

Modern Gear Production

Modern Gear Production

H J Watson

B.Sc.(Eng.) C.Eng. M.I.Mech.E.

Formerly Internal Consultant David Brown Gear Industries Ltd.

OXFORD · NEW YORK · TORONTO · SYDNEY · BRAUNSCHWEIG

PERGAMON PRESS

Pergamon Press Ltd. Headington Hill Hall, Oxford

Pergamon Press Inc., Maxwell House, Fairview Park, Elmsford, New York 10523

Pergamon of Canada Ltd., 207 Queen's Quay West, Toronto 1

Pergamon Press (Aust.) Pty. Ltd., 19a Boundary Street, Rushcutters Bay, N.S.W. 2011, Australia

Vieweg & Sohn GmbH, Burgplatz 1, Braunschweig

Copyright © 1970 H. J. Watson

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of Pergamon Press Ltd.

First edition 1970

Library of Congress Catalog Card No. 73-120688

Printed in Great Britain by A. Wheaton & Co., Exeter 08 015835 8 (hard cover)

INTRODUCTION			xiii
Acknowledgements			xv
1. Brief History of Gear Making			1
2. Types of Gear	2.1.	Classification of gears based on	
		the disposition of their shafts	12
	2.1.1.	Shafts lying in same plane and	
		parallel—spur gears	12
	2.1.2.	Helical gears	15
	2.2.	Shafts lying in same plane with axes	
		intersecting-bevel gears	19
	2.2.1.	Straight bevel gears	20
	2.2.2.	Spiral bevel gears	21
	2.2.3.	Conical bevel gears	21
	2.3.	Shafts lying in parallel planes but	•
		with axes inclined to one another	21
	2.3.1.	Hypoid gears	21
	2.3.2.	Spiroid gears	22
	2.3.3.	Worm gears	22
	2.3.4.	Crossed helical gears	24
3. Gear Groups	3.1.	Grouping of gears	26
and Tooth	3.1.1.	Cylindrical gears	26
Forms	3.1.2.	Conical gears	26
	3.1.3.	Double-enveloping and parallel	
		worm gears	29
	3.2.	Tooth forms	30
	3.2.1.	Cycloidal teeth	30
	3.2.2.	Teeth based on circular arcs	33

				22
			Circular arc pump rotors	33
		• • •	Wildhaber-Novikov gears	35
		3.2.2(c).	Arc-contact and Niemann worm	40
			gears	40
		3.2.3.	Enveloping gears	42
		3.2.3(a).	Vickers-Bostock-Bramley	
			enveloping gears	43
		• • •	Double-enveloping worm gears	45
		3.2.4.	Involute teeth	48
4.	Materials	4.1.	Gear materials	52
		4.1.1.	Cast iron	53
		4.1.2.	Inoculated irons	56
		4.1.3.	Spheroidal graphite or nodular	
			cast iron	56
		4.1.4.	Alloy cast irons	57
		4.2.	Steels	60
		4.2.1.	Carbon steels	60
		4.2.2.	Forged carbon steels	62
		4.2.3.	Cast carbon steels	65
		4.3.1.	Forged alloy steels	67
		4.3.2.	Through-hardening alloy steels	67
		4.3.3.	Casehardening alloy steels	67
		4.3.4.	Cast alloy steels	75
		4.4.	Non-ferrous metals	75
		4.4.1.	Copper alloys	76
		4.4.2.	Aluminium alloys	79
		4.5.	Plastics	80
5.	Heat Treatment	5.1.	Heat treatment of steels	82
		5.1.1.	Normalizing	82
		5.2.	Direct or through-hardened steels	83
		5.3.	Casehardening	85
		5.3.1.	Work support during casehardening	87
		5.3.2.	Preventing carbon penetration	88
		5.3.3.	Pack carburizing	89
		5.3.4.	Gas carburizing	91
		5.3.5.	Scale prevention	94
		5.3.6.	Casehardening large gears	96
		5.3.7.	Salt-bath casehardening	98
		5.4.	Nitriding	99
		5.4.1.	Gas nitriding	99
		5.4.2.	Salt-bath nitriding	102

		5.5.	Induction hardening	103
		5.5.1.	Power generators	104
		5.5.2.	Inductors	105
		5.5.3.	Induction hardening machines for	
			large gears	107
		5.5.4.	Induction hardening machines for	
			small gears	109
		5.6.	Flame hardening	112
		5.6.1.	Flank hardening	112
		5.6.2.	Spin hardening	114
		5.7.	Sulfinuzing	116
6. Meth	ods of	6.1.	Casting	117
Manu	facture	6.1.1.	Investment casting	119
		6.1.2.	Die casting	120
		6.1.3.	Shell moulding	122
		6.1.4.	Centrifugal casting of bronze	123
		6.1.5.	Centrifugal casting of steel	127
		6.2.	Powder metallurgy applied to gear	
			production	127
7. Blank		7.1.	Blank manufacture	130
Manu	facture	7.1.1.	Helical and spur gears	131
		7.1.2.	Solid forgings	133
		7.1.3.	Wheel rims	133
		7.2.	Welded wheels	135
		7.2.1.	Electron beam welding	137
		7.3.	Cast steel wheel blanks	137
		7.4.1.	Turning blanks for cylindrical gears	138
		7.4.2.	Bevel gear blanks	138
		7.5.1.	Worm-wheel blank manufacture	140
		7.5.2.	Cast-on rims	141
		7.5.3.	Small worm-wheel blanks	141
		7.6.1.	Lathes for blank manufacture	141
		7.6.2.	Numerical control	144
8. Gear 1	Milling	8.1.	Milling	146
	-	8.1.1.	Circular milling cutters	146
		8.1.2.	End milling	149
		8.2.1.	Spiral bevel gear production—	
			the Gleason process	151
		8.2.2.	Oerlikon Spiromatic spiral bevel	
			gear milling process	154

		8.2.3.	Fiat spiral bevel gear milling	
			process	155
		8.2.4.	Klingelnberg bevel gear cutting	
			process	156
		8.2.5.	Gleason Epicurv method of bevel	
			gear cutting	156
		8.2.6.	Hypoid gear cutting	157
9.	Gear Planing	9.1.	Gear planing	159
	and Shaping	9.1.1.	The Sunderland process	159
		9.1.2.	The Maag planing process	162
		9.2.	Straight bevel gear cutting	164
		9.2.1.	Straight bevel gear planing	164
		9.2.2.	Heidenreich and Harbeck method	166
		9.2.3.	Gleason Coniflex method	166
		9.2.4.	Gleason Revacycle method	166
		9.3.	Gear shaping	168
		9.3.1.	The Fellows process	169
		9.3.2.	The Sykes process	170
		9.3.3.	Gear shaper cutters	172
		9.4.	Internal gear cutting	173
10.	Gear Hobbing	10.1.	Hobbing	176
		10.1.1.	The conventional hobbing process	176
		10.1.2.	Creep hobbing machines	179
		10.2.	Precision hobbing machines	181
		10.2.1.	Precision gear hobbing	183
		10.2.2.	Hobbing precision pinions	188
		10.3.	Control of accuracy of gears	189
		10.4.	Hobbing gears for general purposes	190
		10.5.	Hob setting	193
		10.6.1.	High-speed hobbing machines	193
		10.6.2.	Automatic control of hobbing	
			machines	196
		10.7.	Worm-wheel hobbing	198
		10.8.	Klingelnberg bevel gear hobbing	201
11.	Gear Hobs	11.1.	Gear hobs	204
		11.1.1.	Materials	204
		11.1.2.	Design	205
		11.1.3.	Manufacture	207
		11.1.4.	Heat treatment	208
		11.1.5.	Finishing processes	208

		11.2.	Multiple-start hobs	209
		11.3.	The Klingelnberg roughing hob	210
		11.4.	Worm-wheel hobs	211
		11.4.1.	Serrated hobs	213
		11.4.2.	Hobs for double-enveloping worm	
			gears	213
		11.4.3.	Fly hobs	214
		11.5.	Protuberance hobs	215
12.	Profile	12.1.	Gear profile grinding	217
	Grinding	12.1.1.	The Maag gear grinding process	219
	_	12.1.2.	The Reishauer method of gear grinding	225
		12.1.3.	The Niles method of gear grinding	227
		12.2.	Form grinding	228
		12.2.1.	The Orcutt method of gear grinding	228
		12.3.	Worm grinding	229
13.	Shaving and	13.1.	Gear shaving	240
	Lapping	13.1.1.	Worm-wheel shaving	240
		13.1.2.	Crossed-axis shaving	241
		13.1.3.	Shaving cutters	241
		13.1.4.	Crossed-axis angle	243
		13.1.5.	Application of load	2 44
		13.1.6.	Shaving of larger gears	246
		13.2.	The Fellows Fini-shear process	247
		13.3.	Lapping	248
		13.3.1.	Lapping bevel and hypoid gears	248
		13.3.2.	The mechanical lapping process	251
		13.3.3.	Lapping spur and helical gears	252
		13.3.4.	Gears lapped in their cases	253
		13.4.	Running-in materials	254
		13.5.	Gear honing	254
14.	Other	14.1.	Thread whirling	256
	Manufacturing	14.2.	Gear rolling	258
	Methods	14.2.1.	Cold rolling	258
		14.2.2.	Hot rolling	261
		14.2.3.	Cold extrusion of gears	263
		14.2.4.	Hot forging of gears	265
		14.3.	Broaching gear teeth	266
		14.4.	Tooth rounding	267
		14.5.	Electrochemical machining	268

	contents			
		14.6.	Work hardening	270
		14.6.1.	Shot peening	271
		14.6.2.	Fillet rolling	272
15.	Surface	15.1.	Vapour blasting	273
	Finishing	15.2.	Electrochemical and chemical	
	Processes		finishing	274
		15.3.	Gear surface treatments	274
		15.3.1.	Phosphating	275
		15.3.2.	Molybdenum disulphide and	276
		15 4	graphite	276
		15.4.	Electroplating	277
		15.4.1.	Hardfacing	277
		15.5.	Metal spraying	277
16		17.1		
16.	Accuracy,	16.1.	Accuracy of gear generating	270
	Quality and	1/11	machines	279
	Inspection of	16.1.1.	Machine table and bed	279
	Gear-making	16.1.2.	Truth of the column in hobbing	•
	Machines	1 (1 0	and grinding machines	280
		16.1.3.	Master worms	283
		16.1.4.	Feed screw accuracy	284
		16.1.5.	Hob saddle	285
		16.1.6.	Hob spindle and hob arbor	285
		16.1.7.	Hob spindle drive	287
		16.1.8.	Table bearings	287
		16.1.9.	Thermal equilibrium	288
		16.2.	Automatic correcting devices	289
		16.2.1.	Temac system of measurement and	
			correction	289
		16.2.2.	Inductosyn system of correction	291
		16.2.3.	The National Engineering Laboratory	
			portable grating method of	
			measuring transmission errors	291
		16.2.4.	Seismic method of error	
			measurement	293
		16.3.	Accuracy of index plates	297
		16.4.	Foundations for hobbing machines	297
		16.4.1.	Foundations for other gear-	
			making machines	298
		16.5.	General comments on gear-	
			cutting-machine accuracy	299

17.	Measurement	17.1.	Accuracy of gears	300
	of Gear	17.1.1.	Measurement of gear blanks	301
	Accuracy	17.1.2.	Setting gear blanks and tools in	
	-		gear-cutting machines	304
		17.2.	Measurement of pitch errors	310
		17.2.1.	Manually operated pitch-measuring	
			instruments	311
		17.2.2.	Cumulative pitch measurement	312
		17.2.3.	Adjacent pitch measurement	314
		17.2.4.	Base pitch measurement	315
		17.2.5.	Automatic pitch-measuring	
			instruments	316
		17.3.	Double flank testing fixture	319
		17.4.	Helix modification and measure-	
			ment	321
		17.5.	Profile measurement	325
		17.5.1.	Profile measurement by	
			coordinates	330
		17.6.	Determination of undulations	331
		17.7.	Phasing errors in double helical	
			gears	335
		17.8.	Measurement of journal roundness	336
		17.9.	Inspection methods	337
		17.10.	Measurement of surface texture	340
		17.11.	Accuracy of meshing	342
BIE	BLIOGRAPHY			347
Br	itish Standard	Specificatio	DNS	349

Index

351

Introduction

A PAPER with the same title presented to the Institution of Production Engineers originated this book. Interest in the subject prompted a wider, somewhat more comprehensive treatment of gear manufacture, but no work of this type can give more than an introduction to such a vast industrial activity of great complexity. Its main purpose is to provide information on possible methods of gear making that will be useful in technical academic establishments while at the same time supplying some knowledge on processes that is not always readily available to those engaged in industry. Most of the processes considered have a literature of their own and each machine has individual operating instructions that are available to those deeply involved in gear-manufacturing techniques, but these are outside the scope of this publication.

Based on the author's lengthy experience in the gear-making industry with the David Brown company, who have such a wide interest in all aspects of gear production, it is a survey of current manufacturing methods. Many of the techniques and processes now in general use seem to have been developed within his cognizance and have provided the broad foundation for the work. But many other sources of information have also contributed to the general content and the author acknowledges with gratitude the comments and thoughts expressed by colleagues and widely dispersed friends during many interesting discussions on gears.

Ever since toothed gears were first invented countless different methods of making them have been used. At any specific time some of these were considered to be modern and at the moment there is no valid reason to regard the present as the final period in an evolutionary process of gear manufacture. Techniques and design criteria not yet conceived may confidently be expected to emerge in the future. In that respect the present review is contemporary in part only, despite its title.

Where possible, British Standards have been referred to in the text since they supply much information on the kind of product that the gear industry can provide.

References to processes that may be the subject of patents does not in any way affect the protective rights incorporated in the patent.

Acknowledgements

THE author thanks most sincerely all who have supplied him with photographs of gear-making machines and processes. It has unfortunately not been possible to use them all, but those included have had their source acknowledged in the captions. Many gear and instrument makers have also supplied data that have been most useful.

Amongst those to whom he is indebted are:

Messrs. W. H. Allen, Sons and Company Ltd., AEI Turbine-Generators Ltd., B.P.S. Machinery and Spares Co. Ltd., British Furnaces Ltd.. David Brown Gear Industries Ltd., Buck and Hickman Ltd., Burton Griffiths and Company Ltd., Charles H. Churchill Ltd., Coventry Gauge and Tool Co. Ltd., Efco-Rovce Furnaces Ltd., Embassy Machine and Tool Co. Ltd., English Steel Corporation Ltd., Expert Heat Treatments Ltd., J. Goulder and Sons Ltd., Landis Machine Company, National Engineering Laboratory, J. Parkinson and Son (Shipley) Ltd., Radyne Ltd., Rank Taylor Hobson Ltd., Walter Spencer and Co. Ltd., Staveley Asquith Ltd., Sykes Machine Tool Co. Ltd., Vaughan Associates Ltd., Vickers Ltd.

Chapter 1

Brief History of Gear Making

TOOTHED gearing is one of the most widely used mechanisms of the modern world and our daily life depends for much of its activity upon the rotation of shafts connected by toothed gears. It is a product of engineering that demands attention, not only from specialists but from mechanical engineers collectively. Knowledge on gears and gear-making methods is continuously expanding in spite of the extensive amount of information already published on the subject.

In its basic form much of the technique of gear production is widely known but this continuous introduction of new methods influences the whole process of gear making either directly or indirectly. Many types of gear are in use and the application for which each is most suited influences, to some extent, the method and process employed to make it, as well as usually having decisive control over the tooth form.

When the quality of gears or the methods of manufacture are reviewed over a sufficiently long period of time it is possible to see that a change has taken place. During the past half century the change, when viewed in retrospect, seems to have been quite spectacular and even over the past decade progress has been extensive, but in fact, it has been gradual and therefore, more likely to have a firm foundation.

Changes have been made in quality and manufacturing methods ever since toothed gears were first conceived but for centuries progress was extremely slow. The classical origin of worm gearing, for instance, was the study of the screw and this was made by Archimedes (287–212 B.C.), but early references to the Archimedian spiral being used for rotating an engaging toothed wheel have been lost. However, reference to its utilization for exerting pressure and producing forward motion may be found in Greek and Roman literature.

For suitable applications, toothed gearing was made during the Middle Ages and some of these gears survive to this day in the clocks found in cathedrals and other ecclesiastical buildings where they have been preserved. Salisbury Cathedral, for example, claims to possess the oldest clock in England, made towards the end of the fourteenth century in about 1386. The mechanism

Modern Gear Production

of Wells Cathedral clock, made in 1392 and removed from its original home during the nineteenth century, may be seen in operation in the Science Museum, South Kensington. All the gears were made of iron and though some are worn, the clock movement still keeps good time. Leonardo da Vinci knew and appreciated the use of toothed gearing; some of his amazing machines were gear driven and engravings made by the great German artist Albrecht Dürer show a vehicle designed for the Emperor Maximilian I, at about the end of the fifteenth century, that was driven by worm gears on all four wheels (Fig. 1.1).

FIG. 1.1. Albrecht Dürer's engraving of a worm-driven vehicle.

These engravings suggest that the principle of the worm and wheel must have been known earlier and that Dürer had probably seen examples of their application. Dürer, however, is credited with having discovered the epicycloidal curve so he may not have been ignorant of gear geometry. Actually, the cycloidal curve produced when a point on the circumference of a circle that rolls along a straight line had been discovered and examined earlier in the fifteenth century, and it seems probable that these curves were used for gear tooth shapes. It is well established, however, that toothed gears became increasingly employed during the centuries preceding the Industrial Revolution in England in the eighteenth century, largely for clocks, irrigation devices,