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FOREWORD 

THIS book is planned as a textbook of analysis for first and second 
year mathematics students at Russian universities and consequently 
is divided into two volumes. In compiling the book I have made 
extensive use of my three-volume Course of Differential and Integral 
Calculus, revising and abridging it in order to adapt it to the official 
mathematical analysis programme and to make it meet the require-
ments of a lecture course. 

The tasks I set myself and the points by which I was guided are 
as follows: 

1. First and foremost to provide a systematic and, as far as pos-
sible, rigorous treatment of the fundamentals of mathematical 
analysis. I consider it obligatory for the contents of a textbook to 
be presented in a logical sequence, in order to achieve a clearly 
defined and systematic presentation of the facts. 

This does not, however, prevent the lecturer from deviating from 
a strict systematic approach, but, perhaps, even helps him in this 
respect. In my own lecture courses, for example, I usually put aside 
for a while such difficult tasks for beginners as the theory of real 
numbers, the principle of convergence or the properties of con-
tinuous functions. 

2. To uphold my own opinion that a course of mathematical 
analysis should not appear to students to be merely a long chain 
of "definitions" and "theorems", but that it should also serve as 
a guide to action. Students must be taught to apply the theorems 
in practice in order to assist them in mastering the computational 
apparatus of analysis. Although this can be achieved largely with 
the help of exercises, I have also included some examples in my 
treatment of the theoretical material. The total number of these 
examples is, out of necessity, small, but they have been selected in such 
a way as to prepare students for conscientious work on the exercises. 

[xxiii] 
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3. It is well known that mathematical analysis has diverse and 
remarkable applications both in mathematics itself and in related 
scientific fields. Whilst students will realize this more and more as 
time passes, it is essential that they should learn and get used to the 
relationship of mathematical analysis with other mathematical 
sciences and with the requirements of practical work whilst study-
ing the fundamentals of analysis. For this very reason I have pro-
vided, wherever possible, examples of the application of analysis 
not only to geometry, but also to mechanics, physics and engi-
neering. 

4. The problem of completing analytic work up to numerical 
results is of both theoretical and practical importance. Since an 
"exact" or "closed form" solution of a problem in analysis is possible 
in the simplest cases only, it is important to acquaint students with 
the use of approximate methods. Some attention has been given 
to this within the pages of this book. 

5. By way of a brief explanation of my treatment of the subject 
matter, I have first of all considered the concept of a limit which 
plays the principal role among the fundamental concepts of analysis 
and which crops up in diverse forms literally throughout the entire 
course. Hence arises the problem of establishing a unified form of all 
variations of the limit. This is not only important from the viewpoint 
of principles but also vital from a practical standpoint, to obviate 
the necessity of having to construct the theory of limits anew each 
time it arises. There are two ways of achieving this aim: we can 
either immediately give the general definition of the limit of "directed 
variable" (following, for example, Shatunovskii and Moore, or 
Smith), or we can reduce every limit to the simplest case of the limit 
of a variable ranging over an enumerated sequence of values. The 
first alternative is'difficult for beginners, and I have, therefore, chosen 
the second method of approaching the problem. The definition 
of each new limit is given first by means of the limit of a sequence 
and only later on "in ε-δ language". 

6. To indicate a second feature of my treatment of the subject 
matter I have in Volume II, when speaking of curvilinear and 
surface integrals, emphasized the difference between the curvilinear 
and surface "integrals of first kind" (the exact counterparts of the 
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ordinary and double integral over unoriented domains) and similar 
"integrals of second kind" (where the analogy partly vanishes). 
Experience has convinced me that this distinction not only leads 
to a better understanding of the material, but is also convenient in 
applications. 

7. As a short appendix to the book I have included a brief account 
of elliptic integrals and in several cases I have presented problems 
with solutions involving elliptic integrals. This may help to destroy 
the harmful illusion, acquired by merely solving simple problems, 
that the results of analytic calculations must necessarily be "elemen-
tary". 

8. In various places throughout the book the reader will come 
across remarks of an historical nature. Moreover, Volume I ends 
with a chapter entitled, "Historical survey of the development of 
the fundamental concepts of mathematical analysis" and Volume II 
concludes with "An outline of further developments in mathema-
tical analysis". However, neither of these two "surveys" has been 
introduced to serve as a substitute for a complete history of mathe-
matical analysis, which students meet with later in general courses 
on "the history of mathematics". The first survey touches upon 
the origin of the concepts, whilst the final chapter in Volume II 
aims at providing the reader with at least a general idea of the chrono-
logy of the most important events in the history of analysis. 

At this point, and in connection with the preceding paragraph, 
I should like to give a warning to potential readers of this book. 
The sequence in which I have treated various topics is closely con-
nected with modern demands for strict mathematical rigour—demands 
which have become more and more acute over the years. 

Historically speaking, therefore, the development of mathematical 
analysis has not been followed as closely as it might have been. 

Thus, Chapter 1 is devoted to "real numbers", Chapter 3 to 
the "theory of limits", and it is not until Chapter 5 that I have 
commenced to give a systematic account of the differential and 
integral calculus. The historical sequence of events was, of course, 
the complete reverse. The differential and integral calculus were 
founded in the seventeenth century and developed in the eighteenth 
century, being applied to numerous important problems; the theory 
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of limits became the foundation-stone of mathematical analysis at the 
beginning of the nineteenth century and only in the second half of 
the nineteenth century did a clearly defined concept of real numbers 
come into being, which justified the most refined propositions of 
the theory of limits. 

This book summarizes many years of experience in lecturing on 
mathematical analysis in Leningrad University. 

G. M. FIKHTENGOL'TS 


