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I. Introduction 
A semiconductor coherent signal source, such as the TUNNETT diode 

over 100 GHz to 1 THz (1000 GHz), has been eagerly desired for many 
application fields, since the IMPATT diode oscillator can not be used for 
the local oscillator because of its high noise and the backward wave 
oscillator (Carcinotron), which is a vacuum tube. The IMPATT diode 
oscillator has drawbacks such as a short lifetime, the need for a high 
voltage power supply (over 1000 V) and its large volume, including the 
power supply, compared to those of the semiconductor devices. 

The GaAs TUNNETT diodes, which were developed by the junior 
author's group in the early 1950s, was introduced in Chapter 4 in Vol. 5 of 
this series (Nishizawa, 1982), as were the Raman semiconductor (Nishi
zawa, 1963, Pidgeon et al., 1971, Nishizawa and Suto, 1980) and Brillouin 
lasers (Suzuki et al., 1977). Far infrared generation was introduced in 
Chapter 6 in Vol. 7 of Infrared and Millimeter Waves (Nishizawa and 
Suto, 1983). 

The avalanche multiplication phenomenon in a semiconductor has been 
found by the junior author (Watanabe and Nishizawa, 1952), McKay and 
McAfee (1953), and Gunn (1956). 

The transit time negative resistance diode was proposed independently 
by Nishizawa and Watanabe (1953), by Shockley (1954) and by Read 
(1958) as a solid-state microwave source. The TUNNETT diode was 
proposed by Nishizawa and Watanabe (1958) as the result of analysis of 
the avalanching negative resistance diode which is called the IMPATT 
diode today. 

The superiority of the TUNNETT diode to the IMPATT diode by vir
tue of the high frequency, low noise, and low bias voltage has been 
confirmed experimentally using GaAs p+-n diodes by the J. Nishizawa's 
research group since 1968 (Okabe et al., 1968). At that time the existence 
of the TUNNETT, IMPATT and the hybrid of the TUNNETT and IM
PATT modes had been determined in the course of study (Okabe et al., 
1968). 

The pulsed submillimeter wave oscillation of 338 GHz (λ = 0.89 mm) 
with 10 mW output power has been realized from GaAs p+-n-n+ diode 
(Nishizawa et al., 1979). Since then, the GaAs ρΛ-ηΛ-i(v)-n+ has been 
developed in order to raise the efficiency over the p+-n-n+ diode by our 
group (Nishizawa et al., 1981, 1984). 
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Recently the performance limit of the IMPATT has been recognized by 
other workers (Elta and Haddad, 1979). The hybrid mode diode, which 
was named MITATT (mixed tunneling and avalanche transit time), has 
been developed as a CW source at 150 GHz by Elta et al. (1980); this is the 
first successful achievement of CW operation. This was made by the 
GaAs Schottky barrier diode. 

It is worth mentioning here that the efficiency of tunneling and the 
stability for the lifetime in a p-n junction will be superior to that in a 
Shottky barrier diode, as already pointed out by Nishizawa (1976). 

The poor oscillation performances from GaAs Schottky barrier type 
(p+-n+-n-n+ diode) TUNNETT (Ohmi and Motoya, 1976) verified the 
above mentioned prediction with the comparison of the GaAs p-n junction 
type TUNNETT diode (Okabe et al., 1968, 1969, Nishizawa et al., 1974, 
Nishizawa, 1975, Nishizawa et al., 1977b, 1978a, 1978b, 1979, 1980, 
1984). 

Hence the research effort to realize the GaAs p-n junction type CW 
TUNNETT is thought to be valuable for many practical application fields. 
The object of this chapter is to present recent progress of the GaAs 
hyperabrupt p+-n+-i(y)-n+ TUNNETT diode. The superiority of the 
TUNNETT over the IMPATT and MITATT diode is also described. 

II. Theory of TUNNETT Diode 

A. TUNNETT DIODE 

The proposal of the TUNNETT diode was presented in the study of the 
avalanching negative resistance diode which included the diffusion effect 
by Nishizawa in 1958 (Nishizawa and Watanabe, 1958). 

The importance of the buildup time of the avalanche injection and its 
spatial distribution was pointed out to determine the higher frequency 
limit in the IMPATT diode. This concept was developed as the avalanche 
induced dispersion effect by detailed numerical calculations by Nishizawa 
(Nishizawa, 1971, 1974, Nishizawa et al., 1974, Nishizawa et al., 1978c). 
The oversimplified approximation of the avalanche injection was cor
rected by Misawa (1966), but he did not give any physical explanation 
about a large effect of the time constant in the avalanche injection. 

The importance of the above effect was recognized later by another 
researcher. The diffusion-aided spreading of the injected current pulse 
and the diffusion were published by several authors since 1970, after the 
theory was proposed by Nishizawa in 1958 (Kuvâs, 1970, Gupta et al., 
1975 and Schwarz, 1977). The GaAs p+-n TUNNETT, IMPATT and MI-
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TATT diodes were experimentally realized by the authors' group after 
1968. 

However, the millimeter wave GaAs IMPATT and MITATT diodes 
have poor oscillation frequency performances compared to those of GaAs 
TUNNETT and Si IMPATT diodes to date (Gibbons et al., 1972, Nawata 
et al., 1974, Schwarz and Bonek, 1978, Elta et al., 1980, Chang et al., 
1981). 

The influence of the tunnel injection in the transit time negative resis
tance diode has been presented by several authors, not including our 
group, after the realization of GaAs TUNNETT diode by our group since 
1968 (Semichon et al., 1970, Kwok and Haddad, 1972, Chive et al., 1975, 
Elta and Haddad, 1978, 1979a, 1979b, Pan and Lee, 1981a and 1981b, 
Allen et al., 1982). 

The many limitations, in the short millimeter to submillimeter wave 
region, of the transit time negative resistance diode, such as series resis
tance with decreasing device area, skin depth, the matching problem from 
this kind of diode to the output load and thermal resistance, are common 
difficulties in producing higher frequency and higher output power with a 
high efficiency. Their limits are common to other diodes, such as detec
tor, mixer and varactor diodes, for short millimeter to submillimeter wave 
regions. 

B. SMALL SIGNAL ANALYSIS OF TUNNETT DIODE (OKABE AND 
NISHIZAWA, 1969) 

The simple model of the TUNNETT diode is used, so that the voltages 
of the injection and transit time region are constant. The small signal 
analysis of the TUNNETT diode has been carried out. Fig. 1 shows the 
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FIG. 1 (a) The electric field profile and (b) the distribution of electrons and holes in the 
Read-Nishizawa type TUNNETT diode. 
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electric field profile and the current distribution in DC condition of the 
Read-Nishizawa type TUNNETT diode. 

C. INJECTION REGION 

Next assumptions are made that 

(1) the uniform avalanche and tunnel injection under the constant 
electric field intensity. 

(2) the saturation velocity \vn\ = \vp\ = us for the carriers, and 
(3) the neglect of the diffusion effect of carriers. 

If the uniform electric field is assumed, the solving way is same as that the 
p-i-n diode analyzed by Misawa (1967). The basic equations are given by; 

+ / ? - " ) (1) 

(2) 

(3) 
σι q ΟΛ 

and 

Jn = — qvn and J = - qvp. (4) 

When the uniform tunneling condition is satisfied, then 

g = Αγ(Ε) (5) 
where γ(Ε) is the tunneling probability and A is the constant, respec
tively. The boundary conditions for Jn(0) and Jp(d) are given as 

Λ(0) = Jns and jp(d) = Jps. 
However, these primary currents can be neglected since the primary 
currents of the tunnel injection do not play as important a role as the 
avalanche injection. 

The admittance Y is given by Jn is divided by V(d) and is plotted in Fig. 
2. The tunneling layer width 400 A and,/0 = 400 GHz are chosen for the 
parameters in the calculation. The vector of the injection current does not 
rotate as quickly as in case of the avalanche injection. The phase delay of 
the injection current to the applied voltage and the attenuation of the 
amplitude of the injection current are small to the range of several hun
dreds GHz. 
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