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PREFACE 

Decision theory and areas of research related to it have been at the heart of 
advances in mathematical statistics during the past generation. This volume contains 
the invited papers presented at an international symposium on Statistical Decision 
Theory and Related Topics held at Purdue University in May, 1976. Decision 
theory was broadly interpreted to include related areas that have been the scene of 
rapid progress since the preceding Purdue symposium in 1970. This symposium 
featured sessions on general decision theory, multiple decision theory, optimal 
experimental design, and robustness. The researchers invited to participate, and to 
author papers for this volume, are among the leaders in these fields. 

We are especially grateful to Professor Felix Haas, Executive Vice President and 
Provost, and to Professor Allan Clark, Dean of the School of Science, for the 
encouragement and financial support provided by Purdue. The symposium was also 
supported by the National Science Foundation under grant MPS75-23196, by the 
Air Force Office of Scientific Research under grant AFOSR 76-2969, and by the 
Office of Naval Research under contract N00014-75-C-0455. We wish to thank 
these agencies for their assistance, and in particular Dr. I. N. Shimi of the Air Force 
Office of Scientific Research and Drs. Bruce McDonald and Robert Lundegard of 
the Office of Naval Research. 

Many individuals contributed to the success of the symposium and to the 
preparation of this volume. The program for the symposium was developed under 
the guidance of an advisory committee composed of S. S. Gupra, Chairman, Purdue 
University, R. R. Bahadur, University of Chicago, L. Le Cam, University of Califor-
nia at Berkeley, J. C. Kiefer, Cornell University, H. E. Robbins, Columbia Univer-
sity, and J. Wolfowitz, University of Illinois. The excellence of the program was due 
in large part to the efforts of these colleagues. Local arrangements were coordinated 
by G. P. McCabe, assisted by other faculty and students in the Purdue Department 
of Statistics. 

Numerous colleagues at Purdue and elsewhere served as referees for the papers 
presented here. In many cases, their comments helped to strengthen the papers. We 
are happy to acknowledge the encouragement and assistance of Academic Press in 
preparing this volume for publication. Finally, the burden of typing the entire 
contents accurately and attractively was borne with great skill by Norma Lucas. 

The papers presented here bear witness to the vigor of research in statistical 
theory. We are pleased to present them to the statistical community. 

xi 
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SELECTING THE LARGEST INTERACTION 

IN A TWO-FACTOR EXPERIMENT 

By Robert E. Bechhofer, Thomas J. Santner and Bruce W. Turnbull 

Cornell University 

1.  Inttwduct,Lan. The research described in the present 

paper was motivated by consideration of the following type of 

problem: Suppose that a medical research worker wishes to plan an 

experiment to study the effect of several (c) different methods of 

treatment on a physiological response of male and female subjects 

(who are otherwise matched with respect to other factors which 

might affect the response). It is assumed known that the effect 

of the treatment on the mean response is different for men than 

for women, and also that it varies from treatment to treatment. 

It is suspected that there may be a large interaction between sex 

and method of treatment, and it is desired to identify the sex-

treatment combination for which this interaction is largest in the 

hope that such information might provide some clue as to the 

mechanism underlying the effectiveness of the methods of treat-

ment. The statistical problem is to design the experiment on such 

a scale that this largest interaction can, if it is sufficiently 

large to be of practical importance to the experimenter, be detec-

ted with preassigned probability. The setup described above con-

sists of 2c sex-treatment combinations, and is one of the general 

class of 2-factor experiments involving r > 2 levels of one quali-

tative factor and c > 2 levels of a second qualitative factor. 

More generally, one might consider multifactor experiments involv-

ing three or more qualitative factors. It should be noted that 

our present goal of selecting the combination associated with the 

Research supported by U. S. Army Research Office Contract 

DAHCO4-73-C-0008, Office of Naval Research Contract 100014-75-C-
0586 and National Science Foundation Contract ENG75-10487. 
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2 ROBERTE. BECHHOFER et al. 

largest interaction is quite different from the classical one of 

selecting the combination associated with the largest response, 

the later goal having been treated in [1]. 

The present paper considers 2-factor experiments and concen-

trates on the 2xc case. It is organized as follows: In Section 2 

we give the model and statistical assumptions that we adopt. The 

formulation of our selection problem for rxc factorial experiments 

is proposed in Section 3; this involves the statement of a goal 

and an associated probability requirement. A single-stage selec-

tion procedure is proposed in Section 4; the criterion for choos-

ing sample size is introduced in this section, and this leads to 

a statement of the basic statistical problem that we seek to 

solve. 

In Section 5 we derive an exact expression for the probabil-

ity of a correct selection (PCS) in the rxc case when the single-

stage selection procedure is used; special cases involving partic-

ular choices of r and c are studied in detail. Section 6 contains 

the main result of the paper. It concerns the explicit determina-

tion of the so-called least favorable (1F) configuration of the 

interactions (~ij)  in the 2xc case; this result is stated as 

Theorem 6.1, the proof of which is given following the theorem. 

Directions of future research are indicated in Section 7. 

2.  Model and tza ,a't~cc e. cc~~wnrt.Lon~. We consider a 2-fac-

tor experiment, both factors qualitative, the first factor being 

studied at r levels and the second at c levels. We assume the 

usual fixed-effects linear model with observations ijk1 < i  < r, 

1  < j < c; 1 < k < n) which are normal and independent with 

r c r 

E{Yijk} = Mii = M + ai + J 1 J  i l = j 

l  aj =
i l Vii 

= 

gij = 0), Var{U k} _ s
2.  We further assume that m, the  

j=1 
and gij are unknown, and that s2 is known. Our interest is in 

the  

If 
Vii 

- 0 (all i,j) then rij = m + ai + ßj, and the 
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"effects" of the two factors on the mean are said to be strictly  

additive for all factor-level combinations; if Vii / 0 (all i,j) 

then interaction is said to be present. It is with this latter 

situation that we shall be particularly concerned in this paper. 

Let 0[1] <...< '[rc] denote the ranked values of the  

(1 < i < r, 1 < j < c). (Note that )[1] < 0 [rc]' and that for 

r = c = 2 we have Y[1] = U[2] = -Y[3] = -U[4].) It is assumed 

that the experimenter has no prior knowledge concerning the pair-

ing of the V[s] (1 < s < rc) with the levels of either of the 

factors. 

3.  Goal and rnaba6.~CLty aeg i~iemen't. We shall consider a 

particular goal which would appear to be appropriate in these sit-

uations. In our formulation of the decision problem we adopt a 

new variant of the so-called indifference-zone approach (Bechhofer 

[1]). The goal and formulation are given below. 

GOAL I: To select the factor-level combination 
(3.1) associated with Y " [rc]. 

Equivalently we might be concerned with selecting the factor-level 

combination associated with V[1].  Other meaningful goals could 

also be posed. (See Section 7.) 

The experimenter restricts consideration to selection proce-

dures which guarantee the following 

PROBABILITY REQUIREMENT 

P{Correct Selection} > P* 

whenever g[rc] D* and 
~[rc] [rc1]  

The three quantities {A*,s*,P*} (0<D*<~, 0<d*< (r-1)(c-1)-1 D*, 
(r-1)(c-1) 

r~ < P* < 1) are to be specified by the experimenter prior to the 

start of experimentation, the choice of their values depending on 

economic and cost considerations. The event "Correct Selection" 

(CS) in (3.2) means the selection of the levels of the two factors 

associated with ~[rc] when '[rc] 
~[rc-1] > 0. 

(3.2) 
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REMARK 3.1. Values of s*/o* greater than [(r-1)(c-1)-1]/ 

(r-1)(c-1) are inappropriate. For suppose 0[rc] = 011 and 
r  c 

011 - 0ij >_ 6*; then 011 = S S 'ab <_ (r-1)(c-1)(011-6*)• 
a=2 b=2 

Hence d* < [(r-1)(c-1)-1]0
11
/(r-1)(c-1) which must be true 

for all 011 > D. 

REMARK 3.2. If the traditional indifference-zone approach 

were used, the inequality 0[rc] > D* would not be present in 

(3.2). However, in the present situation in which our interest is 

in the largest positive interaction, we are 

interested in this interaction only when it is suffi- 

ciently large relative to zero which is the standard which defines 

no interaction. The situation here is similar to the one consid-

ered in Bechhofer-Turnbull [2]. 

4.  Se'ectLvn rnacedune, and the choi.ee ai zamrte  ze. We 

shall employ the following "natural" single-stage selection proce-

dure for (3.1). 

P:  Take n independent observations 
ijk 

(1 < k < n) 

for each (i,j)-combination (1 < i < r, 1 < j < c). Compute 

Yij = -Yi..
-Y . +Y... where Yij  

= kl 
ijk1' 

c r 
(4.1) Yi.. = S 

j1 
./c'  Y 

i=1 
.j. =  S Yij./r, and 

=   

r  c 
Y =  S S U.. /rc. Select the factor-level combina- 
"' i=1 j=1 

tion which produced 0[rc] = max{ ~ 1 < i < r, 1 < j < c } 

as the one associated with  

Procedure P is completely defined with the exception of the 

common sample size n which is under the control of the experimen-

ter. This leads to the central problem that we address in the 

present paper: 
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PROBLEM. For given c > 3, c > r > 2 and specified 

(4.2) {D*,d*,P*}, find the smallest value of n which will guaran-

tee (3.2) when P is used. 

The first stage in solving (4.2) is that of deriving an exact 

expression for the PCS when P is used. 

5.  E wt.e.mio n ban the PCS. We assume that ] > 0, i.e., 

Vii # 0, and that for c > 3, c > r > 2 there is a unique largest 

without loss of generality we assume 011 =  [rc]· Then the 

PCS using P can be written as 

P{gll > max g
ab' g11 > max gal' X11 > max alb} 

2<a<r 2<a<r 2<b<c 
2<b<c 

 

3 c 
= R{ S S (Cij+g ij)~(Cab+gab)>0, (2 < a < r, 2 < b < c); 

3 c C 
(5.1)

S2 i=2 j=2 
+ S2(caj+gaj)  > 0, (2 < a < r); 

i=2 
— 

3 c r 

S S(X;j+g ij) + i=2 

where 

> 0, (2 < b e)} 
; 2 j=2 
   

where the Cij = - Vii 
have an (r-1)(c-1)-variate normal dis- 

tribution with E{Cij} = 0 (2 < ; < r, 2 < j < c), 

- (r- 1)(c-1) 2 
Var{C }   

i7 rcn 

(2<; <r, 2<j k c) 

1  Cov{Xi

1 ,j1'Xi2,j2} rcn 
s2 

(5.2) (;1  # i2, il # j2; 2 < i1,i2 < r, 2 < j1,j2 ke) 

r-1 Cov{X

i,j 'Ci,j } = - rcn 
s2 

1 2 

(jl #j2; 2<i <r, 2 k  1 k c) 

Cov{
C; 'Xi , J} - - rcn 

s2 
1,J 2 
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(il 12; 2 < 11,12 < r, 2 < j < c). 

Thus the exact PCS can be expressed in terms of rc-1 linear sto-

chastic inequalities involving (r-1)(c-1) correlated normal vari-

ates. 

In the remainder of the present paper we shall concentrate 

our attention on the r = 2, c > 3 case, although in (5.4), Remark 

6.4 and the Appendix we shall also refer to the r = c = 3 case. 

Expressions for the exact PCS for these cases are given below. 

2xc ca.0 e.  When r = 2 the PCS of (5.1) reduces to 

c 
P{ C  2 (C2j+

~2j)  - 2b±2b > 0, (2 < b < c); 
j- 

— — 

c 
J~2(C2j+g 2j)  + ((2b+02b) > 0, (2 < b < c)} 

which involves only 2(c-1) inequalities. 

3x3 case. When r = c = 3 the PCS of (5.1) reduces to 

3 3 
(5.4) P{ U S (C..–y..) - (Cab+

gR ab)  > 0, (2 < a, b < 3)} 
i=2 j=2 — 

which involves only 4 inequalities. 

6.  LF-con  uhatLon c~~ the 
ij 

Ua)1. the 2xc case. The most 

difficult step in solving (4.2) is that of determining a least 

favorable (LF) configuration of the yij,  i.e., a set of  

(1 < i < r, 1 < j < c) which minimizes (5.1) for any n > 1, sub- 

ject to Y{rc] > D* and y[rc] - Y[rc-l] — * where 0 < D* < and 

0 < d* <  D*. Our result for the 2xe case is presen- 

ted in Theorem 6.1 below. 

We introduce the following notation. Let y = (U 23...,yc) 

denote a (c-1)-vector where yb = '2b (2 < b < c). For each 

c 

V11 > 
D*, let E( y11)  = {v1 S yj = ~11; d* - ~11 <— yb << yll - 

6*, 
j=2 

(2 < b < c)} be the set of configurations in the preference zone 

(5.3) 

6 
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for a CS on the plane S = ill; thus E = u *e(g 11)  is the 
j=2 ~11>_D 

entire preference zone. 

A bas.Lc Lemma. Our first result describes the infimum of 

the PCS over the section E(011). Let p = (c-3)/2 or (c-4)/2 

according as c is odd or even, and let j be an integer defined 

according to the rule 

* ,  if 0 < d `
c-2-2r 
 c-1-2r U11 

c-4-2t * c-2-2t  
t (0 < t < p), if c-3-2t ~11 =̀ d ` c-1-2t ill' 

Clearly j always exists and is uniquely defined since 0 < d* < 

(c-2)L*/(c-1). 

LEMMA 6.1. For the 2xc case (c > 3) and for fixed y11 > A* 

the LF-confiquration of the {gj} over the section E(g 11)  is given  

py- 

(6.2) ~0 ,~11) = 
(gll-~*,...,g ll-d*+dj+ d*-gll

,...,d
*-ill) 

where dj = d*(c-2-2j) - g 11
(c-3-2j), and there are c-2-j and j 

elements 
y11_'5* 

and d*-g 11,  respectively. 

REMARK 6.1. g(j,g 11)  completely defines the 0
ab
(1 < a < 2, 

2 c 
1  < b < c) matrix since U Yab S gab = 0; all matrices obtained 

a=1 b=1 
from 

ab2c 
by permuting rows and/or columns have the same 

associated PCS. 

We next note that representation (5.3) of the PCS can equiv-

alently be expressed as 

(6.3) f(g) = P{C + u e A} 

where X = (C22,...,C2c)  and A = {w = (w2,...,wc) I S wj-wb > 0, 
c j=2 

(2 < b < c); J S2wj+wb > 0, (2 < b < c)). In the proof that fol- 

lows we show that (1) f(g) is log concave in u, and (2) g(j,y11) 
and its permutations form the extreme points of the convex set 

p 

(6.1) j 
=( 
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E( y11). 

Our proof that f(y) is log concave is based on a characteri-

zation of the log-concavity property for probability measures 

which are generated by densities and is proved, for example, in 

Rrékopa [5]. The proof that E(y11)  is the convex hull of gR(j,ull) 
and its permutations is obtained by showing that 0(j,,11)  majori-

zes every y in 
E(y11) 

in the sense of Hardy, Littlewood and Pôlya 

[3] and the fact that a majorizes b if and only if b is in the 

convex hull of a and as permutations. For additional details, 

references, and associated ideas see Marshall and Olkin [4]. The 

definition of majorization and the lemma characterizing log-con-

cavity in probability measures are stated below for convenient 

reference. 

In n dimensions the vector b is said to majorize the vector 

a (written a < b) if upon reordering components to achieve 

a1  > a2 >...> an,  bl  > b2 > ... > bn,  it follows that 

k k n n 

S a• <  U b., 1 < k < n and 
U 
a. = S b.. It is known that 

i=1  ' i=1 I i=1 i=1 
a -b if and only if a is a convex combination of b and permuta- 

tions of b. 

LEMMA 6.2. Let P be a probability measure on Rn generated  

by a density g(x), x e Rn,  i.e., P{A} = fg(x)dx for any Borel set 

A Rn.  Then P satisfies A 

(6.4) P{aA0 + (1-a)A1 } > [R{A0}]a[R{A1 }]1-a for all 0 < a < 1 

if and only if g(x) is log-concave. (In (6.4) it is assumed that  

all events are measurable.) 

For a proof of Lemma 6.2 see [5]. In our problem the joint 

distribution of X is non-singular (c-1)-variate multivariate 

normal, and is thus log concave. For any (c-1)-vectors 
gR1,~2 

and 

0 < a < 1 let y = y1 + (1-a)g 2 .  Then {X + ag l + (1-a)g 2 e A} = 

IC e a(A-y1)  + (1-a)(A-gR 2)} since A is convex. Thus from Lemma 

6.2 we have 
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f(g) = R{c + g e A} 

= R{C e  

> [P{X e A-ul}]
a[R{X e A-u2}]

l-~ 

> min{f(ul), f(c2)}. 

Hence the infimum of the PCS occurs at an extreme point of E(y11). 

Since f(y) is constant under permutations it suffices to show that 

y(j,g11 ) e E(yll)  and y(j,g11) > g for all g e E( y11) to complete 

the proof of Lemma 6.1. 

Now g(j,u11) e E( y )  since (c-2-j)(u11-d*) + dj + j(6*-~11)= 

u11 and 
y11 

- 5* > dj > d* - 
X11 

provided that c-1-2j y11 > d
* > 

c-3-2j y11 which is the defining condition (6.1) for j. Select an 

arbitrary y e E( y11) and without loss of generality assume 

u2 > ••• > 'c;  hence d* - gii <— gc < 02 < gll-d* and 

c 

jS
Zy. = y11.  We shall show that u { g(j,g11). 

a) For all m (2 < m < c-1-j) we have 

m m 

i C ~
(j,~11)i=(m-1)(~ll-6

*)>1 CZ~i since  

b) For all m (c-j+l < m < c) we have 

c c 
S g(j,gll)i=(e-m+1)(d*-g11)< i Sg i since g ~~ >—  

i=m — m 
— 

c c 
Thus y11 - C ~(j,u11)i > gll - s 'i, 

i=m i=m 

m-1 m-1 
i.e., C g(j,g11)i ? S ~i (c-j < m-1 < c-1) 

i=2 i=2 

and we have completed the proof that g(j,g 11)  is the 1F-configur-

ation over E( y11). 

REMARK 6.2. Alternatively, Lemma 6.1 could have been proved 

by applying results in Marshall and 01kin [4] to show that f(y) 

is a Schur-concave function of y and hence must attain its minimum 
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at an extreme point of E(gll).  We have shown the (stronger) 

property that f(g) is log-concave; some of our later results de-

pend on this stronger property of f(0). 

Geame'iiy ag the 2x5 cnle. Consideration of the geometry of 

the set 6(011)  over which f(g) is to be minimized w.r.t  

c 
gives added insight into the dependence of the 1F-configuration 

00 ,g11) on the relationship between d* and 011.  We use the 2x5 

case for illustrative purposes since 5 is the smallest c-value 

when r = 2 for which there is more than one (in this case two) 

distinct Y(J,011)'s. 

When c = 5 the set e(y11)  is isomorphic to the convex set 

x'(011)  in 3-space defined by 

P (ull) = {(02,03,Y4) H ~
* 
- U11 r2, Y3,  U4 U11 - 6*; 

6* 
<= U2 + 

y3 

+ U 4 <= 2y11  

5 
since S g i = y11 in E(011). Now E'(011)  is the intersection of 

i=2 
 

the cube C centered at (0,0,0) with faces parallel to the planes 

formed by the coordinates axes and with edges of length 2(r11-d*), 

and the slab in 3-space bounded by the parallel planes 02+03+04 

d* and 02+03+04 = 2g 11-d*. There are two possible shapes for 

E'(y11)  depending on the relationship between d* and 011.  The 

differences between these two shapes as seen in the plane 04 = 

Y11-d* are displayed as the shaded regions in Figures 6.1 and 6.2 

which are valid for 0<d*<g 11/2 and 011 /2<d*<3011/4, respectively; 

when d* = y11/2 the two figures are identical and the line y2+y3 

011 passes through the point (011-d*,Ull-d*)• Note that in the 

plane 04 = 011-d* the planes 02+03+04 = s* and 02+g 3+Y4 = 2011-6* 

become the lines 02+g3 = 2 *_y.1 
and 02+03 

011, respectively. 

The plane 02+g 3+g 4 = s* always intersects the cube C, and hence 

always plays a role in determining e'(011); the plane y2+y3±y4 

2°11-d* intersects the cube only when 0 < s* < 011/2, and hence 

only plays a role in determining E'(y11)  in that situation. 

The key to understanding the role that the shape of E'(y11) 


