A

 1
 is explicitely given with the aid of the 

Greens function. 
Let us now modify the differential equation into 

e A $ - q (x) $ = F. 

Furthermore, let us stipulate that we look for approximations 
in the sense of uniform convergence, that is, for any 
function f(x,e) : 
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f(x,e) = 0 ( 6 (e)) means Sup I f(x,e) I = 0 ( 6 (e)) 

f(x,e) = 0 ( 6 ( e ) ) means lim l_ Sup I f(x,e) I = 0 . 
e+ 0 6(e) x^V 

It should be clear that the classical procedure does not 
apply. The "unperturbed" equation reads 

- q(x) $0 = p. 

The solution $Q will in general not satisfy the conditions 
imposed on the boundary, and cannot be an approximation of 
<S> in the whole domain V. 

2. THE GENERAL PROCEDURE IN SINGULAR PERTURBATIONS. 

The elegant classical perturbation analysis combines 
the construction of approximations and the proof of their 
validity into one line of thinking. In singular pertur
bations the complete analysis requires various different 
ingredients. In general terms one can distinguish two main 
parts of the procedure: 

I. Heuristic analysis. Using some deductive thinking, but 
also much induction from experience, one constructs a func
tion which, by a reasonable expectation, should be an 
approximation to a solution of the problem under consider
ation. The heuristic reasoning employs some rigorous analysis, 
but also some "principles" which almost always work, yet 
have never been demonstrated. These principles, and other 
inductive evidence, will be the subject of a large part of 
this lecture. 

II. Analysis of formal approximations. 
The heuristic analysis of the problem 

L£$ = F, * e v , F G F 
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usually produces a function $ which satisfies 
as 

V a s =
 F + p

'
 $
a s
 G V 

with 

P = o(l) . 

We then call $ a formal approximation. as 
A formal approximation thus is a solution of a neigh

bouring problem, and the expectation that $ will be an 
as approximation of $ is based on the expectation that two 

neighbouring problems will have neighbouring solutions. Such 
expectation seems reasonable in general. However, in problems 
of singular perturbations, there remains at this stage a 
nontrivial, and sometimes difficult, task to prove that a 
formal approximation indeed is an approximation of a solu
tion of the problem under consideration. 

Let us first show, by an example, that the problem of 
proving the validity of a formal approximation is not a 
trivial one. 

Let $(x,e), x G[0,A], A > 0, e G(0,eQ] be solution of 

$ = e , $(0,e) = 0. 

By an obvious iteration one obtains 

with 

cj>0(x) = -e 
y
 n '

 n = 1
' • • • • 

The function $ (x,e), for any m, satisfies 

as o ( e
m
) ; $ a s

( m)
 (0,e) = 0. 
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An easy exercise shows that for any x > 0 the function 
(m) $(x,e) grows without bounds as e 4- 0. Hence $ (x,e), as 

which is bounded for e I 0, cannot be an approximation of $. 
The example given above, although disturbing, is not 

meant to create general mistrust in formal approximations. 
For large classes of problems the proof of validity of a 
formal approximation can be achieved, sometimes even by very 
simpla means. This is exemplified by: 

Lemma. Let be a linear operator and suppose that for all 

F € F C F the solution $ of 

L $ = F, % e v 

is bounded for e i 0. 
Let $ satisfy 

L£ $ = F, $ G V, F G F 

a n d let $ satisfy as 

L $
 ( M)

 = F + p , *

 ( m)
 e v 

e as m as 

Pm = 6m ( e )<V p m = 0 ( 1 ) 

If p
m
 G F

'
 t h en 

$ - <S>
 ( m)

 = 0 ( 6 (e)) as m 

The proof of the lemma is trivial. The essential information 
which makes it possible to establish the result given in 
the lemma is an a priori estimate on the boundedness of solu
tions. In applications such estimates can often be deduced 
from some general information about the class of problems 
under consideration. For example, in elliptic problems one 
can use the Maximum Principle. In recent years many results 
that can be useful for proving validity of formal approxi
mations have been established. 

On the other hand, the exact solution reads 
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The interested reader can consult for a survey [ 1 ] Chapter 6, 

which also contains methods and results for nonlinear 
problems. 

3. REGULAR EXPANSIONS AND LOCAL EXPANSIONS. 

We return now to the heuristic analysis. For simplicity 
of exposition we consider for the function $(x,e) a problem 
of the structure 

e L1$ + L Q = F, x G V C nR
n 

where L^ and L^ are linear and independent of e. $ is 
further subject to some boundary conditions or initial 
conditions. 

In a first step, by an obvious iteration, one constructs 
a regular expansion 

which is usually called an outer expansion. 

This expansion will manifestly fail near some manifolds 
(such as the boundary of the domain in the example given in 
section 1 ) . Or may be suspect for some reasons near some 
other manifolds. 

One now attempts to construct, in the neighbourhood of 
such a manifold, a local expansion, also called boundary 

layer expansion, or inner expansion, of the following 
structure: 

Consider for simplicity the one dimensional situation 
and let xQ be the point near which the regular expansion 
fails. A stretched local variable is defined by 

m 
$(x,e) 2 6 (e) <|> (x) , 6 

n n
 Y

 n ' n=0 n+ 1 = o(6 ) , Vn n ' 

6 ( e ) = o(l) . 
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The effect of this magnifying glass on the function $(x,e) 
is given by 

<S>(xQ+6s ) = * * ( 5 , e ) 

This suggests an expansion 

•*<s. E) - " 6 * n( £) * n( 5) , = o ( « ; )f v n. 
n=U 

The question immediately arises: what is the proper choice 
of the stretched local variable, i.e. the proper choice of 
the function 6 (e)? 

s In a simple situation the question may be answered by 
an educated guess. However, the intellectual curiosity makes 
one look for some basic principle. Such a guiding principle 
becomes a necessity in more complicated situations when one 
has near x^ a multiple-layer structure, i.e. more than one 
different local variables (with different choices of 6g(e)) 
and corresponding local expansions are needed to remove the 
failure of the regular expansion. 

4. THE CORRESPONDENCE PRINCIPLE. 

We shall need a bit of formalism, describing the 
effect of transformations of variables and expansions on 
functions and on operators. 

A regular expansion of a function $(x,e) in some sub-
domain will be denoted by: 

m 
E
m
 $ = 2 6 (e) <f> (x) . x A n

 Y
 n
 N
 ' n=0 

Similarly, considering the expansion after transformation 
to some local variable £, we shall write 

m # E
m
 <&> = 2 6 ( e ) * „ ( ? ) • 



ANALYSIS OF SINGULAR PERTURBATIONS 9 

We now ask the question: what makes a local variable 
into an important one? 

Consider, near some fixed X g. two local variables: 

r =
 X
~
X
0 r -

 X
"
X
0 

H 6x( e ) '
 K
2 62(e) ' 

x
~
x
0 =

 X
"
X
Q 

1 61U) ' ^2 62 (e)
 1 

with 6 ^ = 0 ( 6 2 ) , or vice versa. 
The function E

m
 <S> can be transformed into the local variable 

£2 and reexpanded . The result is E
m
 $. 

We shall say that EJ? $ is contained^in E
m
 $ if 

E? E™ $ = Ef *. K
2 M

 K
2 

Obviously, an approximation that is contained in 
another approximation, is not very important. 
We shall therefore say that: 

A local approximation E
m
 $ is significant if E

m
 $ is 
^v 

not contained in E^ $ for all q, and there exists no local _ x 
approximation E^ with £ different from £ which would 
contaxn E^ $. 

^v 
.4 local variable £ which produces a significant 

approximation is called a boundary layer variable. 

We now consider the effect of transformation to local 
variables on the operator eL^ + L^. The transformation 
produces, in an obvious way, an operator L which acts on 

*
 e 

functions $ (£,e). This operator usually admits, in a formal 
way, an expansion 

where are operators independent of e. We call LQ the 
degeneration of L in the £ variable. 
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The degenerations are the governing operators in the 
construction of the terms of the local expansions. 

We now compare degenerations in two different local 
variables E,^, ^ as we did before for the local approxima
tions . 

Let L*^
1
^ be the degeneration in the £ variable. 

( 1 2 ) 
Transforming to the £2 variable we get an operator L ' 
(acting on functions $*(£0,£)), which again has a degenera-(12) 
tion ln . We shall say that 

( 2 ) 
The degeneration L N (in the £9 variable) is contained 
(1) 

in I _ 0

U;
 if 

l ( 1 . 2 ) _ . ( 2 ) 

A degeneration L Q in a local variable £ is significant 

if there exists no local variable different from £ such 

that the corresponding degeneration would contain L Q . 
We can now formulate the following heuristic principle: 

Boundary layer variables correspond to significant 

degenerations. 

In other words: when constructing local approximations 
it is sufficient to consider those local variables for which 
the degenerations are significant. 

For example consider the operator 

an6 the local variable 

then the degeneration is 


