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Preface 

My interest in the foundations of probability was aroused by difficulties 
I encountered when first faced with applying a conventional (Kolmo-
gorov's axioms and a limit of a relative-frequency interpretation) theory 
of probability to actual electrical engineering problems. Efforts to 
understand, usefully formulate, and resolve the problems encountered 
in the design and analysis of inference and decision-making systems led, 
it now seems inexorably, to a study of the foundations of probability. 
As I gradually became aware of the issues and proposals that constitute 
the present subject of the foundations of probability, I found myself 
drawn to their consideration not only for the primary pragmatic reasons 
but also out of respect for the breadth, depth, and provocative originality 
of many of the contributions to this study. It is my hope that the reader 
will share this appreciation. 

My aim is to address all who explicitly use some theory of probability 
but who may not be aware of the criticisms of their preferred theory 
or the claims of alternative theories. Many of the difficulties encountered 
by engineers, physical and social scientists, and philosophers are, 
perhaps, attributable to misapprehensions as to the nature of the concepts 
of probability on which they rely. It is expected that the reader has 
some knowledge of a particular theory of probability. The many well-
written texts on probability discouraged the inclusion of enough material 

xi 



xii PREFACE 

to make this book self-contained as an introduction to probability. 
It is recommended that proofs be ignored, except by those interested 
in research in specific areas. To underscore this, the proofs in Chapters II, 
V, and VII are appended to their respective chapters, and the few 
proofs in the other chapters are mainly worked into the discussion. 

This book can at best describe aspects of the present stage in the 
nascent study of theories of probability. It should raise more questions 
than it answers. I will be well satisfied if the critical view of probability 
presented stimulates the reader to the thought and research necessary 
to lead us all eventually to a better understanding of the work so many 
of us are engaged in. It is my belief that an improved understanding 
of the foundations of probability will induce far reaching changes in 
engineering and scientific practice and not merely lead to an improved 
justification for what we presently do. 

Some years ago I set out to write a survey paper on decision theory 
as practiced in electrical engineering. Feeling that some of the problems 
of decision theory could best be understood when referred to the 
problems with the underlying notion of probability, I wrote an intro
ductory section on this issue. My dissatisfaction with each draft was 
only temporarily allayed by an expanded redraft. This book is in fact 
the still unsatisfactory introduction to that as yet unwritten paper. As 
to its publication, I take comfort in the words attributed to Cardinal 
Newman that "Nothing would be done at all if a man waited till he 
could do it so well that no one could find fault with it. , , 

My great debt to the many contributors to the foundations of prob
ability, and especially to A. N. Kolmogorov, R. von Mises, and L. J. 
Savage, is evident throughout the book. Less evident, but no less 
pervasive, is the influence of discussions I have had with Messrs. Max 
Black, Thomas M. Cover, Zoltan Domotor, Arthur Fine, Peter C. 
Fishburn, Michael A. Kaplan, R. Duncan Luce, Leonard J. Savage, 
Herbert Shank, Georg H. von Wright, and with my wife, Susan 
Woodward Fine. 



introduction 

ΙΑ. Motivation 

Formal uses for probability and its associated concepts are found in 
the construction of models of random phenomena, the design of inference 
and decision-making systems, statements and verifications of the applic
ability of scientific laws, and attempts to understand knowledge and 
induction. Informal uses for probability include the Butlerian view of 
probability as a guide to life and the frequent appearance of the words 
* 'probably* ' and "likely" in ordinary discourse. Notwithstanding the 
importance of probability in the explication of knowledge and induction, 
its roles in the verification of laws or "as a guide to life," or its prevalence 
in discourse, we leave the analyses of these issues to suitably trained 
philosophers. Our concern is primarily with those concepts of probability 
that are important for the modeling of random phenomena and the design 
of information-processing systems. 

Methods for modeling the random phenomena of chance and uncer
tainty and the design of inference and decision-making systems are of 
great importance in fields as diverse as engineering and the physical and 
social sciences. In electrical engineering, areas such as communications, 
detection, pattern classification, and stochastic control owe their very 
formulation to concepts of probability theory. The fundamental work 
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