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Preface

This book is an outgrowth of notes used by the author during the past
few years in a course on solid mechanics. It is intended to give advanced
undergraduate and graduate students sound foundations on which to build
advanced courses such as mathematical elasticity, plasticity, plates and
shells, and those branches of mechanics which require the analysis of strain
and stress. The book is divided into three parts: Part I is concerned with
the kinematics of continuous media, Part 11 with the analysis of stress, and
Part 111 with the theory of elasticity and its applications to engineering
problems.

In Part I, the use of the notion of linear transformation of points makes
it possible to present the geometry of deformation in a language that is
easily understood by the majority of engineering students. It is agreed that
tensor calculus is the most elegant tool available to mechanicists, but
experience has shown that most engineering students are not ready to
accept it without a reasonable amount of preparation. The study of finite
and linear strains, using the notion of linear transformation, gradually
introduces the tensor concept and removes part of the abstraction common-
ly associated with it. Orthogonal curvi-linear coordinates are examined in
detail and the results extensively used throughout the text.

In Part II, the study of stress proceeds along the same lines as that of
strain, and the similarities between the two are pointed out. All seven
chapters of Parts I and II are essential to the understanding of Part III and
serve as a common base for all branches of mechanics.

In Part III, Chapter 8 covers the three-dimensional theory of linear
elasticity and the requirements for the solution of elasticity problems. The
method of potentials is presented in Chapter 9. Torsion is discussed in
Chapter 10 and topics related to cylinders, disks, and spheres are treated in
Chapter 11. Straight and curved beams are analysed in Chapters 12 and 13
respectively, and the answers of the elementary theories are compared to
the more rigorous results of the theory of elasticity. In Chapter 14, the semi-



infinite elastic medium and some of its related problems are studied using
the results of Chapter 9.

Energy principles and variational methods are presented in Chapter 15
and their application illustrated by a large number of simple examples.
Columns and beam-columns are discussed in Chapter 16 and the bending
of thin flat plates in Chapter 17. Chapter 18 is more than an introduction
to the theory of thin shells. It includes a relatively detailed presentation of
the theory of surfaces which is necessary for the full understanding of the
analysis of thin shells. In this Chapter, as well as throughout this text,
geometry and the relations between strain and displacement are empha-
sized since it is my conviction that once geometry is mastered most of the
difficulties in studying the mechanics of solids will have disappeared.

The material in this text is suitable for two successive courses on solid
mechanics and elasticity. A first course would include Chapters 1 to 5, some
results from Chapter 6 and Chapter 7 to 13. A second course would include
Chapter 6 and Chapters 14 to 18. Chapters 10 to 18 can.be read
independently from one another.

I wish to express my gratitude to Dr. T. P. Kicher who read the
manuscript and made useful suggestions and to Dr. G. P. Sendeckyj with
whom many sections were discussed. Thanks are due to Professor W. F.
Hughes, technical editor of the Unified Engineering Series, for his patience
and support during the preparation of the final manuscript, and to the John
T. Wiley Educational Fund of Case Western Reserve University for
financial support. Mrs. W. Reeves very ably handled the typing.

Last but not least, I wish to acknowledge the encouragement and
understanding of my wife Nancy during the various stages of writing this
book.

Adel S. Saada
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KINEMATICS OF CONTINUOUS MEDIA
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Chapter 1

INTRODUCTION TO THE KINEMATICS
OF CONTINUOUS MEDIA

1.1 Formulation of the Problem

The theory of deformation of continuous media is a purely mathe-
matical one. It is concerned with the study of the intrinsic properties of
the deformations independent of their physical causes. It is most
conveniently expressed by the notion of transformation, which implies
displacement and change in shape. The problem is formulated as
follows: Given the positions of the points of a body in its initial state
(i.e., before transformation) and in its final state (i.e., after transforma-
tion), it is required to determine the change in length and in direction
of a line element joining two arbitrary points originally at an infinitesi-
mal distance from one another.

In the following, we shall make use primarily of orthogonal sets of
cartesian coordinates. Let x;, x,, x5 be the coordinates of a point M of
a body B before transformation. After transformation, this point
becomes M* with coordinates &, &, &; :

gl = X +u]
£3=X3+u3,

where u;, u,, uy are the projections of MM* on the three axes OX,
0X,, OX; (Fig. 1.1). We shall assume that u,, u,, u3, as well as their

3



4 Kinematics of Continuous Media

X3
B B*
M (%1, %5,%3) M (§,,52Es)
(Uy yUs,Us
0 =2
Fig. 1.1

X
partial derivatives with respect to x;, X, x3, are continuous functions of
X, Xy, x3. Egs. (1.1.1) can therefore be written as:
& = x + uy(x), %, X3)
& = x5 + up(xy, Xz, X3) (1.1.2)
& = x3 + uz(x, x;, X3).

Let us consider two points, M(x,x,,x3) and N(x; + dx;,x; + dx,,
x3 + dx;), infinitesimally near one another. As a result of the transfor-
mation, M is displaced to M*({,&,4) and N is displaced to
N*(, + d&,,& + d&,, & + d&;) (Fig. 1.2). The coordinates of N* are

(Uyﬁd (V') Ug+d Uz U,Od U,)

dx (k(, 1d52,dx3)

Xy Fig. 1.2
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given by:
§ +dé = x +dx; + u, + du,
§+déy = x, + dxy + uy + du, (1.1.3)
&+ déy = xy3 + dxy + uy + dus.

Because of the assumptions on uy, u,, u;, we can write the displacement
of N under the form of a Taylor series in the neighborhood of M:

du du ou

uy + duy = (uy)), + (ﬁ)del + (i)de2+ (&é)Mdh + ...
du a du

Uy + du2 = (uZ)M + (ﬁ)MXm + (E)dez_{h (_a;j—)MdXS +...

du ou du
us + duy = (u3)p + <ﬁ)de, + (ﬁ)de2+ (ﬁ)Md)@ +...

(1.1.4)

If we substitute Egs. (1.1.4) in Egs. (1.1.3). and subtract Egs. (1.1.1)
from the resulting equations, we obtain:

=L () Jon o+ (5 e (52)
d§l—[l+<a y Xm+ E de2+ E de3 + ...

= (5 ) [+ (32), Jow + (52)
ng_(K de1+ 1 + E y dX2+ E de3 + .

(1.1.5)

= (50 )0+ (52), 0 [1+ (32),]
d§3—<al— MdX1+ EMd.Xz'f‘ 1 + EMdXB + ...,

If, in Eqs. (1.1.5), we neglect the higher-order terms of Taylor’s series,
the relations between d¢,, d¢,, d¢; and dx,, dx,. dx; become linear. The



6 Kinematics of Continuous Media

system of equations can be looked upon as an operation which
transforms a vector dx (dx;,dx,,dx;) of length ds to a vector dé
(d¢,,d¢&,,d&;) of length ds*. This type of transformation is called linear
transformation. It is the linearization of Egs. (1.1.5) that allows us to
assume that the vector dx is transformed to a vector d¢ and not to a
curve. The properties of linear transformations are discussed in Chapter
3. If we omit the subscript M, Egs. (1.1.5) are written as:

du ou ou
d¢, = <l+al)dx, a'd +a‘arx3

du, ou,
d£2=g%?dxl+<l+a Jas + 32 as, (1.L6)

ou du ous
déy = ﬁdxl + aidxz (1 o >dx3,

provided we keep in mind that the partial derivatives of the functions
u, uy, uy are taken at the point M.

In essentially static problems, while little consideration is given to
rigid body displacements, particular attention is given to the changes in
length and in orientation of elements like ds. These changes are
described by the three components of the relative displacement vector
du,, du,, du; (Fig. 1.3):

Q

Z__..XI-
<L

Fig. 1.3
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ou, ou ou,
duy = d§ — dx| = del + @dxz + Ed}g
a 0 a
du2 = dgz - dx2 = ﬁdxl + %dxj + %dxﬁ (1'1’7)

ou du du
duy = d&y — dx; = ﬁdxl + ﬁdxz + ﬁdxy
The kinematics of continuous media is centered on the two sets of
Egs. (1.1.6) and (1.1.7). Within the scope of this text, the necessary
mathematical tool required to study these equations is the notion of
linear transformation. Since matrix algebra was developed primarily to
express linear transformations in a concise and lucid manner, it is
natural that it should be employed in the formulation and the solution

of kinematics problems. A brief review of matrix algebra is given in
Chapter 2.

1.2  Notation

The following system of notation will be adhered to throughout this

text:
ouy 1(8141 8u2) B 1( 8u1>_
o 2\ay, Tax /T o\ Ty, ) T e

auz_ l(aul aU3)_ l( au3)_ 1.2.1
o2 \ag tay )T a\a, ) = es 42D
duy 1<au2 8u3)_ 1<8u3 au2)_
B 2\ay, Tax, /T 2\ay, T ax, ) T e

In Egs. (1.2.1), the ’s remain unchanged and the w’s change sign when
the indices are interchanged. Thus,

_ _]<8u2+8u1)
€12= €1 =5 ax; | 0x,

[o5]

u

[ 5]

QD D
<

. _1(%u aﬂ) 12.2
€|3—e3l—2<ax1+ax3 (')

1w aﬁ)
"23‘e32"2<ax2+ax3



8 Kinematics of Continuous Media

and

o = e = 1(% _ %)
Wi = € = 2 axl aXZ
= _ 10 _ aﬂ) 123
w3 =ty = 2(8x3 ax, (123
o = 4o = l(aus _%)
BT T2 T \0x, A /)
With these notations, Eqgs. (1.1.6) become:
d&§ = (1 + e)))dx; + (€3 — wyy)dx; + (€13 + w)3)dx;
dé§y = (e + wy)dx; + (1 + ey)dx; + (63 — wy)dx;  (1.2.4)
d&3 = (e3 — wi3)dx) + (€3 + w3p)dx; + (1 + e33)dx;.
Egs. (1.1.7) become:
du] = 6” Xm + (612 - 002])dX2 + (613 + wl3)dX3
du2 = (6']2 + wzl)Xm + 6'22(1)(2 + (823 —_ w;z)dx3 (1.2.5)
duy = (€13 — wi3)dx) + (€3 + w3y )dx; + e33dx;.

In all the previous equations, the coordinates of the points of the
body in the transformed state are expressed in terms of their coordi-
nates in the initial state. This is known as the Lagrangian Method of
describing the transformation of a continuous medium. Another meth-
od, the Eulerian Method, expresses the coordinates in the initial state in
terms of the coordinates in the final state. Each method has its
advantages. It is, however, more convenient in the study of the
mechanics of solids to use the Lagrangian approach because the initial
state of the body often possesses symmetries which make it susceptible
to description in a simple system of coordinates. The Lagrangian
Method is exclusively used in this text.



Chapter 2

REVIEW OF MATRIX ALGEBRA

2.1 Introduction

The use of matrices in mechanics introduces a notation that enables
one to see the components of the entities being studied in their totality,
while providing great conciseness. In this chapter, the basic definitions
and the operations of matrix algebra which will be needed in this text
are given.

2.2 Definition of a Matrix. Special Matrices

A matrix is an array of elements arranged in rows and columns. For
instance, a matrix of m rows and n columns is written:

an ap o a4

ayy Adyp 0 4y
= @2

Ani Am2 An

and is called an (m X n) matrix. The first subscript i of each element a;

represents the number of the row, and the second subscript j represents
the number of the column. The a;’s can be pure numbers, functions,
instructions to a computer, or other matrices. In this text, the elements
are all real. A square matrix with n rows and columns is said to be of
order n.

A symmetric matrix has elements which satisfy the condition a; = a;;.

This means that elements symmetrically located with respect to the

9
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main diagonal of the matrix are equal in magnitude and sign.

An antisymmetric or skew symmetric matrix has elements which satisfy
the condition a; = —a;;. This means that elements symmetrically locat-
ed with respect to the main diagonal are equal in magnitude and
opposite in sign, and that the elements of the diagonal are equal to zero.
A diagonal matrix is a matrix whose elements a;; vanish except for i = j.
These non-vanishing elements constitute the main diagonal of the
matrix.

A unit matrix is a diagonal matrix whose elements are equal to unity. It
1s written [1].

A null matrix has all its elements equal to zero. It is written [0].

A column matrix has m rows and one column. it is also called a column
vector and is written:

—anw
ax
{a} =

a

L“ml ]

A row matrix is a matrix with one row and n columns. It is also called
a row vector and is written:

(@] = la); - .. ay,l

The transpose of a matrix [a] is a matrix [a] ', whose rows are the same
as the columns of [a]. Thus, a symmetric matrix is its own transpose and
the transpose of a column matrix is a row matrix.

A scalar matrix is a diagonal matrix whose elements are identical.

2.3 Index Notation and Summation Convention

The introduction of numerical subscripts in Chapter 1 to denote the
reference axes makes the use of indices in writing the components of
vectors quite natural. When writing relations between vectors or other
directional quantities (such as tensors), a great deal of space is saved
when a shorthand notation is introduced. In this text, the only indices
to be used are subscripts and the following conventions will be adhered
to:
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The range convention: Whenever a subscript is repeated in a term, it is
understood to represent a summation over the range 1, 2, 3 unless
otherwise stated. Also, an index never appears more than twice in the
same term. For example, the expression

§ = a;x (2.3.1)
contains, in the right-hand term, the index j which is repeated. There-
fore, taking the values of i = 1, 2, 3 in turn, we obtain the three linear
equations:

§ =apx +apx;+apx;
§ = ay x +apnx; + aypx; (2.3.2)
§ = a3 x + apx; + ayx;.
i is the identifying index and j is the summation index. We notice that the
summation index can be changed at will and is therefore called a
dummy index. Thus, Egs. (2.3.2) can also be written:
§ = agx;.

The index k is similar to the dummy variable of integration in a definite
integral and can be changed freely.

For convenience, it is sometimes useful to introduce the two following
symbols:

The Kronecker delta, §,;, which by definition is such that:

ijs
8. =1, when i = j and

v (2.3.3)
8, =0, when i = .

i

The alternating symbol, &, which by definition is such that:

Eijk = 0, when any two of i, j, k are equal

g = 1, when i, j, k are different and in cyclic order (1,2, 3,
1,2,3,...) (2.3.4)

= —1, when i, j, k are different and not in cyclic order (1,

3,2,1,3,2,...).

ijk



12  Kinematics of Continuous Media

Examples
1). 8, x, fori=11s equal to:

6“xl + 6[2X2 + 6]3)(3 = Xl = X;.

3). A vector x whose components are x;, X, x3, has a magnitude
%] = /xt + x} + x3 =+/x,;x; . Its direction cosines are given by
b= x;/\/x;x; . ' . ‘

4). The sum of the diagonal elements of a matrix [a] is called the trace
of [a] and is written a;;.

5). The determinant of the matrix [a] is written g a;;a;;as .

2.4 Equality of Matrices. Addition and Subtraction

Let us turn now to the rules governing the manipulation of the arrays
of elements forming a matrix. Two matrices [a] and [b] of the same order
are said to be equal if, and only if, their corresponding elements are
identical; that is, we have:

[a] = [b], 24.1)
provided that
a; = b, for all i and ;. (24.2)

If [a] and [b] are matrices of the same order, then the sum of [a] and [b]
is defined to be a matrix [c], the typical element of which is ¢;
= a; + b;. In other words, by definition:

[c] = [a] + [b], (2.4.3)
provided

+bi/‘

cj=a (2.4.4)

ij i

In a similar manner, we have:
[d] = [a] = [b], (2.4.5)

provided

NG
|

R

>
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From the above definitions, it can be shown that the following
operations are valid:

[a] + [b] = [b] + [d] (24.7)
([a] + [6]) + [c] = [a] + ([6] + [c]. (24.8)

An important property of square matrices, which follows from the
laws of addition and subtraction, is that any square matrix may be given
as the sum of a symmetric and of an antisymmetric matrix. Indeed, if
[a] is a square matrix, then

(] = [a] ‘; lal' | [a] —2 [a]” (2.4.9)

2.5 Multiplication of Matrices
The product of a matrix [a] by a matrix [b] is defined by the equation
[a][b] = [c], (2.5.1)

where the elements of [c] are given by:

Cij = Aj bkj (25'2)
Thus
ay, ap ap || by by b ay by + ap by + ay3byy ay by
ayy dyy axp b21 b22 b23 =] dy bll + a b2| + ay b3l ax blZ
ay ay ay || by by by a3 by + a3 by + ay3by a3 by

+apby +apiyby, ay by + apbyy + apbss
+ anby + aypbyy ay by + apnbyy + apbs |
+ ay by + aybyy a3 by + asnbyy + az by

Two matrices can be multiplied by each other only if they are
conformable, which means that the number of the columns of the first is
equal to the number of the rows of the second. Thus, if [a] is an (m X p)
matrix and [b] is a (p X n) matrix, then [c] is an (m X n) matrix.

Two nonzero matrices can be multiplied by each other and result in a
zero matrix. For example,
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1 1 0|0 O O 000
0 0 0[]0 O O|=]0 0 O
0 00|]1 0O LO 00

A permutation of the matrices will lead to a different result:

0 0Ofl1 1 O 000
0 0 0[]0 O O)|=|0 O Of.
1 0 0|0 O0 O 1 10

The product [b] [a] is, in general, not equal to [a] [b]. Therefore, it is
necessary to differentiate between premultiplication, as when [b] is
premultiplied by [a] to yield the product [a] [b], and postmultiplication,
as when [b] is postmultiplied by [a] to yield [b] [a]. If we have two
matrices which are such that

[a][b] = [b][a], (2.5.3)

these matrices are said to commute or to be permutable.
Of particular importance is the associative law of continued products,

[d] = ([a][b)]c] = [al([b](cD, (2.5.4)

which allows one to dispense with parentheses and to write [a] [b] [c]
without ambiguity since the double summation

dlj = Ak kaC[j (2.5.5)

can be carried out in either of the orders indicated. It must be noticed
that the product of a chain of matrices will have meaning only if the
adjacent matrices are conformable.

The product of matrices is distributive, that is

[al((6] + [c]) = [a](b] + [allc]- (2.5.6)
The multiplication of a matrix [a] by a scalar & is defined by:
kla] = [b], (2.5.7)
where
b; = ka
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Using the definition of the transpose and the laws of addition and
multiplication of matrices, it can be shown that:

([a] + [6]) = [a] + [b) (2.5.8)
(k[a]y = K[a] (2.5.9)
({a)[b])’ = [b]la] (note the order). (2.5.10)
For the case of the unit matrix, we have:
[all1] = [1]la] = [4] (2.5.11)
and, if k is a constant,
[alk[1] = K[a][1] = Kk[a] = k[1][a]. (2.5.12)

An important result in the theory of matrices is that the determinant of
the product of two square matrices is equal to the product of their
determinants. Thus,

faio) = (1 (1) = (on) ().~ @513

Among the special matrices defined in Sec. 2.2, the diagonal matrix
plays an important part in operations involving matrices. The premulti-
plication of a matrix [a] by a diagonal matrix [d] produces a matrix
whose rows are those of [a] multiplied by the element in the correspond-
ing row of [d]:

d 0 0 ay ap ag diay, dya;y diap
0 d 0 ||ay an ay|=|dyay dyay dyay| (25.14)
0 0 d;||ay axn az dyay dyay, dyas

The postmultiplication of [a] by [d] produces a matrix whose columns
are those of [a] multiplied by the element in the corresponding column

of [d]:

ay ap ajlld 0 0 diay, dya), dyap
ay ay ap|| 0 dy 0 |=|day dyay dyay;|. (2.5.15)
azy axp axn || 0 0 dy dyay dyay, dyas;



