

Theory and Application/ by Adel S. Saada

Pergamon Unified Engineering Series

Elasticity: Theory and Applications PUES-16

Pergamon Unified Engineering Series

GENERAL EDITORS

Thomas F. Irvine, Jr. State University of New York at Stony Brook James P. Hartnett University of Illinois at Chicago Circle

EDITORS

William F. Hughes Carnegie-Mellon University Arthur T. Murphy Widener College Daniel Rosenthal University of California, Los Angeles

SECTIONS

Continuous Media Section Engineering Design Section Engineering Systems Section Humanities and Social Sciences Section Information Dynamics Section Materials Engineering Section Engineering Laboratory Section

Elasticity Theory and Applications

Adel S. Saada, Ing., E.C.P., Ph.D.

Professor of Civil Engineering Case Western Reserve University

Pergamon Press Inc.

New York · Toronto · Oxford · Sydney · Braunschweig

PERGAMON PRESS INC. Maxwell House, Fairview Park, Elmsford, N.Y. 10523 PERGAMON OF CANADA LTD. 207 Queens's Quay West, Toronto 117, Ontario PERGAMON PRESS LTD. Headington Hill Hall, Oxford PERGAMON PRESS (AUST.) PTY. LTD. Rushcutters Bay, Sydney, N.S.W. VIEWEG & SOHN GmbH Burgplatz 1, Braunschweig

Copyright © 1974, Pergamon Press, Inc.

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form, or by any means, electronic, mechanical, photccopying, recording or otherwise, without prior permission of Pergamon Press Inc.

Library of Congress Cataloging in Publication Data

Saada, Adel S Elasticity: theory and applications.
(Pergamon unified engineering series, 16).
1. Elasticity. I. Title.
QA931.S2 1973 620.1'1232 72-86670
ISBN 0-08-017972-X
ISBN 0-08-017053-6 (lib. bdg.)

Contents

Preface

Part I

KINEMATICS OF CONTINUOUS MEDIA

(Displacement, Deformation, Strain)

Chapter 1	Introdu	ction to the Kinematics of Continuous Media	1
-	1-1	Formulation of the Problem	1
	1–2	Notation	7
Chapter 2	Review	of Matrix Algebra	9
	2-1	Introduction	9
	2–2	Definition of a Matrix. Special Matrices	9
	2–3	Index Notation and Summation	
		Convention	10
	2-4	Equality of Matrices. Addition and	
		Subtraction	12
	2–5	Multiplication of Matrices	13
	2–6	Matrix Division. The Inverse Matrix	16
	Probler	ns	18
Chapter 3	Linear	Transformation of Points	20
-	3–1	Introduction	20
	3–2	Definitions and Elementary Operations	20
	3–3	Conjugate and Principal Directions and	
		Planes in a Linear Transformation	25
	3–4	Orthogonal Transformations	27
	3–5	Changes of Axes in a Linear	
		Transformation	31
			v

vi Contents

	3–6	Characteristic Equations and Eigenvalues	33
	3–7	Invariants of the Transformation Matrix	
		in a Linear Transformation	38
	3–8	Invariant Directions of a Linear	
		Transformation	39
	3–9	Antisymmetric Linear Transformations	41
	3–10	Symmetric Transformations. Definitions	
		and General Theorems	44
	3-11	Principal Directions and Principal Unit	
		Displacements of a Symmetric	
		Transformation	48
	3-12	Quadratic Forms	53
	3-13	Normal and Tangential Displacements in	
		a Symmetric Transformation. Mohr's	
		Representation	56
	3-14	Spherical Dilatation and Deviation in a	
	• • •	Linear Symmetric Transformation	60
	3-15	Geometrical Meaning of the a_{ii} 's in a	
		Linear Symmetric Transformation	62
	3-16	Linear Symmetric Transformation in Two	
	0 10	Dimensions	63
	Problem		66
Chapter 4	General	Analysis of Strain in Cartesian Coordinates	69
enupter :	4–1	Introduction	69
	4–2	Changes in Length and Directions of	• •
	12	Elements Initially Parallel to the	
		Coordinate Axes	71
	4–3	Components of the State of Strain at a	
	75	Point	73
	4-4	Geometrical Meaning of the Strain	
	•••	Components ε_{ii} . Strain of a Line Element	75
	4–5	Components of the State of Strain under a	
	15	Change of Coordinate System	77
	4–6	Principal Axes of Strain	79
	4-7	Volumetric Strain	80
	4-8	Small Strain	82
	4–0 4–9	Linear Strain	83
	4-10	Compatibility Relations for Linear Strains	88
	Problem		91
	11001011	**	1

Chapter 5	Cartesia	n Tensors	95
-	5-1	Introduction	95
	5–2	Scalars and Vectors	96
	5–3	Higher Rank Tensors	97
	5-4	On Tensors and Matrices	98
	5–5	The Kronecker Delta and the Alternating	
		Symbol. Isotropic Tensors	99
	5–6	Function of a Tensor. Invariants	101
	5–7	Contraction	102
	5-8	The Quotient Rule of Tensors	104
	Problem	IS	105
Chapter 6	Orthogo	nal Curvilinear Coordinates	107
	6–1	Introduction	107
	6–2	Curvilinear Coordinates	107
	6–3	Metric Coefficients	112
	6–4	Gradient, Divergence, Curl, and	
		Laplacian in Orthogonal Curvilinear	
		Coordinates	118
	6–5	Rate of Change of the Vectors \overline{a}_i and of	
		the Unit Vectors \bar{e}_i in an Orthogonal	
		Curvilinear Coordinate System	125
	6–6	The Strain Tensor in Orthogonal	
		Curvilinear Coordinates	129
	6–7	Strain-Displacement Relations in	
		Orthogonal Curvilinear Coordinates	134
	6–8	Components of the Rotation in	
		Orthogonal Curvilinear Coordinates	141
	6–9	Equations of Compatibility for Linear	
		Strains in Orthogonal Curvilinear	
		Coordinates	142
	Problem	15	142

Part II

THEORY OF STRESS

Chapter 7	Analysis	s of Stress	147
-	7–1	Introduction	147
	7–2	Stress on a Plane at a Point. Notation and	
		Sign Convention	147

7–3	State of Stress at a Point. The Stress Tensor	150
7–4	Equations of Equilibrium. Symmetry of	
	the Stress Tensor. Boundary Conditions	153
7–5	Application of the Properties of Linear	
	Symmetric Transformations to the	
	Analysis of Stress	157
7–6	Stress Quadric	163
7–7	Further Graphical Representations of the	
	State of Stress at a Point. Stress Ellipsoid.	
	Stress Director Surface	164
7–8	The Octahedral Normal and Octahedral	
	Shearing Stresses	166
7–9	The Haigh-Westergaard Stress Space	167
7–10	Components of the State of Stress at a	
	Point in a Change of Coordinates	170
7-11	Stress Analysis in Two Dimensions	171
7–12	Equations of Equilibrium in Orthogonal	
	Curvilinear Coordinates	175
Problem	IS	180

Part III

THE THEORY OF ELASTICITY

APPLICATIONS TO ENGINEERING PROBLEMS

Chapter 8	Elastic Stress-Strain Relations and Formulation of			
-	Elastic	ity Problems	185	
	8-1	Introduction	185	
	8-2	Work, Energy, and the Existence of a		
		Strain Energy Function	185	
	8–3	The Generalized Hooke's Law	188	
	8-4	Elastic Symmetry	191	
	8–5	Elastic Stress-Strain Relations for		
		Isotropic Media	199	
	8–6	Thermoelastic Stress-Strain Relations for		
		Isotropic Media	204	
	8–7	Strain Energy Density	206	
	8-8	Formulation of Elasticity Problems.		
		Boundary-Value Problems of Elasticity	210	
	8–9	Elasticity Equations in Terms of		
		Displacements	211	

	8-10	Elasticity Equations in Terms of Stresses	212
	8-11	The Principle of Superposition	215
	8-12	Existence and Uniqueness of the Solution	
		of an Elasticity Problem	216
	8–13	Saint-Venant's Principle	217
	8-14	One Dimensional Elasticity	218
	8-15	Plane Elasticity	220
	8–16	State of Plane Strain	220
	8-17	State of Plane Stress	224
	8-18	State of Generalized Plane Stress	227
	8–19	State of Generalized Plane Strain	229
	8–20	Solution of Elasticity Problems	230
	Problem	15	231
Chapter 9	Solution	of Elasticity Problems by Potentials	236
-	9–1	Introduction	236
	9–2	Some Results of Field Theory	236
	9–3	The Homogeneous Equations of Elasticity	
		and the Search for Particular Solutions	239
	94	Scalar and Vector Potentials. Lamé's	
		Strain Potential	242
	9–5	The Galerkin Vector. Love's Strain	
		Function. Kelvin's and Cerruti's Problems	244
	9–6	The Neuber-Papkovich Representation.	
		Boussinesq's Problem	250
	9–7	Summary of Displacement Functions	255
	9–8	Stress Functions	255
	9_9	Airy's Stress Function for Plane Strain	
		Problems	258
	9–10	Airy's Stress Function for Plane Stress	
		Problems	260
	9-11	Forms of Airy's Stress Function	262
	Problem	-	265
Chapter 1) The T	orsion Problem	268
Unapter I	10–1	Introduction	268
	10-1	Torsion of Circular Prismatic Bars	268
	10-2	Torsion of Non-Circular Prismatic Bars	200
	10–3 10–4	Torsion of an Elliptic Bar	273
	10-4	Prandtl's Stress Function	280
	10 5		207

x Contents

	10–6	Two Simple Solutions Using Prandtl's	
		Stress Function	286
	10–7	Torsion of Rectangular Bars	289
	10-8	Prandtl's Membrane Analogy	295
	10–9	Application of the Membrane Analogy	
		to Solid Sections	299
	10–10	Application of the Membrane Analogy	
		to Thin Tubular Members	304
	10-11	Application of the Membrane Analogy	
		to Multicellular Thin Sections	308
	10–12	Torsion of Circular Shafts of Varying	
		Cross Section	309
	10–13	Torsion of Thin-Walled Members of	
		Open Section in which some Cross	
		Section is Prevented from Warping	313
	A-10–1	The Green-Riemann Formula	317
	Problems		319
Classifier 11			222
Chapter 11		linders, Disks, and Spheres	323
	11-1	Introduction	323
	11–2	Hollow Cylinder with Internal and	222
	11.2	External Pressures and Free Ends	323
	11–3	Hollow Cylinder with Internal and	220
	11 4	External Pressures and Fixed Ends	329
	11-4	Hollow Sphere Subjected to Internal	221
	11 5	and External Pressures	331
	11-5	Rotating Disks of Uniform Thickness	334
	11-6	Rotating Long Circular Cylinder	338
	11-7	Disks of Variable Thickness	340
	11-8	Thermal Stresses in Thin Disks	343
	11–9	Thermal Stresses in Long Circular	244
	11 10	Cylinders	344
	11–10 Deck1amo	Thermal Stresses in Spheres	347
	Problems		349
Chapter 12	Straight S	Simple Beams	352
	12-1	Introduction	352
	12–2	The Elementary Theory of Beams	354
	12–3	Pure Bending of Prismatical Bars	355
	12–4	Bending of a Narrow Rectangular	
		Cantilever by an End Load	360

	12–5	Bending of a Narrow Rectangular	
		Beam by a Uniform Load	366
	12–6	Cantilever Prismatic Bar of Irregular	
		Cross Section Subjected to a Transverse	
		End Force	369
	12–7	Shear Center	378
	Problems	Shear Center	380
	TTOUCHIS		500
Chapter 13	Curved B	eams	381
	13–1	Introduction	381
	13-2	The Simplified Theory of Curved Beams	381
	13-3	Pure Bending of Circular Arc Beams	384
	13-4	Circular Arc Cantilever Beam Bent by a	
	15 1	Force at the End	388
	Problems	Toree at the End	393
	Tioblems		070
Chanter 14	The Semi	-Infinite Elastic Medium and Related	
chapter 1	Problems		395
	14–1	Introduction	395
	14-2	Uniform Pressure Distributed over a	
		Circular Area on the Surface of a Semi-	
		Infinite Solid	396
	14–3	Uniform Pressure Distributed over a	0,0
	14 5	Rectangular Area	401
	14-4	Rigid Die in the Form of a Circular	401
	14-4	Cylinder	402
	14–5	Vertical Line Load on a Semi-Infinite	402
	14–3	Elastic Medium	404
	14–6	Vertical Line Load on a Semi-Infinite	404
	14–0		410
	14 7	Elastic Plate	410
	14–7	Tangential Line Load at the Surface of	412
	14 0	a Semi-Infinite Elastic Medium	412
	14-8	Tangential Line Load on a Semi-	414
	14.0	Infinite Elastic Plate	414
	14–9	Uniformly Distributed Vertical Pressure	
		on Part of the Boundary of a Semi-	410
		Infinite Elastic Medium	415
	14–10	Uniformly Distributed Vertical Pressure	
		on Part of the Boundary of a Semi-	
		Infinite Elastic Plate	419

xii Contents

	14–11	Rigid Strip at the Surface of a Semi-	420
	14 12	Infinite Elastic Medium	420
	14–12	Rigid Die at the Surface of a Semi-	421
	14 12	Infinite Elastic Plate	421
	14-13	Radial Stresses in Wedges	421
	14–14	M. Levy's Problems of the Triangular and Rectangular Retaining Walls	424
Chapter 15		rinciples and Introduction To Variational	
	Methods		429
	15-1	Introduction	429
	15–2	Work, Strain and Complementary	
		Energies. Clapeyron's Law	430
	15–3	Princple of Virtual Work	435
	15-4	Variational Problems and Euler's	
		Equations	438
	15-5	The Reciprocal Laws of Betti and	
		Maxwell	446
	15–6	Principle of Minimum Potential Energy	448
	15-7	Castigliano's First Theorem	453
	15-8	Princple of Virtual Complementary	
		Work	453
	15-9	Principle of Minimum Complementary	
		Energy	455
	15-10	Castigliano's Second Theorem	457
	15-11	Theorem of Least Work	458
	15-12	Summary of Energy Theorems	459
	15-13	Working Form of the Strain Energy for	
		Linearly Elastic Slender Members	460
	15-14	Strain Energy of a Linearly Elastic	
		Slender Member in Terms of the Unit	
		Displacements of the Centroid G and of	
		the Unit Rotations	464
	15-15	A Working Form of the Principles of	
		Virtual Work and of Virtual	
		Complementary Work for a Linearly	
		Elastic Slender Member	465
	15-16	Examples of Application of the	
		Theorems of Virtual Work and Virtual	
		Complementary Work	468

	15-17	Examples of Application of	
		Castigliano's First and Second Theorems	474
	15–18	Examples of Application of the	
		Principles of Minimum Potential	
		Energy and Minimum Complementary	
		Energy	478
	15-19	Example of Application of the Theorem	
		of Least Work	482
	15-20	The Rayleigh-Ritz Method	484
	Problems		487
Chanter 16	Elastic St	tability: Columns and Beam-Columns	490
enupter ro	16-1	Introduction	490
	16-2	Differential Equations of Columns and	
	10 2	Beam-Columns	493
	16-3	Simple Columns	494
	16-4	Energy Solution of the Buckling Problem	501
	16-5	Examples of Calculation of Buckling	
		Loads by the Energy Method	504
	166	Combined Compression and Bending	507
	16–7	Lateral Buckling of Thin Rectangular	
		Beams	514
	Problems		518
Chapter 17	Ronding	of Thin Flat Plates	520
Chapter 17	17–1	Introduction and Basic Assumptions.	
	1/-1	Strains and Stresses	520
	17–2	Geometry of Surfaces with Small	
	17 2	Curvatures	526
	17–3	Stress Resultants and Stress Couples	533
	17-4	Equations of Equilibrium of Laterally	
		Loaded Thin Plates	538
	17–5	Boundary Conditions	539
	17–6	Some Simple Solutions of Lagrange's	
		Equation	542
	17–7	Simply Supported Rectangular Plate.	
		Navier's Solution	548
	17-8	Elliptic Plate with Clamped Edges	
		under Uniform Load	552
	17–9	Bending of Circular Plates	553
	17-10	Strain Energy and Potential Energy of a	
		Thin Plate in Bending	557

xiv Contents

17–11	Application of the Principle of	
	Minimum Potential Energy to Simply	
	Supported Rectangular Plates	559
Problems		560
	tion to the Theory of Thin Shells	563
18-1	Introduction	563
18-2	Space Curves	563
18–3	Elements of the Theory of Surfaces	566
	1) Gaussian surface coordinates. First	
	fundamental form. 2) Second	
	fundamental form. 3) Curvature of a	
	normal section. Meunier's theorem. 4)	
	Principal directions and lines of	
	curvature. 5) Principal curvatures, first	
	and second curvatures. 6) Euler's	
	theorem. 7) Rate of change of the vectors	
	\overline{a}_i and the corresponding unit vectors	
	along the parametric lines. 8) The Gauss-	
	Codazzi conditions. 9) Application to	
	surfaces of revolution. 10) Important	
	remarks.	
18–4	Basic Assumptions and Reference	
	System of Coordinates	591
18–5	Strain-Displacement Relations	594
18-6	Stress Resultants and Stress Couples	598
18–7	Equations of Equilibrium of Loaded	
10.0	Thin Shells	601
18-8	Boundary Conditions	608
18–9	Membrane Theory of Shells	610
18–10	Membrane Shells of Revolution	611
18-11	Membrane Theory of Cylindrical Shells	616
18–12	General Theory of Circular Cylindrical	
10.10	Shells	625
18–13	Circular Cylindrical Shell Loaded	
D 11	Symmetrically with Respect to its Axis	628
Problems		634
Index		636

Preface

This book is an outgrowth of notes used by the author during the past few years in a course on solid mechanics. It is intended to give advanced undergraduate and graduate students sound foundations on which to build advanced courses such as mathematical elasticity, plasticity, plates and shells, and those branches of mechanics which require the analysis of strain and stress. The book is divided into three parts: *Part I* is concerned with the kinematics of continuous media, *Part II* with the analysis of stress, and *Part III* with the theory of elasticity and its applications to engineering problems.

In Part I, the use of the notion of linear transformation of points makes it possible to present the geometry of deformation in a language that is easily understood by the majority of engineering students. It is agreed that tensor calculus is the most elegant tool available to mechanicists, but experience has shown that most engineering students are not ready to accept it without a reasonable amount of preparation. The study of finite and linear strains, using the notion of linear transformation, gradually introduces the tensor concept and removes part of the abstraction commonly associated with it. Orthogonal curvi-linear coordinates are examined in detail and the results extensively used throughout the text.

In *Part II*, the study of stress proceeds along the same lines as that of strain, and the similarities between the two are pointed out. All seven chapters of Parts I and II are essential to the understanding of Part III and serve as a common base for all branches of mechanics.

In *Part III*, Chapter 8 covers the three-dimensional theory of linear elasticity and the requirements for the solution of elasticity problems. The method of potentials is presented in Chapter 9. Torsion is discussed in Chapter 10 and topics related to cylinders, disks, and spheres are treated in Chapter 11. Straight and curved beams are analysed in Chapters 12 and 13 respectively, and the answers of the elementary theories are compared to the more rigorous results of the theory of elasticity. In Chapter 14, the semi-

infinite elastic medium and some of its related problems are studied using the results of Chapter 9.

Energy principles and variational methods are presented in Chapter 15 and their application illustrated by a large number of simple examples. Columns and beam-columns are discussed in Chapter 16 and the bending of thin flat plates in Chapter 17. Chapter 18 is more than an introduction to the theory of thin shells. It includes a relatively detailed presentation of the theory of surfaces which is necessary for the full understanding of the analysis of thin shells. In this Chapter, as well as throughout this text, geometry and the relations between strain and displacement are emphasized since it is my conviction that once geometry is mastered most of the difficulties in studying the mechanics of solids will have disappeared.

The material in this text is suitable for two successive courses on solid mechanics and elasticity. A first course would include Chapters 1 to 5, some results from Chapter 6 and Chapter 7 to 13. A second course would include Chapter 6 and Chapters 14 to 18. Chapters 10 to 18 can be read independently from one another.

I wish to express my gratitude to Dr. T. P. Kicher who read the manuscript and made useful suggestions and to Dr. G. P. Sendeckyj with whom many sections were discussed. Thanks are due to Professor W. F. Hughes, technical editor of the Unified Engineering Series, for his patience and support during the preparation of the final manuscript, and to the John T. Wiley Educational Fund of Case Western Reserve University for financial support. Mrs. W. Reeves very ably handled the typing.

Last but not least, I wish to acknowledge the encouragement and understanding of my wife Nancy during the various stages of writing this book.

Adel S. Saada

About the Author

Adel S. Saada (Ph.D., Princeton University) is presently Professor of Civil Engineering at the Case Institute of Technology of Case Western Reserve University, Cleveland, Ohio. Dr. Saada received his Ingénieur des Arts et Manufactures degree from École Centrale des Arts et Manufactures de Paris, France and the equivalent of a Master of Science degree from the University of Grenoble, France. Before coming to Princeton University the author was a practicing structural engineer in France. Dr. Saada's teaching activities are in two major areas: the first is that of the mechanics of solids and in particular elasticity; the second is that of mechanics applied to soils and foundations. His research activities are primarily in the area of stress-strain relations and failure of transversely isotropic materials, in particular clay soils. Much of his research work has been supported by personal grants from the National Science Foundation. Dr. Saada is a member of several professional societies, a consulting engineer, and the author of many papers on soil mechanics published in both national and international journals.

This page intentionally left blank

PART I

KINEMATICS OF CONTINUOUS MEDIA (Displacement, Deformation, Strain)

This page intentionally left blank

Chapter 1

INTRODUCTION TO THE KINEMATICS OF CONTINUOUS MEDIA

1.1 Formulation of the Problem

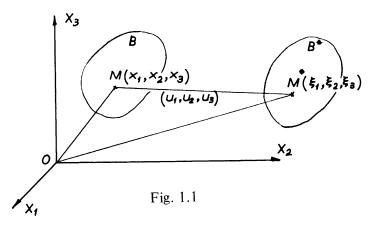
The theory of deformation of continuous media is a purely mathematical one. It is concerned with the study of the intrinsic properties of the deformations independent of their physical causes. It is most conveniently expressed by the notion of transformation, which implies displacement and change in shape. The problem is formulated as follows: Given the positions of the points of a body in its initial state (i.e., before transformation) and in its final state (i.e., after transformation), it is required to determine the change in length and in direction of a line element joining two arbitrary points originally at an infinitesimal distance from one another.

In the following, we shall make use primarily of orthogonal sets of cartesian coordinates. Let x_1, x_2, x_3 be the coordinates of a point M of a body B before transformation. After transformation, this point becomes M^* with coordinates ξ_1, ξ_2, ξ_3 :

$$\begin{aligned} \xi_1 &= x_1 + u_1 \\ \xi_2 &= x_2 + u_2 \\ \xi_3 &= x_3 + u_3, \end{aligned} \tag{1.1.1}$$

where u_1 , u_2 , u_3 are the projections of $\overline{MM^*}$ on the three axes OX_1 , OX_2 , OX_3 (Fig. 1.1). We shall assume that u_1 , u_2 , u_3 , as well as their

4 Kinematics of Continuous Media



partial derivatives with respect to x_1 , x_2 , x_3 , are continuous functions of x_1 , x_2 , x_3 . Eqs. (1.1.1) can therefore be written as:

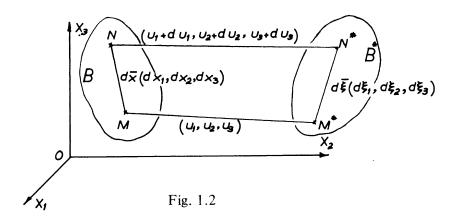
$$\xi_1 = x_1 + u_1(x_1, x_2, x_3)$$

$$\xi_2 = x_2 + u_2(x_1, x_2, x_3)$$

$$\xi_3 = x_3 + u_3(x_1, x_2, x_3).$$

(1.1.2)

Let us consider two points, $M(x_1, x_2, x_3)$ and $N(x_1 + dx_1, x_2 + dx_2, x_3 + dx_3)$, infinitesimally near one another. As a result of the transformation, M is displaced to $M^*(\xi_1, \xi_2, \xi_3)$ and N is displaced to $N^*(\xi_1 + d\xi_1, \xi_2 + d\xi_2, \xi_3 + d\xi_3)$ (Fig. 1.2). The coordinates of N^* are



given by:

$$\xi_{1} + d\xi_{1} = x_{1} + dx_{1} + u_{1} + du_{1}$$

$$\xi_{2} + d\xi_{2} = x_{2} + dx_{2} + u_{2} + du_{2}$$

$$\xi_{3} + d\xi_{3} = x_{3} + dx_{3} + u_{3} + du_{3}.$$

(1.1.3)

Because of the assumptions on u_1 , u_2 , u_3 , we can write the displacement of N under the form of a Taylor series in the neighborhood of M:

$$u_1 + du_1 = (u_1)_M + \left(\frac{\partial u_1}{\partial x_1}\right)_M dx_1 + \left(\frac{\partial u_1}{\partial x_2}\right)_M dx_2 + \left(\frac{\partial u_1}{\partial x_3}\right)_M dx_3 + \dots$$

$$u_2 + du_2 = (u_2)_M + \left(\frac{\partial u_2}{\partial x_1}\right)_M dx_1 + \left(\frac{\partial u_2}{\partial x_2}\right)_M dx_2 + \left(\frac{\partial u_2}{\partial x_3}\right)_M dx_3 + \dots$$

$$u_3 + du_3 = (u_3)_M + \left(\frac{\partial u_3}{\partial x_1}\right)_M dx_1 + \left(\frac{\partial u_3}{\partial x_2}\right)_M dx_2 + \left(\frac{\partial u_3}{\partial x_3}\right)_M dx_3 + \dots$$
(1.1.4)

If we substitute Eqs. (1.1.4) in Eqs. (1.1.3), and subtract Eqs. (1.1.1) from the resulting equations, we obtain:

$$d\xi_{1} = \left[1 + \left(\frac{\partial u_{1}}{\partial x_{1}}\right)_{M}\right] dx_{1} + \left(\frac{\partial u_{1}}{\partial x_{2}}\right)_{M} dx_{2} + \left(\frac{\partial u_{1}}{\partial x_{3}}\right)_{M} dx_{3} + \dots$$
$$d\xi_{2} = \left(\frac{\partial u_{2}}{\partial x_{1}}\right)_{M} dx_{1} + \left[1 + \left(\frac{\partial u_{2}}{\partial x_{2}}\right)_{M}\right] dx_{2} + \left(\frac{\partial u_{2}}{\partial x_{3}}\right)_{M} dx_{3} + \dots$$
$$(1.1.5)$$
$$d\xi_{3} = \left(\frac{\partial u_{3}}{\partial x_{1}}\right)_{M} dx_{1} + \left(\frac{\partial u_{3}}{\partial x_{2}}\right)_{M} dx_{2} + \left[1 + \left(\frac{\partial u_{3}}{\partial x_{3}}\right)_{M}\right] dx_{3} + \dots$$

If, in Eqs. (1.1.5), we neglect the higher-order terms of Taylor's series, the relations between $d\xi_1$, $d\xi_2$, $d\xi_3$ and dx_1 , dx_2 , dx_3 become linear. The

6 Kinematics of Continuous Media

system of equations can be looked upon as an operation which transforms a vector $d\bar{x}$ (dx_1, dx_2, dx_3) of length ds to a vector $d\bar{\xi}$ ($d\xi_1, d\xi_2, d\xi_3$) of length ds^* . This type of transformation is called *linear* transformation. It is the linearization of Eqs. (1.1.5) that allows us to assume that the vector $d\bar{x}$ is transformed to a vector $d\bar{\xi}$ and not to a curve. The properties of linear transformations are discussed in Chapter 3. If we omit the subscript M, Eqs. (1.1.5) are written as:

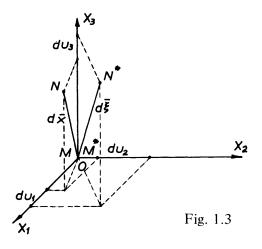
$$d\xi_{1} = \left(1 + \frac{\partial u_{1}}{\partial x_{1}}\right) dx_{1} + \frac{\partial u_{1}}{\partial x_{2}} dx_{2} + \frac{\partial u_{1}}{\partial x_{3}} dx_{3}$$

$$d\xi_{2} = \frac{\partial u_{2}}{\partial x_{1}} dx_{1} + \left(1 + \frac{\partial u_{2}}{\partial x_{2}}\right) dx_{2} + \frac{\partial u_{2}}{\partial x_{3}} dx_{3} \qquad (1.1.6)$$

$$d\xi_{3} = \frac{\partial u_{3}}{\partial x_{1}} dx_{1} + \frac{\partial u_{3}}{\partial x_{2}} dx_{2} + \left(1 + \frac{\partial u_{3}}{\partial x_{3}}\right) dx_{3},$$

provided we keep in mind that the partial derivatives of the functions u_1, u_2, u_3 are taken at the point M.

In essentially static problems, while little consideration is given to rigid body displacements, particular attention is given to the changes in length and in orientation of elements like ds. These changes are described by the three components of the relative displacement vector du_1 , du_2 , du_3 (Fig. 1.3):



$$du_{1} = d\xi_{1} - dx_{1} = \frac{\partial u_{1}}{\partial x_{1}} dx_{1} + \frac{\partial u_{1}}{\partial x_{2}} dx_{2} + \frac{\partial u_{1}}{\partial x_{3}} dx_{3}$$

$$du_{2} = d\xi_{2} - dx_{2} = \frac{\partial u_{2}}{\partial x_{1}} dx_{1} + \frac{\partial u_{2}}{\partial x_{2}} dx_{2} + \frac{\partial u_{2}}{\partial x_{3}} dx_{3} \qquad (1.1.7)$$

$$du_{3} = d\xi_{3} - dx_{3} = \frac{\partial u_{3}}{\partial x_{1}} dx_{1} + \frac{\partial u_{3}}{\partial x_{2}} dx_{2} + \frac{\partial u_{3}}{\partial x_{3}} dx_{3}.$$

The kinematics of continuous media is centered on the two sets of Eqs. (1.1.6) and (1.1.7). Within the scope of this text, the necessary mathematical tool required to study these equations is the notion of linear transformation. Since matrix algebra was developed primarily to express linear transformations in a concise and lucid manner, it is natural that it should be employed in the formulation and the solution of kinematics problems. A brief review of matrix algebra is given in Chapter 2.

1.2 Notation

The following system of notation will be adhered to throughout this text:

$$\frac{\partial u_1}{\partial x_1} = e_{11} \qquad \frac{1}{2} \left(\frac{\partial u_1}{\partial x_2} + \frac{\partial u_2}{\partial x_1} \right) = e_{12} \qquad \frac{1}{2} \left(\frac{\partial u_2}{\partial x_1} - \frac{\partial u_1}{\partial x_2} \right) = \omega_{21}$$

$$\frac{\partial u_2}{\partial x_2} = e_{22} \qquad \frac{1}{2} \left(\frac{\partial u_1}{\partial x_3} + \frac{\partial u_3}{\partial x_1} \right) = e_{13} \qquad \frac{1}{2} \left(\frac{\partial u_1}{\partial x_3} - \frac{\partial u_3}{\partial x_1} \right) = \omega_{13} \quad (1.2.1)$$

$$\frac{\partial u_3}{\partial x_3} = e_{33} \qquad \frac{1}{2} \left(\frac{\partial u_2}{\partial x_3} + \frac{\partial u_3}{\partial x_2} \right) = e_{23} \qquad \frac{1}{2} \left(\frac{\partial u_3}{\partial x_2} - \frac{\partial u_2}{\partial x_3} \right) = \omega_{32}$$

In Eqs. (1.2.1), the e's remain unchanged and the ω 's change sign when the indices are interchanged. Thus,

$$e_{12} = e_{21} = \frac{1}{2} \left(\frac{\partial u_2}{\partial x_1} + \frac{\partial u_1}{\partial x_2} \right)$$

$$e_{13} = e_{31} = \frac{1}{2} \left(\frac{\partial u_3}{\partial x_1} + \frac{\partial u_1}{\partial x_3} \right)$$

$$e_{23} = e_{32} = \frac{1}{2} \left(\frac{\partial u_3}{\partial x_2} + \frac{\partial u_2}{\partial x_3} \right)$$

(1.2.2)

and

$$-\omega_{12} = +\omega_{21} = \frac{1}{2} \left(\frac{\partial u_2}{\partial x_1} - \frac{\partial u_1}{\partial x_2} \right)$$

$$-\omega_{31} = +\omega_{13} = \frac{1}{2} \left(\frac{\partial u_1}{\partial x_3} - \frac{\partial u_3}{\partial x_1} \right)$$

$$-\omega_{23} = +\omega_{32} = \frac{1}{2} \left(\frac{\partial u_3}{\partial x_2} - \frac{\partial u_2}{\partial x_3} \right).$$
 (1.2.3)

With these notations, Eqs. (1.1.6) become:

$$d\xi_1 = (1 + e_{11})dx_1 + (e_{12} - \omega_{21})dx_2 + (e_{13} + \omega_{13})dx_3$$

$$d\xi_2 = (e_{12} + \omega_{21})dx_1 + (1 + e_{22})dx_2 + (e_{23} - \omega_{32})dx_3 \quad (1.2.4)$$

$$d\xi_3 = (e_{13} - \omega_{13})dx_1 + (e_{23} + \omega_{32})dx_2 + (1 + e_{33})dx_3.$$

Eqs. (1.1.7) become:

$$du_{1} = e_{11} dx_{1} + (e_{12} - \omega_{21}) dx_{2} + (e_{13} + \omega_{13}) dx_{3}$$

$$du_{2} = (e_{12} + \omega_{21}) dx_{1} + e_{22} dx_{2} + (e_{23} - \omega_{32}) dx_{3} \qquad (1.2.5)$$

$$du_{3} = (e_{13} - \omega_{13}) dx_{1} + (e_{23} + \omega_{32}) dx_{2} + e_{33} dx_{3}.$$

In all the previous equations, the coordinates of the points of the body in the transformed state are expressed in terms of their coordinates in the initial state. This is known as the Lagrangian Method of describing the transformation of a continuous medium. Another method, the Eulerian Method, expresses the coordinates in the initial state in terms of the coordinates in the final state. Each method has its advantages. It is, however, more convenient in the study of the mechanics of solids to use the Lagrangian approach because the initial state of the body often possesses symmetries which make it susceptible to description in a simple system of coordinates. The Lagrangian Method is exclusively used in this text.

Chapter 2

REVIEW OF MATRIX ALGEBRA

2.1 Introduction

The use of matrices in mechanics introduces a notation that enables one to see the components of the entities being studied in their totality, while providing great conciseness. In this chapter, the basic definitions and the operations of matrix algebra which will be needed in this text are given.

2.2 Definition of a Matrix. Special Matrices

A matrix is an array of elements arranged in rows and columns. For instance, a matrix of m rows and n columns is written:

$$[a] = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix},$$
(2.2.1)

and is called an $(m \times n)$ matrix. The first subscript *i* of each element a_{ij} represents the number of the row, and the second subscript *j* represents the number of the column. The a_{ij} 's can be pure numbers, functions, instructions to a computer, or other matrices. In this text, the elements are all real. A square matrix with *n* rows and columns is said to be of order *n*.

A symmetric matrix has elements which satisfy the condition $a_{ij} = a_{ji}$. This means that elements symmetrically located with respect to the

10 Kinematics of Continuous Media

main diagonal of the matrix are equal in magnitude and sign.

An antisymmetric or skew symmetric matrix has elements which satisfy the condition $a_{ij} = -a_{ji}$. This means that elements symmetrically located with respect to the main diagonal are equal in magnitude and opposite in sign, and that the elements of the diagonal are equal to zero. A diagonal matrix is a matrix whose elements a_{ij} vanish except for i = j. These non-vanishing elements constitute the main diagonal of the matrix.

A unit matrix is a diagonal matrix whose elements are equal to unity. It is written [1].

A null matrix has all its elements equal to zero. It is written [0].

A column matrix has m rows and one column. it is also called a column vector and is written:

$$\{\bar{a}\} = \begin{bmatrix} a_{11} \\ a_{21} \\ \vdots \\ \vdots \\ a_{m1} \end{bmatrix}.$$

A row matrix is a matrix with one row and n columns. It is also called a row vector and is written:

$$[\bar{a}] = [a_{11} \ldots a_{1n}].$$

The transpose of a matrix [a] is a matrix [a]', whose rows are the same as the columns of [a]. Thus, a symmetric matrix is its own transpose and the transpose of a column matrix is a row matrix.

A scalar matrix is a diagonal matrix whose elements are identical.

2.3 Index Notation and Summation Convention

The introduction of numerical subscripts in Chapter 1 to denote the reference axes makes the use of indices in writing the components of vectors quite natural. When writing relations between vectors or other directional quantities (such as tensors), a great deal of space is saved when a shorthand notation is introduced. In this text, the only indices to be used are subscripts and the following conventions will be adhered to:

The range convention: Whenever a subscript is repeated in a term, it is understood to represent a summation over the range 1, 2, 3 unless otherwise stated. Also, an index never appears more than twice in the same term. For example, the expression

$$\xi_i = a_{ij} x_j \tag{2.3.1}$$

contains, in the right-hand term, the index j which is repeated. Therefore, taking the values of i = 1, 2, 3 in turn, we obtain the three linear equations:

$$\xi_{1} = a_{11}x_{1} + a_{12}x_{2} + a_{13}x_{3}$$

$$\xi_{2} = a_{21}x_{1} + a_{22}x_{2} + a_{23}x_{3}$$

$$\xi_{3} = a_{31}x_{1} + a_{32}x_{2} + a_{33}x_{3}.$$

(2.3.2)

i is the *identifying index* and *j* is the *summation index*. We notice that the summation index can be changed at will and is therefore called a *dummy index*. Thus, Eqs. (2.3.2) can also be written:

$$\xi_i = a_{ik} x_k$$

The index k is similar to the dummy variable of integration in a definite integral and can be changed freely.

For convenience, it is sometimes useful to introduce the two following symbols:

The Kronecker delta, δ_{ii} , which by definition is such that:

$$\delta_{ij} = 1$$
, when $i = j$ and
 $\delta_{ii} = 0$, when $i \neq j$.
(2.3.3)

The alternating symbol, ε_{iik} , which by definition is such that:

- $\epsilon_{ijk} = 0$, when any two of *i*, *j*, *k* are equal $\epsilon_{ijk} = 1$, when *i*, *j*, *k* are different and in cyclic order (1, 2, 3, 1, 2, 3, ...) (2.3.4)
- $\varepsilon_{ijk} = -1$, when *i*, *j*, *k* are different and not in cyclic order (1, 3, 2, 1, 3, 2, ...).

Examples

1). $\delta_{ik} x_k$ for i = 1 is equal to:

$$\delta_{11} x_1 + \delta_{12} x_2 + \delta_{13} x_3 = x_1 = x_i.$$

- 2). $\delta_{ii} = \delta_{11} + \delta_{22} + \delta_{33} = 3.$
- 3). A vector \bar{x} whose components are x_1, x_2, x_3 , has a magnitude $|\bar{x}| = \sqrt{x_1^2 + x_2^2 + x_3^2} = \sqrt{x_i x_i}$. Its direction cosines are given by $\ell_i = x_i / \sqrt{x_j x_j}$.
- 4). The sum of the diagonal elements of a matrix [a] is called the trace of [a] and is written a_{ii} .
- 5). The determinant of the matrix [a] is written $\varepsilon_{ijk} a_{1i} a_{2j} a_{3k}$.

2.4 Equality of Matrices. Addition and Subtraction

Let us turn now to the rules governing the manipulation of the arrays of elements forming a matrix. Two matrices [a] and [b] of the same order are said to be equal if, and only if, their corresponding elements are identical; that is, we have:

$$[a] = [b], \tag{2.4.1}$$

provided that

$$a_{ii} = b_{ii} \text{ for all } i \text{ and } j. \tag{2.4.2}$$

If [a] and [b] are matrices of the same order, then the sum of [a] and [b] is defined to be a matrix [c], the typical element of which is $c_{ij} = a_{ii} + b_{ij}$. In other words, by definition:

$$[c] = [a] + [b], (2.4.3)$$

provided

$$c_{ij} = a_{ij} + b_{ij}. (2.4.4)$$

In a similar manner, we have:

$$[d] = [a] - [b], \tag{2.4.5}$$

provided

$$d_{ij} = a_{ij} - b_{ij}. \tag{2.4.6}$$

From the above definitions, it can be shown that the following operations are valid:

$$[a] + [b] = [b] + [a]$$
(2.4.7)

$$([a] + [b]) + [c] = [a] + ([b] + [c]).$$
(2.4.8)

An important property of square matrices, which follows from the laws of addition and subtraction, is that any square matrix may be given as the sum of a symmetric and of an antisymmetric matrix. Indeed, if [a] is a square matrix, then

$$[a] = \frac{[a] + [a]'}{2} + \frac{[a] - [a]'}{2}.$$
 (2.4.9)

2.5 Multiplication of Matrices

The product of a matrix [a] by a matrix [b] is defined by the equation

$$[a][b] = [c], \tag{2.5.1}$$

where the elements of [c] are given by:

$$c_{ij} = a_{ik} b_{kj}.$$
 (2.5.2)

Thus

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33} \end{bmatrix} = \begin{bmatrix} a_{11}b_{11} + a_{12}b_{21} + a_{13}b_{31} & a_{11}b_{12} \\ a_{21}b_{11} + a_{22}b_{21} + a_{23}b_{31} & a_{21}b_{12} \\ a_{31}b_{11} + a_{32}b_{21} + a_{33}b_{31} & a_{31}b_{12} \end{bmatrix}$$
$$+ a_{12}b_{22} + a_{13}b_{32} & a_{11}b_{13} + a_{12}b_{23} + a_{13}b_{33} \\ + a_{22}b_{22} + a_{23}b_{32} & a_{21}b_{13} + a_{22}b_{23} + a_{23}b_{33} \\ + a_{32}b_{22} + a_{33}b_{32} & a_{31}b_{13} + a_{32}b_{23} + a_{33}b_{33} \end{bmatrix}$$

Two matrices can be multiplied by each other only if they are *conformable*, which means that the number of the columns of the first is equal to the number of the rows of the second. Thus, if [a] is an $(m \times p)$ matrix and [b] is a $(p \times n)$ matrix, then [c] is an $(m \times n)$ matrix.

Two nonzero matrices can be multiplied by each other and result in a zero matrix. For example,

14 Kinematics of Continuous Media

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}.$$

A permutation of the matrices will lead to a different result:

$$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 1 & 0 \end{bmatrix}$$

The product [b] [a] is, in general, not equal to [a] [b]. Therefore, it is necessary to differentiate between *premultiplication*, as when [b] is premultiplied by [a] to yield the product [a] [b], and *postmultiplication*, as when [b] is postmultiplied by [a] to yield [b] [a]. If we have two matrices which are such that

$$[a][b] = [b][a], (2.5.3)$$

these matrices are said to commute or to be permutable.

Of particular importance is the associative law of continued products,

$$[d] = ([a][b])[c] = [a]([b][c]), \qquad (2.5.4)$$

which allows one to dispense with parentheses and to write [a] [b] [c] without ambiguity since the double summation

$$d_{ij} = a_{ik} b_{kl} c_{lj} \tag{2.5.5}$$

can be carried out in either of the orders indicated. It must be noticed that the product of a chain of matrices will have meaning only if the adjacent matrices are conformable.

The product of matrices is distributive, that is

$$[a]([b] + [c]) = [a][b] + [a][c].$$
(2.5.6)

The multiplication of a matrix [a] by a scalar k is defined by:

$$k[a] = [b], (2.5.7)$$

where

$$b_{ij} = ka_{ij}.$$

Using the definition of the transpose and the laws of addition and multiplication of matrices, it can be shown that:

$$([a] + [b])' = [a]' + [b]'$$
(2.5.8)

$$(k[a])' = k[a]'$$
(2.5.9)

$$([a][b])' = [b]'[a]'$$
 (note the order). (2.5.10)

For the case of the unit matrix, we have:

$$[a][1] = [1][a] = [a]$$
(2.5.11)

and, if k is a constant,

$$[a]k[1] = k[a][1] = k[a] = k[1][a].$$
(2.5.12)

An important result in the theory of matrices is that the determinant of the product of two square matrices is equal to the product of their determinants. Thus,

$$|[a][b]| = \left(|[a]|\right) \left(|[b]|\right) = \left(|[b]|\right) \left(|[a]|\right).$$
(2.5.13)

Among the special matrices defined in Sec. 2.2, the diagonal matrix plays an important part in operations involving matrices. The premultiplication of a matrix [a] by a diagonal matrix [d] produces a matrix whose rows are those of [a] multiplied by the element in the corresponding row of [d]:

$$\begin{bmatrix} d_1 & 0 & 0 \\ 0 & d_2 & 0 \\ 0 & 0 & d_3 \end{bmatrix} \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} = \begin{bmatrix} d_1 a_{11} & d_1 a_{12} & d_1 a_{13} \\ d_2 a_{21} & d_2 a_{22} & d_2 a_{23} \\ d_3 a_{31} & d_3 a_{32} & d_3 a_{33} \end{bmatrix}.$$
 (2.5.14)

The postmultiplication of [a] by [d] produces a matrix whose columns are those of [a] multiplied by the element in the corresponding column of [d]:

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{bmatrix} d_1 & 0 & 0 \\ 0 & d_2 & 0 \\ 0 & 0 & d_3 \end{bmatrix} = \begin{bmatrix} d_1 a_{11} & d_2 a_{12} & d_3 a_{13} \\ d_1 a_{21} & d_2 a_{22} & d_3 a_{23} \\ d_1 a_{31} & d_2 a_{32} & d_3 a_{33} \end{bmatrix}.$$
 (2.5.15)