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Scattered Data Interpolation 
in Three or More Variables 

Peter Alfeld 

Abstract . This is a survey of techniques for the interpolation of scat
tered data in three or more independent variables. It covers schemes that 
can be used for any number of variables as well as schemes specifically de
signed for three variables. Emphasis is on breadth rather than depth, but 
there are explicit illustrations of different techniques used in the solution 
of multivariate interpolation problems. 

§1. Introduction 

In this paper, we consider the following: 

Problem (Scattered data interpolation problem). Given 

{xi,yi)enxR, 2 = 1,2,...,AT, Ω C J R ^ (1) 

fínd s G 5(Ω) such that 

s{xi) = yu ¿ = 1,2, . . . , AT. (2) 

The points (xi^yi) are the data points (or just data). We refer to the χ i 
as data sites to separate them from the function values y i. The integer k is the 
number of independent variables. Our case of interest is 

A; > 2. (3) 

The integer Ν is the number of data to be interpolated to, and Ω is a suit
able domain containing the data sites. 5(Ω) is the interpolating space; i.e., 
a (usually finite dimensional) linear space of functions defined on Ω. Usually, 
5(Ω) c C H ^ ) . 
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2 Peter Alfeld 

It is often convenient (e.g., for describing an interpolation scheme) to think 
of the data as having been generated by a primitive function /; i.e., 

yi = f{xi\ ¿ = 1,2, . . . , AT. (4) 
However, we do not assume that any information about / is available other 
than the data themselves. 

A completely specified procedure of prescribing an interpolation space S 
and an interpolant 5 (for general Ω and general data) constitutes an interpola
tion scheme. This is distinguished from a technique which is used to build an 
interpolation scheme. An algorithm is a scheme that has been implemented in 
a commercially or freely available computer program. Emphasis in this paper 
is on techniques, and not on schemes or algorithms. 

Multivariate scattered data interpolation problems arise in many different 
ways, as suggested by the following examples (others can be found in the 
Hterature Usted at the end of this paper): 

1. Gravitational Field of the Earth [53]. Earth's gravitational field 
constitutes a vector-valued function of three components, which is the 
gradient of a scalar valued function, the potential function. This is gen
erally regarded as being of significance when modelling the gravitational 
field. In particular, the problem is generally approached by modelling the 
potential function itself, but the approximation should be difFerentiable 
in order to be able to compute the force field. In fact, it should satisfy 
the 3-D Laplace Equation. The field has been measured with great ac
curacy at many points on the surface of the earth and in space. Yet no 
comprehensive model is currently available that is sufficiently accurate for 
all appHcations. Major difficulties in modehng the field are caused by the 
presence and significance of disparate spatial scales; on the surface of the 
planet the field may change appreciably within a few miles. It is affected— 
both in strength and direction—e.g., by the presence of mountain ranges. 
Gravitational effects on a larger scale affect a satellite in a typically low 
orbit of a few hundred kilometers. Finally, for the purposes of navigating 
a space craft in the vicinity of another planet, the earth can be thought 
of as a point source of gravity. 

2. Color Fi lm Processing [48]. In generating color prints or slides, a 
processing system has to be corrected for effects, e.g., of film, chemistry, 
lenses, and filters. The correction is a (vector-valued) function of the 
intensities of three colors (Red, Green, Blue; i.e., RGB) on certain test 
slides. Appropriate corrections can be determined for specific RGB values. 
Corrections for other RGB values can then be obtained by interpolation. 

3. Implicit ly Defined Surfaces [73]. Tom Sederberg has explored the 
design and representation of (two-dimensional) surfaces as the contour 
surfaces of trivariate piecewise polynomial functions. Such functions can 
be constructed by interpolation. The data then serve as Design Handles. 

4. Oil exploration. In exploratory oil drilling an abundance of data is 
obtained at each bore hole. The data are distributed in a peculiar fashion: 
they are dense along bore holes and widely scattered otherwise. 
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To make the scope of this paper manageable, a number of topics and issues 
had to be omitted: 

1. Approximation Problems. Here the residuals e, = s{xi) - yi are to 
be made small in some appropriate sense. For practical applications, this 
is probably a more important objective than actual interpolation (which 
renders the residuals zero) since realistic data usually are comprised of 
measured values and include errors whose exact reproduction is pointless. 
Sometimes an approximation scheme can be turned into an interpolation 
scheme by choosing the dimension of the approximating space equal to the 
number of data. Used frequently, and related to some of the techniques 
described in this paper, are smoothing splines [82]; i.e., functions that 
minimize 

Ν 

I{s) = Y^{s{xi)-yiY-^XJ{s), (5) 
1=1 

where λ is a parameter and J{s) is a suitable semi-norm, measuring for 
example the strain energy in a clamped elastic plate (see Section 4.2.2). 
There are many additional references on smoothing splines in the bibliog
raphy [41]. 

2. Interpolation Error. This is the difference | | 5 — / | | for some primitive 
function / (and a suitable norm || · | |), usually considered a function of 
the density of the data sites. This is an issue in classical approximation 
theory. 

3. Multivariate B-Splines. This is a large and fascinating area in its own 
right. However, to date multivariate B-splines do not appear to have been 
particularly competent in solving multivariate scattered data interpolation 
problems. There is a large number of papers on multivariate B-splines in 
the bibliography [41]. 

4. Geometr ic Continuity. In Computer Aided Geometric Design (of one 
and two dimensional surfaces embedded in IR^) a central objective is to 
recognize, obtain, and represent properties of a surface that are indepen
dent of any particular parameterization. This allows a great degree of 
flexibility in the choice of the parameterization, and in the structure of 
the surfaces that can be designed. For higher dimensional surfaces this 
issue has not yet played a prominent role. The only reference on this topic 
known to the author is Dieter Lasser's recent thesis [50]. In this paper, 
we restrict ourselves to the functional case (1) (which of course includes 
vector-valued functions defined on Ω). 
I have attempted to cover existing techniques as widely as possible. How

ever, only primary references are listed at the end of this paper. Their reference 
lists should be consulted for further information. For a recent extensive bibli
ography of 1107 entries on multivariate approximation and interpolation, see 
[41]. Recent collections of papers include [31,36], and the five volumes of the 
CAGD journal that have appeared to date. For a rich source of information 
and ideas, see the Winter, 1984 issue of Rocky Mountain Journal of Mathemat-
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ICS which is entirely devoted to multivariate interpolation and approximation 
problems. 

It is unlikely that any multivariate interpolation schemes are going to 
emerge that are truly general purpose in the sense that they will solve satisfac
torily the bulk of reahstic problems. This observation appHes to problems in 
three or more variables even more so than to the case of just two independent 
variables. There is a tremendous degree of variety and peculiarity present in 
multivariate interpolation problems. Thus, it is important to be aware of many 
different techniques for designing interpolation schemes, and for obtaining cer
tain effects. Many such techniques are illustrated explicitly in this paper. The 
purpose of these illustrations is always the technique itself, and not a detailed 
description of the particular interpolation scheme to which it is applied. 

In spite of the complexity of real problems, most of the schemes defined in 
this paper are general purpose in the sense that they are designed for generic 
situations rather than specific appHcations. (The exceptions are: tensor prod
uct schemes, interpolation on the sphere and other surfaces, and hypercubal 
methods). CaUing a method general purpose requires certain underlying as
sumptions that should be made expUcit: 

1. There is no readily utihzable structure in the data that calls for the use of 
a more specific interpolation scheme. (In particular, it is hard to conceive 
of a situation where one would want to interpolate to tensor product data 
with a scattered data scheme.) 

2. On the other hand, there is no peculiar structure that would upset a gen
era] purpose method. For example, a scheme based on a (/^-dimensional) 
triangulation of the data sites is likely to perform poorly in a situation 
where data arise densely along scattered Hues. 

3. There is no appreciable noise in the data. (Otherwise one would use an 
approximation rather than an interpolation scheme.) 

4. The representation of the data by a smooth (e.g., C^) function is ap
propriate. This is often not the case. For example, in Computer Aided 
Tomography one is particularly interested in surfaces across which the 
density of the human body changes discontinuously {i.e., the boundary 
of organs and bones). Similarly, in oil exploration a major issue is the 
location of faults (where subterranean layers of rock have been ruptured). 
The prediction and modeling of unknown discontinuities is an open and 
difficult problem that most likely will have to be addressed in the context 
of individual applications. 

5. We will always assume that the data are such that the existence and 
uniqueness of an interpolant is assured. In several variables there are 
many settings where this is not the case. For example, it is impossible to 
interpolate to three data by a bivariate linear function if the data sites are 
situated along a straight line. Similarly, one cannot interpolate with a bi
variate quadratic to six points whose sites lie on a conic section. Typically, 
such situations are singular in the sense that existence and uniqueness of 
the interpolant can be restored by an arbitrarily small perturbation of the 
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data sites. In this context, the opposite of singular is generic. For all of 
our interpolation schemes, existence and uniqueness are assured at least 
generically. 

In designing, choosing, or using a multivariate interpolation scheme several 
issues may have to be considered: 

1. How can a function of more than three variables be rendered? 
2. Is the scheme local or global; i.e.., is the value of the interpolant at a given 

point dependent on all data or only a small subset of data sites close to the 
point of evaluation? A precise and general definition of these terms is not 
possible, but for any particular scheme it usually makes sense to classify 
it as local or global. Local schemes are more attractive for applications, 
while global schemes are easier to build and to design so as to possess 
other desirable properties (which depend on the particular problems that 
are to be solved). 

3. What is the degree of precision of a scheme? This is the largest number 
m such that s = ρ whenever ρ is polynomial of degree up to m and 
y i = p{xi), i = 1,2, · · ·, A .̂ The degree of precision is loosely related to 
the shape fídelity of a scheme. No precise statements can be made, but it is 
hard to envision viable schemes that do not have at least linear precision. 
On the other hand, a high degree of precision has no value in itself. 

4. What is the degree of smoothness of the interpolant, i.e., how often is it 
differentiable? Usually, first order differentiability is required. 

5. What kind of data are required for the construction of the interpolant? 
As a rule, only functional data are provided by the problem, as indicated 
in (1). However, other data, e.g., values of derivatives at data sites, or 
function and derivative values at points other than data sites, may be re
quired by the scheme to obtain properties such as localness, or increased 
precision. See Section 11 for a discussion of derivative generation tech
niques. 

6. Is the scheme invariant under affine transformations? Let A be a non-
singular k X k matrix, 7 a non-zero real number, and let s be the so
lution of the modified interpolation problem with the data (Αχ,·,77/,·), 
i = 1,2, · · ·, ΑΓ. The interpolation scheme is afRnely invariant if, for all 
data sets, and all points χ Ε Ω, s{Ax) = js{x). Affine invariance implies 
for example that interpolated physical quantities are independent of the 
units chosen for expressing the data. 

7. Does the interpolant depend continuously on the data sites? This property 
is clearly desirable, yet it is not present, e.g., for any triangulation based 
scheme since the triangulation itself depends discontinuously on the data 
sites. 

8. A variety of properties may be desirable depending on the particular in
terpolation problem. For example, the value of the interpolant may be 
constrained to be bracketed by the minimum and maximum function val
ues; the interpolant may have to be convex, or monotone with respect to 
some or all of the independent variables; or it may be required to minimize 
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X = 

1=1 

The symbol P ¿ denotes the (^ ) -d imens iona l Hnear space of polynomials of 
k variables of total degree d. 

The interpolant s will be sought in the finite dimensional linear interpo
lation space 

S{Ü) = span {wieC^iÜ): ζ = 1, 2, · · ·, Μ } , (7) 

where Μ > Ν. Thus, it will be of the form 

Μ 

s{x) = J2'^iWi{x), (8) 

¿=1 

where the a¿ are coefficients that are determined by the interpolation conditions 
(2) and, ii Μ > N, by additional auxiliary conditions that are imposed to 
enforce certain useful properties of s. The Wi are the basis functions. 

We define the Kronecker delta as usual by 

A frequently arising special case is given when Μ = Ν and 

Wi{xj)=^6ij. (10) 

In that case, 
Ν 

= ^yi^i{^) (11) 
1=1 

and the interpolant is said to be in cardinal form. 
The generalization of a triangle to fc-dimensional space is a k-simplex or 

just a simplex. A simplex S is the convex hull of fc-f 1 points called the vertices 
of the simplex. «5 is non-degenerate if its A:-dimensional volume is non-zero, 
and degenerate otherwise. The convex hull of any subset oi κ -\- 1 vertices of 
a simplex is called a κ-face of the simplex. A face that is the convex hull of 
precisely k vertices is also called a facet. A 1-face is also called an edge. Note 

a physically relevant variational principle over an affine space of potential 
interpolants. 
We conclude this section by introducing a few terms and some notation 

that will be used throughout the paper. When it is necessary we will denote 
the components of χ G by ^i, ¿ = 1,2, · · ·, A:, to avoid confusion with the 
data sites. The norm || · || will be the Euclidean Norm; i.e., 
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that a /i-face of a simplex is itself a «-dimensional simplex. (In [7] and [84], 
the meanings of the terms facet and face are interchanged. On the other hand, 
the usage proposed here is also employed, e.g., in [27] and [52]. There seem to 
be no linguistic reasons to prefer one usage over the other.) 

The location of a point χ G Έί^ can be expressed uniquely in terms of 
barycentric coordinates 6,· with respect to a non-degenerate simplex S with 
vertices V¿, ζ = 1,2, · · · , A; -h 1, as 

fc+l fc+i 
x = J2biVu where Y^bi = I. (12) 

¿=1 1=1 

A polynomial ρ of degree d can be expressed uniquely in Bernstein-Bézier form 
as 

The Bernstein-Bézier form of a polynomial has many useful properties and 
is virtually indispensable in the design of piecewise polynomial multivariate 
interpolation schemes. For a recent survey of the properties of the Bernstein-
Bézier form in a general number of variables, see [27]. 

§2. Rendering of Trivariate Functions 

The graphs of bivariate functions are frequently displayed as contour plots, 
three dimensional line drawings with or without hidden line elimination, or 
as shaded surfaces. Such surfaces reside in and can be processed by the 
human mind as the familiar concept of a three dimensional object projected 
onto the two-dimensional retina. There is a fundamental biologic limit to 
similar renderings of higher dimensional objects. This seems to be the reason 
that pictorial displays of functions of more than two variables do not play 
nearly the same prominent role as for functions of two variables. However, 
some efforts have been made to render functions s of precisely three variables. 
Two obvious approaches suggest themselves: 1.) Display a number of cross 
sections where one of the variables is held constant, or, 2.) display contour 
surfaces where the value of s{x) equals some constant. 

The latter approach is illustrated, e.g., in [16]. Particular schemes of dis
playing contour surfaces of a function s are described in [61] and [74]. Petersen 
et al assume that s is piecewise polynomial (of any degree) in Bernstein-Bézier 
form on a tetrahedral tessellation (but not necessarily a triangulation) of Ω. 
Their scheme comes with an interpolation scheme of this character which is 
described in Section 8.1. The contouring scheme proceeds by approximating 
a polynomial ρ on a given tetrahedron t by another polynomial of degree one 
less than that of p. If the approximation is sufficiently accurate, it is accepted. 
Otherwise, t is split (about its longest side) into two subtetrahedra ti and #2, 
ρ is restricted to each of ti and t2, and the process is repeated on both ti 
and t2. Eventually the approximation becomes a continuous piecewise linear 
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function on a tetrahedral tessellation. The corresponding planar segments are 
then drawn to generate a continuous piecewise linear contour surface. The 
scheme has the advantage of spending computational effort only where it is 
needed, i.e., it is adaptive. In an alternative approach, Sewell assumes that 
function values are given on a uniform three dimensional rectangular grid. (Of 
course, any interpolating function can be evaluated on such a grid.) The con
tour surfaces are drawn as frameworks of overlapping bands {i.e., opaque lines 
of non-zero thickness). Bands in the background can be seen through gaps 
between bands in the foreground. Sewell's scheme has the advantage of being 
available as a FORTRAN algorithm [75]. 

§3. Tensor Product Schemes 

This section comprises a deviation from the main theme of this paper in that it 
assumes a very special distribution of the data sites. Suppose for simplicity that 
k = 3. Deviating momentarily from the notation defined in (1), suppose the 
data sites are of the form {d, ηj, θ(), ζ = 1, · · ·, Νζ, j = 1, - · ·, Νη, £ = 1 , - , Νθ, 
and we wish to find an interpolant of the form 

Nc Nr, No 

s{(, ^, Ö) = Σ Σ Σ ^.^^PÁOQÁrj)r.{0) (14) 
μ = 1 u = l κ = 1 

satisfying the interpolation conditions 

s{Culj.ee) = yije, 1 = 1,-",N^, j = l , - . . , iV^, i=l,-'',Ne. (15) 

This is a tensor product problem. It can be reduced to a set of univariate 
interpolation problems. Suppose for simplicity that the basis functions for 
each variable are given in cardinal form; i.e., 

Pi{(j) = Sij, qi{Vj) = Sij, ri{ej) = 6ij. (16) 

The interpolant can then be written simply as 

A^C No 
siC.V.O) = Y^Y^Y^y,unP,{Oqu{l)r.{e)' (17) 

μ=1 u=\K=l 

Any set of (univariate) non-cardinal basis functions can be converted to cardi
nal form by calculating the inverse of the corresponding Vandermonde matrix, 
e.g., the matrix bí(Cj)]¿j=i,...,iv^ for the variable ζ. In this manner, the effort 
of finding the coefficients of the interpolant is reduced from 0{{ΝζΝηΝβ)^) to 
o(^N^ + Νη + Νβ^ which constitutes a substantial saving. Tensor products 
do not have to be implemented in cardinal form, but in any case they can be 
reduced to univariate rather than truly multivariate interpolation problems. 
More detailed discussions of tensor product schemes are in [25] and [26]. See 
also [55] for a more abstract discussion of tensor product approximation. 
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§4. Point Schemes 

The term Point Schemes refers to interpolation schemes that are not based on 
a tessellation of the underlying domain Ω. 

4.1. Shepard's Methods 

Shepard's method [76] may be the best known among all scattered data in-
terpolants in a general number of variables. In its simplest form, it is given 
by 

s{x) = J2Mm^i) W h e r e = " . (18) 

In this form, the evaluation of s at a data site leads to a division by zero. 
However, the definition of 5 can be extended continuously by the interpolation 
requirement s{xi) = y¿. 

Shepard's method is a particular example of a convex combination based 
scheme; i.e., the weights Wi are non-negative and sum to 1. The interpolant 
is arbitrarily often differentiable if ρ > 1. The most frequent choice is ρ = 2, 
in which case the basis functions Wi are rational, li ρ > 1, the first derivatives 
vanish at the data points; i.e., the interpolant has ñat spots. The scheme is 
obviously global and has only constant precision. It does have the property 

min {yi} < s(x) < max {^¿} G (19) 

which is sometimes required. However, for most purposes Shepard's method 
in its unmodified form yields unacceptable interpolants. This is perhaps best 
illustrated by the fact that in the univariate case, where many other techniques 
are readily available, it has never been proposed as an interpolation scheme. 

The deficiencies of Shepard's method can be overcome in various ways. 
We now describe some of them: 

1. Mollifying Basis Functions. To localize Shepard's method one can 
multiply the basis functions Wj by mollifying functions /i¿ satisfying 

Mxi) = 1 (20) 

and having local support in some appropriate sense. For example, the 
Franke-Little weights [22] are given by 

where 
_ Γ χ ^ iix>o 

"^+-{0, iix<0, 
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and the i?¿ are suitably chosen radii of circles around the data sites that 
constitute the support of the modified basis function. The smoothness of 
the multiplying factor is u — 1. This technique yields an interpolant 

Ν 

s{x) = J2yiμi{x)wi{x) (23) 
1=1 

which is still in cardinal form. However, the (constant) precision of the 
scheme has been destroyed. 

2. Interpolation to Taylor operators. To increase the precision of Shep-
ard's method one can interpolate to Taylor expansions instead of function 
values. For example, the interpolant defined by 

Ν 

s{x) = ^ Wiix) [/(x.) + Vf{xif{x - Xi)] (24) 
¿=1 

has linear precision (since the weights Wi add to 1 and the individual 
Taylor operators have hnear precision). Since Vwi{xj) = 0 for all i and j , 
it also follows that s interpolates to V/(x¿). The precision can be increased 
further by interpolating to Taylor operators of order greater than linear. 
However, for Shepard's method, if higher order Taylor operators were to 
be used, higher order derivatives would not be interpolated. Obviously, 
the technique calls for additional derivative values that are not normally 
available as data. 

3 . Boolean sums . Let Ρ and Q be two linear operators defined on a suitable 
function space, and such that the composition PQ is defined. The Boolean 
sum of Ρ and Q is defined by 

S = p^Q = P-^Q-PQ, (25) 

Barnhill and Gregory show in [18] that 5 has (at least) the interpolation 
properties of Ρ and the precision properties of Q. Thus, one can obtain an 
interpolation scheme with an arbitrarily high degree of precision m, say, 
by letting Pf be Shepard's interpolant and Qf G be a least squares 
approximation. 

4. Del ta sums [38,39]. A Boolean sum can be formed only if the operator 
Q can be applied when / is represented solely by the given data. This 
fact rules out, e.g., tensor product based operators. This motivated Foley 
to define a delta sum of two operators Ρ and Q as 

S = PAQ = P® {QP) =QP + P{I - QP). 

The process can be repeated to yield a delta iteration. Several Boolean 
sum and delta sum based interpolation schemes are described and dis
cussed in [22]. 
For a recent survey of Shepard's method and analysis of its approximation 

order, see [37]. Other papers on implementations, modifications, and tests of 
Shepard's method include [15,17,40,42,49,56]. 
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4.2. Radial Interpolants 

The term radial is due to Rippa [68]. Radial interpolants are of the form 

Ν 

s{x) = Y^aig{\\x-Xi\\)-\-Pm{x). (26) 
t = l 

where ^ is a given univariate so-called radiaJ function, and Pm G P ^ . The 
coefficients of s are determined by the interpolation condition (2) and the 
additional requirement that 

Ν 

' £ α φ ή = 0 (27) 
¿=i 

for all polynomials q € F ^ . Obviously, if y i = p{xi), t = 1,2, · · ·, AT for some 
polynomial ρ G P ^ , then the choice a, = 0, ¿ = 1,2, · · ·, AT and = ρ will 
satisfy all requirements. Thus, radial interpolants have degree of precision m. 

Recent discussions of radial schemes can be found in [35,57,62]. Micchelli's 
paper [57] establishes, in particular, that for many radial schemes, including 
those described here, the interpolant exists and is unique for all data sets 
(provided only that the interpolation problem with P ^ as interpolation space 
has at most one solution for all sets of function values). Remarkably, this fact 
was established only after Multiquadrics had been used with great success for 
fifteen years. Dyn and her co-workers in [35] and some of the references listed 
there develop particular radial schemes and numerical techniques to deal with 
the large and ill-conditioned linear system defining the interpolants. 

The following subsections describe two specific choices of the radial func
tion g, 

4.2.1. Hardy Multiquadrics 

These interpolants are defined by 

g^t) = {h''-\-t''r, a = ±\, h>0, m = 0, (28) 

and were first proposed by Hardy [44] in 1971. The parameter h is at the user's 
disposal and its best choice is related to the distance between data points. 
Multiquadrics constitute one of the most successful and widely used general 
purpose interpolants for multivariate data. Until recently, that success was 
based entirely on numerical experiments. Further insight into the effectiveness 
of multiquadrics was gained by Buhmann [28,29], and Jackson [47] who study 
their approximation properties. 
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(30) 

over all admissible functions, subject to the interpolation conditions (2). In 
the special case μ = k = 2, 

^2S= J ( 4 6 + 2 4 , e . + 4 6 ) d í i d Í 2 (31) 

and the functional I2 measures the strain energy in a clamped elastic plate, 
giving rise to the name thin plate spline. 

The solution of the minimization problem (29) are radial interpolants, 
called surface splines, with 

^(f\ _ / ^^^^"^^ log t, if k is even /^2^ 
9^^)-\ti2,-k)^ if is odd. ^^^^ 

§5. Natural Neighbor Interpolation 

This scheme was introduced by Sibson [77]. It is based on the Dirichlet (or 
Thiessen or Voronoi) Tessellation of Ω. This is the collection of tiles of the 
form 

η = {xe H': \\x - XiW < \\x - X j l = 1,2,. . . , iv} η Ω. (33) 

Obviously, 
Ν 

Q = [ J T i , (34) 

¿=i 
and the tiles are disjoint except for parts of their boundaries. 

We assume that the domain Ω C has finite volume. In order to 
evaluate the interpolant at a point a: G Ω we can think of adding χ to the set 
of data sites and carving its tile from the tiles of neighboring data sites. Thus, 
we let 

T{x) = {zelR': \\z-x\\<\\z-xj\l Vi = l , 2 , . . - , i v } , (35) 

4.2.2. Duchon Thin Plate Splines 

These interpolants were originally introduced by Duchon [34] for the case k = 2 
as solutions of the variational problem 

I^s= J \\D''{s)fdx = mm, (29) 

where 
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V{T{X)) • 

Note that if we replace Xi{x) by \\x — we obtain a linearly precise 
version of Shepard's method. However, Xi{x) φ 0 only for points close to 
X, which causes the scheme to be local. As for Shepard's method, we have 
to define s[xi) = ?/,· explicitly. The natural neighbor interpolant has some 
remarkable properties: 

1. it has linear precision. In fact it also reproduces spherical quadratics {i.e., 
quadratic functions whose matrix of second derivatives is a multiple of the 
identity matrix); 

2. it is local; 
3. in the special case k = 1 the function 5 is piecewise cubic; 
4. sec\n); 
5. the value s{x) depends continuously on the data sites Χ{. 

The proof of the last two properties is involved. Obviously, in order to 
construct the interpolant (38), gradient values have to be supplied. Sibson's 
paper describes a scheme in the spirit of natural neighbor interpolation that 
generates derivative values from given function values. 

§6. k-dimensional Triangulations 

Many bivariate interpolation schemes are based on triangulations of the data 
set, and it is natural to use the same ideas in more than two variables. Let Τ = 
{ti : ¿ = 1,2, · · ·, Τ} be a set of non-degenerate simplices, and let Ω = ti. 
It is useful to allow for the possibility that Ω is not convex. The following 
definition is a slight variation of the definition in [52] (where Ω is the convex hull 
of the data sites). Denote the set of data sites hy = {xi : ¿ = 1 ,2 , · · · , A^}. 
Then the set Τ is a triangulation of if the following conditions are satisfied: 

1. all vertices of each simplex are members of X 
2. the interiors of the simplices are pairwise disjoint 

η{χ) = τ{χ)ηη (36) 

and 

ν{τ) = volume (τ). (37) 

Sibson's natural neighbor interpolant is then defined as 

E A , ( x ) | | x - x , | | - i f . ( ^ ) 
s{x) = '-^ , (38) 

E A i ( x ) | | x - a r . | | - i 
¿=1 

where 
ξiix) = f{Xi) + Vf{Xif{x-Xi) 

ν{η{χ)) (39) 
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3. each facet of a simplex is either on the boundary of Ω or else is a common 
facet of exactly two simpHces 

4. each simplex contains no points of other than its vertices 
5. Ω is homeomorphic to [0,1]^. 

The last of the above conditions rules out degenerate triangulations consisting, 
for example, of two tetrahedra touching in just one vertex or edge. 

There are some significant diff^erences between bivariate and higher dimen
sional triangulations. These include for example: 

1. Specification of X and Ω does not determine the number of simplices. 
Counterexamples are given in [19] and [52]. 

2. li k > 3, possible triangulations may not be distinguishable by informa
tion about connectivity of points; i.e., by the specification of edges. For 
examples, see [52]. 

3. A standard technique for building 2'dimensional triangulations consists of 
adding one triangle at a time, maintaining at each stage a valid triangu
lation. For some triangulations, this is not possible ii k > 2. A simple 
counterexample (consisting of 14 points and 41 tetrahedra) is given in [69]. 
A more complicated one for many different triangulations of a particular 
domain is given in [24] and also described in [70], p. 17. If the construction 
is possible, the triangulation is said to be shellable. 

Many criteria have been proposed for selecting particular 2-dimensional 
triangulations. Perhaps the easiest to generalize is that of the Delaunay trian
gulation. This is the dual of the Thiessen tessellation: two points are connected 
if their tiles share a line segment. An equivalent requirement is that for any 
two neighboring triangles the circumcircle of one triangle does not contain the 
opposite vertex of the other triangle. This is the local circle test. It implies the 
stronger global circle test: the circumcircle of any triangle in the triangulation 
does not contain any other data site at all. (We ignore special cases where four 
or more points lie on the circumference of a circle.) Lawson [52] generalizes 
these concepts. He shows: 

1. aset oí k-\-2 points in may be triangulated in at most 2 different ways; 
2. the (local) sphere test (the obvious generalization of the local circle test) 

selects a preferred one of these two triangulations; 
3. a triangulation that satisfies the local sphere test also satisfies the global 

sphere test; 
4. a triangulation satisfying the global sphere test is dual to the Thiessen 

tessellation; i.e., the tiles of two points connected by an edge share a A: - 1 
dimensional boundary polygon (again we consider only the generic case). 
Pascal codes for constructing ^^-dimensional triangulations are given in 

[45]. They contain facihties for forcing certain facets to be contained in the 
triangulation. This option can be used e.g., to generate non-convexities, holes, 
and cavities. 

We now give a precise definition of the localness of triangulation-based 
schemes that is suitable for the purposes of this paper. More specifically, we 
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generalize the term minimally supported defined in [13] for triangular schemes. 
The star of a «-face φ is the union of all simplices that contain φ. A 

function s defined on a A;-dimensional triangulation is said to be minimally 
supported if there is a /c-face φ in the triangulation such that the support of s is 
contained in the star of φ. A linear space S{Q) is minimally supported if it has 
a basis consisting of minimally supported functions. An interpolation scheme 
is minimally supported if the interpolation space S is minimally supported. 

Note that in spite of the term's negative connotation, it is highly desirable 
for a space or a scheme to be minimally supported. 

If 5 C C{Q) contains all constant functions, then for any face φ there 
must be a function s e S whose support comprises all simplices containing 
φ. Otherwise, all ftmctions s Ε S would have to vanish on φ. This fact gave 
rise to the term minimaJJy supported. It is reasonable to consider a minimally 
supported scheme to be local. On the other hand, a scheme might also be 
called local without being minimally supported. It is, however, no easy task 
to find a reasonable more general definition of the word locai. For example, in 
the case of 2-dimensional triangulations an easy fallacy would be to define a 
scheme to be local if for each basis function w there exists a vertex V such that 
the support of w consists of the union of the stars of all vertices contained in 
the star of V, However, simple examples show that such a support set may not 
even be simply connected, which renders the utility of the definition doubtful. 
The problem is compounded for triangulations of dimension greater than two. 

§7. Tetrahedral Schemes 

In this chapter, we consider schemes that have been specifically designed for 
interpolants on a three-dimensional triangulation. Interpolants that apply to 
triangulations of a general dimension are described in the next chapter. 

The original motivation for defining interpolants piecewise on tetrahedra is 
the* prospect of obtaining local schemes. Indeed, all schemes described in this 
chapter are minimally supported. However, with the increasing availability 
of parallel processing, tetrahedral (and, more generally, simplicial) schemes 
are likely to become even more attractive since individual simplices can be 
processed independently and simultaneously! 

7.1. Polynomial Schemes 

It is natural to consider the use of finite elements as an interpolant, particularly 
since there is a large and sophisticated machinery available for handling them. 
If a piecewise defined interpolant is to be polynomial on each tetrahedron 
and globally differentiable, then ([86]) its polynomial degree must be at least 
9. Rescorla [67] gives an explicit description of such a scheme. It requires 
220 {i.e., the dimension of the space of trivariate nonic polynomials) data per 
tetrahedron. These include derivatives through fourth order at the vertices 
of the tetrahedron, as well as function and derivative values at various points 
on the faces and the centroid of the tetrahedron. The degree of precision of 


