The Fundamentals of Mathematical Analysis Volume 1 G.M.Fikhtengol'ts

Translation edited by I. N. Sneddon, Professor of Mathematics in the University of Glasgow

INTERNATIONAL SERIES IN PURE AND APPLIED MATHEMATICS VOLUME 72

PERGAMON INTERNATIONAL LIBRARY of Science, Technology, Engineering and Social Studies

The 1000-volume original paperback library in aid of education, industrial training and the enjoyment of leisure

Publisher: Robert Maxwell, M.C.

INTERNATIONAL SERIES IN PURE AND APPLIED MATHEMATICS General Editor: 1. N. SNEDDON

VOLUME 72

THE FUNDAMENTALS OF MATHEMATICAL ANALYSIS

Volume I

THE PERGAMON TEXTBOOK INSPECTION COPY SERVICE

An inspection copy of any book published in the Pergamon International Library will gladly be sent to academic staff without obligation for their consideration for course adoption or recommendation. Copies may be retained for a period of 60 days from receipt and returned if possible. When a particular title is adopted or recommended for adoption for class use and the recommendation results in a sale of 12 or more copies, the inspection copy may be retained with our compliments. The Publishers will be pleased to receive suggestions for revised editions and new titles to be published in this important International Library.

This page intentionally left blank

THE FUNDAMENTALS OF

MATHEMATICAL ANALYSIS

Volume I

G. M. FIKHTENGOL'TS

Translation edited by IAN N. SNEDDON SIMSON PROFESSOR OF MATHEMATICS IN THE UNIVERSITY OF GLASGOW

PERGAMON PRESS OXFORD · NEW YORK · TORONTO · SYDNEY · PARIS · FRANKFURT

U.K.	Pergamon Press Ltd., Headington Hill Hall, Oxford OX3 0BW, England
U.S.A.	Pergamon Press Inc., Maxwell House, Fairview Park, Elmsford, New York 10523, U.S.A.
CANADA	Pergamon of Canada, Suite 104,150 Consumers Road, Willowdale, Ontario M2J 1P9, Canada
AUSTRALIA	Pergamon Press (Aust.) Pty. Ltd., P.O. Box 544, Potts Point, N.S.W. 2011, Australia
FRANCE	Pergamon Press SARL, 24 rue des Ecoles, 75240 Paris, Cedex 05, France
FEDERAL REPUBLIC OF GERMANY	Pergamon Press GmbH, 6242 Kronberg-Taunus, Pferdstrasse 1, Federal Republic of Germany
	Copyright © 1965 Pergamon Press Ltd.

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means: electronic, electrostatic, magnetic tape, mechanical, photocopying, recording or otherwise, without permission in writing from the publishers.

First edition 1965

Reprinted 1979

Library of Congress Catalog Card No. 63-22750

This is a translation from the original Russian Основы математического анализа (Osnovy matematicheskogo analiza), published in 1960 by Fizmatgiz, Moscow

Printed in Great Britain by A. Wheaton & Co. Ltd., Exet ISBN 0 08 013473 4

Volume I

Foreword

xxiii

CHAPTER 1

REAL NUMBERS

§ 1. The set of real numbers and its ordering	1
1. Introductory remarks	1
2. Definition of irrational number	2
3. Ordering of the set of real numbers	5
4. Representation of a real number by an infinite decimal fraction	7
5. Continuity of the set of real numbers	10
6. Bounds of number sets	11
§ 2. Arithmetical operations over real numbers	14
7. Definition and properties of a sum of real numbers	14
8. Symmetric numbers. Absolute quantity	15
9. Definition and properties of a product of real numbers	17
§ 3. Further properties and applications of real numbers	18
10. Existence of a root. Power with a rational exponent	18
11. Power with an arbitrary real exponent	20
12. Logarithms	21
13. Measuring segments	22

Chapter 2

FUNCTIONS OF ONE VARIABLE

§ 1. The concept of a function	25
14. Variable quantity	25
15. The domain of variation of a variable quantity	26
16. Functional relation between variables. Examples	27
17. Definition of the concept of function	28
18. Analytic method of prescribing a function	31
19. Graph of a function	33
20. Functions of positive integral argument	36
21. Historical remarks	37

§ 2. Important classes of functions	39
22. Elementary functions	39
23. The concept of the inverse function	44
24. Inverse trigonometric functions	46
25. Superposition of functions. Concluding remarks	50
Chapter 3	
THEORY OF LIMITS	

§ 1. The limit of a function	52
26. Historical remarks	52
27. Numerical sequence	52
28. Definition of the limit of a sequence	54
29. Infinitesimal quantities	56
30. Examples	57
31. Infinitely large quantities	60
32. Definition of the limit of a function	61
33. Another definition of the limit of a function	63
34. Examples	65
35. One-sided limits	71
§ 2. Theorems on limits	72
36. Properties of functions of a positive integral argument, possessing	
a finite limit	72
37. Extension to the case of a function of an arbitrary variable	74
38. Passage to the limit in equalities and inequalities	75
39. Theorems on infinitesimals	77
40. Arithmetical operations on variables	79
41. Indefinite expressions	80
42. Extension to the case of a function of an arbitrary variable	83
43. Examples	84
§ 3. Monotonic functions	88
44. Limit of a monotonic function of a positive integral argument	88
45. Examples	91
46. A lemma on imbedded intervals	92
47. The limit of a monotonic function in the general case	93
§ 4. The number e	95
48. The number e defined as the limit of a sequence	95
49. Approximate computation of the number e	97
50. The basic formula for the number e. Natural logarithms	99
§ 5. The principle of convergence	102
51. Partial sequences	102

vi

52. The condition of existence of a finite limit for a function of positive integral argument	104
53. The condition of existence of a finite limit for a function of an arbitrary argument	106
§ 6. Classification of infinitely small and infinitely large quantities	1 0 8
54. Comparison of infinitesimals	108
55. The scale of infinitesimals	109
56. Equivalent infinitesimals	110
57. Separation of the principal part	111
58. Problems	112
59. Classification of infinitely large quantities	114

Chapter 4

CONTINUOUS FUNCTIONS OF ONE VARIABLE

. Continuity (and discontinuity) of a function	115
60. Definition of the continuity of a function at a point	115
61. Condition of continuity of a monotonic function	117
62. Arithmetical operations over continuous functions	119
63. Continuity of elementary functions	119
64. The superposition of continuous functions	121
65. Computation of certain limits	122
66. Power-exponential expressions	124
67. Classification of discontinuities. Examples	125
. Properties of continuous functions	127
68. Theorem on the zeros of a function	127
69. Application to the solution of equations	129
70. Mean value theorem	130
71. The existence of inverse functions	132
72. Theorem on the boundedness of a function	133
73. The greatest and smallest values of a function	134
74. The concept of uniform continuity	136
75. Theorem on uniform continuity	138
	 Continuity (and discontinuity) of a function 60. Definition of the continuity of a function at a point 61. Condition of continuity of a monotonic function 62. Arithmetical operations over continuous functions 63. Continuity of elementary functions 64. The superposition of continuous functions 65. Computation of certain limits 66. Power-exponential expressions 67. Classification of discontinuities. Examples Properties of continuous functions 68. Theorem on the zeros of a function 69. Application to the solution of equations 70. Mean value theorem 71. The existence of inverse functions 72. Theorem on the boundedness of a function 73. The greatest and smallest values of a function 74. The concept of uniform continuity

Chapter 5

DIFFERENTIATION OF FUNCTIONS OF ONE VARIABLE

§ 1. Derivative of a function and its computation	140
76. Problem of calculating the velocity of a moving point	140
77. Problem of constructing a tangent to a curve	142
78. Definition of the derivative	145

	79. Examples of the calculation of the derivative	149
	80. Derivative of the inverse function	151
	81. Summary of formulae for derivatives	154
	82. Formula for the increment of a function	154
	83. Rules for the calculation of derivatives	156
	84. Derivative of a compound function	158
	85. Examples	159
	86. One-sided derivatives	161
	87. Infinite derivatives	162
	88. Further examples of exceptional cases	164
§	The differential	165
	89. Definition of the differential	165
	90. The relation between the differentiability and the existence of	
	the derivative	166
	91. Fundamental formulae and rules of differentiation	168
	92. Invariance of the form of the differential	170
	93. Differentials as a source of approximate formulae	171
	94. Application of differentials in estimating errors	172
§	Derivatives and differentials of higher orders	173
	95. Definition of derivatives of higher orders	173
	96. General formulae for derivatives of arbitrary order	175
	97. The Leibniz formula	177
	98. Differentials of higher orders	180
	99. Violation of the invariance of the form for differentials of higher	
	orders	181

CHAPTER 6

BASIC THEOREMS OF DIFFERENTIAL CALCULUS

§ 1. Mean value theorems	
100. Fermat's theorem	183
101. Rolle's theorem	185
102. Theorem on finite increments	186
103. The limit of the derivative	189
104. Generalized theorem on finite increments	189
§ 2. Taylor's formula	191
105. Taylor's formula for a polynomial	191
106. Expansion of an arbitrary function	193
107. Another form for the remainder term	196
108. Application of the derived formulae to elementary functions	199
109. Approximate formulae. Examples	201

CHAPTER 7

INVESTIGATION OF FUNCTIONS BY MEANS OF DERIVATIVES

§ 1. Investigation of the behaviour of functions	204
110. Conditions that a function may be constant	204
111. Condition of monotonicity of a function	205
112. Maxima and minima; necessary conditions	207
113. The first rule	209
114. The second rule	211
115. Construction of the graph of a function	212
116. Examples	214
117. Application of higher derivatives	216
§ 2. The greatest and the smallest values of a function	218
118. Determination of the greatest and the smallest values	218
119. Problems	219
§ 3. Solution of indeterminate forms	221
120. Indeterminate forms of the type $0/0$	221
121. Indeterminate forms of the type ∞/∞	224
122. Other types of indeterminate forms	227

CHAPTER 8

FUNCTIONS OF SEVERAL VARIABLES

§ 1. Basic concepts	229
123. Functional dependence between variables. Examples	229
124. Functions of two variables and their domains of definition	230
125. Arithmetic <i>m</i> -dimensional space	233
126. Examples of domains in <i>m</i> -dimensional space	236
127. General definition of open and closed domains	238
128. Function of m variables	240
129. Limit of a function of several variables	242
130. Examples	245
131. Repeated limits	246
§ 2. Continuous functions	249
132. Continuity and discontinuities of functions of several variables	249
133. Operations on continuous functions	251
134. Theorem on the vanishing of a function	252
135. The Bolzano-Weierstrass lemma	253
136. Theorem on the boundedness of a function	254
137. Uniform continuity	255

Chapter 9

DIFFERENTIATION OF FUNCTIONS OF SEVERAL VARIABLES

§	1.	Derivatives and differentials of functions of several variables	258
		138. Partial derivatives	258
		139. Total increment of the function	260
		140. Derivatives of compound functions	263
		141. Examples	265
		142. The total differential	26 6
		143. Invariance of the form of the (first) differential	268
		144. Application of the total differential to approximate calculations	270
		145. Homogeneous functions	272
§	2.	Derivatives and differentials of higher orders	275
		146. Derivatives of higher orders	275
		147. Theorems on mixed derivatives	277
		148. Differentials of higher orders	280
		149. Differentials of compound functions	283
		150. The Taylor formula	284
ş	3.	Extrema, the greatest and the smallest values	286
		151. Extrema of functions of several variables. Necessary conditions	286
		152. Investigation of stationary points (for the case of two variables)	288
		153. The smallest and the greatest values of a function. Examples	292
		154. Problems	295

Chapter 10

PRIMITIVE FUNCTION (INDEFINITE INTEGRAL)

§ 1. Indefinite integral and simple methods for its evaluation	299
155. The concept of a primitive function (and of an indefinite	
integral)	299
156. The integral and the problem of determination of area	302
157. Collection of the basic integrals	305
158. Rules of integration	306
159. Examples	308
160. Integration by a change of variable	30 9
161. Examples	312
162. Integration by parts	314
163. Examples	315
§ 2. Integration of rational expressions	318
164. Formulation of the problem of integration in finite form	318
165. Simple fractions and their integration	319

	166. Integration of proper fractions	321
	167. Ostrogradski's method for separating the rational part of an integral	324
§ 3	. Integration of some expressions containing roots	327
	168. Integration of expressions of the form $R\left[x, \sqrt[m]{\left(\frac{\alpha x + \beta}{\gamma x + \delta}\right)}\right]$	327
	169. Integration of binomial differentials	329
	170. Integration of expressions of the form $R[x, v(ax^2+bx+c)]$. Euler's substitution	331
§ 4	. Integration of expressions containing trigonometric and exponential functions	
	171. Integration of the differentials $R(\sin x, \cos x) dx$	336
	172. Survey of other cases	339
§ 5	. Elliptic integrals	341
	173. Definitions	341
	174. Reduction to the canonical form	341

CHAPTER 11

DEFINITE INTEGRAL

§ 1. Definition and conditions for the existence of a definite integral	344
175. Another formulation of the area problem	344
176. Definition	346
177. Darboux's sums	348
178. Condition for the existence of the integral	350
179. Classes of integrable functions	35 2
§ 2. Properties of definite integrals	354
180. Integrals over an oriented interval	354
181. Properties expressed by equalities	356
182. Properties expressed by inequalities	357
183. Definite integral as a function of the upper limit	361
§ 3. Evaluation and transformation of definite integrals	364
184. Evaluation using integral sums	364
185. The fundamental formula of integral calculus	365
186. The formula for the change of variable in a definite integral	367
187. Integration by parts in a definite integral	368
188. Wallis's formula	370
8.4 Approximate evaluation of integrals	371
3 4. Approximate evaluation of integrals	
189. The trapezium formula	371
189. The trapezium formula 190. Parabolic formula	371 374
 189. The trapezium formula 190. Parabolic formula 191. Remainder term for the approximate formulae 	371 374 376

CHAPTER 12

GEOMETRIC AND MECHANICAL APPLICATIONS OF THE INTEGRAL CALCULUS

CHAPTER 13

SOME GEOMETRIC APPLICATIONS OF THE DIFFERENTIAL CALCULUS

§ 1	1. The tangent and the tangent plane	423
	209. Analytic representation of plane curves	423
	210. Tangent to a plane curve	425
	211. Positive direction of the tangent	430
	212. The case of a spatial curve	432
	213. The tangent plane to a surface	435
§ 2	2. Curvature of a plane curve	438
	214. The direction of concavity, points of inflection	438
	215. The concept of curvature	440
	216. The circle of curvature and radius of curvature	444

CHAPTER 14

HISTORICAL SURVEY OF THE DEVELOPMENT OF THE FUNDAMENTAL CONCEPTS OF MATHEMATICAL ANALYSIS

§ 1. Early history of the differential and integral calculus	448
217. Seventeenth century and the analysis of infinitesimals	448
218. The method of indivisibles	449
219. Further development of the science of indivisibles	452
220. Determination of the greatest and smallest quantities;	
construction of tangents	455
221. Construction of tangents by means of kinematic considerations	458
222. Mutual invertibility of the problems of construction of tangent	
and squaring	460
223. Survey of the foregoing achievements	462
§ 2. Isaac Newton (1642–1727)	463
224. The calculus of fluxions	463
225. The calculus inverse to the calculus of fluxions; squaring	467
226. Newton's Principles and the origin of the theory of limits	471
227. Problems of foundations in Newton's works	472
§ 3. Gottfried Wilhelm Leibniz (1646–1716)	473
228. First steps in creating the new calculus	473
229. The first published work on differential calculus	475
230. The first published paper on integral calculus	477
231. Further works of Leibniz. Creation of a school	479
232. Problems of foundation in Leibniz's works	480
233. Postscript	481
Index	483

Other Titles in the Series

Volume II

CHAPTER 15

SERIES OF NUMBERS

§	1.	Introduction	1
		234. Elementary concepts	1
		235. The most elementary theorems	3
§ 2	2.	. The convergence of positive series	6
		236. A condition for the convergence of a positive series	6
		237. Theorems on the comparison of series	8

493

	238. Examples	10
	239. Cauchy's and d'Alembert's tests	12
	240. Raabe's test	15
	241. The Maclaurin-Cauchy integral test	18
§ 3.	The convergence of arbitrary series	21
	242. The principle of convergence	21
	243. Absolute convergence	22
	244. Alternating series	25
§4.	The properties of convergent series	27
	245. The associative property	27
	246. The permuting property of absolutely convergent series	29
	247. The case of non-absolutely convergent series	30
	248. The multiplication of series	33
§ 5	. Infinite products	37
	249. Fundamental concepts	37
	250. The simplest theorems. The connection with series	38
	251. Examples	41
§ 6.	The expansion of elementary functions in power series	44
	252. Taylor series	44
	253. The expansion of the exponential and elementary trigonometri-	
	cal functions in power series	46
	254. Euler's formulae	47
	255. The expansion for the inverse tangent	50
	256. Logarithmic series	51
	257. Stirling's formula	53
	258. Binomial series	55
	259. A remark on the study of the remainder	57
§ 7	. Approximate calculations using series	58
	260. Statement of the problem	58
	261. The calculation of the number π	60
	262. The calculation of logarithms	61

Chapter 16

SEQUENCES AND SERIES OF FUNCTIONS

§ 1. Uniform convergence	65
263. Introductory remarks	65
264. Uniform and non-uniform convergence	67
265. The condition for uniform convergence	71

xiv

	CONTENTS	xv
Ş	2. The functional properties of the sum of a series	73
	266. The continuity of the sum of a series	73
	267. The case of positive series	75
	268. Termwise transition to a limit	77
	269. Termwise integration of series	79
	270. Termwise differentiation of series	82
	271. An example of a continuous function without a derivative	83
Ş	3. Power series and series of polynomials	86
	272. The interval of convergence of a power series	86
	273. The continuity of the sum of a power series	89
	274. Continuity at the end points of the interval of convergence	91
	275. Termwise integration of a power series	93
	276. Termwise differentiation of a power series	94
	277. Power series as Taylor series	96
	278. The expansion of a continuous function in a series of polynomials	97
Ş	4. An outline of the history of series	100
	279. The epoch of Newton and Leibniz	1 0 0
	280. The period of the formal development of the theory of series	103
	281. The creation of a precise theory	107

CHAPTER 17

IMPROPER INTEGRALS

§ 1.	. Improper integrals with infinite limits	110
	282. The definition of integrals with infinite limits	110
	283. The application of the fundamental formula of integral calculus	112
	284. An analogy with series. Some simple theorems	113
	285. The convergence of the integral in the case of a positive function	115
	286. The convergence of the integral in the general case	117
	287. More refined tests	119
§ 2.	. Improper integrals of unbounded functions	121
	288. The definition of integrals of unbounded functions	121
	289. An application of the fundamental formula of integral calculus	124
	290. Conditions and tests for the convergence of an integral	125
§ 3.	. Transformation and evaluation of improper integrals	128
	291. Integration by parts in the case of improper integrals	128
	292. Change of variables in improper integrals	129
	293. The evaluation of integrals by artificial methods	131

CHAPTER 18

INTEGRALS DEPENDING ON A PARAMETER

§	1.	Elementary theory	136
		294. Statement of the problem	136
		295. Uniform approach to a limit function	137
		296. Taking limits under the integral sign	139
		297. Differentiation under the integral sign	141
		298. Integration under the integral sign	1 43
		299. The case when the limits of the integral also depend on the para-	
		meter	144
		300. Examples	146
§	2.	Uniform convergence of integrals	147
		301. The definition of uniform convergence of integrals	147
		302. Conditions and sufficiency tests for uniform convergence	150
		303. The case of integrals with finite limits	152
ş	3.	The use of the uniform convergence of integrals	154
		304. Taking limits under the integral sign	154
		305. The integration of an integral with respect to the parameter	157
		306. Differentiation of an integral with respect to the parameter	160
		307. A remark on integrals with finite limits	161
		308. The evaluation of some improper integrals	162
ş	4.	Eulerian integrals	168
		309. The Eulerian integral of the first type	168
		310. The Eulerian integral of the second type	170
		311. Some simple properties of the Γ function	171
		312. Examples	177
		313. Some historical remarks on changing the order of two limit	
		operations	178

CHAPTER 19

IMPLICIT FUNCTIONS. FUNCTIONAL DETERMINANTS

§ 1. Implicit functions	181
314. The concept of an implicit function of one variable	181
315. The existence and properties of an implicit function	183
316. An implicit function of several variables	188
317. The determination of implicit functions from a system of	
equations	190
318. The evaluation of derivatives of implicit functions	195

	CONTENTS	xvii
§ 2.	Some applications of the theory of implicit functions	199
	319. Relative extremes	199
	320. Lagrange's method of undetermined multipliers	203
	321. Examples and problems	204
	322. The concept of the independence of functions	207
	323. The rank of a functional matrix	209
§ 3.	Functional determinants and their formal properties	213
	324. Functional determinants	213
	325. The multiplication of functional determinants	214
	326. The multiplication of non-square functional matrices	216

CHAPTER 20

CURVILINEAR INTEGRALS

§ 1	. Curvilinear integrals of the first kind	219
	327. The definition of a curvilinear integral of the first kind328. The reduction to an ordinary definite integral329. Examples	219 221 224
§ 2	. Curvilinear integrals of the second kind	226
	330. The definition of curvilinear integrals of the second kind 331. The existence and evaluation of a curvilinear integral of the	226
	second kind	229
	332. The case of a closed contour. The orientation of the plane	232
	333. Examples	235
	334. The connection between curvilinear integrals of both kinds	237
	335. Applications to physical problems	238

CHAPTER 21

DOUBLE INTEGRALS

§ 1. The definition and simplest properties of double integrals	243
336. The problem of the volume of a cylindrical body	243
337. The reduction of a double integral to a repeated integral	245
338. The definition of a double integral	248
339. A condition for the existence of a double integral	249
340. Classes of integrable functions	251
341. The properties of integrable functions and double integrals	254
342. An integral as an additive function of the domain; differentia-	
tion in the domain	257

§	2.	The evaluation of a double integral	259
		343. The reduction of a double integral to a repeated integral in the case of a rectangular domain	259
		344. The reduction of a double integral to a repeated integral in the	264
		345. A mechanical application	204 271
§	3.	Green's formula	275
		346. The derivation of Green's formula	275
		347. An expression for area by means of curvilinear integrals	279
ş	4.	Conditions for a curvilinear integral to be independent of the path of integration	281
		240. The integral slane a simple closed contain	901
		348. The integral along a simple closed contour 349. The integral along a curve joining two arbitrary points	281
		350. The connection with the problem of exact differentials	285
		351. Applications to physical problems	289
§	5.	Change of variables in double integrals	292
		352. Transformation of plane domains	292
		353. An expression for area in curvilinear coordinates	297
		354. Additional remarks	300
		355. A geometrical derivation	303
		356. Change of variables in double integrals	305
		domain	308
		358 Examples	300
		359. Historical note	312
		Chapter 22	
		THE AREA OF A SURFACE. SURFACE INTEGRALS	
§	1.	Two-sided surfaces	315
		360. Parametric representation of a surface	315
		361. The side of a surface	320
		362. The orientation of a surface and the choice of a side of it	323
		363. The case of a piece-wise smooth surface	326

§ 2. The area of a curved surface328364. Schwarz's example328365. The area of a surface given by an explicit equation330

xviii

CONTENTS	xix
366. The area of a surface in the general case	333
367. Examples	336
§ 3. Surface integrals of the first type	338
368. The definition of a surface integral of the first type	338
369. The reduction to an ordinary double integral	338
370. Mechanical applications of surface integrals of the first type	341
§ 4. Surface integrals of the second type	344
371. The definition of surface integrals of the second type	344
372. The reduction to an ordinary double integral	347
373. Stokes's formula	350
374. The application of Stokes's formula to the investigation of curvi-	
linear integrals in space	354

CHAPTER 23

TRIPLE INTEGRALS

§ 1 .	A triple integral and its evaluation	357
	375. The problem of calculating the mass of a solid	357
	376. A triple integral and the conditions for its existence	358
	377. The properties of integrable functions and triple integrals	359
	378. The evaluation of a triple integral	361
	379. Mechanical applications	365
§ 2.	Ostrogradski's formula	368
	380. Ostrogradski's formula	368
	381. Some examples of applications of Ostrogradski's formula	371
§ 3.	Change of variables in triple integrals	375
	382. The transformation of space domains	375
	383. An expression for volume in curvilinear coordinates	377
	384. A geometrical derivation	380
	385. Change of variables in triple integrals	383
	386. Examples	384
	387. Historical note	387
§ 4.	. The elementary theory of a field	388
	388. Scalars and vectors	388
	389. Scalar and vector fields	389
	390. A derivative in a given direction. Gradient	390
	391. The flow of a vector through a surface	393
	392. Ostrogradski's formula. Divergence	394
	393. The circulation of a vector. Stokes's formula. Vortex	397

§ 5. Multiple integrals	400
394. The volume of an <i>m</i> -dimensional body and the <i>m</i> -tuple integral	400
395. Examples	401

Chapter 24

FOURIER SERIES

§	1.	Introduction	404
		396. Periodic values and harmonic analysis	404
		397. The determination of coefficients by the Euler-Fourier method	407
		398. Orthogonal systems of functions	410
§	2.	The expansion of functions in Fourier series	412
		399. Statement of the problem. Dirichlet's integral	412
		400. A fundamental lemma	415
		401. The principle of localization	417
		402. The representation of a function by Fourier series	418
		403. The case of a non-periodic function	421
		404. The case of an arbitrary interval	422
		405. An expansion in cosines only, or in sines only	424
		406. Examples	427
		407. The expansion of a continuous function in a series of trigo-	
		nometrical polynomials	433
§	3.	The Fourier integral	43 5
		408. The Fourier integral as a limiting case of a Fourier series	435
		409. Preliminary remarks	437
		410. The representation of a function by a Fourier integral	439
		411. Different forms of Fourier's formula	440
		412. Fourier transforms	442
§	4.	The closed and complete nature of a trigonometrical system of functions	445
		413. Mean approximation to functions	445
		414. The closure of a trigonometrical system	448
		415. The completeness of a trigonometrical system	453
		416. The generalized equation of closure	454
		417. Termwise integration of a Fourier series	455
		418. The geometrical interpretation	456
§	5.	An outline of the history of trigonometrical series	462
		419. The problem of the vibration of a string	462
		420. D'Alembert's and Euler's solution	463
		421. Taylor's and D. Bernoulli's solution	465
		422. The controversy concerning the problem of the vibration of	
		a string	468

xх

The expansion of functions in trigonometrical series; the deter-	
mination of coefficients	470
The proof of the convergence of Fourier series and other prob-	
lems	472
Concluding remarks	474
	The expansion of functions in trigonometrical series; the deter- mination of coefficients The proof of the convergence of Fourier series and other prob- lems Concluding remarks

<u>y y i</u>

Conclusion

AN OUTLINE OF FURTHER DEVELOPMENTS IN MATHEMATICAL ANALYSIS

I. The theory of differential equations	476
II. Variational calculus	479
III. The theory of functions of a complex variable	484
IV. The theory of integral equations	488
V. The theory of functions of a real variable	492
VI. Functional analysis	498
Index	507
Other Titles in the Series	517

This page intentionally left blank

FOREWORD

THIS book is planned as a textbook of analysis for first and second year mathematics students at Russian universities and consequently is divided into two volumes. In compiling the book I have made extensive use of my three-volume *Course of Differential and Integral Calculus*, revising and abridging it in order to adapt it to the official mathematical analysis programme and to make it meet the requirements of a lecture course.

The tasks I set myself and the points by which I was guided are as follows:

1. First and foremost to provide a systematic and, as far as possible, rigorous treatment of the fundamentals of mathematical analysis. I consider it obligatory for the contents of a textbook to be presented in a logical sequence, in order to achieve a clearly defined and systematic presentation of the facts.

This does not, however, prevent the lecturer from deviating from a strict systematic approach, but, perhaps, even helps him in this respect. In my own lecture courses, for example, I usually put aside for a while such difficult tasks for beginners as the theory of real numbers, the principle of convergence or the properties of continuous functions.

2. To uphold my own opinion that a course of mathematical analysis should not appear to students to be merely a long chain of "definitions" and "theorems", but that it should also serve as a guide to action. Students must be taught to apply the theorems in practice in order to assist them in mastering the computational apparatus of analysis. Although this can be achieved largely with the help of exercises, I have also included some examples in my treatment of the theoretical material. The total number of these examples is, out of necessity, small, but they have been selected in such a way as to prepare students for conscientious work on the exercises. 3. It is well known that mathematical analysis has diverse and remarkable applications both in mathematics itself and in related scientific fields. Whilst students will realize this more and more as time passes, it is essential that they should learn and get used to the relationship of mathematical analysis with other mathematical sciences and with the requirements of practical work whilst studying the fundamentals of analysis. For this very reason I have provided, wherever possible, examples of the application of analysis not only to geometry, but also to mechanics, physics and engineering.

4. The problem of completing analytic work up to numerical results is of both theoretical and practical importance. Since an "exact" or "closed form" solution of a problem in analysis is possible in the simplest cases only, it is important to acquaint students with the use of approximate methods. Some attention has been given to this within the pages of this book.

5. By way of a brief explanation of my treatment of the subject matter, I have first of all considered the concept of a limit which plays the principal role among the fundamental concepts of analysis and which crops up in diverse forms literally throughout the entire course. Hence arises the problem of establishing a unified form of all variations of the limit. This is not only important from the viewpoint of principles but also vital from a practical standpoint, to obviate the necessity of having to construct the theory of limits anew each time it arises. There are two ways of achieving this aim: we can either immediately give the general definition of the limit of "directed variable" (following, for example, Shatunovskii and Moore, or Smith), or we can reduce every limit to the simplest case of the limit of a variable ranging over an enumerated sequence of values. The first alternative is difficult for beginners, and I have, therefore, chosen the second method of approaching the problem. The definition of each new limit is given first by means of the limit of a sequence and only later on "in ε - δ language".

6. To indicate a second feature of my treatment of the subject matter I have in Volume II, when speaking of curvilinear and surface integrals, emphasized the difference between the curvilinear and surface "integrals of first kind" (the exact counterparts of the ordinary and double integral over unoriented domains) and similar "integrals of second kind" (where the analogy partly vanishes). Experience has convinced me that this distinction not only leads to a better understanding of the material, but is also convenient in applications.

7. As a short appendix to the book I have included a brief account of elliptic integrals and in several cases I have presented problems with solutions involving elliptic integrals. This may help to destroy the harmful illusion, acquired by merely solving simple problems, that the results of analytic calculations must necessarily be "elementary".

8. In various places throughout the book the reader will come across remarks of an historical nature. Moreover, Volume I ends with a chapter entitled, "Historical survey of the development of the fundamental concepts of mathematical analysis" and Volume II concludes with "An outline of further developments in mathematical analysis". However, neither of these two "surveys" has been introduced to serve as a substitute for a complete history of mathematical analysis, which students meet with later in general courses on "the history of mathematics". The first survey touches upon the origin of the concepts, whilst the final chapter in Volume II aims at providing the reader with at least a general *idea of the chronology* of the most important events in the history of analysis.

At this point, and in connection with the preceding paragraph, I should like to give a warning to potential readers of this book. The sequence in which I have treated various topics is closely connected with modern demands for strict mathematical rigour—demands which have become more and more acute over the years.

Historically speaking, therefore, the development of mathematical analysis has not been followed as closely as it might have been.

Thus, Chapter 1 is devoted to "real numbers", Chapter 3 to the "theory of limits", and it is not until Chapter 5 that I have commenced to give a systematic account of the differential and integral calculus. The historical sequence of events was, of course, the complete reverse. The differential and integral calculus were founded in the seventeenth century and developed in the eighteenth century, being applied to numerous important problems; the theory

FOREWORD

of limits became the foundation-stone of mathematical analysis at the beginning of the nineteenth century and only in the second half of the nineteenth century did a clearly defined concept of real numbers come into being, which justified the most refined propositions of the theory of limits.

This book summarizes many years of experience in lecturing on mathematical analysis in Leningrad University.

G. M. FIKHTENGOL'TS