Lipid Analysis

CHRISTIE

Lipid Analysis

This page intentionally left blank

Lipid Analysis

Isolation, separation, identification and structural analysis of lipids

WILLIAM W. CHRISTIE

Hannah Research Institute, Ayr, Scotland

PERGAMON PRESS OXFORD · NEW YORK · TORONTO SYDNEY · PARIS · BRAUNSCHWEIG

OXFORD	Pergamon Press Ltd., Headington Hill Hall, Oxford OX3 0BW England
U.S.A.	Pergamon Press Inc., Maxwell House, Fairview Park, Elmsford, New York 10523, U.S.A.
CANADA	Pergamon of Canada Ltd., 207 Queen's Quay West, Toronto 1, Canada
AUSTRALIA	Pergamon Press (Aust.) Pty. Ltd., 19a Boundary Street, Rushcutters Bay, N.S.W. 2011, Australia
FRANCE	Pergamon Press SARL, 24 rue des Ecoles, 75240 Paris, Cedex 05, France
WEST GERMANY	Pergamon Press GmbH, 3300 Braunschweig, Postfach 2923, Burgplatz 1, West Germany

Copyright © 1973 W. W. Christie

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of Pergamon Press Ltd.

First edition 1973

Reprinted 1976

Library of Congress Cataloging in Publication Data

Christie, William W. Lipid analysis. Includes bibliographical references.

1. Lipids-Analysis. 1. Title. QP751.C49 1973 574.1'9247 73-8946 ISBN 0-08-017753-0

Printed in Great Britain by Biddles Ltd., Guildford, Surrey

Contents

Preface		xiii
A	CKNOWLEDGEMENTS	xiv
1.	The Structure, Chemistry and Occurrence of Lipids	1
	A. Introduction	1
	B. The Fatty Acids	2
	1. Saturated fatty acids	2
	2. Monoenoic fatty acids	4
	3. Non-conjugated polyunsaturated fatty acids	7
	4. Branched-chain and cyclopropane fatty acids	9
	5. Unusual fatty acids of plant origin	11
	C. Simple Lipids	13
	1. Triglycerides and partial glycerides	13
	2. Alkyl diglycerides and neutral plasmalogens	15
	3. Cholesterol and cholesteryl	16
	4. Wax esters and other minor components	17
	D. Complex Lipids	17
	1. Phosphoglycerides	18
	2. Glycosyl diglycerides and related compounds	22
	3. Sphingolipids	24
	E. Structural Features of Lipids Important in Analyses	28

2.	he Isolation of Lipids from Tissues	30
	General Principles of Solvent Extraction Procedures	30
	1. Storage of tissues	30
	2. The solubility of lipids in organic solvents	31
	3. Removal of non-lipid contaminants	34
	4. Artefacts of extraction procedures	36
	5. Some practical considerations	37
	Recommended Procedures	38
	1. Extraction of large amounts of tissue	38
	2. Chloroform-methanol $(2:1, v/v)$ extraction and "Folch" wash	39
	3. Sephadex G-25 columns for removing non-lipid contaminants	40
3.	aromatographic and Spectroscopic Analysis of pids. General Principles A Statement of the Problem	42 42
	Chromatographic Procedures	43
	1. Gas-liquid chromatography	43
	2. Adsorption chromatography	52
	3. Diethylaminoethyl (DEAE) cellulose chromatography	65
	4. Partition chromatography	66
	5. Chromatography on adsorbents containing complexing agents	70
	Some Practical Considerations	72
	1. Autoxidation of lipids	72
	2. Solvents	73
	3. Contaminants	75
	Spectroscopy	75
	1 Televist designations and a second	76
	1. Instatea absorption spectroscopy	70

Contents

vi

		Contents	vii
		2. Ultraviolet absorption spectroscopy	78
		3. Nuclear magnetic resonance spectroscopy	79
		4. Mass spectrometry	81
		5. Optical rotary dispersion	82
	E.	Equipping a Laboratory for Lipid Analysis	83
4.	Tł	e Preparation of Volatile Derivatives of Lipids	85
	А.	Saponification of Lipids	85
	B.	The Preparation of Methyl Esters of Fatty Acids	87
		1. Acid-catalysed esterification and transesterification	88
		2. Base-catalysed transesterification	89
		3. Diazomethane	91
		4. Special cases	92
	C.	Derivatives of Free Hydroxyl Groups	94
		1. Acetylation	94
		2. Trifluoroacetates	95
		3. Trimethylsilyl ethers	96
		4. Isopropylidene compounds	96
		5. n-Butylboronate derivatives	97
	D.	Derivatives of Fatty Aldehydes	98
		1. Hydrazone derivatives	98
		2. Acetals	98
	E.	Derivatives of Double Bonds	99
		1. Mercuric acetate derivatives	100
		2. Hydroxylation	100
		3. Epoxidation	102
		4. Deuterohydrazine reduction	102

viii		Contents	
5.	Tł	e Analysis of Fatty Acids	103
	A.	Introduction	103
	B.	Analytical Gas–Liquid Chromatography	104
		 Fatty acids of animal origin Unusual fatty acids 	104 114
		3. Spurious peaks on recorder traces	117
	C.	Isolation of Individual Fatty Acids for Structural Analysis	118
		1. Adsorption chromatography	118
		2. Silver nitrate chromatography	120
		3. Preparative gas chromatography	123
		4. Liquid-liquid partition chromatography	125
	D.	Spectroscopy of Fatty Acids	128
		1. Infrared absorption spectroscopy	128
		2. Ultraviolet spectroscopy	130
		3. Nuclear magnetic resonance spectroscopy	130
		4. Mass spectrometry	133
	E.	Hydrogenation	135
	F.	Location of Double Bonds in Fatty Acid Claims	136
		1. Permanganate-periodate oxidation	137
		2. Ozonolysis and reductive cleavage	138
		3. Oxidation after partial reduction of polyunsaturated acids	140
	G.	Location of Other Functional Groups in Fatty Acids	141
	H.	Physical Characterisation of Fatty Acids	144
	I.	Preparation of Large Quantities of Pure Fatty Acids	144
		1. Saturated fatty acids	145
		2. Polyunsaturated fatty acids	145

	1X
The Analysis of Simple Lipid Classes	152
A. Chromatographic Separation of the Common Simple Lipid Classe	s 152
1. Thin-layer chromatography	152
2. Column chromatography	158
3. Gas-liquid chromatography	161
4. Separation of isomeric mono- and diglycerides	161
B. Analysis of the Hydrolysis Products of Simple Lipids	163
1. Fatty acids	163
2. Glycerol	164
3. Cholesterol	165
C. Alkyl Diglycerides and Neutral Plasmalogens	166
1. Separation and identification	166
2. Isolation and identification of aldehydes from plasmalogens	169
3. Isolation and identification of <i>I</i> -alkyl glycerols	172
D. Wax Esters and Related Compounds	173
The Analysis of Complex Lipids	176
The Analysis of Complex Lipids A. Preliminary Separation and Preparation of Lipid Samples 	176 176
 The Analysis of Complex Lipids A. Preliminary Separation and Preparation of Lipid Samples 1. Simple group separations 	176 176 176
 The Analysis of Complex Lipids A. Preliminary Separation and Preparation of Lipid Samples 1. Simple group separations 2. Cations associated with complex lipids 	176 176 176 178
 The Analysis of Complex Lipids A. Preliminary Separation and Preparation of Lipid Samples Simple group separations Cations associated with complex lipids B. Column Chromatography 	176 176 176 178 179
 The Analysis of Complex Lipids A. Preliminary Separation and Preparation of Lipid Samples Simple group separations Cations associated with complex lipids B. Column Chromatography Silicic acid 	176 176 176 178 179 179
 The Analysis of Complex Lipids A. Preliminary Separation and Preparation of Lipid Samples Simple group separations Cations associated with complex lipids B. Column Chromatography Silicic acid Florisil 	176 176 176 178 179 179 182
 The Analysis of Complex Lipids A. Preliminary Separation and Preparation of Lipid Samples Simple group separations Cations associated with complex lipids B. Column Chromatography Silicic acid Florisil Alumina 	176 176 176 178 179 179 182 184

x	Contents		
	C. Thin-layer Chromatography	189	•
	1. Single-dimensional TLC systems	191	1
	2. Two-dimensional TLC systems	195	5
	3. Location and identification of complex lipids	on TLC plates 197	7
	D. Determination of Complex Lipids Separated by Procedures	Chromatographic 202	2
	E. Analysis of Complex Lipids as Their Partial I Products	Hydrolysis 204	4
	F. Sphingolipids	205	5
	1. Cerebrosides and ceramide polyhexosides	205	5
	2. Gangliosides	208	R
	3 Long-chain bases	200	g
	G. Alkyl- and Alkenyl-ether Derivatives of CompleH. Phosphonolipids	ex Lipids 216 220	5 0
	I. Determination of Water-soluble Hydrolysis Prod Lipids	lucts of Complex 222	2
	1. Phosphorus	222	2
	2. Glycerol	223	3
	3. Carbohvdrates. N-acetylneuraminic acid and	related compounds 223	3
	4. Nitrogenous bases of phospholipids	222	7
8.	3. The Analysis of Molecular Species of Li	pids 228	8
	A. Introduction	228	8
	B. General Methods of Analysis	229	9
	1. Liquid-solid and liquid-liquid chromatogra	phy 229	9
	2. Gas-liquid chromatography of intact lipids	230	0

Contents	xi
C. Molecular Species of Simple Lipids	235
1. Cholesteryl esters	235
2. Monoglycerides	236
3. Diglycerides	237
4. Triglycerides	243
5. Wax esters	251
D. Molecular Species of Complex Lipids	251
1. General approaches to the problem	251
2. Phosphatidyl choline	253
3. Phosphatidyl ethanolamine	255
4. Other glycerophosphatides	256
5. Glycosyl diglycerides	257
6. Sphingomyelin and glycosphingolipids	258

9. Enzymatic Hydrolysis of Lipids 261

A.	Introduction	261
B.	Positional Distribution of Fatty Acids in Triglycerides	263
	1. Pancreatic lipase hydrolysis	263
	2. Stereospecific analysis of triglycerides	266
C.	Enzymatic Hydrolysis of Complex Lipids	273
	1. Phospholipase A ₂	273
	2. Pancreatic lipase and related enzymes	275
	3. Phospholipase C	277
	4. Phospholipase D	279
D.	The Use of Enzymatic Hydrolysis in the Determination of	
	Molecular Species of Lipids	280

10.	The Analysis and Radioassay of Isotopically-labelled	
	Lipids	282
	A. Introduction	282
	B. Thin-layer Chromatography	284
	C. Gas-Liquid Chromatography	287
	1. Radioassay after preparative GLC 2. Continuous monitoring of the column effluent	288 290
	D. Location of ¹⁴ C in Aliphatic Chains	294
11.	A Summary	298
	A. Introduction	298
	B. Extraction of Lipids from Tissues	298
	C. Fatty Acid Compositions	299
	D. The Analysis of Simple Lipids	300
	E. The Analysis of Complex Lipids	301
	F. Structural Analysis of Lipids	302
Ap	pendix A: Commercial Sources of Lipid Standards	305
Ap	pendix B: Sources of Information	306
Re	FERENCES	309
Ind	ЕХ	327

Contents

xii

Preface

TWENTY years ago, lipids were considered to be oily intractable substances that could be separated into simpler components only with great difficulty and they were studied by a comparatively limited number of painstaking devotees. The development of chromatographic techniques, particularly gas-liquid chromatography and thin-layer chromatography, together with advances in spectroscopy, have led to an explosive growth of interest in these compounds and have revolutionised our knowledge of the role that lipids play in the structure and function of cell membranes, as essential dietary components and in numerous biological processes. A great number of specialist journals and review articles are now published at regular intervals and in this book I have attempted to critically examine the literature and bring together in a systematic manner the best of the procedures that have been developed for separating, identifying and determining lipid classes and their component parts. Many of these methods were evaluated at the same time in my own laboratory. I hope that newcomers to the subject will find it a useful guide through the potential complexities of lipid analysis and that experts in the field will find it a valuable reference work.

Acknowledgements

I AM grateful to Professor J. A. F. Rook, Director of the Hannah Research Institute, and to the Department of Agriculture and Fisheries for Scotland for permission to write this book. My thanks are due also to Dr. W. R. Morrison of the University of Strathclyde and Drs. J. H. Moore and R. C. Noble of the Hannah Research Institute for reading critically the first draft; their comments led to many improvements. Miss M. L. Hunter gave considerable assistance in testing some of the procedures described and in checking the final text, and Miss Elizabeth Atkinson carefully and patiently typed two drafts of the complete manuscript. I gladly acknowledge the assistance of the authors and journals cited at points in the text in permitting me to reproduce certain figures. Finally, I must thank my wife Norma for her patience and encouragement through many long evenings while this book was in preparation.

W. W. CHRISTIE

CHAPTER 1

The Structure, Chemistry and Occurrence of Lipids

A. Introduction

The term LIPID is often used loosely to denote a wide variety of natural products including fatty acids and their derivatives, steroids, terpenes, carotenoids and bile acids, which have in common a ready solubility in organic solvents such as diethyl ether, hexane, benzene, chloroform or methanol. A more specific definition is to be preferred and the term is nowadays generally restricted to fatty acids and their derivatives or metabolites. It is in this sense that the term is used in this book.

The principal lipid classes consist of fatty acid (long-chain aliphatic monocarboxylic acid) moieties linked by an ester bond to an alcohol, principally the trihydric alcohol glycerol, or by amide bonds to longchain bases. Also, they may contain phosphoric acid, organic bases, sugars and more complex components that can be liberated by various hydrolytic procedures. Lipids may be subdivided into two broad classes—"simple", which contain one or two of these hydrolysis products per mole, and "complex", which contain three or more types of hydrolysis product per mole. The terms "neutral" and "polar" respectively are used more frequently to define these classes, but are less precise and may occasionally be ambiguous; for example, unesterified fatty acids are normally classed as neutral lipids despite the presence of the free carboxyl group.

A complete analysis of the lipids from a given source, therefore, involves separation of the lipid mixture into simpler types according to the number and nature of the various constituent parts, the identification and estimation of each of these and finally determination of the absolute amount of each lipid type. Before progressing to this, however,

Lipid Analysis

a knowledge of the structure, chemistry and occurrence of the principal known lipids and their constituents is necessary.

B. The Fatty Acids

The common fatty acids of plant and animal origin contain even numbers of carbon atoms (4-24) in straight chains with a terminal carboxyl group and may be fully saturated or contain one, two or more (up to six) double bonds, which generally but not always have a *cis*-configuration. Fatty acids of animal origin are comparatively simple in structure and can be subdivided into well-defined families. Plant fatty acids, on the other hand, may be more complex and can contain a variety of other functional groups including acetylenic bonds, epoxyl, hydroxyl or keto groups and cyclopropene rings. Bacterial fatty acids usually consist of simpler saturated and monoenoic components but may also contain odd-numbered, branched-chain and cyclopropane acids. Very complex high molecular weight acids, the mycolic acids, have been found in certain bacterial species.

1. Saturated fatty acids

The commonest saturated fatty acids are straight-chain evennumbered acids containing 14-20 carbon atoms, although all the possible odd and even-numbered homologues with 2-30 or more carbon atoms have been found in nature. They are named systematically from the saturated hydrocarbon with the same number of carbon atoms, the final -*e* being changed to -*oic*. For example, the acid with sixteen carbon atoms and structural formula

CH₃.(CH₂)₁₄.COOH

is correctly termed hexadecanoic acid, although it also has a trivial name hallowed by common usage, i.e. *palmitic acid*. To simplify presentation and discussion of fatty acid compositions, shorthand nomenclatures also exist. In the simplest form, fatty acids are designated solely by the number of carbon atoms they possess, e.g. palmitic acid is a C_{16} acid. This compound can be defined more accurately, however, by listing both the number of carbon atoms in the acid and also the

number of double bonds, separating the two figures by a colon, i.e. taking the above example—16:0. Table 1.1 contains a list of common saturated fatty acids together with their trivial and systematic names and shorthand designations.

Systematic name	Trivial name	Shorthand designation
ethanoic	acetic	2:0
propanoic	propionic	3:0
butanoic	butyric	4:0
pentanoic	valeric	5:0
hexanoic	caproic	6:0
heptanoic	enanthic	7:0
octanoic	caprylic	8:0
nonanoic	pelargonic	9:0
decanoic	capric	10:0
hendecanoic	_	11:0
dodecanoic	lauric	12:0
tridecanoic		13:0
tetradecanoic	myristic	14:0
pentadecanoic	· —	15:0
hexadecanoic	palmitic	16:0
heptadecanoic	margaric	17:0
octadecanoic	stearic	18:0
nonadecanoic		19:0
eicosanoic	arachidic	20:0
heneicosanoic	—	21:0
docosanoic	behenic	22:0
tetracosanoic	lignoceric	24:0

TABLE 1.1. SATURATED ACIDS OF GENERAL FORMULA CH₃.(CH₃)₈.COOH

Acetic acid is rarely found in association with higher molecular weight fatty acids in esterified form, although it has been found esterified to glycerol and to hydroxy-fatty acids in some seed oils. C_4 to C_{12} acids are found mainly in milk fats, although the C_{10} and C_{12} acids have also been found in quantity in certain seed oils. Myristic acid (14:0) is a minor component of most animal lipids, but is present in major amounts in seed oils of the family Myristicaceae. Palmitic acid is probably the commonest saturated fatty acid and is found in virtually all animal and plant fats and oils. Stearic acid (18:0) is also relatively