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PREFACE 

Tms book has grown out of lectures given by the author during the 
last sixteen years to students beginning honours courses in the 
Universities of Cambridge, Birmingham and Glasgow. It deals almost 
entirely with functions of a single real variable and includes the topics 
usually discussed in a first rigorous course on analysis, namely limits, 
continuity, differentiability, integration, convergence of infinite series, 
double series and infinite products. 

The reader is expected to be familiar with, and have some facility 
in applying, elementary algebraic processes, including inequalities. 
No previous knowledge of the calculus or of limiting processes is 
assumed, although a certain amount of practice in the application of 
the elementary manipulative techniques of differentiation and inte-
gration will perhaps be advantageous to him, since it is not the 
primary purpose of the book to develop skill in these techniques. 

In matters of logic a "naive" point of view is adopted, so that, 
for example, the notions of set and ordered pair are treated as being 
intuitively obvious, nor is there any mention of such underlying 
axioms as those of extension, specification and choice. The starting 
point is essentially Theorem 5.2.1, which states that a set of real 
numbers that is bounded above has a least upper bound. As mentioned 
in the Introduction (§ 1), the author believes that an earlier point 
of departure is unsuitable for the great majority of students beginning 
the study of analysis. From this point onwards the theory is developed 
logically and rigorously, theorems being proved in as general a form as is 
possible in their context. The exponential, logarithmic, trigonometric, 
hyperbolic and other special functions, as well as fractional powers, are 
established as applications of general theorems on, for example, infinite 
series and inverse functions, and their properties are found. These and 
other applications demonstrate the power and practical uses of the 
general theories developed and give point to them. In comparison, the 
inconvenience caused by the fact that the special functions are not 
available for illustrative purposes in the earlier parts of the book is 
small. This lack can, in any case, be turned to advantage by encourag-
ing students to use their imagination to construct functions having 
various required properties; in this way, also, the erroneous 

ix 
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preconception that a function must be definable by a formula can be 
eradicated. 

A few features call, perhaps, for special mention : 
(i) Care has been taken throughout to distinguish between a func-

tion f and its value /(x) at a point x in its domain of definition. Where 
strict adherence to this might be inconvenient, as in the case of 
special functions defined explicitly by formulae, use has been made 
of braces {.. •} to indicate that the function, and not a particular 
value, is being considered; this, after all, is merely an extension of 
the existing notation used to distinguish a sequence {an} from its 
nth term an. 

(ii) The proof of the compactness of a closed interval (see § 11.3) 
is given in a form directly applicable to dissections (partitions), since 
it is in this form that applications are nearly always required. 

(iii) The theories of functions of bounded variation, lengths of 
curves, and Riemann (or Riemann—Stieltjes) integration depend on 
certain elementary, if not particularly simple, properties of dissec-
tions. In each case these preliminary results are essentially the same. 
To make this clear and to avoid tedious repetition, this work has 
been separated off into a section on interval functions (§ 28), where 
certain general results are obtained that are immediately applicable 
to these three topics and free them from obscuring technical details. 
As a result, the Riemann—Stieltjes integral (at any rate for monotonic 
integrators) presents no more difficulty than does the Riemann inte-
gral, which is deduced from it as a particular case. The various appli-
cations of Riemann—Stieltjes integration made in the succeeding sec-
tions should convince the reader of its value as an analytical tool. 
Lebesgue integration is not discussed; although the methods of deve-
loping it have been much improved recently, there still does not seem 
to be any treatment simple enough for students beginning the study 
of analysis. Such students must have some integral at their disposal, 
and the Riemann integral, although unpopular in some quarters, fills 
this gap. Intuitively, its definition is acceptable to the student be-
cause of its connexion with area, despite its weakness as a tool in 
more advanced work. 

(iv) The theory of curves, including integration and variation along 
a curve, is treated fairly fully (§ 31), a distinction being made be-
tween a curve and its carrier. 

It is not expected that every reader and lecturer will wish to 
include everything in the book. While most of the material of the 
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first five chapters may be regarded as essential, selections and omissions 
can be made more freely in the last two chapters, according to the 
interests of the student or teacher. 

One of the main difficulties of analysis for the student arises from 
a lack of a sufficient number of examples. For this reason numerous 
exercises are given at the end of nearly every section. These exercises 
have threefold object, to test understanding of the preceding 
theory, to provide practice in carrying out the techniques described, 
and to encourage imaginative thinking by requiring the student to 
provide his own examples and counter examples. They are of varying 
degrees of difficulty, the harder ones usually being taken from uni-
versity examination papers. The author is indebted to the Syndics of 
the Cambridge University Press and the Universities of Glasgow and 
Birmingham for permission to include questions; their provenance is 
indicated in the text by a C, G or B, respectively, followed by the 
date. 

It is a pleasure to thank my colleagues Dr Daniel Martin and 
Dr Alex. P. Robertson for many valuable criticisms and suggestions, 
and for their help in correcting the proofs; it is scarcely necessary 
to state that the imperfections and inaccuracies that remain are 
the sole responsibility of the author. Finally, I wish to express my 
gratitude to Miss Doris M. Caldwell for typing the greater part of the 
manuscript. 

R. A. RANktc 

NOTE TO READER 

All examples marked with an asterisk throughout 
the text have hints for solution which will be found 

on pages 583-599 
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CHAPTER 1 

FUN]~AMENTAL IDEAS AND ASSUMPTIONS 

1. INTRODUCTION 

Ie ONE had to characterize in a single sentence the difference between 
algebra and analysis, one might say that algebra is concerned 
with finite sets of numbers, while analysis is concerned with infinite 
sets of numbers. This statement, like all attempts at concise sum-
marization, is only partially accurate, but it does emphasize one of 
the causes of many of the difficulties that analysis presents to the 
average student. In the author's experience, the difficulties that the 
student encounters in the subject, and the errors that he makes, 
arise from three main causes, namely (i) failure of simple logic, 
such as the inability to distinguish between a necessary and a suf-
ficient condition, (ii) lack of practice in manipulation of inequalities, 
and (iii) the unverified assumption that any process that can be carried 
out on a finite set of numbers can be extended to infinite sets of 
numbers. 

Of these (i) can perhaps be overcome best by examples drawn from 
everyday life and by constantly drawing attention to the difference 
between implying and being implied by; (ii) can only be improved 
by frequent practice. As regards (iii), however, this can only be 
corrected by commencing the study of analysis at some suitable 
point as far back as possible and by proceeding thereafter as logically 
as possible. 

There are several different opinions as to where this point of 
departure should be chosen. There is no doubt that the serious stu-
dent of mathematics will wish, at some stage in his course, to start 
at the very beginning with a full discussion of the nature of number 
built up logically from certain simple axioms. However, at the 
stage when a knowledge of analysis is desirable, he will not normally 
possess the mathematical maturity that is necessary to appreciate 
the rather abstract, intangible and sometimes unexpected concepts, 
that occur in any serious discussion of the logical foundations of 
number and analysis. 
~a~iR  1 1 
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For this reason it seems better to start further on and to make the 
assumption that the real and complex numbers exist and possess 
certain familiar properties. This then is our point of departure. In 
§§2-5 we set down our initial assumptions about numbers and their 
properties and draw from them various simple conclusions. From this 
foundation we proceed to discuss rigorously (i.e. logically and accura-
tely) the mathematical subjects in the list of contents. 

Before embarking on this programme, we remark that a logical 
proof of these initial assumptions cannot, of course, start from nothing, 
but must be based on certain initial axioms. It is usual to begin by 
setting down certain axioms for the natural numbers, i.e. the positive 
integers. From this foundation one constructs .the other kinds of 
numbers, namely zero and the negative integers, the rational numbers, 
the real numbers and, finally, the complex numbers, and deduces 
their properties. There are various ways in which this can be done. 
For a recent treatment which seems particularly suitable for non-
specialists see H. Thurston, The number system (Blackie, 1956). 
In it proofs of all our initial assumptions can be found. 

2. ASSUMPTIONS RELATING TO THE FIELD 
OPERATIONS 

2.1 Elementary operations. In this section and the three following 
we set down the various properties of real and complex numbers 
that we shall assume and use. As mentioned in § 1, all these pro-
perties could be deduced logically from certain simple initial axioms. 
The properties that we list here and in § 3 are not intended to form 
a logically complete set of postulates, nor are they chosen so as to be 
independent of each other. The main criterion for including a property 
is the frequency of its future use. 

It is assumed that the integers (positive, zero and negative), the 
rational numbers, the real numbers and the complex numbers exist 
and that they obey the laws of algebra; that is, they can be combined 
by addition, subtraction, multiplication and division (except by zero) 
according to the familiar rules. In the language of abstract algebra 
this states that the real numbers, and also the complex numbers, form 
a field; this explains the title of the section. Examples of such rules. 
are the following, in which letters stand for numbers, real or complex. 

2.1 A. a ± b = b + a (commutative law for addition). 
2.1 B. a + (b -E- c) = (a + b) -E- c (associative law for addition). 
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2.1C. ab = ba (commutative law for multiplication). 

2.1D. a (bc) = (ab) c (associative law for multiplication). 

2.1E. a(b + c) = ab + ac (distributive law). 

2.1F. aß--0= a,  a+(—a)=0, b —a=b+(—a). 

2.1G. a 0 = 0, a l = a. 

2.IH. If a + 0, then aa-1 = 1 and 
b 

=b/a=ba 1. 
a 

2.1I. If m and n are integers and a and b are non-zero real or 
complex numbers, then 

am . a'1 = am± ) a'cR b = (a b) hR  ( am) = amn 1 i // 

These are known as the index laws. 

2.1J. If ab = 0, then either a = 0 or b = 0 (integral domain 
property). 

2.1 K. If a = 0, then a° = 1; this can be deduced from the first 
index law by taking m = 1 and n = 0. It follows that a (a° — 1) = 0, 
and so a° — 1 = 0, by 2.1J. We make the convention that 0° = 1, 
so that a° = 1 for all real or complex a. With this convention, the 
restriction in 2.11 that a and b are non-zero can be removed, provided 
that m and n are non-negative integers. 

2.1L. (.1)2 = 1. 

2.2. Different kinds of numbers. It must always be borne in mind 
that, when we speak of numbers, we mean finite numbers. Whenever 
the word infinity and symbol oo are introduced*, they are always used. 
with carefully defined meanings, and in no case are they regarded 
as numbers. 

Further, the adjectives real and complex are not exclusive; a real 
number is also a complex number, but the converse may not hold. 
Similarly, the use of the word or in 2.1 J is not exclusive; i.e.; when 
we state that either a = 0 or b = 0, we do not preclude the possi-
bility that both a and b may be zero. We occasionally use a more 
picturesque phraseology and say that a vanishes when we mean 
that a = 0. 

* They occur for the first time in § 7. 

1* 
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The integers form a subclass of the rational numbers, and the 
rational numbers form a subclass of the real numbers. The letter n 
always denotes an integer wherever it appears in this book. A rational 
number a can be written as the quotient of two integers, i.e. as 

a=
P

, 
q 

where p and q are integers. Such a representation can be made unique 
by requiring q to be positive and p and q to possess no common factor 
other than unity. For example, the integer 0 can be represented in 
the unique form just mentioned by taking p = 0, q = 1. When we 
say that a positive integer b is a factor of, or divides, an integer c, we 
mean that c/b is an integer. An integer q is said to be even if 
2 divides q; otherwise q is odd. 

If a and b are rational numbers, so are a + b, a — b, a b and 
(when b = 0) a/b. A real number that is not rational is said to be 
irrational (see 3.2H and Ex. 3.1). 

The statement of certain elementary properties of complex numbers 
is deferred to § 16. 

3. ASSUMPTIONS RELATING TO THE ORDERING OF 
THE REAL NUMBERS 

3.1. Elementary rules. In this section we are concerned exclusively 
with real numbers. It is assumed that the real numbers form an 
ordered system. By this we mean that, if we are given any two real 
numbers a and b, we can decide whether a is less than (<), equal to, 
or greater than (>) b, and only one of these three possibilities can 
occur; further a < b is equivalent to b > a. We write a ? b, or 
a' b, if a is not less than b, or if a is not greater than b, respectively; 
for example 2' 3, and also 3' 3. A real number a is positive, 
non-negative or negative according as a > 0, a >_ 0 or a < 0, 
respectively. 

The, laws governing the use of inequality signs are assumed known; 
examples of these laws are the following: 

3.1 A. If a > b and b > c, then a > c. 

3.1 B. If a > b and c z d, then a -{- c > b -{- d; in particular, 
a + c > b ± c. 

3.10. If a> b, then —a < — b. 
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3.1D.Ifa>bz0andc>_ d> 0,then ac>bd. Herea>b>>-0 
means that a> b and b >-- 0 ; two or more inequalities are frequently 
combined in this way. If the restrictions b > 0, d > 0 are omitted, 
the result may be false, as is illustrated by taking a = c = 1, 
b = d = —2. If c = d > 0, we deduce, in particular, that ac > be. 

3.1E.Ifa> b > 0,then 

0< á< b. 

3.1 F. If a is any real number, an integer n exists such that n > a. 
This is the so-called axiom 0/ Archimedes. 

Similar results involving > and < hold, and will be referred to 
under the same reference numbers. For example, in 3.2 F below, we 
use 3.1 D in the form that, if a >— b >— 0 and c > d >— 0, then ac >_ bd. 

The modulus or absolute value of a real number a is denoted by a 1, 
and is defined to be a, if a >_ 0, and —a if a < 0. Clearly I a ~~ 0, 
and a = 0 if and only if a = 0; also ( — a = la ~ . 

3.2. Simple consequences 

3.2 A. We note that, for any real numbers a and b, a b I = l a I I b I 
For each side is either ab or — ab, and both sides are non-negative 
and therefore equal. 

3.213. The inequality I a I s r (for p z 0) is equivalent to 
— r < a <_ r. For, if a <__ r, then 0 —<— a <— p if a >— 0, while if 

a < 0, then —a S r, i.e. a >_ —p;  hence 
— r 

s a 5 p in either case. 
The converse is proved similarly. Note that, in particular, 
— ~ a < a <— ~ a ~. Similarly, a 

I z r if and only if — r < a < r. 
3.2C. a + b ~~ a I + ~ b ~ .  By addition of the inequalities 

— a ~~ a a ~ , — b ~~ b ~ b ~ , we obtain — ( ~ a ~~ + b ~ ) a + & 
_< 1 a + I b ~ , which is the result stated. This result is known as the 
triangle inequality for a reason that will become apparent when we 
prove the corresponding result for complex numbers. 

3.2D. By taking a = cc — ß, b = ß in 3.2 C we deduce the corollary : 

cc
— ß ~.~ a I — ~ b ~ . 

Similarly, 1 cc — ß 1 = ~~ ß — cc I ? ~~ ß ~ — ~~ a ~ , so that we have, by 3.2 B, 

Il l — Ib ~ ~ c—ßl. 
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3.2E. We define max (o', b) to be a or ß according as a > or 
a < ß. Similarly, min (a, b) is (3 or oi according as a >= ß or oi < ß. 
It is easily verified that 

max (a, b)=2{a -}- b-E- a —(3 }, 

min (a, b) = {a I-b- a-ßl}. 

We say that y lies between two real numbers a and b if 

min (cc, ß) 5 y s max (o', ß) . 

3.2F. If a is any real number, then a2 >— 0. For, by 2.1 L, 

a2 =(+1al)2
=~a12 

and a 2 >__ 0 by 3.1 D (with al in place of a and c, and b = d = 0). 
Clearly a2 > 0 if a 

4 
0. 

3.2G. If a>=0 andb?0,wehave 

(a —b) 2 < ~ a2 —b 2 . 

To show this we clearly may assume that a ? b z 0, since the in-
equality is unaltered when a and b are interchanged. We then have 
to prove that 

(a —b) 2 <a2 —b 2, 

which is equivalent to 
2b(a — b) >_ 0. 

This is true since 2b ? 0 and a — b > O. 

3.2 H. For the purpose of developing the theory it is not necessary 
to assume the existence of nth roots of real numbers, as their exist-
ence will be established, subject to certain conditions, as a consequence 
of Theorem 12.1.1. However, in exercises and for purposes of illustra-
tin, we shall assume that square-roots of non-negative numbers 
exist. That is, if a is any non-negative real number, there exists a 
non-negative number b with the property that b2 = a, and we write 
~~ = ya. Clearly (_ b)2 = a and it follows easily from 2.1 J that Va 
and — j/a are the only numbers x with the property that x2 = a. 
Note that / always denotes the non-negative square root, and that 

j/ (c2) = ~~ c ~~ for any real c. 

If n is a positive integer that is not the square of an integer, 
the real number j/n is irrational. In the general case, this is best 
proved by elementary arguments from the theory of numbers; in 
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particular cases it can be proved by other methods (see Ex. 3.1, 
where j/2 and j/3 are considered). Many of the examples that we 
shall give will depend upon the existence of irrational numbers and, 
in particular, on the fact that an irrational number can be found 
between any two given real numbers (see Ex. 3.3). We shall rarely 
need to know that any particular number is irrational. 

EXERCISES 3 

*3.1. Show that y2 and 13 are irrational numbers. 
*3.2. Prove that )/3 — y2 is irrational. 
*3.3. If a and b are any two real numbers and a < b, show that there exist a 

rational number r and an irrational number s such that a < r < b and a < s < b. 
3.4. If r is rational and not zero and s is irrational prove that r + s and rs 

are irrational. 
*3.5. If (i) a, b, c and d are rational, (ii) b > 0, d > 0, (iii) lb and yd are ir-

rational, and (iv) a + }lb = c + }ld, prove that a = c and b = d. 
3.6. If p/q < r/s, where p, q, r and s are real and q> 0, s> 0, show that 

p p+r < r 
q  q+s  8 

*3.7. Suppose that b > a and that b > 0. Without assuming the existence 
of square roots, prove that there exists a rational number r, such that a < r2 < b. 

*3.8. If the real number a is such that a < 1 + e for every positive e, show 
that a < 1. 

*3.9. Find all real numbers x for which 

3  2 — s x*3). 

3.10. Show that, if p and q are real numbers, then 
x2+2px+q -- q—p2 

for all real x. 
Prove that (1) if q> p2, c2 + 2rx + q> 0 for all real x, (ii) if q = r2, 

x2 + 2rx + q 0 for all real x, and (iii) if q < p2, 
c2 + 2rx + q ()0 

if and only if either 
or c<(s)—p—y(p 2 — g)• 

4. MATHEMATICAL INDUCTION 

4.1. Statement 01 the principle of induction. A fundamental 
principle, which is used with great frequency to establish general 
results, is the principle of induction. No discussion of the logical 

* Note: All asterisked examples throughout the text have hints for solution 
(see pages 583-599). 
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foundations of the natural numbers (i.e. the positive integers) can 
avoid including it in some form or other. 

Let P (n) be some proposition involving the integer n. In appli-
cations. P(n) will usually be some equation or inequality, such as 

n + 5, which may or may not be true for the value of n con-
sidered. Then the principle of induction may be formulated in two 
slightly different forms which we state as theorems. 

THEOREM 4.1.1. Suppose (i) that P(N) is true for some fixed* 
integer N, and (ii) that, for all N > n, P (n -!- 1) is true whenever R (n) . 
is true. Then P (n) is true for all integers n > N. 

THEOREM 4.1.2. Suppose (i) that P (1) is true for some fixed integer 
N, and (ii) that P (n -!- 1) is true whenever P (m) is true for all integers 
m satisfying N < m ‚n. Then P (n) is true for all integers n >_ N. 

In applying either of these theorems it can only be concluded that 
P (n) is true for all integers n z N if both of the conditions (i) and 
(ii) have been verified. It should also be noted that the words 
"P(n + 1) is true" form part of the second condition, which has to 
be verified, and are not part of the conclusion of either theorem. 
Further, it cannot be too strongly emphasized that, in Theorem 4.1.1, 
P (n -{- 1) must hold whenever P (n) holds, and that it is not sufficient, 
for example, merely to check this for particular values of n such as 
1, 2 and 3. 

Many mathematical functions (see later for general definition of 
function) and relations whose existence are generally accepted as 
obvious depend in reality upon the induction principle for their 
definition, existence and validity. This applies, in particular, to the 

n  
definitions of expressions such as an, a, and rj a7 . It will suffice to 
consider two examples in detail.  r=I 7=1 

4.1 A. The factorial function n! is defined inductively as follows 

0! = 1, (m -!- 1)! _ (m -!- 1). m! for all integers m > 0. (1) 

* The word fixed as used here and elsewhere in the book is really superfluous, 
and for this reason no formal definition is given. The word is used in order to 
help the reader to remember which symbols, such as N, take the same value 
throughout the argument, and which symbols (sometimes called dummy symbols) 
can denote arbitrary members of sets (see § 5). Thus, in the theorem, n can 
be any integer greater than or equal to N. Similar remarks apply to the adjective 
given. In much the same way, although all numbers are finite by definition, the 
word number is occasionally qualified by the adjective finite, where it is thought 
that the reader might feel tempted to include infinity as a possible "value". 
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The existence of n! for all positive integers n then follows from 
Theorem 4.1.1; for this purpose we take N = 0, and define P (n) 
to be the proposition that n! is defined as a unique number by (1). 
Then condition (i) of Theorem 4.1.1 is satisfied, since 0! = 1, by (1). 
So is condition (ii), since the definition of (n + 1)! follows from that 
of n! by means of the relation (n + 1)! = (n + 1). n!. We conclude 
that n! is defined for all n >_ 0. 

More generally, expressions such as 
k h 

a,  and P a, 
r =N r=N 

are defined inductively by 
N 

7
N 

Aar =11 =, 
r=N r=N 

and 
n+1 ( n n+1 hn 

~~ ar = 1 u a + a 11 n+1,  ar = 1 11 a4 an+i, 
r=N ~t=1N  1 r=N ~r=N 111 

for n >_ N. 
With the aid of 2.1 A-2.1 D it can be shown that the numbers 

denoted by the expressions (2) remain unaltered for different order-
ings and groupings of the a, (N < r s n),, and we can prove, for 
example, that 

h ,a 

b O a  Sbar , 
r=N r =N 

which extends 2.1 E. Alternative notations for (2) are 

aN +aN+1+"'+an and aN aN+1.• an > 

respectively. The number of terms displayed need not be three in 
every instance. For example 

n!= 1.2.3 . . . .n =17r (n > 1). 
r-1 

In (2) the letter r can, of course, be replaced by any letter other than 
N, n or a. 

4.1 B. Let x and a be two different numbers, real or complex. 
Then 

ch — an n-1 
= S cfl 

1-r

a —r n 1 
~ xn-2 + ...+ c ait-2-f- an-1 (3) — 

r=0 c — a 

(2) 
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for every positive integer n. This is true for n = 1, since the right-
hand side is to be interpreted as 1 (see 4.1 A), and is also true for 
n = 2. If true for n, its truth for n + 1 follows, since 

xn+~ — an+1 — x(xn — an) { a„ (x — a)  x' — an 

+a 
x — a x—a x— a 

nV~-i , 
~r

i n-i 
V

i 
=c ~~ 

n1
-i-r

ar-~-an =~xn-r ~r+an = ~~ xn-r ar. 
r=0 r=0 r=0 

Hence (3) holds for all n >_ 1. 

4.2. Some further applications of the induction principle 

4.2 A. As a straightforward application of Theorem 4.1.1 we prove 
that an >n for all positive integers n, when a is a given integer 
greater than unity. Since a > 1 the proposition is true for n = 1, 
and we take N = 1. We are now ready to test whether condition 
(ii) holds. Our assumption for this purpose is that P (n) is true, i.e. 
an > n, and we wish to deduce that an+1 > n + 1. By 3.1D, 

= a . a'  a n 

and, since a > 2 and n > 1, an > 2n > n -{- 1, so that an+1 > n + 1. 
Both conditions have now been verified and we draw the conclusion 
that an  > n for all positive integers n. 

4.2 B. As a slightly harder example we prove that 2' -' 1 > n2 for 
all positive integers n. Here the argument used in 4.2A will not apply 
when n is small, so that we check, first of all, that 2n+1 > n2 for 
n = 1, 2, 3 and then take N = 3 in Theorem 4.1.1. We observe 
first that, if n > 3, 

(1+h)2 c(1+3
\2  

9
16 

; 

by 3.1 D and 3.1 E. Now assume that 2n+1 > n2, where n >_ 3. Then 
2 (n+1)2_n2 

1+ 
1 16 n2  

16 
2n+ iV2n+2 

(  n  

 `
9 9 

so that P(n + 1) holds when P(n) holds. Accordingly, 2n+1 > hR2 
foralln>_ 3, andsoforalln>_ 1. 

4.2C. The laws governing the use of inequalities can also be 
extended by induction to sums and products containing more than 
two terms. For example, take a = 1 in 4.1 B and assume that x > 1. 
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Then, if 0 <_ r < n — 1, we have, by suitable extensions of 3.1 D 
and 3.113, 

xn-1-r
ar = Zn-1-r > 

c72 _ 1  h-1 

= ' c~~ -1- t  
c — 1  r =o 

From this we deduce that 

x' >n(x-1) (c >1, n>1), 

an inequality of which we make considerable use. 

4.2D. The binomial coefficient (
r
) a is defined for all a, real or 

complex, and integral r >_ 0, by  

( a'  ( a \  a(a-1)(a-2)••• (a —r -{- 1) 
0 r r ! 

In particular, when a is a positive integer n, we have 

 (0<r<n). 

By expressing (x -{- y)n+1 as (x + y) (x -f- y)' and using the relation 

(nr)-E-(
r

n 1
\ =(n

r

1)  (1 <r<n). 

we can easily apply Theorem 4.1.1 to prove the Binomial Theorem 
for a positive integral exponent n, namely 

n (h — ) 
(c+ y)h-~~ 

\ ) 
h

ch ' 'y''— c'~ -~- hc'Z lyT 
 

t= Q r . 2 ! 

3i 
 

This is valid for all x and y, real or complex; when x = 0, x° is to be 
interpreted as 1, as mentioned in 2.1 K. 

4.2 E. If 0 < a < b and n is a positive integer, then 0 < an < b' . 
This is easily proved by induction with the help of 3.1 D. From this 
it follows conversely, that if 0 < an < bn, where a > 0, b >_ 0 and n 
is a positive integer, then a < b. We deduce that if an = bn, where 
a>_ 0,b>_ 0,thena= b. 

and 

(4) 

(r >1). 

n-2 y2 
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4.2F. For any real a, a = a I n, where n is a positive integer. 
This again is easily proved by induction with the help of 3.2 A. 
For it is true for n = 1, and if true for n, then 

= a. a ~~ = an ~~ ~~ 
= ~ fl = j ~ n+1 

4.2 G. Cauchy's inequality. Suppose that a1, a2, ... , an and b1, 
b2, ..., bn are 2n real numbers, where n >_ 1. Then 

ar br) G 2 ~~ aÝ .~ bá ( 5) 
r=1  /  t=1 s=1 

If a = a2 = = an = 0, the result is trivial; we therefore suppose 
that this is not the case. Then, by 3.2F, the numbers ai, a~ , . .., a~~ 
are all non-negative, and at least one of them is positive. It follows 
that 

A =Sar>
0. 

r=1 

h h 

B= d;  and C=~ar br . 
r=1 r=1 

(t ar+br)2 > 0 

for every real number l, and therefore 
n n 

S (l2 a,2. + 2 2 arbr+br) = Si (l ar -~~ br)2 Z 0; 
r=1 r=1 

22 A+ 2l C+BZ 0. 

This is equivalent to the statement that 

(l A + C)2 + A B z C2 

for all real l. By (6), we may take l = — C/A in (7) and we obtain (5). 
Further, when a1, a2, ..., an are not all zero, equality can only 

hold in (5) when it holds in (7) with l = — C/A, i.e. when 
n 

L (lar+br)2=0 (l= —C/ A). 
r=1 

This implies that lar -{- br = 0 for r = 1, 2, ..., n; i.e. 

br =Á a r  (r=1, 2,..., n). 

Consequently equality holds in (5) only when the numbers b,. are 
proportional to the numbers ar (1 < r < n). 

n 

i.e. 

(6)  

(7)  
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EXERCISES 4 

4.1. Show that, for n ? 1, 

more generally, if N is a positive integer, show that 

N! (N ±1)" -N 5 n! S N! n' - 

for all n>_ N. 

4.2. Prove by induction that, for n >_ 1, 

m h 

rS r= h (h +1), ,S r2=
dh(n-l-1)(2n-f- 1), 

and 

S r3 
= n2 (hR + 1)2. 

r=i 

4.3. Prove by induction that, for n z 1, 

4  <, 1.3.5  (2n -1)  V 4n-ß-1 — 2.4.6.....2n 

 

3 
4 

 

  

 

2h -{-1  

   

4.4. If a1, a2, ..., a" are real numbers (n z 1), prove that 

r~~ 

S ar 
r=i 

S S 
a 

~. r=i 

  

*4.5. If n is a positive odd integer and a and b are real, prove that the in-
equality a" < b" implies that a < b, and that a" = b" implies that a = b. 

*4.6. Let q be a positive integer and suppose that a < b, where b is positive 
if q is even. Without assuming the existence of qth roots, prove that there 
exists a rational number r such that a < r4 < b. 

5. UPPER AND LOWER BOUNDS OF SETS OF 
REAL NUMBERS 

5.1. Sets of real numbers. A collection of different objects of any 
kind is called a set, and any object a belonging to a set d is called a 
member or element of d. We write this a e mil, and use the symbol n 
in different grammatical constructions, so that, for example, it can 
mean "belonging to" or "contained in" as well as "belongs to" 
or "is contained in". We shall be concerned throughout with non-
null sets, i.e. sets that contain at least one member. No two members 
of any set ,vd are the same; i.e. we do not allow repetitions. 

We say that a set d is finite if it contains only a finite number 
of elements. A non-null set which is not finite is called an infinite 
set. We do not require that a set shall be ordered; that is, we do not 
regard the members of a set as being arranged in any particular 
order. 
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For the remainder of the section we confine out attention to sets 
whose members are real numbers.* Our purpose is to consider whether 
a given set contains a maximum or a minimum member, and if it 
does not, to replace the concept of maximum or minimum member 
by something that does exist. For this purpose we consider the 
following special sets: 

d1 consists of the five numbers 5, 7, 2, — , 1/2. 
sd2 consists of all the positive integers 1, 2, 3, 4,.... 

d3 consists of the numbers 
2 

, s , á , 5', ... , the nth number in 
the list being n/(n -{- 1). 

d4 consists of the number 1 and all the numbers in X13. 
d5 consists of all real numbers a such that O < a < 1. 
d6 consists of all positive real numbers; i.e. all a such that a > O. 
sd7 consists of all rational numbers, positive, negative or zero. 

Of these seven sets only dl is a finite set. It is clear that a finite 
set d always contains a greatest member, which we denote by 

max sd or max a. 
aEd 

It also contains a least member denoted by 

min sd or min a. 

Thus max .~1 = 7 and min a, = -. We can, of course, replace a 
by any other available letter. 

An infinite set a need not contain a greatest member. Thus, of 
the six infinite sets just defined, only d4 contains a greatest member 
(namely 1) and only d2 , d3 and d4 contain least members. This 
shows that, without examining a given infinite set .4, we cannot 
assert that it contains a greatest or least member, and for this reason 
it is best to avoid the notation max d and min d for infinite sets. 
For infinite sets the concepts of greatest and least member are re-
placed by those of supremum and infimum, as we now describe. 

5.2. Suprema and infima of sets of numbers. Suppose that d is 
any given set of real numbers; sd may be finite or infinite. We say 

* The sets considered in this book will usually be sets of numbers. Never-
theless, we shall occasionally have to consider sets that are not of this kind. 
Thus in § 6.1 we consider sets whose members are ordered couples (x, y) of 
numbers x and y, in order to define a function; we shall also consider sets of 
functions. 
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that d is bounded above if there exists some number M, say, such 
that a < M for all a a d. We do not require M to be a member of d. 
The number M is called an upper bound of, or for, d; clearly any 
number greater than M is also an upper bound of d. Similarly, if 
there exists some number m such that a >_ m for all a a d, then d 
is said to be bounded below and m is called a lower bound of d. If d 
is both bounded above and bounded below we merely say that d 
is bounded. Every finite set is bounded, but this need not be so 
for infinite sets. Sets that are not bounded, or are not bounded 
above (below), are said to be unbounded, or unbounded above 
(below). 

5.2 A. For example, each of the numbers 63, ? and 1 is an upper 
bound for 

d3 
and also for d4 and d5 , so that these three sets are 

bounded above. Since we can always find a positive integer greater 
than any given real number M, the set d2 is not bounded above; 
neither are ßl 4 and d7 , for the same reason. Each of the sets d2, 
d3, swi4, 

d5 
and ds is bounded below, since we can take rn = — 1, 

for example, in each case. The set d7 is not bounded below. Accor-
dingly only d1, X13 , d and sa'15 are bounded sets. 

5.2 B. We note that 1, which is an upper bound for d5 and d4, 
is also the least upper bound that can be found. This is obvious for 
1d24 , since 1 e d4. To prove it for 

d3 
we observe that if b is any 

number less than 1, then by taking n to be any integer greater than 

 

1 
1 

we obtain 
1— b 

h 
~1  =1—  

h
+1 >1—(1—b)=b, 

so that b is not an upper bound for s,13 . We can prove similarly that I 
is the least upper bound that can be found for the set d5. 

This suggests the following definition. 

DEFINITION 5.2.1. A ( finite) ,number a is called the least upper bound 
or the supremum of a set d of real numbers if and only if the following 
two conditions are satisfied: 

(i) a < a for all a e .sal. 

(ii) For every real a' less than a, there exists at least one a a d such-
that a > s'. 


