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Foreword 

A new era in mathematics is in dawning, as fields continue to cross-
fertilize each other and successive challenges consequently mount to 
cultivate new basic ideas and to formulate and solve new problems. 

Our purpose is to bring significant momentum to this new period, 
by creating conditions that will encourage researchers in the pioneering 
spirit and action that are needed to explore the mathematical frontiers. 
Accordingly, symposia will be organized on important topics in pure 
mathematics, bringing mathematicians of various specialities together in 
a consciousness of the new directions that are defining themselves. 

The organizational activity for the symposia will be provisionally 
based at the Department of Mathematics of Nagoya University, and the 
proceedings of the symposia will be published under the title Advanced 
Studies in Pure Mathematics. The board of editors of each volume will 
consist of the core members listed below plus some of the members of 
the program committee of each particular symposium. 

Efforts are being made at the present time to obtain government 
approval for establishing a new institute for advanced studies in pure 
mathematics. At such time as this institute comes into being, the activi-
ties described above will be transferred thereto. 
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with sincere gratitude 

from us all who owe so much to them mathematically 

through both their works and their personal guidance 
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Preface 

Since Gauß, automorphic forms have played one of the most im-
portant role in number theory together with other but deeply related 
functicons such as zeta functions. 

In this century, the theory of automorphic forms has been exten-
sively enlarged and enriched by relating it to the geometry of symmetric 
spaces. This generalization allows us to use huge techniques in the 
Lie group theory, especially the representation theory with harmonic 
analysis, differential geometry and algebraic geometry. In particular, 
it has become one of the central problems to study the geometry of 
the quotients of the Siegel upper half-space or its generalization, the 
hermitian bounded symmetric domains, by arithmetic subgroups. 

The importance of automorphic forms seems to become still 
greater when we see the very recent development of the theory of 
strings in quantum field theory where they appear unexpectedly as an 
essential tool to describe fundamental, physically important quantities. 
This new tendency would suggest a completely new theory of auto-
morphic forms, namely the one over the moduli space of curves, 
which would be closely related to non-abelian class field theory. 

Here in Japan intensive study on automorphic forms has been 
made, and it has given, we believe, a not small historical contribution 
to the theory. It would be our great pleasure if this volume would 
also contribute something. 

This book grew out of a series of symposia held in 1985-86 
where the main topic was to study the dimension formulas of various 
automorphic forms. (For these conferences we obtained financial sup-
port from the Research Institute for Mathematical Sciences, Kyoto Uni-
versity, and the Japan Society for the Promotion of Science, to which we 
together with all participants would express our gratitude. ) One of our 
main concerns was to clarify the relation between two fundamental 
methods to obtain dimension formulas (for cusp forms), the Selberg 
trace formula and the index theorem (Riemann-Roch's theorem and 
the Lefschetz fixed point formula). This relation is well understood 
when the quotient is compact. But in the case of non-compact quotients, 
one should analyse the term corresponding to the so-called ^-invariants 
which are related with special values of some zeta functions, and here 
the relation between the above two methods is not clear. Though this 
aim is still to be attained (cf. the articles by Satake-Ogata, Sczech, 
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Tsushima), several important results were obtained which we might 
consider as fruits of these meetings. 

This volume is divided into two parts. Part I consists of survey 
articles, most of which originated from the lectures given in these 
meetings but were newly written to be up-to-date. We regret that we 
could not include here some other interesting survey talks given there, 
which treat much wider related topics such as those in differential and 
algebraic geometry. 

Part II consists of original papers which have enlarged the subjects 
treated in the final form of this volume. These subjects cover a large 
part of those which are now studied in Japan. We also refer the reader 
to Vol. 13 in this series to understand the whole trend of research in 
this area in Japan. 

This volume is dedicated to Prof. Ichiro Satake and Prof. Friedrich 
Hirzebruch with our hearty congratulations and thanks on the occasions 
of their sixtieth birthdays in 1987. 

Prof. Satake has long been one of our most important leaders 
through his work. His theory of compactifications, now known by his 
name together with Baily and Borel, of quotients of hermitian bounded 
symmetric domains by arithmetic subgroups, is a fundamental tool to 
the study of automorphic forms by the geometric method (cf. Tsuyu-
mine's and Tsushima's articles in this volume). Our main aim to clarify 
the relation between this geometric method and the group-theoretic one 
(using the trace formula), also originated from his recent work (cf. 
Satake-Ogata here). Moreover, after his return to Japan, we are enjoy-
ing his personal wärm encouragements and appropriate advice. The 
series of meetings mentioned above as the origin of this book was also 
held under his guidance. Therefore we would like to dedicate this 
whole volume to Prof. Satake from all the participants of the meetings. 

To Prof. Hirzebruch also we owe much, of course, through his 
Riemann-Roch formula and Lefschetz fixed point formula (which are 
the main tools to calculate the dimension of cusp forms in geometric 
method) as well as his deep work on Hilbert modular varieties. But 
this is not the only reason to dedicate this volume to him. We, the 
two editors of this volume, ask the reader to allow us to recount our 
personal experience. Our joint work began with a private seminar at the 
Max-Planck-Institut für Mathematik in Bonn at the beginning of 1984 
by six Japanese members at that time (Prof. Ibukiyama was also one 
of them) to read Atiyah-Donnelly-Singer's article on the proof of 
Hirzebruch's conjecture on Hilbert modular varieties. In the course 
of this seminar we were led to our main motivation for the series of 
meetings mentioned above. Without this prehistory at MPI, whose 
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director has been Prof. Hirzebruch since its foundation in 1982, we 
would never have been coeditors of this volume. Already nearly a 
hundred Japanese mathematicians, including most of the authors in 
this book, have stayed at Bonn when we consider SFB "Theoretische 
Mathematik" at Bonn University as MPI's antecedent. Prof. Hirze-
bruch has always taken the initiative to invite Japanese mathematicians, 
especially young ones, and given them an opportunity to study in active 
and international circumstances. His contribution to mathematics in 
Japan is hence immeasurable, for which we would like to thank him 
cordially on this occasion. 

Lastly, the editors would ask pardon for the long delay of publish-
ing this volume, which is entirely due to their laziness. They are afraid 
that this delay might have caused the authors some disadvantage. 

May 1988 

Ki-ichiro Hashimoto 
Yukihiko Namikawa 
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Zeta Functions Associated to Cones 
and their Special Values 

I. Satake and S. Ogata 

Introduction 

The purpose of this paper is to give a survey on zeta functions associ-
ated to (self-dual homogeneous) cones and their special values, including 
some recent results of ours on this subject. 

In § 1 we summarize basic facts on self-dual homogeneous cones and 
the associated /"-functions. § 2 is concerned with the zeta functions. Let 
F be a real vector space, %> a self-dual homogeneous cone in V, and let G 
be the automorphism group Aut(F, ^)°. We fix a Q-simple ß-structure 
on (V, <g). As is well-known, the pair (G, V) is a "prehomogeneous vector 
space" in the sense of Sato-Shintani [SS]. Following the general idea in 
[SS], we define a set of zeta functions {£7}, each one of which is associated 
to a connected component Vz of Vx = K— S, S denoting the singular set; 
in particular, £(0) = Z« is the zeta function associated to the cone V{0) = #. 
Then we give an explicit expression for the system of functional equations 
(Theorems 2.2.2, 2.3.3). Under the assumption that d is even, taking 
suitable linear combinations of these zeta functions, we define a new kind 
of L-functions L7, which are shown to satisfy individually (or two in a 
pair, according to the cases) a functional equation of ordinary type (see 
(2.3.5)). We give some (new) results (Theorems 2.3.9, 2.4.1) on the residues 
and special values of these zeta and L-functions, where two extreme L-
functions L(0) and L(ri) play an essential role. These extreme L-functions, 
which generalize the (partial) Dedekind zeta function and the Shimizu L-
function in the Hubert modular case, seem to be of particular importance 
from the number-theoretic view point. 

In § 3, we consider the corresponding (rational) symmetric tube do-
main 3i-=. V-\-\l — \%!and, under an additional assumption that the Q-rank 
of G is one, study the geometric invariants (X ,̂ r«,, etc.) associated to the 
cusp singularities appearing in the (standard) compactification of the 
arithmetic quotient space f\S ([S3, 4]). A typical example is the Hubert 

Received February 16, 1987. 
*> Partially supported by NSF Grand DMS-8502341. 
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modular singularities, which were studied extensively by Hirzebruch and 
others ([H2], [HG]). In [H2] Hirzebruch gave a conjecture relating the 
"signature defects" of the cusps with the zero-values of the corresponding 
Shimizu Z-functions, which was later proved by Atiyah-Donnelly-Singer 
and Müller ([ADS 1, 2], [M 4, 5]). In view of our results on these invariants 
and special values, we state in 3.3 some conjectures ((Cl), (C2), (C3)) which 
may be regarded as a natural generalization of the Hirzebruch conjecture. 

In §4, we define a more general zeta function Z^ associated to a 
"Tsuchihashi singularity" and give a formula for the zero-value Z^(0) 
(Theorem 4.2.5) by modifying a method due to Zagier [Z]. Recently, using 
this formula, Ishida [13] proved the rationality of Z*(0) in general. It is 
hoped that our approach might suggest a new possibility of attacking the 
generalized Hirzebruch conjecture. 

Our study on this subject has been largely inspired by the funda-
mental works of Professor F. Hirzebruch, to whom this paper is respect-
fully dedicated. The paper was prepared during a stay at the MSRI, 
Berkeley in 1986-87, of the first-named author, who would like to thank 
the staffs of the Institute for superb service and hospitalities. 

Notations. The symbols Z, Q, R, C are used in the usual sense, e.g. 
Q is the field of rational numbers. H is the Hamilton quaternion algebra. 
We use the symbol like R^0={X e R\X>0}9 and write R+ for J?>0. For 
ξ € C, β(ξ) stands for exp(27rV—1?)· Let F be a real vector space, v19 · · ·, 
vrzV and let S be a subset of R. Then we write {vi9 · · ·, vr}s for 
{Hï=i*iVi \λί € S}; e.g. {v19 · · ·, vr}R^0 is a closed polyhedral cone gener-
ated by υί9 · · ·, vr. For a cone # and a lattice M in V, <g* and M* 
denote, respectively, the dual cone and the dual lattice in the dual space 
K*. For a topological group G9 G° denotes the identity connected 
component of G. For a finite set S9 \S\ denotes the cardinality of S. 

Let F be a subfield of R, & a (connected) algebraic group defined 
over F9 and G= &(R)°. By an abuse of notations, we write GF for &(F) 
Π G and F-rk G for F-rk ^ (i.e. the dimension of maximal F-split tori in 
^ ) . If a is an imbedding, F^—>J?, then G° stands for &a(R)° and, if FQ 

is a subfield of F with [F : F0] < oo, then RF/Fo(G) stands for RF/Fo(&)(R)°. 
When ^ is reductive, G=&(R)° is called "reductive", and we write Gs for 
&S(R)°9 Ψ denoting the semisimple part of ^ . 

§ 1. Self-dual homogeneous cones ([BK], [SI], [V]) 

1.1. Let F be a real vector space of dimension « > 0 . By a convex 
cone in V, we mean a subset ^ of V with the following property: 

x j e ^ , λ9 μ>0=$λχ+μγe V. 
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The dual of # is defined by 

#* = {** <= F* | <JC, x*>>0 for all x <= <?-{()}}. 

Then ^* is an open convex cone in the dual space F*. It is clear that 
for a (non-empty) convex cone <$ the following three conditions are equi-
valent: 

( i ) <£ does not contain a line in V; 
(Ü) ^ n ( _^ ) = {0}; 
(iii) #* is non-empty. 

When these conditions are satisfied, ^ is called non-degenerate. In what 
follows, a non-degenerate open convex cone will simply be called a "cone". 
For a cone ^ , one has #** = <£\ 

A cone ^ is called self-dual if there exists a linear isomorphism 
S : (F, #)r^(F*, #*), which is symmetric and positive definite. A cone <£ 
is called homogeneous if the automorphism group 

G=Aut(F,#)0 ={geGL(F) |g^=^}°. 

(° denoting the identity connected component) is transitive on <g\ 
In §§ 1-3, unless otherwise specified, we always assume that <$ is self-

dual and homogeneous, and fix a positive definite inner product < ) on 
F defining an isomorphism S mentioned above. Then (V, <%) is identi-
fied with its dual (F*, fé7*). In this case, the automorphism group G is 
the identity connected component of a reductive algebraic group and for 
any cQ € <% the isotropy subgroup 

K=Gco = {gzG\gc0 = cQ} 

is a maximal compact subgroup of G. Thus ^^G/K has a structure of 
Riemannian symmetric space (with a flat part). 

1.2. In 1957-58, M. Koecher made an observation that the category 
of self-dual homogeneous cones (V, <g) with a base point cQ e <€ is equi-
valent to that of "formally real" Jordan algebras by the correspondence 
given as follows ([BK], [SI]). Let ^ be a self-dual homogeneous cone in 
V with a base point c0 and let G, K be as above. Let g = Lie G, ï=Lie K 
and let g = ï+p be the corresponding Cartan decomposition. Then by the 
homogeneity assumption there exists a unique linear isomorphism 

V*x\ >Txep 

such that x= TxcQ. The Jordan product in Fis then defined by 

xoy=Tsy (x,yeV). 
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In particular, one has Tco=idv, i.e. c0 is the unit element of the Jordan 
algebra. 

By virtue of this equivalence, the classification of self-dual homo-
geneous cones is reduced to that of formally real Jordan algebras, which 
was given (by a collaboration of phisicists) as early as in 1934 ([JNW]). 
A self-dual homogeneous cone ^ is decomposed uniquely into the direct 
product of the "irreducible" ones, for which one has G=R+xGs with Gs 

Ä-simple (or ={1}). The irreducible self-dual homogeneous cones are 
classified into the following five types : 

f^(Ä) = Ä+, 0>r{F) (r>2,F=R,C,H), 

I 0>Z(O) (O denotes the Cayley octonion algebra), 

U ( l , / i - l ) = {(f*) e Ä ' l a X ) , ξΙ-Σΐ=2ξΙ>0} (n>3), 

where g?r(F) denotes the cone of positive definite hermitian matrices of 
size r with entries in F. 2̂CK)> ^(C), &é<H) are isomorphic to the 
"quadratic cones" ^ ( 1 , n — 1) with « = 3,4,6, respectively. For # = 
^(O), Gs is an excetional group of type (E6). 

A more general study on "homogeneous cones" was done by Vinberg 
[V]]in the early 60's. In the study of general cones, the characteristic 
function plays an essential role. For any (non-degenerate, open convex) 
cone # , the characteristic function φ(χ) = φ^(χ) is defined by 

φν(χ)=[ e-<x'x*>dx*. 

Clearly one has 

Φ*(Χ)>0> ^ fe^) = det(g)-1^(jc) for x e # , g e G, 

and log φ0(χ) is a convex function, which tends to infinity when x e <g 
converges to a boundary point of # . The characteristic function will be 
used later in § 4. 

1.3. Quasi-irreducible cones. Let ^ be a self-dual homogeneous 
cone in V. %? is called quasi-irreducible if in its irreducible decomposition 
all irreducible components are isomorphic. 

Lemma 1.3.1. Suppose (V, <€) has a Q-simple Q-structure; this means 
that there is a Q-vector space VQ such that V= VQ®QR,for which G is (the 
identity connected component of) an algebraic group defined over Q and 
that, if (V, <£)= Π™=ι(^> ^μ) is tne irreducible decomposition, no partial 
product of V*s is defined over Q, or equivalently, that the center of G is 
of Q-rank one. Then <e is quasi-irreducible. 
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In fact, under this assumption, there exists a totally real number field 
F1 of degree m such that 

G=GFl/Q(G1)=f\GM, Gp=Gl', 
μ = 1 

where Gi = R+xGs
1 with Gl IE-simple (which may reduce to {1}), defined 

over F19 and {0·̂  (1<μ<ιη)} is the totality of the imbeddings F^—>R. 
Then the G*'s are all C-isomorphic and hence, by the classification theory, 
are also J?-isomorphic except for the case when there exists an even integer 
rx such that every G* is isogeneous either to SL(r19 R) or to SL(rJ2, H) 
and when both types SL(r19 R) and SL(rJ2, H) occur in the G*'s. But 
actually such a "mixed type" can not occur for the following reason. 
Since the Q-rational points are dense in ^ , one may take c0 to be Q-
rational; then the maximal compact subgroup K is also defined over Q. 
One then has the corresponding decomposition 

K=RFl/Q(K1)=f\Kfi9 Κμ=Κΐ> 
μ = 1 

and hence all Κμ'$ are also C-isomorphic. But the dimension of the 
maximal compact subgroups of SL(r19 R) and SL(rJ2, H) is equal to 
1^(^ — 1), 1^(^ + 1), respectively. Therefore no mixture of these two 
types can occur, which proves our assertion. 

1.4. The norm and trace. The rank of a self-dual homogeneous 
cone <ê is by definition the i?-rank of the Lie algebra g, which also coin-
cides with the (absolute) rank of the formally real Jordan algebra (V, cQ). 
Let ?z = dim V and r=rank <g\ If <$ is irreducible, one has (from the Peirce 
decomposition of (V9 c0)) 

(1A1) n = r + ^r(r-ll 

where d is a non-negative integer. For <g = R+, one puts d=0. For ^ = 
&r(F) (r>2), one has actually rank <g=r and d=dimRF=l9 2, 4, 8 ac-
cording as F=R, C, H, O. For a quadratic cone ^ , one has rank tf=2 
and d=n — 2. Thus the pair (r, d) is a complete invariant for an 
isomorphism class of irreducible self-dual homogeneous cones. 

In the Jordan algebra (V, c0), one can define the (reduced) norm N : V 
->J? as the (unique) homogeneous polynomial function of degree r on V 
such that, for a "general element" x in V9 N(tc0 — x)(e R[t]) is the minimal 
polynomial for x in the usual sense. When ^ is irreducible, the norm is 
uniquely characterized by the property 
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(1.4.2) N(c0) = l9 N(gx) = det(gY'«N(x) 

for g 6 G, x e V. 

(Note that X(g) = det(g)r/n is a rational character on G.) Hence one has 
the relation 

(1.4.3) Ν(χ) = (φ«(€0)-*φ,(χ))-^ ( * € # ) . 

The (reduced) trace tr(x) is defined by 

N(tc0-x) = r-tr(x)tr-l+ - · ·+(-\γΝ(χ). 

The trace is ΛΓ-invariant. It follows that, when # is irreducible, one has 

(1.4.4) tvx=Uv{Tx\ 
n 

where Tx : y*->xy is the multiplication in the Jordan algebra (V, c0). (Note 
also, putting P{x) = 2Tx—Tx%, one has the relations P(gx)=gP(xyg, 
det(P(x))=N(x)2n/r.) 

In what follows, we assume that # is quasi-irreducible. Let (V, <g) 
= Π?=ι(^/.» ^ ) ^ e t n e irreducible decomposition, 

m 

( ? = Π ^ G„=Aut(K„ « X 

and put « ^ d i m Fl5 r1 = rank<g7
1 = Ä-rkG1. Then one has n = mnl, r— 

mrx and 

± ^ = 1 + ^ - 1 ) . 
r rl 2 

Hence the formulae (1.4.2-4) remain valid. We normalize the inner 
product on V'm such a way that <<?0iA/, c0ffiy = ri (1 <μ<ηή9 where c0 = (c0)/i). 
Then one has 

(1.4.5) (x,y} = tv(xy). 

The Euclidean (i.e. self-dual) measure on V for this < > will be denoted as 
dx. A G-invariant measure on <€ is then given by N(x)~n/rdx. 

1.5. The /^-function. Let ^ be a quasi-irreducible self-dual homo-
geneous cone in V. The "Γ-function" of <$ (introduced by Koecher) is 
defined by the integral 

(1.5.1) /%(*)=[ e-^x)N(x)s-{n/r)dx (s <= C), 
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which converges absolutely for Res>n/r — 1. By a change of variable, 
one gets 

(1.5.2) N(x)-r*(s)=[ e-<x>y>N(y)s-n/rdy (xe<#). 

On V one can define a (unique) differential operator of degree r, de-
noted as N(PX), with the property 

N(Px)e<x>v> = N(y)e<x>y> 

(cf. [R], [SS]). Then N(PX) is relatively invariant in the sense that one has 

L?N(rx)Lg=det(g)-"*N(Fx) (g € G, x € V\ 

where (Lgf)(x)=f(g~1x) for any function / on V. The associated "ό-
function" is defined by 

N(Px)N(xy=b(s)N(x)s-1 (xztf,szC) 

(cf. [SS]).*) Then, applying N(FX) on the both sides of (1.5.2), one gets 

ΓΑ-s) 

By a direct computation from (1.5.1) (see e.g. [S2]), one obtains 

(1.5.3) ΓΜ={2πΤ-'),ϊ(γ\ι r(i-|-(i-l)))" 

(1.5.4) b(s)=(u(s+±(i-l)J))
m. 

(For the Γ-function of a more general cone, see [G].) 

§ 2. Zeta functions associated to a self-dual homogeneous cone 

2.1. We assume in this section that (F, ^) is endowed with a Q-
simple Q-structure in the sense stated in Lemma 1.3.1. Then Gs is Q-
simple (or reduces to {1}), the center of G is of Q-rank one and <ê is quasi-
irreducible. The Q-rank of G, which we denote by r0, is a divisor of rx = 
R-rk Gx: hence we set d=rjr0. We fix a base point cQ in ^Π VQ; then the 
norm, trace and the (normalized) inner product < > are all defined over Q. 
We choose a lattice M in VQ and an arithmetic subgroup Γ of G such 

*) Note that in some recent literature (e.g. [II]) it has become more customary 
to denote our b(s) by b(s—l). 
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that ΓΜ=Μ. We define a zeta function by 

(2.1.1) Z^C0(r,M;s) = j:x:r^M\rx\-
lN(x)-° (s e C), 

where ΓΧ — {Τ e Γ\ΐχ e x} (which is finite) and the summation is taken 
over a complete set of representatives of the jH-orbits mtfOM. When cQ 

is kept fixed, we write Z^ for Z^>CQ. It is known that the series on the 
right hand side of (2.1.1) is absolutely convergent for Res>n/r and has 
an analytic continuation to a meromorphic function on the whole plane C. 
It is clear that, if Γ' is a subgroup of Γ of finite index, then one has 

Ζ«(Γ\ M;s) = [r: Γ']Ζ«(Γ, M; s). 

Hence it suffices to consider the zeta function for the full stabilizer ΓΜ — 
{T eG\TM= M}. In that case, we write Z«{M; s) for Ζ^(ΓΜ9 M; s). 

In the simplest case where Gs reduces to {1}, one obtains essentially 
the (partial) Dedekind zeta function of the totally real number field F1 (see 
the Example 2.1.2 below). The case where <£ is a quadratic cone was 
studied by Siegel [S9]. Our zeta function is a special case of the zeta 
function associated to a (real) "prehomogeneous vector space" in the sense 
of Sato-Shintani [SS], who treated as examples the cases of éPr(R), ^V(C) 
and the quadratic cones (see [S7], [SS], pp. 160-168, pp. 155-157). For 
other cases, see [M3] (cf. also [SF]). 

Example 2.1.2. Let Fx be a totally real number field of degree m and 
let V=Fx®QR^Rm. Then the "angular domain" tf=R™ is a self-dual 
homogeneous cone with respect to the standard inner product in Rm. G is 
identified with the multiplicative group /?+ and Gs and K reduce to the 
identity. If one takes cQ to be 1 (the unit element of Fj), then the norm 
and the trace are given by 

Ν(χ)=1\ξμ, t r f r H H f , ΐοτχ=(ξμ)ζΚ 

and the standard inner product in Rm is normalized. V has a natural 
Q-structure for which VQ = F19 Gis defined over Q, of Q-rank 1, and GQ 

= {a e F? |ασμ>0(1 <μ<ηΐ)}. Hence the above assumptions are all satis-
fied and one has n1 = r1 = r0= 1, n = r=m. Let 0Fl be the ring of integers 
in Fx and choose M to be an ideal at in 0Fl. Then ΓΜ is the group of 
totally positive units of 0Fl and one has 

Z,(M;s)= Σ NixY^Nia,)-8 Σ #(<*)"', 

where the summation in the last expression is taken over all integral ideals 
a "equivalent" to ctf1 in the narrow sense. Thus essentially Z^(M; s) is 
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nothing but a "parital" Dedekind zeta function of F1 corresponding to the 
"ray class' of ctf1. 

2.2. Functional equations. According to the general theory of Sato-
Shintani, the functional equations for Z^(M; s) are obtained as follows. 
Let 

V* = {xe ν\Ν(χ)φΟ}=]\ K* 

and let 

i = 0 

be the decomposition of V* into the disjoint union of the connected com-
ponents, or what amounts to the same thing, into that of the Gyorbits. 
(If cQ = (c0ifI) and if ^0,/«=Σ<-ι ^^ *s primitive decomposition, then νμΛ is 
defined to be the Gy-orbit of —Σ*=ι *ίμ) + Σ£=*+ι4μ)-) T h u s o n e h a s 

where f™x denotes the set of all m-tuples I=(i19 · · ·, zm) with Ο θ ' ^ ^ 
(\<μ<™) and for Ι=(ιμ), one sets Vz= []™=ι νμΛμ. Hence Vx consists 
of fo + l)771 connected components. We write (k) for (k, · · ·, k) e <f™x\ 
then VW = V and Viri)= -<g. 

For each / e «/™, we define a zeta function 

(2.2.1) f,(M;*)= Σ ^ ~ 
χ:ΓΜ\νιΓ\Μ \N(X)\S 

where the summation is taken over a complete set of representatives of 
ΓM"orbits in Vjf]M and μ(χ) is a "density" defined as follows. For x e 
VI9 let £/x be a relatively compact neighbourhood of x in Vz and let 

^ = { g e G | g x <=£/,}, 
Gx = {gçG\gx=x}, rx = Gxnr. 

Then one has 

μ(*)={ dg/[ \N(x)\-«"dx, 
J rx\wx / Jux 

where dg is a Haar measure on G normalized in such a way that for any 
non-negative continuous function/on # one has 
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f f(gCo)dg=\ f(x)N(x)-*"dx. 

Then, except for the case rj = r0 = 2, d=\ (treated in [S7], [S9]), μ(χ) is 
finite and coincides with the volume of rx\Gx with respect to a suitably 
normalized Haar measure on Gx ([SS], Lemma 2.4) and hence depends only 
on the Γ-equivalence class of x. In what follows, we omit the above-
mentioned exceptional case. Then the series (2.2.1) is absolutely con-
vergent for Res>n/r and has an analytic continuation to a meromorphic 
function on C ([SS], [S7]). Clearly one has ξ(0) = ξ(ri) = Zv. For / = (ίμ) e 
. / £ , we set /* = (A-J — /,). Then it is clear that 

Vj^-Vr and f7,=f7. 

Thus essentially we get [(r1 + l)m/2] zeta functions. 

Theorem 2.2.2. The functions £7(M; s) satisfy the functional equations 
of the following form : 

jM*;IL-s) = v(M)(2K)-'sr«(s)e(^) Σ f ,(M; * K , ( 4 
\ r J \ 4 / / 6 ^ 

where M* is the dual lattice of M, v(M) = vo\(V/M) and, for Ι=(ιμ), 
J=Ur), uIJ{s)=Y\^1ui{idit{s\ ut)(0<ij<ru being integral polynomials 
in e(—s/2) of degree <r1# 

For an explicit expression of ulj9 see [SF]*^ 

2.3. To obtain more precise results, we assume in the rest of this 
section that r>2 and d is even. (Note that, if r= 1, Z^ is essentially the 
Riemann zeta function. If d is odd, then one has either rt = 2 (quadratic 
cones) or d= 1 (^ri(#)w(fi>2)).) 

Under this assumption, n/r is an integer and there are two cases : 
( a ) d=0 (mod 4), or d~2 (mod 4) and rx is odd. In this case, n/r 

is odd. 
( a') d=2 (mod 4) and r1 is even. In this case, n/r is even. 
Applying the methods in [SS] and [SF], one obtains 

Theorem 2.3.1. Under the above assumption, the function £7(M; s) has 
at most rQ simple poles at s = n/r —(d/2)p for 0<p<r1 — l, δ\ρ (d=rjr0) 
and one has 

*> Note that Uij(s) in [SS] is in our notation (and in [SF]) given by c(2nyn-w 
Ur-i r-j(s), if the measure on V in [SS] is equal to cax with ax self-dual. For 
instance, in the case K=Herr(C) ([SS], pp. 160-168), one has c=2~^-r^2. 


