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Preface 

This book is an outgrowth of notes used by the author during the past 
few years in a course on solid mechanics. It is intended to give advanced 
undergraduate and graduate students sound foundations on which to build 
advanced courses such as mathematical elasticity, plasticity, plates and 
shells, and those branches of mechanics which require the analysis of strain 
and stress. The book is divided into three parts: Part I is concerned with 
the kinematics of continuous media, Part II with the analysis of stress, and 
Part III with the theory of elasticity and its applications to engineering 
problems. 

In Part / , the use of the notion of linear transformation of points makes 
it possible to present the geometry of deformation in a language that is 
easily understood by the majority of engineering students. It is agreed that 
tensor calculus is the most elegant tool available to mechanicists, but 
experience has shown that most engineering students are not ready to 
accept it without a reasonable amount of preparation. The study of finite 
and linear strains, using the notion of linear transformation, gradually 
introduces the tensor concept and removes part of the abstraction common-
ly associated with it. Orthogonal curvi-linear coordinates are examined in 
detail and the results extensively used throughout the text. 

In Part II, the study of stress proceeds along the same lines as that of 
strain, and the similarities between the two are pointed out. All seven 
chapters of Parts I and II are essential to the understanding of Part III and 
serve as a common base for all branches of mechanics. 

In Part III, Chapter 8 covers the three-dimeinsional theory of linear 
elasticity and the requirements for the solution of elasticity problems. The 
method of potentials is presented in Chapter 9. Torsion is discussed in 
Chapter 10 and topics related to cylinders, disks, and spheres are treated in 
Chapter 11. Straight and curved beams are analysed in Chapters 12 and 13 
respectively, and the answers of the elementary theories are compared to 
the more rigorous results of the theory of elasticity. In Chapter 14, the semi-



infinite elastic medium and some of its related problems are studied using 

the results of Chapter 9. 
Energy principles and variational methods are presented in Chapter 15 

and their application illustrated by a large number of simple examples. 
Columns and beam-columns are discussed in Chapter 16 and the bending 
of thin flat plates in Chapter 17. Chapter 18 is more than an introduction 
to the theory of thin shells. It includes a relatively detailed presentation of 
the theory of surfaces which is necessary for the full understanding of the 
analysis of thin shells. In this Chapter, as well as throughout this text, 
geometry and the relations between strain and displacement are empha-
sized since it is my conviction that once geometry is mastered most of the 
difficulties in studying the mechanics of solids will have disappeared. 

The material in this text is suitable for two successive courses on solid 
mechanics and elasticity. A first course would include Chapters 1 to 5, some 
results from Chapter 6 and Chapter 7 to 13. A second course would include 
Chapter 6 and Chapters 14 to 18. Chapters 10 to 18 can be read 
independently from one another. 

I wish to express my gratitude to Dr. T. P. Kicher who read the 
manuscript and made useful suggestions and to Dr. G. P. Sendeckyj with 
whom many sections were discussed. Thanks are due to Professor W. F. 
Hughes, technical editor of the Unified Engineering Series, for his patience 
and support during the preparation of the final manuscript, and to the John 
T. Wiley Educational Fund of Case Western Reserve University for 
financial support. Mrs. W. Reeves very ably handled the typing. 

Last but not least, I wish to acknowledge the encouragement and 
understanding of my wife Nancy during the various stages of writing this 
book. 

Adel S. Saada 
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Chapter 1 

INTRODUCTION TO THE KINEMATICS 

OF CONTINUOUS MEDIA 

1.1 Formulation of the Problem 

T h e theory of deformat ion of con t inuous media is a purely ma the -
matical one. It is concerned with the study of the intrinsic propert ies of 
the deformat ions independen t of their physical causes. It is most 
convenient ly expressed by the no t ion of t ransformat ion, which implies 
d isplacement a n d change in shape. The p rob lem is formulated as 
follows: Given the posit ions of the points of a body in its initial state 
(i.e., before t ransformat ion) and in its final state (i.e., after t ransforma-
tion), it is required to de te rmine the change in length a n d in direct ion 
of a line element jo in ing two arbi t rary points originally at an infinitesi-
mal dis tance from one another . 

In the following, we shall make use primari ly of o r thogonal sets of 
cartesian coordinates . Let xx, x 2, x3 be the coordina tes of a point M of 
a body B before t ransformat ion. After t ransformat ion, this point 
becomes M * with coordinates £ l5 £2> £3

 : 

£ 1 =

 X
\ +

 U
\ 

£2 = x2 + u2 (1.1.1) 

£3 =

 x
3 +

 u
3> 

where w1? u2, u3 are the projections of MM* on the three axes OXx, 
OX2, OX3 (Fig. 1.1). W e shall assume that ux, u2, u3, as well as their 

3 



4 Kinematics of Continuous Media 

*3 

part ial derivatives with respect to xl9 x2, x3, are con t inuous functions of 
x{, x2, x3. Eqs. (1.1.1) can therefore be wri t ten as : 

|] = Xx + U](x^,X2,X3) 

£2 = x2 + w 2( x 1, x 2, x 3) (1.1.2) 

Let us consider two points , M(xx,x2,x3) a n d N(xx + rfxj,x2 + rfx2, 
x 3 -I- rfx3), infinitesimally near one another . As a result of the transfor-
mat ion , M is displaced to M * ( £ l 5£ 2, £ 3) a n d TV is displaced to 
N*(£x + d£l9£2 + ^ 2 ^ 3 + d& (Fig- 1.2). The coordinates of N* are 
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given by: 

£j + dix = xx + dxx + Wj 4- /̂wj 

£ 2 + ^ £ 2

 = X
2 + ^ 2 +

 u
2 + (1.1.3) 

| 3 + d £ 3 = x 3 + dx3 + w3 + <iw3. 

Because of the assumpt ions on ux, u2, w3, we can write the displacement 
of TV under the form of a Taylor series in the ne ighborhood of M : 

«,+du,=(«,)*+(§-)M^,+i^tXdX2+^Xdxi+•  •  • 

W3 + du3 = < « 3) „ + ( | f )Mdxx + ( | ^ ) ^ 2 + ( | | ) ^ . 3 + • • • 

(1.1.4) 

If we subst i tute Eqs. (1.1.4) in Eqs. (1.1.3), and subtract Eqs. (1.1.1) 
from the result ing equat ions , we obta in : 

3 + 

3 + . . . 
3 / W

 J 

(1.1.5) 

3 + •  • •  , 

If, in Eqs. (1.1.5), we neglect the higher-order terms of Taylor ' s series, 
the relations between , d£2, d£3 and dxx, dx2, dx3 become linear. T h e 



6 Kinematics of Continuous Media 

provided we keep in mind that the part ial derivatives of the functions 
U\, u2, u3 are taken at the point M. 

In essentially static problems, while little considerat ion is given to 
rigid body displacements , par t icular a t tent ion is given to the changes in 
length a n d in or ienta t ion of e lements like ds. These changes a re 
described by the three componen t s of the relative d isplacement vector 
du}, du2, du3 (Fig. 1.3): 

(1.1.6) 

du3 

system of equat ions can be looked upon as an opera t ion which 
t ransforms a vector dx {dxx,dx2,dx3) of length ds to a vector d\ 
(d^,d^2,d^3) of length ds*. This type of t ransformat ion is called linear 
transformation. It is the l inearization of Eqs. (1.1.5) that allows us to 
assume that the vector dx is t ransformed to a vector d\ and not to a 
curve. T h e propert ies of l inear t ransformat ions are discussed in Chap te r 
3. If we omit the subscript M, Eqs. (1.1.5) are writ ten as: 
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dux = d£x - dxx = g^-^i + ^

d x
2 + a^"*C3 

3w2 9

W
2 i ^

W
2 j (\ 1 7 \ 

7 > 7 7 9w3 3w3 <zw3 = a £ 3 — dx3 = ~—dxx + ~—dx2 + ^ — « x 3 . 
0XX vX2 ^ ^ 3 

T h e kinemat ics of con t inuous med ia is centered on the two sets of 
Eqs. (1.1.6) a n d (1.1.7). Wi th in the scope of this text, the necessary 
ma themat i ca l tool required to s tudy these equat ions is the no t ion of 
l inear t ransformat ion . Since mat r ix a lgebra was developed primari ly to 
express l inear t ransformat ions in a concise a n d lucid manner , it is 
na tu ra l tha t it should be employed in the formulat ion a n d the solution 
of k inemat ics p rob lems . A brief review of matr ix a lgebra is given in 
Chap te r 2. 

1.2 Notation 

The following system of no ta t ion will be adhered to th roughout this 
text: 

In Eqs. (1.2.1), the e

9
s r emain unchanged a n d the co's change sign when 

the indices are in terchanged. Thus , 

e
\2 

(

 dU
2 

\dxl 
+ 

3wj 

dx2 
e
\3 

=
 *31 = \ 

( ^ 3 
\ dxx 

+ 
du{ 
dx3 

e
23 =

 e
32 = \ ( 

\ 3 x 2 

+ 
du2 
dx3 

(1.2.2) 
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and 

(1.2.3) 

Wi th these nota t ions , Eqs. (1.1.6) become : 

d£x = (1 4 eu)dxx 4 (ex2 - co2X)dx2 4 (eX3 4 uX3)dx3 

dii = (exl 4 ( o 2 1) ^ + (1 + ^ 2 2 ) ^ 2 + (^23 ~ w3 2) r fx3 (1.2.4) 
d
h = 0 l 3 ~ <*\l)

dx
\ + (*23 + ^ 3 2 ) ^ 2 + 0 + ^ 3 3 ) ^ 3 -

Eqs. (1.1.7) become : 

In all the previous equat ions , the coordinates of the points of the 
body in the t ransformed state are expressed in terms of their coordi-
nates in the initial state. This is known as the Lagrangian M e t h o d of 
describing the t ransformat ion of a cont inuous med ium. Ano the r meth-
od, the Euler ian Method , expresses the coordinates in the initial state in 
terms of the coordinates in the final state. Each me thod has its 
advantages . It is, however, more convenient in the study of the 
mechanics of solids to use the Lagrangian approach because the initial 
state of the body often possesses symmetr ies which make it susceptible 
to descript ion in a simple system of coordinates . The Lagrangian 
Me thod is exclusively used in this text. 

du exxdxx 4 (eX2 - u2X)dx2 4 (eX3 4 uX3)dx3 

(eX2 4 u2X)dxx 4 e22dx2 4 (e23 - u32)dx3 

(eX3 - cox3)dxx 4 (e23 4 u32)dx2 4 e33dx3. 

du2 

du3 

(1.2.5) 



Chapter 2 

REVIEW OF MATRIX ALGEBRA 

2.1 Introduction 

The use of matr ices in mechanics in t roduces a no ta t ion that enables 
one to see the componen t s of the entities being studied in their totality, 
while providing great conciseness. In this chapter , the basic definitions 
a n d the opera t ions of matr ix algebra which will be needed in this text 
are given. 

2.2 Definition of a Matrix. Special Matrices 

A matrix is an ar ray of elements a r ranged in rows a n d co lumns . F o r 
instance, a matr ix of m rows a n d n co lumns is wri t ten: 

0\2 • •

 a
\n 

[a] = 

a
2\ 

a
22 • •

 a
ln 

a
m\ ami • 

(2.2.1) 

a n d is called an (m X n) matr ix . T h e first subscript / of each element atj 
represents the n u m b e r of the row, a n d the second subscript j represents 
the n u m b e r of the co lumn. The a^s can be pure numbers , functions, 
instruct ions to a computer , or other matr ices . In this text, the elements 
are all real. A square matr ix with n rows a n d co lumns is said to be of 
order n. 

A symmetric matrix has elements which satisfy the condi t ion ay = a^. 
This means that e lements symmetrical ly located with respect to the 

9 
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ma in diagonal of the matr ix are equal in magn i tude a n d sign. 
An antisymmetric or skew symmetric matrix has elements which satisfy 
the condi t ion atj = — . This means that e lements symmetrical ly locat-
ed with respect to the ma in diagonal are equal in magn i tude a n d 
opposi te in sign, a n d that the elements of the diagonal are equal to zero. 
A diagonal matrix is a matr ix whose elements atj vanish except for / = j . 
These non-vanishing elements const i tute the ma in diagonal of the 
matr ix . 
A unit matrix is a d iagonal matr ix whose elements are equal to unity. It 
is wri t ten [1]. 
A null matrix has all its elements equal to zero. It is wri t ten [0], 
A column matrix has m rows a n d one column, it is also called a co lumn 
vector a n d is wri t ten: 

{d} = 

0 2l 

A row matrix is a matr ix with one row a n d n co lumns . It is also called 
a row vector and is wri t ten: 

[a] = [au . ..aln]. 

The transpose of a matrix [a] is a matr ix [a] ', whose rows are the same 
as the co lumns of [a]. Thus , a symmetr ic matr ix is its own t ranspose a n d 
the t ranspose of a co lumn matr ix is a row matr ix. 
A scalar matrix is a d iagonal matr ix whose elements are identical . 

2.3 Index Notation and Summation Convention 

T h e in t roduct ion of numerica l subscripts in Chap te r 1 to denote the 
reference axes makes the use of indices in writ ing the componen t s of 
vectors quite na tura l . W h e n writ ing relat ions between vectors or other 
direct ional quant i t ies (such as tensors), a great deal of space is saved 
when a shor thand nota t ion is in t roduced. In this text, the only indices 
to be used are subscripts a n d the following convent ions will be adhe red 
to : 
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The range convention: Whenever a subscript is repeated in a term, it is 
unders tood to represent a summat ion over the range 1, 2, 3 unless 
otherwise stated. Also, an index never appears more than twice in the 
same term. F o r example, the expression 

Zi = aijXj (2-3.1) 

contains , in the r ight -hand term, the index j which is repeated. There -
fore, taking the values of / = 1, 2, 3 in turn, we obta in the three l inear 
equat ions : 

£l =

 a
\ \

x
\ +

 a
\ 2

x
2 + ^ 1 3 * 3 

i 2 = alxxx + a 22 * 2

 + a
23

x
3 (2.3.2) 

£3 = ^ 3 1 * 1 + ^ 3 2 * 2 +

 a
33

x
3-

/ is the identifying index a n d j is the summation index. W e notice that the 
summat ion index can be changed at will a n d is therefore called a 
dummy index. Thus , Eqs . (2.3.2) can also be wri t ten: 

£/

 = a
ik

 x
k -

The index k is similar to the d u m m y variable of integrat ion in a definite 
integral a n d can be changed freely. 

F o r convenience, it is somet imes useful to in t roduce the two following 
symbols : 
The Kronecker delta, 8tj, which by definition is such that : 

<5,; = 1, when / = / a n d lJ
 (2.3.3) 

8tJ = 0, when i =^y. 

The alternating symbol, eijk, which by definition is such that : 
e
ijk

 =
 0, when any two of k are equal E

ijk ~ 1' when / ,7 , k are different a n d in cyclic order ( 1 , 2 , 3 , 

1 , 2 , 3 , . . . ) (2.3.4) 

eijk = — 1, when k are different a n d not in cyclic order (1 , 

3 , 2 , 1 , 3 , 2 , . . . ) . 
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Examples 
1). 8ikxk for / = 1 is equal to : 

8\\XX + 8\2

X
2 ~*~ ^13

 x
3 ~

 x
\ ~

 x
i-

2). § , = 5 „ + 5 22 + 5 33 = 3. 
3). A vector x whose componen t s are X\,x2,x3, has a magn i tude 

|JC| = \Ai

2
 + x\ + x\ = \Jxixi . Its direct ion cosines are given by 

lt = Xi /yJxjXj . 

4). The sum of the diagonal elements of a matr ix [a] is called the t race 
of [a] a n d is wri t ten au. 

5). The de te rminan t of the matr ix [a] is writ ten ^ijk

a
\i

a
2j

a
3k-

2.4 Equality of Matrices. Addition and Subtraction 

Let us turn now to the rules governing the manipu la t ion of the arrays 
of elements forming a matr ix. Two matr ices [a] and [b] of the same order 
are said to be equal if, and only if, their cor responding elements are 
identical; that is, we have: 

If [a] a n d [b] are matr ices of the same order, then the sum of [a] a n d [b] 
is defined to be a matr ix [c], the typical e lement of which is ctj 
= atj + by. In other words, by definition: 

(2.4.1) 

provided that 
a
u

 =
 bj; for all /' and / (2.4.2) 

[c] = [a] + [b], (2.4.3) 

provided 

(2.4.4) 

In a similar manner , we have : 

[d] = [a] - [b], (2.4.5) 

provided 

dij = fly - / > / / . 
(2.4.6) 
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F r o m the above definitions, it can be shown that the following 
operat ions are valid: 

[a] + [b] = [b] + [a] (2.4.7) 

([a] + [b]) + [c] = [a] + ([b] + [c]). (2.4.8) 

A n impor tan t proper ty of square matr ices , which follows from the 
laws of addi t ion a n d subtract ion, is tha t any square matr ix may be given 
as the sum of a symmetr ic a n d of an ant i symmetr ic matr ix. Indeed, if 
[a] is a square matr ix, then 

[ a] = [a] + [a]< + [a)-[a]' ( 2 A 9) 

2.5 Multiplication of Matrices 

The produc t of a matr ix [a] by a matr ix [b] is defined by the equat ion 

Mb] = [c], 

where the elements of [c] are given by: 
c
ij ~

 a
ik t>kj • 

(2.5.1) 

(2.5.2) 

Thus 

a
3\ 

aX2 a 13 a
22

 a
23 a

32

 a
33 

bn b x; axx bn + ^12*21 + aX3b3X axx 

b
\2 b

2\ b22 

b
23 = a2X bn + ^22*21 + a23b3X a2X bX2 b

3\ 

b
32 b33 _

a
3\ bn +

 a
32

 b
2\ + a33b3x a3X 

b
\2 

+

 a
\2

 b
22 + a\3

b
32

 a
\\b\3 + ^ 1 2 * 2 3 + ^ 1 3 * 3 3 

+ a 2 2b 22 + # 2 3 * 3 2 # 2 1 * 13 + # 2 2 * 2 3 + # 2 3 * 3 3 

+ ^ 3 2 * 2 2 + # 3 3 * 3 2

 a
3\

 b
\3 + # 3 2 * 2 3 + # 3 3 * 3 3 

T w o matr ices can be multiplied by each other only if they are 
conformable, which means that the n u m b e r of the co lumns of the first is 
equal to the n u m b e r of the rows of the second. Thus , if [a] is an (m X p) 
matr ix and [b] is a (p X n) matr ix, then [c] is an (m X n) matr ix. 
T w o nonzero matr ices can be mult ipl ied by each other a n d result in a 
zero matr ix. Fo r example , 
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"1 1 0" "0 0 0" "0 0 0 " 

0 0 0 0 0 0 = 0 0 0 

0 0 0 1 0 0 0 0 0 

A pe rmuta t ion of the matr ices will lead to a different result: 

"0 0 0" "1 1 0" "0 0 0 " 

0 0 0 0 0 0 = 0 0 0 

1 0 0 0 0 0 1 1 0 

The p roduc t [b] [a] is, in general , no t equal to [a] [b]. Therefore, it is 
necessary to differentiate be tween premultiplication, as when [b] is 
premult ipl ied by [a] to yield the p roduc t [a] [b], and postmultiplication, 
as when [b] is postmult ipl ied by [a] to yield [b] [a]. If we have two 
matrices which are such that 

[a][b] = [b][a], (2.5.3) 

these matr ices are said to commute or to be permutab le . 
Of par t icular impor tance is the associative law of cont inued products , 

[d] = ([a][b])[c] = [a]([b][c]l (2.5.4) 

which allows one to dispense with parentheses a n d to write [a] [b] [c] 
without ambigui ty since the double summat ion 

dy = aik
h
ki

c
ij (2.5.5) 

can be carr ied out in either of the orders indicated. It must be not iced 
that the p roduc t of a chain of matr ices will have mean ing only if the 
adjacent matrices are conformable . 

The p roduc t of matr ices is distributive, tha t is 

[a]([b] + [c]) = [a][b] + [a][c]. (2.5.6) 

The mult ipl icat ion of a matr ix [a] by a scalar k is defined by : 

k[a] = [b], (2.5.7) 

where 
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0 o " 
a

\ \ 

a
\2 

a
\3~ dxau dxaX2 

d
\

a
\ 3 

0 d2 0 
a
23 = d2a2l d2a22 

d
2

a
23 . (2.5.14) 

0 0 d3 _

a
3\ ^32 

a
33_ 

d
3

a
3\ 

d
3

a
32 

d
3

a
33 

The postmult ipl icat ion of [a] by [d] p roduces a matr ix whose co lumns 
are those of [a] mult ipl ied by the element in the cor responding co lumn 
of [d\: 

«12 «13 0 o " dxau 

d
2

a
\2 

d
3

a
\3 

«22 «23 0 di 0 = 
d
\ <*21 d2a22 

d
3

a
23 . (2.5.15) 

_

a
31 «32 « 3 3 _ 0 0 

d
K 

d
\

 a
3\ 

d
2

a
32 

d
3

a
33_ 

Using the definition of the t ranspose a n d the laws of addi t ion and 
mult ipl icat ion of matr ices, it can be shown that : 

([a] + [b])' = [a]' + [b]' (2.5.8) 

(*[*])' = k[a]' (2.5.9) 

(Mb])' = [b]'[a]' (note the order) . (2.5.10) 

Fo r the case of the unit matr ix, we have: 

W[l] = [1]W = W (2-5.11) 

and, if k is a constant , 

[a]k[l] = k[a][l] = k[a] = k[\][a]. (2.5.12) 

A n impor tan t result in the theory of matr ices is that the de te rminan t of 
the p roduc t of two square matr ices is equal to the p roduc t of their 
de te rminants . Thus , 

\[a][b]\ = (m|)(|[&]|) = (|[6]|)(Ml). ( 1 5 - 1 3 ) 

A m o n g the special matr ices defined in Sec. 2.2, the diagonal matr ix 
plays an impor t an t pa r t in opera t ions involving matr ices . T h e premul t i -
pl icat ion of a matr ix [a] by a diagonal matr ix [d] p roduces a matr ix 
whose rows are those of [a] mult ipl ied by the element in the correspond-
ing row of [d\: 


