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Preface 

The progress of 'audio' towards the still-distant goal of a perfect imitation 
of reality has been, and remains, inextricably bound up with the 
development of electronic components and circuit technology, and with 
the parallel progress in the various transducers and interface devices used 
to generate and reproduce electrical signals. However, while in the early 
years of audio almost all the development work was done in an empirical 
manner, with ideas being tested experimentally in the studios or listening 
rooms of those involved - for want of any better way of advancing the 
design technology - gradually, as our understanding of the technical 
problems and their solutions increased, the way in which the designers 
make their designs has become increasingly analytical and theoretical in its 
nature. 

This change is as inevitable as it is predictable since there are many parts 
of this work - digital audio, for example - which can no longer be designed 
by any pragmatic 'suck it and see' method, and whose undoubted success 
has been entirely dependent on the correct outcome of theoretical 
calculations and predictions. Unfortunately, this has left a large number of 
music and hi-fi enthusiasts in the dark about what is actually being done to 
achieve the results they hear; and the occasional design errors made by the 
engineers, which have led to deficiencies in the reproduced sound, have 
left many listeners suspicious of what they no longer understand. 

Design errors still do occur, just as they have always done, but now that 
the design and marketing decisions are no longer based on a judgement of 
sound quality made by a knowledgeable enthusiast/designer, there is a 
greater risk that equipment embodying them will find its way on to the 
dealers' shelves. 

The various hi-fi magazines perform a useful task - irritating though they 
may be to those who already know everything - in drawing the attention of 
the engineers to the not entirely infrequent differences between what the 
specification implies and what the ear actually hears. However, the main 
requirement for the listener must remain a greater understanding of what is 
actually done, and how this will influence what he or she hears. This book 
is an attempt, in one small corner of this field, to reduce this gap between 
hearing and understanding. 

John Linsley Hood 
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CHAPTER 1 

Tape recording 

THE BASIC SYSTEM 

In principle, the recording of an alternating electrical signal as a series of 
magnetic fluctuations on a continuous magnétisable tape would not appear 
to be a difficult matter, since it could be done by causing the AC signal to 
generate corresponding changes in the magnetic flux across the gap of an 
electromagnet, and these could then be impressed on the tape as it passes 
over the recording electromagnet head. 

In practice, however, there are a number of problems, and the success 
of tape recording, as a technique, depends upon the solution of these, or, 
at least, on the attainment of some reasonable working compromise. The 
difficulties which exist, and the methods by which these are overcome, 
where possible, are considered here in respect of the various components 
of the system. 

MAGNETIC TAPE 

This is a thin continuous strip of some durable plastics base material, 
which is given a uniform coating of a magnétisable material, usually 
either 'gamma' ferric oxide (Fe203), chromium dioxide (Cr02), or, in 
some recently introduced tapes, of a metallic alloy, normally in powder 
form, and held by some suitable binder material. Various 'dopants' can 
also be added to the coating, such as cobalt, in the case of ferric oxide 
tapes, to improve the magnetic characteristics. 

To obtain a long playing time it is necessary that the total thickness of 
the tape shall be as small as practicable, but to avoid frequency distortion 
on playback it is essential that the tape shall not stretch in use. It is also 
important that the surface of the tape backing material shall be hard, 
smooth and free from lumps of imperfectly extruded material (known as 
'pollywogs') to prevent inadvertent momentary loss of contact between 
the tape and the recording or play-back heads, which would cause 
'dropouts' (brief interruptions in the replayed signal). The tape backing 
material should also be unaffected, so far as is possible, by changes in 
temperature or relative humidity. 

For cassette tapes, and other systems where a backup pressure pad is 
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2 Tape Recording 

used, the uncoated surface is chosen to have a high gloss. In other 
applications a matt finish will be preferred for improved spooling. 

The material normally preferred for this purpose, as the best compromise 
between cost and mechanical characteristics, is biaxially oriented 
polyethylene terephthalate film (Melinex, Mylar, or Terphan). Other 
materials may be used as improvements in plastics technology alter the 
cost/performance balance. 

The term 'biaxial orientation' implies that these materials will be stretched 
in» both the length and width directions during manufacture, to increase 
the surface smoothness (gloss), stiffness and dimensional stability (freedom 
from stretch). They will normally also be surface treated on the side to 
which the coating is to be applied, by an electrical 'corona discharge' 
process, to improve the adhesion of the oxide containing layer. This is 
because it is vitally important that the layer is not shed during use as it 
would contaminate the surface or clog up the gaps in the recorder heads, 
or could get into the mechanical moving parts of the recorder. 

In the tape coating process the magnetic material is applied in the form 
of a dope, containing also a binder, a solvent and a lubricant, to give an 
accurately controlled coating thickness. The coated surface is subsequently 
polished to improve tape/head contact and lessen head wear. The 
preferred form of both ferric oxide and chromium dioxide crystals is 
needle-shaped, or 'acicular', and the best characteristic for audio tapes 
are given when these are aligned parallel to the surface, in the 
direction of magnetisation. This is accomplished during manufacture by 
passing the tape through a strong, unidirectional magnetic field, before 
the coating becomes fully dry. This aligns the needles in the longitudinal 
direction. The tape is then demagnetised again before sale. 

Chromium dioxide and metal tapes both have superior properties, 
particularly in HF performance, resistance to 'print through' and deterio­
ration during repeated playings, but they are more costly. They also require 
higher magnetic flux levels during recording and for bias and erase 
purposes, and so may not be suitable for all machines. 

The extra cost of these tape formulations is normally only considered 
justifiable in cassette recorder systems, where reproduction of frequencies 
in the range 15—20 kHz, especially at higher signal levels, can present 
difficulties. 

During the period in which patent restrictions limited the availability of 
chromium dioxide tape coatings, some of the manufacturers who were 
unable to employ these formulations for commercial reasons, put about 
the story that chromium dioxide tapes were more abrasive than iron oxide 
ones. They would, therefore, cause more rapid head wear. This was only 
marginally true, and now that chromium dioxide formulations are more 
widely available, these are used by most manufacturers for their premium 
quality cassette tapes. 



Tape Recording 3 

Table 1.1 Tape thicknesses (reel-to-reel) 

Tape Thickness (in.) 

'Standard play' 0.002 
'Long play' 0.0015 
'Double play' 0.001 
'Triple play' 0.00075 
'Quadruple play' 0.0005 

Composite 'ferro-chrome' tapes, in which a thinner surface layer of a 
chromium dioxide formulation is applied on top of a base ferric oxide 
layer, have been made to achieve improved HF performance, but without 
a large increase in cost. 

In 'reel-to-reel' recorders, it is conventional to relate the tape thickness 
to the relative playing time, as 'Standard Play', 'Double Play' and so on. 
The gauge of such tapes is shown in Table 1.1. In cassette tapes, a more 
straightforward system is employed, in which the total playing time in 
minutes is used, at the standard cassette playing speed. For example, a 
C60 tape would allow 30 minutes playing time, on each side. The total 
thicknesses of these tapes are listed in Table 1.2. 

For economy in manufacture, tape is normally coated in widths of up to 
48 in. (1.2 m), and is then slit down to the widths in which it is used. 
These are 2 in. (50.8 mm), 1 in. (25.4 mm), 0.5 in. (12.7 mm) and 0.25 in. 
(6.35 mm) for professional uses, and 0.25 in. for domestic reel-to-reel 
machines. Cassette recorders employ 0.15 in. (3.81 mm) tape. 

High-speed slitting machines are complex pieces of precision machinery 
which must be maintained in good order if the slit tapes are to have the 
required parallelism and constancy of width. This is particularly important 
in cassette machines where variations in tape width can cause bad winding, 
creasing, and misalignment over the heads. 

Table 1.2 Tape thicknesses (cassette) 

Tape Thickness (μπι) 

C60 18 (length 92 m) 
C90 12 (length 133 m) 
C120 9 (length 184 m) 

Tape base thicknesses 12μπι, 8μπι and 6μπι respectively. 



4 Tape Recording 

For all of these reasons, it is highly desirable to employ only those 
tapes made by reputable manufacturers, where these are to be used on 
good recording equipment, or where permanence of the recording is 
important. 

THE RECORDING PROCESS 

The magnetic materials employed in tape coatings are chosen because 
they possess elemental permanent magnets on a sub-microscopic or molecu­
lar scale. These tiny magnetic elements, known as 'domains', are very 
much smaller than the grains of spherical or needle-shaped crystalline 
material from which oxide coatings are made. 

Care will be taken in the manufacture of the tape to try to ensure that 
all of these domains will be randomly oriented, with as little 'clumping' as 
possible, to obtain as low a zero-signal-level noise background as 
practicable. Then, when the tape passes over a recording head, shown 
schematically in Fig. 1.1, these magnetic domains will be realigned in a 
direction and to an extent which depend on the magnetic polarity and 
field strength at the trailing edge of the recording head gap. 

Fig. 1.1 The alignment of magnetic domains as the magnetic tape passes 
over the recording head. 
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This is where first major snag of the system appears. Because of the 
magnetic inertia of the material, small applied magnetic fields at the 
recording head will have very little effect in changing the orientation of 
the domains. This leads to the kind of characteristic shown in Fig. 1.2, 
where the applied magnetising force, (//), is related to the induced flux 
density in the tape material, (B). 

If a sinusoidal signal is applied to the head, and the flux across the 
recording head gap is related to the signal voltage, as shown in Fig. 
1.2, the rémanent magnetic flux induced in the tape - and the consequent 
replayed signal - would be both small in amplitude and badly distorted. 

This problem is removed by applying a large high-frequency signal to 
the recording head, simultaneously with the desired signal. This 
superimposed HF signal is referred to as 'HF bias' or simply as 'bias', and 

Fig. 1.2 The effect of the B-H non-linearity in magnetic materials on the 
recording process. 
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will be large enough to overcome the magnetic inertia of the domains and 
take the operating region into the linear portion of the BH curve. 

Several theories have been offered to account for the way in which 'HF 
bias' linearises the recording process. Of these the most probable is that 
the whole composite signal is in fact recorded but that the very high 
frequency part of it decays rapidly, due to self cancellation, so that only 
the desired signal will be left on the tape, as shown in Fig. 1.3. 

When the tape is passed over the replay head - which will often be the 
same head which was used for recording the signal in the first place - the 

Fig. 1.3 The linearising effect of superimposed H F bias on the recording 
process. 


