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PREFACE 

Spline functions constitute a relatively new subject in analysis. 
During the past decade both the theory of splines and experience with 
their use in numerical analysis have undergone a considerable degree 
of development. Discoveries of new and significant results are of frequent 
occurrence. 

It is useful at this juncture, nevertheless, to make some serious effort 
to organize and present material already developed up to this time. 
Much of this has become standardized. On the other hand, there are 
several areas where the theory is not yet complete. This book contains 
much of the material published since 1956 together with a considerable 
amount of the authors' own research not previously presented; it also 
reflects a considerable amount of practical experience with splines on 
the part of the authors. 

In the interests of holding the present volume to a reasonable size, 
certain areas related to splines have been omitted. Thus the work of 
Schoenberg and his associates on the use of splines in the smoothing of 
equidistant data has not been included, nor is there any treatment of 
the theory of splines of complex argument. We hope, nevertheless, 
that the material presented will provide the reader with the necessary 
background for both theoretical and applied work in what promises to 
be a very active and extensive area. 

In Chapter I there is a brief description of what is meant by a spline ; 
this is followed by a survey of the development of spline theory since 
1946 when Schoenberg first introduced the concept of a mathematical 
spline. We develop in Chapters II and IV, respectively, the theory of 
cubic splines and polynomial splines of higher degree from an algebraic 
point of view ; the methods employed depend heavily on the equations 
used to define the spline. In particular, these chapters contain much of 
the material basic for applications. In Chapters III and V we reconsider 
cubic and polynomial splines of higher degree from a different point of 
view which reveals more clearly their deeper structure. Although the 
resulting theorems are not so sharp as their counterparts in Chapters II 
and IV, they are more easily carried over to new settings. This is done 
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vin PREFACE 

in Chapters VI, VII, and Vili , in which we consider in turn generalized 
splines, doubly cubic splines, and two-dimensional generalized splines. 

We wish to express our deep gratitude to all those who have contri­
buted to making this book a reality. Specifically, we wish to thank the 
United Aircraft Research Laboratories, the Pratt & Whitney Division of 
the United Aircraft Corporation, Harvard University, and the University 
of Maryland, whose support has made possible much of our research in 
spline theory. 

May, 1967 J. H. AHLBERG 
E. N. NILSON 

J. L. WALSH 
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— CHAPTER I 

Introduction 

1-1- What Is a Spline? 

It seems appropriate to begin a book on spline theory by defining a 
spline in its simplest and most widely used form, and also to indicate 
the motivation leading to this definition. For many years, long, thin 
strips of wood or some other material have been used much like French 
curves by draftsmen to fair in a smooth curve between specified 
points. These strips or splines are anchored in place by attaching lead 
weights called "ducks' ' at points along the spline. By varying the points 
where the ducks are attached to the spline itself and the position of 
both the spline and the duck relative to the drafting surface, the spline 
can be made to pass through the specified points provided a sufficient 
number of ducks are used. 

If we regard the draftsman's spline as a thin beam, then the Bernoulli-
Euler law 

M(x) = EI[\IR(x)] 

is satisfied. Here M(x) is the bending moment, E is Young's modulus, 
/ is the geometric moment of inertia, and R(x) is the radius of curvature 
of the elastica, i.e., the curve assumed by the deformed axis of the beam. 
For small deflections, R(x) is replaced by l/y"(x)y where y(x) denotes 
the elastica. Thus we have 

y"{x) = (\IEI)M(x). 

Since the ducks act effectively as simple supports, the variation of M(x) 
between duck positions is linear. 

The mathematical spline is the result of replacing the draftsman's 
spline by its elastica and then approximating the latter by a piecewise 
cubic (normally a different cubic between each pair of adjacent ducks) 
with certain discontinuities of derivatives permitted at the junction 
points (the ducks) where two cubics join. 
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2 I . INTRODUCTION 

In its simple form, the mathematical spline is continuous and has 
both a continuous first derivative and a continuous second derivative. 
Normally, however, there is a jump discontinuity in its third derivative 
at the junction points. This corresponds to the draftsman's spline 
having continuous curvature with jumps occurring in the rate of change 
of curvature at the ducks. For many important applications, this 
mathematical model of the draftsman's spline is highly realistic. 

In practice, the draftsman does not place the ducks at the specified 
points through which his spline must pass. Moreover, there is not 
usually a one-to-one correspondence between the specified points and 
the ducks. On the other hand, when the mathematical analog is used, 
it is common practice to interpolate to the specified points at the junction 
points and to keep the number of specified points and junction points 
(including the endpoints) the same. 

In the next section, we outline the recent history of the mathematical 
spline approximation. From this history, some of the properties of the 
mathematical spline become evident. Also, a considerable extension of 
the concept of a spline from that approximating the draftsman's tool is 
apparent. 

K2. Recent Developments in the Theory of Splines 

The spline approximation in its present form first appeared in a paper 
by Schoenberg [1946].* As indicated in Section 1.1, there is a very close 
relationship between spline theory and beam theory. Sokolnikoff 
[1956, pp. 1-4] provides a brief but very readable account of the 
development of beam theory. From the latter, one might anticipate 
some of the recent developments in the theory of splines, particularly 
the minimum curvature property. As suggested in Schoenberg's paper 
[1946], approximations employed in actuarial work also frequently 
involve concepts that relate them closely to the spline. 

After 1946, Schoenberg, together with some of his students, continued 
these investigations of splines and monosplines. In particular, Schoenberg 
and Whitney [1949; 1953] first obtained criteria for the existence of 
certain splines of interpolation. For the case of splines of even order 
with interpolation at the junction points, a simpler approach to the 
question of existence due to Ahlberg, Nilson, and Walsh [1964; 1965] is 
now possible; it makes use of a basic integral relation obtained for cubic 

* Data in square brackets refer to items in the Bibliography. 


