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PREFACE 

This book has been written on the basis of lectures which I delivered 
at the department of mathematics and mechanics of Moscow State Uni
versity. In drawing up the program for my lectures, I proceeded on the 
belief that the selection of material must not be random nor must it rest 
exclusively on established tradition. The most important and interesting 
applications of ordinary differential equations to engineering are found 
in the theory of oscillations and in the theory of automatic control. These 
applications were chosen to serve as guides in the selection of material. 
Since oscillation theory and automatic control theory without doubt also 
play a very important role in the development of our contemporary tech
nical culture, my approach to the selection of material for the lecture 
course is, if not the only possible one, in any case a reasonable one. In 
attempting to give the students not only a purely mathematical tool 
suitable for engineering applications, but also to demonstrate the appli
cations themselves, I included certain engineering problems in the lectures. 
In the book they are presented in §13, 27, and 29. I consider that these 
problems constitute an integral organic part of the lecture course and, 
accordingly, of this book. 

In addition to the material presented in the lectures, I have included in 
the book more difficult problems which were investigated in student 
seminars. They are contained in §19 and 31. The material contained 
in §24, 25, and 30 was only partially presented in the lectures. For the 
convenience of the reader, in the last chapter, the sixth, are presented 
certain facts from linear algebra in the form in which they are used in 
this book. 

In closing, I wish to express my gratitude to my students and to my 
closest co-workers V. G. Boltyanskiy, R. V. Gamkrelidze, and E. F. 
Mishchenko, who helped me in the preparation and delivery of the lectures 
and in writing and editing this book. I want also to note the decisive in
fluence upon my scientific interests exerted by the outstanding Soviet 
specialist in the field of oscillation theory and automatic control theory, 
Aleksandr Aleksandrovich Andronov, with whom for many years I have 
had a friendly relationship. His influence has substantially affected the 
character and direction of this book. 

Moscow L. S. Pontryagin 
16 July 1960 
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FOREWORD 

This book constitutes a mildly radical departure from the usual one-
semester first course in differential equations. There was a time when 
almost all first courses in differential equations were devoted to an 
exhaustive treatment of the methods and artifices by which certain ele
mentary equations can be solved explicitly. Fortunately, much of the 
material of the "classical" first course in differential equations has been 
moved back into the elementary calculus, where it finds its proper place 
among the so-called techniques of integration. 

The disadvantages of offering a methods course in differential equations 
immediately following a second course in the calculus have been recog
nized for a long time: Students, whose interest and tastes in mathematics 
had begun to take shape, are confronted with the least challenging course 
in the curriculum, and even the engineering students, to whose interests 
the methods course is supposedly dedicated, are given little idea of the 
theory of differential equations. In recent years, a number of books have 
done much to improve the level of the first course in differential equations, 
though many of these books are in the nature of treatises, more suitable 
for the two-semester course at the graduate level. 

The present volume is designed for a one-semester course in the junior 
or senior year, preferably after the course in calculus. It makes no pre
tense of being a treatise; the methods and artifices which belong to the 
calculus are omitted, though a new importance is given the linear equation 
with constant coefficients. An important feature of this book is the chapter 
on stability theory (Chapter 5) and the introduction to the Lyapunov 
theory. The engineering student will be challenged by the nontrivial 
treatment of such topics as the Watt regulator for a steam engine and the 
vacuum-tube circuit. The use of matrices and linear algebra will comple
ment the one-semester course in linear algebra which is appearing more 
frequently at the junior level. 

The Publisher 
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CHAPTER 1 

INTRODUCTION 

This chapter is devoted primarily to the definition of those concepts 
which will be studied subsequently. What is a system of ordinary differ
ential equations, what do we mean by a solution of it, and how many of 
these solutions exist? These are the basic questions which we shall attempt 
to answer in this chapter. The number of solutions is determined by 
theorems of existence and uniqueness, which will not be proved here, but 
only formulated. The proofs of these and of a number of other theorems of 
the same type are given in the fourth chapter, but theorems previously 
formulated in the first chapter are repeatedly used, so that their meaning is 
thus clarified. In addition to such basic information, solutions of differen
tial equations of several of the simplest types are given in the first chapter. 
At the end of the chapter complex differential equations and their com
plex solutions are studied, and elementary facts concerning systems of 
linear differential equations are given. 

1. First-order differential equations. Equations in which the unknowns 
are functions of one or several variables and which contain not only the 
functions themselves, but also their derivatives, are called differential 
equations. If the unknown functions are functions of several variables, 
then the equations are called partial differential equations; in the opposite 
case, i.e., for the case of functions of only one independent variable, the 
equations are called ordinary differential equations. In this book we shall 
deal only with the latter. 

In applications to physics the time is taken as the independent variable, 
which is conventionally designated by the letter t; throughout this book 
the independent variable will be designated by t. Unknown functions will 
be designated by x, y, z, and so on. Derivatives of functions with respect to 
t will as a rule be designated by dots: x = dx/dt, x = d2x/dt2, and so on. 
When this is inconvenient or impossible, we shall denote the order of a 
derivative by an upper index in parentheses; for example, x{n) = dnx/dtn. 

First we shall study the first-order differential equation. This equation 
may be written in the form 

F(t, x, x) = 0. (1) 

Here t is the independent variable, x the unknown function, x = dx/dt the 
derivative, and F a given function of three variables. The function F 
need not be defined for all values of its arguments; therefore we speak of 

1 



2 INTRODUCTION [CHAP. 1 

the domain of definition B of the function F or simply, the domain B of F; 
here we have in mind a domain in the space of the three variables x, y, z. 
Equation (1) is called a first-order equation because it contains only the 
first derivative x of the unknown function x. A function x = <p(t) of the 
independent variable t, defined on a certain interval r\ < t < r2 (the 
cases Γχ = — oo, r2 = +oo are not excluded), which, when substituted 
for x in equation (1), reduces (1) to an identity on the entire interval rx < 
t < r2, is called a solution of equation (1). The interval r\ < t < r2 is 
called the interval of definition of the solution <p{t). I t is evident that sub
stitution of x = φ(ή in (1) is possible only when the function <p(t) has a 
first derivative (and, in particular, is continuous) on the entire interval 
ri < t < r2. For the substitution of x = <p(t) into equation (1) to be 
possible, it is also necessary that the point with coordinates (t, <p(t), <p(t)) 
belong to the domain B of the function F for any value of t in the interval 
rx < t < r2. 

Relation (1) connects the three variables i, x, x. In certain cases it deter
mines x as a single-valued, implicit function of the independent variables 
/, x. In this case (1) is equivalent to a differential equation of the form 

x = f(t, x). (2) 

Equation (2) is said to be solved explicitly for the derivative; in certain re
spects it is more amenable to study than the general differential equa
tion (1). It is such explicit equations which we shall now study. We 
shall not assume that (2) has been obtained as a result of solving (1) for x, 
but shall proceed from the function f(t, x) as a given function of the two 
independent variables t, x. 

In order to visualize the situation geometrically, we introduce for study 
the to-plane P. We shall plot t, as an independent variable, along the axis 
of abscissas, and x, as a dependent variable, along the axis of ordinates. 
The function / appearing in (2) need not be defined for all values of t 
and x, or, in geometric language, need not be defined at all points of the 
plane P , but only at points of a certain set Γ of P (Fig. 1). We shall assume 
that the set Γ is a domain. This means that for every point p in Γ there is 
some circle of positive radius with center at p also contained in Γ. Con
cerning the function / , it will be assumed that both the function itself and 
its partial derivative, df/dx, are continuous functions of t and x in Γ. A 
solution x = <p(t) of equation (2) may be thought of geometrically in P 
as a curve with the equation x = <p(t). This curve has a tangent at every 
point and lies entirely in the domain Γ; it is called an integral curve of the 
differential equation (2). 

Existence and uniqueness theorem. In algebra it is known that a large 
role is played by theorems which give the number of solutions to a given 
equation or system of equations. One such example is the fundamental 
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FIGURE 1 

theorem of algebra, which asserts that a polynomial of the nth degree always 
has exactly n roots (counted according to multiplicity). In exactly the 
same way, in the theory of differential equations the important theoretical 
problem is how many solutions the differential equation has. I t turns out 
that every differential equation has a continuum of solutions and this is 
why the question to be posed does not concern the number of solutions, 
but rather how the set of all solutions of a given differential equation 
can be described. The answer to this question is given by the existence 
and uniqueness theorem (Theorem 1), which is presented without proof 
in this section. The proof will be given considerably later (see §20). 

THEOREM 1. Let 

i = W, x) (3) 

be a differential equation. We shall assume that the function f(t, x) is 
defined in a certain domain Γ of the plane P of the variables t} x. We shall 
assume that the function/and its partial derivative df/dx are continuous 
in the entire domain Γ. The theorem asserts that 

(1) For every point (t0, x0) of the domain Γ there exists a solution 
x = <p(t) of equation (3) which satisfies the condition 

<p(h) = x0; (4) 

(2) If two solutions x = φ(ί) and x = X(t) of equation (3) coincide 
for one value t = t0) that is, if 

<p(t0) = X(<0), 

then these solutions are identically equal for all values of t for which 
they are defined. 

The numbers t0, XQ are called the initial values for the solution x = <p(t), 
the relation (4) represents the initial conditions for this solution, and we 
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FIGURE 2 

shall also say that the solution x = φ(() satisfies the initial conditions (4) 
or that it has initial values t0, x0. The assertion that the solution x = φ(ί) 
satisfies the initial conditions (4) (or has initial values t0y x0) assumes 
that the interval rx < t < r2, where the solution x = <p(t) is defined, 
contains the point t0. 

Thus Theorem 1 asserts that the coordinates of any point (t0, Xo) of the 
domain Γ are initial values for some solution of equation (3) and that two 
solutions with common initial values coincide. 

The geometrical meaning of Theorem 1 consists in the fact that through 
every point (t0, x0) of Γ passes one and only one integral curve of equation (3) 
(see Fig. 1). 

We have interpreted geometrically every solution x = <p(l) of equation 
(3) in the form of the graph of the function φ{ί). We now give a geometric 
interpretation of equation (3) itself. Through every point (t> x) of Γ we 
shall draw a straight line lt,x with slope f(t, x). We obtain the direction 
field (or tangent field) corresponding to equation (3) and thus the geo
metric interpretation of this equation. 

The connection between the geometrical interpretation of the equation 
and the geometrical interpretation of its solutions consists in the fact 
(Fig. 2) that any integral curve x = <p{t) is tangent to the straight line 
ItMt) a^ e a c n °f i t s points (t, <p(t)). 

EXAMPLES 

1. To illustrate the significance of Theorem 1 (in this case, of its second 
part), we shall solve the differential equation 

x = ax, (5) 

where a is a real number. Here 

f{t, x) = ax, 
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so that the function/in fact depends only on the variable x. The domain of 
/ coincides with the entire plane P. Both the function f(t, x) = ax and 
its derivative df(t, x)/dx = a are continuous functions of t and x in the 
entire plane P. Thus Theorem 1 is applicable to equation (5). By direct 
substitution into equation (5) it is verified that each of the functions 

x = ceat, (6) 

where c is an arbitrary real number, is a solution of equation (5). We shall 
show that by assigning all possible values for c, we shall obtain all solu
tions of equation (5). Let x = <p(t) be an arbitrary solution of this equa
tion. We shall show that by proper choice of the number c we have 
<p(t) = ceat. Let t0 be a certain point of the interval of existence of the 
solution x = φ(ί), and let x0 = <p(to). Let us assume that c = χ0β~α*°. 
Then the solutions x = <p(t) and x = ceat = x0eaU~to) of equation (5) 
have the same initial values (t0, x0)> and therefore coincide by virtue of 
the second part of Theorem 1. Thus, formula (6) exhausts the set of all 
solutions of differential equation (5). 

2. We shall give a mathematical description of the process of decay of 
radioactive matter. The quantity of matter not yet decayed at the instant 
t we shall denote by x(t). Then the quantity of matter which has 
decayed over the small interval of time t to t + A is determined by the 
formula ahx(t), where a is a coefficient which depends on the properties 
of the radioactive matter and is slightly dependent on ft; more accurately, 
it tends to a definite limit β as ft —* 0. Thus we have 

x(t) — x(t + ft) = ahx(t). 

Dividing this relation by ft and passing to the limit as A —» 0, we obtain 

±(t) =: —βχ(ί). 

We see that the function x(t) satisfies the very simple differential equation 
examined in Example 1, so that 

x(t) = ce~ßt. 

To determine the constant c it is sufficient to specify any initial values. 
If, for example, it is known that at the instant t = 0 there was a quantity 
of matter x0) then c = x0, and we have 

x(t) = x0e~ßt. 

The rate of decay is expressed here by the value ß having the dimension 
1/sec or (sec)-1. Instead of the value ß, the rate of decay is often charac-
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terized by the so-called half-life, i.e., the time required for half of the 
existing matter to decay. We shall designate the half-life by T and establish 
the connection between the values ß and T. We have 

whence 

2. Some elementary integration methods. The main problem facing us 
when we deal with a differential equation is the problem of finding its 
solutions. In the theory of differential equations, just as in algebra, the 
question of what it means to find the solution of an equation may be under
stood in various ways. In algebra the original aim was to find a general 
formula involving radicals for the solution of equations of any degree. 
Such were the formulae for the solution of a quadratic equation, Cardan's 
formula for the solution of a cubic equation, and Ferrari's formula for the 
solution of an equation of the fourth degree. Later, it was established that 
for equations of degree higher than the fourth, a general formula for solu
tion in radicals does not exist. The possibility remained of an approximate 
solution of equations with numerical coefficients and also the possibility 
of relating the dependence of the roots of an equation on its coefficients. 
The evolution of the concept of solution in the theory of differential 
equations was approximately the same. The original aim was to solve, or, 
as it was said, "to integrate" differential equations by means of "quadra
tures," i.e., the attempt was to write the solution in terms of the ele
mentary functions and their integrals. Later, when it became clear that a 
solution in this sense exists only for very few types of equations, main 
emphasis of the theory was transferred to the study of general laws of the 
behavior of solutions. In this section we shall develop integration methods 
by quadratures for certain first-order differential equations. 

(A) We shall solve the equation 

* = /(0, (i) 
the right-hand side of which depends only on the independent variable L 
We shall assume that the function f(t) is defined and continuous on the 
interval rx < t < r2. Under this assumption, equation (1) satisfies the 
conditions of Theorem 1, and the domain Γ for this equation is a strip in 
the to-plane P which is determined by the inequalities rx < t < r2. Let 
t0 be an arbitrary point of the interval rx < t < r2; we assume 

*o(0 = ff(T)dr. 
JtQ 
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F I G U R E 3 

The function <p0(t) is defined on the interval rx < t < r2. By inspection, 
an arbitrary solution of the equation (1) is given by the formula 

X = φ({) = φο(() + C, (2) 

where c is an arbitrary constant. The right-hand side of (2) is, as is known, 
the indefinite integral of the function f(t), so that (2) may be written in the 
form 

x = f f(t)dt. 

I t is seen by direct inspection that the function (2) satisfies equation (1). 
Further, the graph of every solution (2) for an arbitrary c is obtained from 
the graph of the solution x = <p0(t) by using a vertical-parallel translation 
by the quantity c (Fig. 3). From this it is evident that through every 
point of Γ passes a curve defined by formula (2). Hence, by Theorem 1 it 
follows that (2) actually encompasses the set of all solutions of (1). 

(B) We shall solve the equation 

9(z), (3) 

the right-hand side of which depends only on the unknown function x. 
We shall assume that the function g(x) is defined and has a continuous de-
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rivative on the interval α,χ < x < a2. Then Theorem 1 is applicable to 
equation (1), and a strip in the to-plane P which is determined by the 
inequalities α,χ < x < a2 serves as the domain Γ. For the sake of sim
plicity, we assume in addition that on the interval α,χ < x < a2 the func
tion g(x) does not vanish and consequently does not change sign. Let xo 
be an arbitrary point of the interval ax < x < a2; we assume 

The function G0(x) is defined on the interval ax < x < a2, and its deriva
tive on this interval is never zero; therefore the function GQ(X) has an 
inverse, i.e., there exists a function ^0(0 such that 

GoGMO) = t. (5) 

Consequently, an arbitrary solution of equation (3) is given by the formula 

x = φ(ή = f 0(i - c), (6) 

where c is an arbitrary constant. The function φ(ί) is monotonic and 
assumes all values belonging to the interval αχ < x < a2. 

We shall first prove that the function (6) is a solution of equation (3). 
From (5) it follows that 

Go(*(0) = βο(*ο(< -e)) = t - e . (7) 

Differentiating this relation with respect to t, we obtain 

G'0(Ht))i(t) = 1, 
hence [see (4)] 

φ(ί) = gty(t)). 

Since the function ψοθ) is obtained as the inverse of the monotonic func
tion Go(x), which is defined on the entire interval α,χ < x < a2, the func
tion ^o(0 tan<i consequently ψ(ί)] is monotonic and assumes all values 
on the interval a\ < x < a2. Since, further, the integral curve (6) is ob
tained from the curve x0 — ψ0(0 by a horizontal-parallel translation 
(Fig. 4), a curve of the form (6) passes through every point of the strip Γ. 
Thus by Theorem 1, (6) contains the set of all solutions of equation (3). 

Note. The relation (7) shows that the function ψ(ί) is the inverse of the 
function Cro(aO + c, which is the indefinite integral of the function l/g(x). 
Thus all solutions x = ψ(ί) of equation (3) are described by the formula 
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If the function t = G0(x) + c is taken as the unknown function, then we 
obtain for it the differential equation 

(U 
dx 

1 

which is equivalent to equation (3). I t is solved by the method presented 
in (A), which gives (8). 

(C) We shall solve the equation 

* = f(t)g(x), (9) 

which is called an equation with separable variables. We shall assume that 
the function f(t) is defined and continuous on the interval rx < t < r2 
and that the function g(x) is defined and has a continuous derivative on the 
interval a± < x < a2. Then Theorem 1 is applicable to equation (9), 
and the rectangle determined by the inequalities 

Γχ < t < r2, ai < x < a2 

serves as its domain Γ. For the sake of simplicity, we shall assume that 
g(x) does not vanish on the interval αχ < x < a2. For the solution of (9) 
we form two auxiliary equations: 

£-*». 
dx 
du = g(x). 

(10) 

(11) 

Equations (10) and (11) are solved by the rules given in (A) and (B). Let 
u = φο(ΐ) be some solution of equation (10) and x = ψο(η) some solution 


