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PREFACE 

During the last twenty years, many excellent textbooks have enriched 
the mathematical literature on probability theory. With the help of 
classical set-theoretic measure and integral theory, these books introduce 
the fundamental concepts of probability theory, then formulate and study 
old and recent problems germane to the theory. There is however an 
alternate way to introduce the main notions of probability theory, a way 
which is more naturally adapted to the empirical origins of the subject. 
The present volume is an exploration of this alternate development. 

There are three fundamental notions of probability theory: Event, 
probability of an event, random variable. A given set of events forms a 
Boolean algebra with respect to the logical connectives (considered as 
operations) " or ", " and ", and " not ". Probability is a normed measure 
on a Boolean algebra of events. It is natural to consider probability 
as finitely additive and strictly positive, i.e., equal to zero only for the 
impossible event. Therefore, a Boolean algebra 51 endowed with a 
finitely additive and strictly positive probability p can be considered as a 
probability algebra (Si,/?). In all empirical cases a Boolean algebra of 
events can be endowed with an additive and strictly positive probability. 
Moreover, the accountable) additivity of probability, which has important 
mathematical consequences in the theory, can always be obtained by a 
metric extension of a probability algebra (SI,/?) to a probability σ-
algebra (SÏ, p), in which SÎ is a Boolean σ-algebra and p a countably 
additive and strictly positive probability. 

It is well-known that a Boolean algebra St is always isomorphic to a 
field (Boolean algebra) of subsets of a set (= space) Ω. Thus the investi-
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gation of events and their probabilities can be reduced to a study of 
normed measures on fields of sets. Moreover, it is always possible to 
represent the Boolean algebra 31 of events by a field A of subsets of a set, 
so that the normed measure (the probability) P on A is set-theoretically 
countably additive. Let (Ω, A, P) be a so-called probability space, 
which represents, set-theoretically, a probability algebra (31,/?); then 
(Ω, A, P) can always be extended to a complete probability σ-space 
(Ω, Ä, P), in which A is a σ-field containing A and P a complete, normed, 
countably additive measure on Ä. The elements of Ä can be considered 
as events; in the case, however, in which the cardinality of Ω is > K0 ^ 
may happen that there exist non-empty sets EeA (i.e., events different 
from the impossible event) of measure (= probability) zero, which have 
no probabilistic interpretation. We can overcome this difficulty by 
considering directly the probability σ-algebra (3Ï, p) instead of the proba-
bility σ-space (Ω, Ä, P). 

Our aim is to develop the fundamental notions of probability theory 
in this " point-free " way. This, however, requires knowledge of lattice 
theory. We find that lattice theory also provides simplicity and generality, 
since it deals with classes of random variables which are the elements of 
the so-called stochastic spaces. The space of all elementary random 
variables defined over a probability algebra in a " point-free " way is a 
base for the stochastic space of all random variables, which can be 
obtained from it by lattice-theoretic extension processes. There are, 
however, problems in which one wants to consider individual samples 
and cannot work without points; then one can always assign a suitable 
probability σ-space to the probability algebra under consideration. Con-
versely, one can assign to every probability σ-space (Ω, A, P) a probability 
σ-algebra (3ί, p) in which 31 is the quotient Boolean σ-algebra A/N, 
where N is the σ-ideal of all sets of probability zero. Thus the two 
theories are equivalent. 

In the lattice-theoretic treatment of probability theory, a structural 
classification of all possible probability algebras (therefore an analogous 
classification of all possible stochastic spaces) can easily be obtained, 
which provides us with a representation of every probability σ-algebra 
by a probability σ-space (Ω, A, P) in which Ω is the cartesian product of 
factors equal to the interval [0, 1] of the real line, A a σ-subfield of the 
σ-field of all Lebesgue product measurable subsets of Ω, and P the product 
measure of A. A corresponding representation of random variables by 
Lebesgue measurable functions defined on Ω can also be obtained. 
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The origin of this book is in a set of lectures which I gave in the academic 
year 1963-64 at the Catholic University of America, Washington, D.C. 
The Statistical Laboratory there issued a mimeographed version of my 
notes under the title " Lattices and their Applications to Probability ". 
The present text is a revised and expanded version of these notes, main-
taining the central mathematical ideas of the lectures, namely probability 
algebras and stochastic spaces (i.e., spaces of random variables). The 
part of the notes devoted to pure lattice theory has been shortened and 
the most important concepts and theorems of this theory have been 
stated in two appendices, mostly without proofs. 

In addition to the material in the mimeographed edition, the present 
volume contains a general way to introduce the concept of random 
variables taking values in spaces endowed with any algebraic or topo-
logical structure. In particular, we study the cases in which the space of 
the values is a lattice group, or vector lattice. When the space of the 
values is a Banach space, a theory of expectation and moments is stated. 
A theory of expectation can be easily stated in more general cases of 
spaces of values: for example, locally convex vector spaces or topological 
vector spaces, for which an integration theory is known. 

We have restricted ourselves on the introduction and study only of the 
fundamental mathematical notions. We mention only a few facts about 
the concepts of independence and conditional probabilities and expecta-
tions. Certainly, it would be interesting to state the theory of stochastic 
processes and, especially, the theory of martingales. But this would go 
beyond the scope of the present monograph, or it would have to be 
published in a second volume. 

The author wishes to express his gratitude to Dr. Eugene Lukacs of 
the Catholic University, who made it possible for him to give lectures 
and publish them. It is a pleasure to offer thanks to F. Papangelou and 
G. Anderson who read critically the manuscript of the lectures and made 
valuable suggestions during the mimeographed edition of them. 

He expresses his best thanks to Miss Susan Papadopoulou who read 
all the manuscript of the present edition carefully and made valuable 
suggestions. In many cases she has helped him to give simpler formula-
tions and proofs. 

Thanks are finally due to Mr. Constantine Halatsis for his efficient 
typing of the manuscript and the composition of the several indices. 

Athens, Greece. 
April 1969. 

D. A. Kappos. 
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I 

PROBABILITY ALGEBRAS 

1. DEFINITIONS AND PROPERTIES 

1.1. A probability algebra (pr algebra) (St,/?) consists of a nonempty 
set St of elements denoted by lower-case latin letters: a, b, c, ...,x,y,..., 
called events and a real-valued function p on St, called a probability (pr). 
In the set St two binary operations avb (a orb) and aAb (aandb) and 
one unitary operation ac (not a) are defined, which introduce in St the 
algebraic structure of a Boolean algebra.t 

The probability p satisfies the following conditions: 

1.1.1. p is strictly positive, i.e., p(x) ^ 0, for every xeSl and p(x) = 0 
if and only if x = 0 , where 0 is the zero of 91. 

1.1.2. /? is normed, i.e., />(e) = 1, where e is the unit of SI. 

1.1.3. /? is additive i.e., /?(a v 6) = /?(a) +/?(&) if a anc* * a r e disjoint.J 

We shall call the unit e the sure event and the zero 0 the impossible event 
of the event algebra St. Every x e St with x ^ 0 and x Φ e is called a 
possible event of the algebra St. 

Î We consider the theory of Boolean algebras as known ; cf. also Appendix 1 of this 
book. 

{ We say that the event a and the event b are disjoint (exclude each other, or are mutually 
exclusive, or are incompatible) if a Ab = Ö. 
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