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Preface

“The eyes of the mind, by which it sees and observes
things, are none other than proofs.”

—Baruch Spinoza

The organizing concept of this book is this: every topic should bring
students closer to a solid geometric grasp of linear transformations.

Even more specifically, we aim to build a strong foundation for two
enormously important results that no undergraduate math student
should miss:

• The Spectral Theorem for symmetric transformations, and

• The Inverse/Implicit Function Theorem for differentiable map-
pings, or even better, the strong form of that result, sometimes
called the Rank Theorem.

Every student who continues in math or its applications will encounter
both these results in many contexts. The Spectral Theorem belongs
to Linear Algebra proper; a course in the subject is simply remiss if it
fails to get there. The Rank Theorem actually belongs to multivariable
calculus, so we don’t state or prove it here. Roughly, it says that a
differentiable map of constant rank can be locally approximated by—
and indeed, behaves geometrically just like—a linear map of the same
rank. A student cannot understand this without a solid grasp of the
linear case, which we do formulate and prove here as the Linear Rank
Theorem in Chapter 7, making it, and the Spectral Theorem, key goals
of our text.

The primacy we give those results motivates an unconventional start
to our book, one that moves quickly to a first encounter with multi-
variable mappings and to the basic questions they raise about images,
pre-images, injectivity, surjectivity, and distortion. While these are
fundamental concerns throughout mathematics, they can be frustrat-
ingly difficult to analyze in general. The beauty and power of Linear

xi
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Algebra stem in large part from the utter transparency of these prob-
lems in the linear setting. A student who follows our discussion will
apprehend them with a satisfying depth, and find them easy to apply
in other areas of mathematical pursuit.

Of course, we cover all the standard topics of a first course in Linear
Algebra—linear systems, vector geometry, matrix algebra, subspaces,
independence, dimension, orthogonality, eigenvectors, and diagonaliza-
tion. In our view, however, these topics mean more when they are
directed toward the motivating results listed above.

We therefore introduce linear mappings and the basic questions they
raise in our very first chapter, and aim the rest of our book toward
answering those questions.

Key secondary themes emerge along the way. One is the centrality
of the homogeneous system and the version of Gauss-Jordan we teach
for solving it—and for expressing its solution as the span of indepen-
dent “homogeneous generators.” The number of such generators, for
instance, gives the nullity of the system’s coefficient matrix A , which
in turn answers basic questions about the structure of solutions to in-
homogeneous systems having A as coefficient matrix, and about the
linear transformation represented by A .

Throughout, we celebrate the beautiful dualities that illuminate the
subject:

• An n × m matrix A is both a list of rows, acting as linear
functions on Rm , and a list of columns, representing vectors
in Rn . Accordingly, we can interpret matrix/vector multipli-
cation in dual ways: As a transformation of the input vector,
or as a linear combination of the matrix columns. We stress
the latter viewpoint more than many other authors, for it often
delivers surprisingly clear insights.

• Similarly, an n×m system Ax = b asks for the intersection
of certain hyperplanes in Rm , while simultaneously asking
for ways to represent b ∈ Rn as a linear combination of the
columns of A .

• The solution set of a homogeneous system can be alternatively
expressed as the image (column-space) of one linear map, or
as the pre-image (kernel) of another.

• The ubiquitous operations of addition and scalar multiplica-
tion manifest as pure algebra in the numeric vectorspaces Rn ,
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while simultaneously representing pure geometry in 2- and 3-
dimensional Euclidean space.

• Every subspace of Rn can be described in essentially just two
dual ways: as a span—the span of a generating set, or as an
intersection of hyperplanes—what we call a perp.

We emphasize the computational and conceptual skills that let students
navigate easily back and forth along any of these dualities, since prob-
lems posed from one perspective can often be solved with less effort
from the dual viewpoint.

Finally, we strive to make all this material a ramp, lifting students from
the computational mathematics that dominates their experience before
this course, to the conceptual reasoning that often dominates after it.
We move very consciously from simple “identity verification” proofs
early on (where students check, using the definitions, for instance, that
vector addition commutes, or that it distributes over dot products)
to constructive and contrapositive arguments—e.g., the proof that the
usual algorithm for inverting a matrix fulfills its mission. One can base
many such arguments on reasoning about the outcome of the Gauss-
Jordan algorithm—i.e., row-reduction and reduced row-echelon form—
which students easily master. Linear algebra thus forms an ideal con-
text for fostering and growing students’ mathematical sophistication.

Our treatment omits abstract vector spaces, preferring to spend the
limited time available in one academic term focusing on Rn and its
subspaces, orthogonality and diagonalization. We feel that when stu-
dents develop familiarity and the ability to reason well with Rn and—
especially—its subspaces, the transition to abstract vector spaces, if
and when they encounter it, will pose no difficulty.

Most of my students have been sophomores or juniors, typically ma-
joring in math, informatics, one of the sciences, or business. The lack
of an engineering school here has given my approach more of a liberal
arts flavor, and allowed me to focus on the mathematics and omit ap-
plications. I know that for these very reasons, my book will not satisfy
everyone. Still, I hope that all who read it will find themselves shar-
ing the pleasure I always feel in learning, teaching, and writing about
linear algebra.

Acknowledgments. This book springs from decades of teaching
linear algebra, usually using other texts. I learned from each of those
books, and from every group of students. About 10 years ago, Gilbert
Strang’s lively and unique introductory text inspired many ideas and
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syntheses of my own, and I began to transition away from his book
toward my own notes. These eventually took the course over, evolving
into the present text. I thank all the authors, teachers, and students
with whom I have learned to think about this beautiful subject, starting
with the late Prof. Richard F. Arens, my undergraduate linear algebra
teacher at UCLA.

Sincere thanks also go to CRC Press for publishing this work, and
especially editor Bob Ross, who believed in the project and advocated
for me within CRC.

I could not have reached this point without the unflagging support of
my wife, family, and friends. I owe them more than I can express.

Indiana University and its math department have allowed me a life of
continuous mathematical exploration and communication. A greater
privilege is hard to imagine, and I am deeply grateful.

On a more technical note, I was lucky to have excellent software tools:
TeXShop and LATEX for writing and typesetting, along with Wolfram
MathematicaR©,1 which I used to create all figures except Figure 28 in
Chapter 3. The latter image of M.C. Escher’s striking 1938 woodcut
Day and Night (which also graces the cover) comes from the Official
M.C. Escher website (www.mcescher.com).

Bruce Solomon
Indiana University

Bloomington, Indiana

1Wolfram Mathematica R© is a registered trademark of Wolfram Research, Inc.



CHAPTER 1

Vectors, Mappings, and Linearity

1. Numeric Vectors

The overarching goal of this book is to impart a sure grasp of the nu-
meric vector functions known as linear transformations. Students will
have encountered functions before. We review and expand that famil-
iarity in Section 2 below, and we define linearity in Section 4. Before we
can properly discuss these matters though, we must introduce numeric
vectors and their basic arithmetic.

Definition 1.1 (Vectors and scalars). A numeric vector (or just
vector for short) is an ordered n-tuple of the form (x1, x2, . . . , xn).
Here, each xi—the ith entry (or ith coordinate) of the vector—is a
real number.

The (x, y) pairs often used to label points in the plane are familiar
examples of vectors with n = 2, but we allow more than two en-
tries as well. For instance, the triple (3,−1/2, 2), and the 7-tuple
(1, 0, 2, 0,−2, 0,−1) are also numeric vectors.

In the linear algebraic setting, we usually call single numbers scalars.
This helps highlight the difference between numeric vectors and indi-
vidual numbers. �

Vectors can have many entries, so to clarify and save space, we often la-
bel them with single bold letters instead of writing out all their entries.
For example, we might define

x := (x1, x2, . . . , xn)

a := (a1, a2, a3, a4)

b := (−5, 0, 1)

and then use x, a, or b to indicate the associated vector. We use
boldface to distinguish vectors from scalars. For instance, the same
letters, without boldface, would typically represent scalars, as in x = 5,
a = −4.2, or b = π.

Often, we write numeric vectors vertically instead of horizontally, in
which case x, a, and b above would look like this:
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x =


x1
x2

...
xm

 , a =


a1
a2
a3
a4

 , b =

−5
0
1


In our approach to the subject (unlike some others) we draw absolutely
no distinction between

(x1, x2, . . . , xn) and


x1
x2

...
xn


These are merely different notations for the same vector—the very same
mathematical object.

Definition 1.2. We denote the set of all scalars—also known as the
real number line—by R1 or simply R.

Similarly, Rn denotes the collection of all numeric vectors with n
entries; that is, all (x1, x2, . . . , xn). The “all zero” vector (0, 0, . . . , 0) ∈
Rn is called the origin, and denoted by 0. �

As examples, the vectors x, a, and b above belong to Rm, R4, and
R3, respectively. We express this symbolically with the “element of”
symbol “∈ ”:

x ∈ Rm, a ∈ R4, and b ∈ R3

If a does not lie in R5, we can write a 6∈ R5.

Rm is more than just a set, though, because it supports two important
algebraic operations: vector addition and scalar multiplication.

1.3. Vector addition. To add (or subtract) vectors in Rm, we
simply add (or subtract) coordinates, entry-by-entry. This is best de-
picted vertically. Here are two examples, one numeric and one sym-
bolic:  1

2
3

+

 4
−5

6

 =

 1 + 4
2− 5
3 + 6

 =

 5
−3

9




a1
a2
a3
a4

+


b1
b2
b3
b4

−


c1
c2
c3
c4

 =


a1 + b1 − c1
a2 + b2 − c2
a3 + b3 − c3
a4 + b4 − c4





1. NUMERIC VECTORS 3

Adding the origin 0 ∈ Rm to any vector obviously leaves it unchanged:
0 + x = x for any x ∈ Rm. For this reason, 0 is called the additive
identity in Rm.

Recall that addition of scalars is commutative and associative. That
is, for any scalars x, y, and z we have

x+ y = y + x (Commutativity)
(x+ y) + z = x+ (y + z) (Associativity)

It follows easily that vector addition has these properties too:

Proposition 1.4. Given any three vectors x, y, z ∈ Rm, we have

x + y = y + x (Commutativity)
(x + y) + z = x + (y + z) (Associativity)

Proof. We prove associativity, and leave commutativity as an ex-
ercise.

The associativity statement is an identity : it asserts that two things
are equal. Our approach is a basic and useful one for proving such
assertions: Expand both sides of the identity to show individual entries,
then simplify using the familiar algebra of scalars. If the simplified
expressions can be made equal using legal algebraic moves, we have a
proof.

Here, we start with the left-hand side, labeling the coordinates of x, y,
and z using xi, yi, and zi, and then using the definition of vector
addition twice:

(x + y) + z =




x1
x2

...
xm

+


y1
y2

...
ym


+


z1
z2

...
zm



=


x1 + y1
x2 + y2

...
xm + ym

+


z1
z2

...
zm



=


(x1 + y1) + z1
(x2 + y2) + z2

...
(xm + ym) + zm


Similarly, for the right-hand side of the identity, we get
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x + (y + z) =


x1
x2

...
xm

+




y1
y2

...
ym

+


z1
z2

...
zm




=


x1
x2

...
xm

+


y1 + z1
y2 + z2

...
ym + zm



=


x1 + (y1 + z1)
x2 + (y2 + z2)

...
xm + (ym + zm)


The simplified expressions for the two sides are now very similar. The
parentheses don’t line up the same way on both sides, but we can fix
that by using the associative law for scalars. The two sides then agree,
exactly, and we have a proof.

In short, the associative law for vectors boils down, after simplification,
to the associative law for scalars, which we already know. �

1.5. Scalar multiplication. The second fundamental operation
in Rn is even simpler than vector addition. Scalar multiplication lets
us multiply any vector x ∈ Rm by an arbitrary scalar t to get a new
vector tx. As with vector addition, we execute it entry-by-entry:

tx = t


x1
x2

...
xm

 :=


t x1
t x2

...
t xm


For instance, 2 (1, 3, 5) = (2, 6, 10) and −3 (1, 1, 0, 1) = (−3,−3, 0,−3),
while 0 x = (0, 0, . . . , 0) no matter what x is.

Recall that for scalars, multiplication distributes over addition. This
means that for any scalars t, x, and y, we have

t(x+ y) = tx+ ty

Since scalar multiplication and vector addition both operate entry-by-
entry, scalar multiplication distributes over vector addition too. This
simple relationship between the two operations is truly fundamental in



1. NUMERIC VECTORS 5

linear algebra. Indeed, we shall see in Section 4 below, that it models
the concept of linearity.

Proposition 1.6. Scalar multiplication distributes over vector addi-
tion. That is, if t is any scalar and x1, x2, . . . , xk are arbitrary
vectors in Rm, we have

t (x1 + x2 + · · ·+ xk) = tx1 + tx2 + · · ·+ txk

Proof. To keep things simple, we prove this for just two vectors
x,y ∈ Rm. The argument for k vectors works exactly the same way.

Using the same approach we used in proving the associativity identity
in Proposition 1.4, we expand both sides of the identity in individual
entries, simplify, and observe that we get the same result either way.

Let x = (x1, x2, . . . , xm) and y = (y1, y2, . . . , ym) be any two vectors in
Rm. Then for each scalar t, the left-hand side of the identity expands
like this:

t (x + y)

= t


x1 + y1
x2 + y2

...
xm + ym

 =


t(x1 + y1)
t(x2 + y2)

...
t(xm + ym)

 =


tx1 + ty1
tx2 + ty2

...
txm + tym



While the right-hand side expands thus:

tx + ty = t


x1
x2

...
xn

+ t


y1
y2

...
yn

 =


tx1
tx2

...
txn

+


ty1
ty2

...
tyn



=


tx1 + ty1
tx2 + ty2

...
txm + tym


We get the same result either way, so the identity holds. �
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1.7. Linear combination. We now define a third operation that
combines scalar multiplication and vector addition. Actually, scalar
multiplication and vector addition can be seen as mere special cases of
this new operation:

Definition 1.8. Given vectors a1, a2, . . . , am ∈ Rn and equally many
scalars x1, x2, . . . , xm, the “weighted sum”

x1 a1 + x2 a2 + · · · + xm am

is again a vector in Rn. We call it a linear combination of the ai’s.
We say that xi is the coefficient of ai in the linear combination. �

Example 1.9. Suppose a1 = (1,−1, 0), a2 = (0, 1,−1) and a3 =
(1, 0,−1). If we multiply these by the scalar coefficients x1 = 2,
x2 = −3, and x3 = 4, respectively and then add, we get the linear
combination

2a1 − 3a2 + 4a3 = 2

 1
−1

0

− 3

 0
1
−1

+ 4

 1
0
−1


=

 2− 0 + 4
−2− 3 + 0

0 + 3− 4


=

 6
−5
−1


�

Ultimately, many (perhaps most!) problems in linear algebra reduce to
that of finding coefficients that linearly combine several given vectors to
make a specified target vector. Here’s an example. Because it involves
just two vectors in R2, we can solve it by elementary methods.

Example 1.10. Does some linear combination of (2, 1) and (−1, 2)
add up to (8,−1) ?

This is equivalent to asking if we can find coefficients x and y such
that

x

(
2
1

)
+ y

(
−1

2

)
=

(
8
−1

)
After performing the indicated scalar multiplications and vector addi-
tion, this becomes (

2x− y
x+ 2y

)
=

(
8
−1

)
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Solving this for x and y is now clearly the same as simultaneously
solving

2x− y = 8

x+ 2y = 1

To do so, we can multiply the second equation by 2 and subtract it
from the first to get

−3y = 6 hence y = −2

Setting y = −2 now reduces the first equation to 2x+2 = 8, so x = 3.
This solves our problem: With x = 3 and y = −2, we get a linear
combination of the given vectors that adds up to (8,−1) :

3

(
2
1

)
− 2

(
−1

2

)
=

(
8
−1

)
�

We end our introductory discussion of linear combination by introduc-
ing the standard basis vectors of Rn. They play key roles later on.

Definition 1.11. The standard basis vectors in Rn are the n
numeric vectors

e1 = (1, 0, 0, . . . , 0, 0)

e2 = (0, 1, 0, . . . , 0, 0)

e3 = (0, 0, 1, . . . , 0, 0)
...

...
...

en = (0, 0, 0, . . . , 0, 1)

�

Simple as they are, these vectors are central to our subject. We in-
troduce them here partly because problems like Example 1.10 and Ex-
ercises 6 and 7 become trivial when we’re combining standard basis
vectors, thanks to the following:

Observation 1.12. We can express any numeric vector

x = (x1, x2, . . . , xn)

as a linear combination of standard basis vectors in an obvious way:

x = x1 e1 + x2 e2 + x3 e3 + · · ·+ xn en

Proof. Since x1 e1 = (x1, 0, 0, . . . , 0), x2 e2 = (0, x2, 0, . . . , 0) and
so forth, the identity is easy to verify. �
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1.13. Matrices. One of the most fundamental insights in linear
algebra is simply this: We can view any linear combination as the result
of multiplying a vector by a matrix:

Definition 1.14 (Matrix). An n×m matrix is a rectangular array
of scalars, with n horizontal rows (each in Rm ), and m vertical
columns (each in Rn ). For instance:

A =

[
1 0 −2.5
π 4 1/2

]
B =

 0 1
2 0
3 −3


Here A has 2 rows and 3 columns, while B has 3 rows, 2 columns.

We generally label matrices with bold uppercase letters, as with A
and B above. We double-subscript the corresponding lowercase letter
to address the entries—the individual scalars—in the matrix. So if we
call a matrix X, then x34 names the entry in row 3 and column 4 of
X.

With regard to A and B above, for example, we have

a21 = π, a12 = 0, a13 = −2.5, and b11 = b22 = 0 .

We sometimes label a matrix X by [xij] or write X = [xij] to em-
phasize that the entries of X will be called xij.

Finally, if we want to clarify that a matrix C has, say, 4 rows and 5
columns, we can call it C4×5. Just as with entries, the first index refers
to rows, while the second refers to columns. �

1.15. Matrix addition and scalar multiplication. Matrices,
like numeric vectors, can be scalar multiplied: When k is a scalar and
A is a matrix, we simply multiply each entry in A by k to get kA.

Example 1.16. Suppose

A =

[
1 2 3 4
−4 −3 −2 −1

]
and B =

 1 −1 0
0 1 −1
−1 0 1


Then

πA =

[
π 2π 3π 4π

−4π −3π −2π −π

]
while 5B =

 5 −5 0
0 5 −5
−5 0 5


�
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Similarly, matrices of the same size can be added together. Again, just
as with numeric vectors, we do this entry-by-entry:

Example 1.17. If

A =

 1 0 0
0 2 0
0 0 3

 and B =

 0 0 1
0 2 0
3 0 0


then

A + A =

 2 0 0
0 4 0
0 0 6

 while A + B =

 1 0 1
0 4 0
3 0 3


�

1.18. Matrix/vector products. The matrix/vector product we
describe next is an operation much richer than either matrix addition
or scalar multiplication. In particular, the matrix/vector product gives
us a new and useful way to handle linear combination. The rule is very
simple:

We can express any linear combination

x1 v1 + x2 v2 + · · ·+ xmvm

as a matrix/vector product, as follows:

Write the vectors vi as the columns of a matrix A, and stack the
coefficients xi up as a vector x. The given linear combination then
agrees with the product Ax .

Example 1.19. To write the linear combination

x

(
7
−3

)
+ y

(
−5

2

)
+ z

(
1
−4

)
as a matrix/vector product, we then take the vectors in the linear
combination, namely(

7
−3

)
,

(
−5

2

)
, and

(
1
−4

)
and line them up as columns in a matrix

A =

[
7 −5 1
−3 2 −4

]
We then stack the coefficients x, y, and z up as the vector
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x =

 x
y
z


In short, we can now write the original linear combination, which was

x

(
7
−3

)
+ y

(
−5

2

)
+ z

(
1
−4

)
as the matrix/vector product

Ax =

[
7 −5 1
−3 2 −4

]  x
y
z


Note that the coefficient vector x = (x, y, z) here lies in R3, while
Ax lies in R2. Indeed, if we actually compute it, we get

Ax =

(
7x− 5y + z
−3x+ 2y − 4z

)
∈ R2

�

With this example in mind, we carefully state the general rule:

Definition 1.20 (Matrix/vector multiplication). If a matrix A has
n rows and m columns, we can multiply it by any vector x ∈ Rm to
produce a result Ax in Rn.

To compute it, we linearly combine the columns of A (each a vector
in Rn ), using the entries of x = (x1, x2, . . . , xm) as coefficients:

Ax := x1 c1(A) + x2 c2(A) + · · ·+ xm cm(A)

where cj(A) signifies column j of A.

Conversely, any linear combination

x1 v1 + x2v2 + · · ·+ xmvm

can be written as the product Ax, where A is the matrix with columns
v1, v2, . . . ,vm (in that order) and x = (x1, x2, . . . , xm). Symbolically,

A =

[
v1 v2 · · · vm∣∣∣ ∣∣∣ · · ·

∣∣∣
]
, x = (x1, x2, . . . , xm)

and then
Ax = x1 v1 + x2v2 + · · ·+ xmvm

�
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Remark 1.21 (Warning!). We can only multiply A by x when the
number of columns in A equals the number of entries in x . When the
vector x lies in Rm, the matrix A must have exactly m columns.

On the other hand, A can have any number n of rows. The product
Ax will then lie in Rn.

Remark 1.22. It is useful to conceptualize matrix/vector multiplica-
tion via the following mnemonic “mantra”:

Matrix/vector multiplication = Linear combination

Commit this phrase to memory—we will have many opportunities to
invoke it. �

Example 1.23. If

A =


1 2
3 4
−4 −3
−1 −2

 and x = (−1, 5)

then

Ax = −1


1
3
−4
−1

+ 5


2
4
−3
−2

 =


−1 + 10
−3 + 20

4− 15
1− 10

 =


9

17
−11
−9


More generally, if x = (x, y), then

Ax = x


1
3
−4
−1

+ y


2
4
−3
−2

 =


x+ 2y

3x+ 4y
−4x− 3y
−x− 2y


Note how dramatically we abbreviate the expression on the right above
when we write it as simply Ax . �

1.24. Properties of matrix/vector multiplication. To con-
tinue our discussion of matrix/vector multiplication we record two cru-
cial properties:

Proposition 1.25. Matrix/vector multiplication commutes with scalar
multiplication, and distributes over vector addition. More precisely, if
A is any n×m matrix, the following two facts always hold:
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i) If k is any scalar and x ∈ Rm, then

A(kx) = k(Ax) = (kA)x .

ii) For any two vectors x,y ∈ Rm, we have

A(x + y) = Ax + Ay .

Proof. For simplicity here, we denote the columns of A, respec-
tively by a1, a2, . . . , am. We then prove (i) and (ii) in the usual way:
we simplify each side of the equation separately and show that they
agree.

Start with the first equality in (i). Expanding x as x = (x1, x2, . . . , xm)
we know that k x = k (x1, x2, . . . , xm) = (kx1, kx2, . . . , kxm). The
definition of matrix/vector multiplication (Definition 1.20) then gives

A(kx) = kx1a1 + kx2a2 + · · ·+ kxmam

Similarly, we can rewrite the middle expression in (i) as

k (Ax) = k (x1a1 + x2a2 + · · ·+ xmam)

= kx1a1 + kx2a2 + · · ·+ kxmam

because scalar multiplication distributes over vector addition (Propo-
sition 1.6). This expression matches exactly with what we got before.
Since A, k, and x were completely arbitrary, this proves the first
equality in (i). We leave the reader to expand out (kA)x and show
that it takes the same form.

A similar left/right comparison confirms (ii). Given arbitrary vectors
x = (x1, x2, . . . , xm) and y = (y1, y2, . . . , ym) in Rm, we have

x + y = (x1 + y1, x2 + y2, · · · , xm + ym)

and hence

A (x + y) = (x1 + y1)a1 + (x2 + y2)a2 + · · ·+ (xm + ym)am

= x1a1 + y1a1 + x2a2 + y2a2 + · · ·+ xmam + ymam

by the definition of matrix/vector multiplication, and the distributive
property (Proposition 1.6). When we simplify the right side of (ii),
namely Ax + Ay, we get the same thing. (The summands come in a
different order, but that’s allowed, since vector addition is commuta-
tive, by Proposition 1.4). We leave this to the reader. �
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1.26. The dot product. As we have noted, the matrix/vector
product Ax makes sense only when the number of columns in A
matches the number of entries in x.

The number of rows in A will then match the number of entries in
Ax. So any number of rows is permissible—even just one.

In that case Ax ∈ R1 = R. So when A has just one row, Ax reduces
to a single scalar.

Example 1.27. Suppose we have

A =
[
−4 1 3 −2

]
and x =


1
1
−1
−1


Then

Ax =

[
−4 1 3 −2

] 
1
1
−1
−1


= 1(−4) + 1(1)− 1(3)− 1(−2)

= −3

�

Note, however, that a 1×m matrix corresponds in an obvious way to a
vector in Rm. Seen in that light, matrix/vector multiplication provides
a way to multiply two vectors a and x in Rm : we just regard the first
vector a as a 1×m matrix, and multiply it by x using matrix/vector
multiplication. As noted above, this produces a scalar result.

Multiplying two vectors in Rm this way—by regarding the first vector
as a 1×m matrix—is therefore sometimes called a scalar product.
We simply call it the dot product since we indicate it with a dot.

Definition 1.28 (Dot product). Given any two vectors

u = (u1, u2, . . . , um) and v = (v1, v2, . . . , vm)

in Rm, we define the dot product u · v via

(1) u · v := u1v1 + u2v2 + · · ·umvm

bearing in mind that this is exactly what we get if we regard u as a
1×m matrix and multiply it by v.
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Effectively, however, this simply has us multiply the two vectors entry-
by-entry, and then sum up the results. �

Example 1.29. In R2,(
2
−1

)
·
(

3
2

)
= 2 · 3 + (−1) · 2 = 6− 2 = 4

while in R4,
2
−1
0
−1

 ·


3
2
−1
1

 = 2 · 3 + (−1) · 2 + 0 · (−1) + (−1) · 1 = 3

�

Proposition 1.30. The dot product is commutative. It also commutes
with scalar multiplication and distributes over vector addition. Thus,
for any vectors u, v, w ∈ Rn, we have

v ·w = w · v

u · (kv) = k(u · v) = (ku) · v

u · (v + w) = u · v + u ·w

Proof. We leave the proof of the first identity to the reader (Ex-
ercise 18). The last two identities follow straight from the matrix iden-
tities in Proposition 1.25, since the dot product can be seen as the
“(1× n) times (n× 1)” case of matrix/vector multiplication. �

1.31. Fast matrix/vector multiplication via dot product.
We have seen that the dot product (Definition 1.28) corresponds to
matrix/vector multiplication with a one-rowed matrix. We now turn
this around to see that the dot product gives an efficient way to com-
pute matrix/vector products—without forming linear combinations.

To see how, take any matrix A and vector v, like these:

A =


a11 a12 a13 · · · a1m
a21 a22 a23 · · · a2m

...
...

... · · · ...
an1 an2 an3 · · · anm

 , and v =


v1
v2
...
vm


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By the definition of matrix/vector multiplication (as a linear combina-
tion) we get

Av = v1


a11
a21

...
an1

+ v2


a12
a22

...
an2

+ · · ·+ vm


a1m
a2m

...
anm


Now carry out the scalar multiplications and vector additions to rewrite
as a single vector:

Av =


v1a11 + v2a12 + · · ·+ vma1m
v1a21 + v2a22 + · · ·+ vma2m

...
...

...
v1an1 + v2an2 + · · ·+ vmanm


Each entry is now a dot product! The first entry dots v with the first
row of A, the second entry dots v with the second row of A, and so
forth. In other words, we have:

Observation 1.32 (Dot-product formula for matrix/vector multipli-
cation). We can compute the product of any n × m matrix A with
any vector v = (v1, v2, . . . , vm) ∈ Rm as a vector of dot products:

Av =


r1(A) · v
r2(A) · v
r3(A) · v

...
rn(A) · v


where ri(A) denotes row i of A.

Example 1.33. Given

A =

[
2 −1 3
1 4 −5

]
and v =

 3
−2
−7


we compute Av using dot products as follows:

Av =


r1(A) · v
r2(A) · v
r3(A) · v

...
rn(A) · v

 =

 (2,−1, 3) · (3,−2,−7)

(1, 4,−5) · (3,−2,−7)

 =

(
−13

30

)
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The reader will easily check that this against our definition of Av,
namely

3

(
2
1

)
− 2

(
−1

4

)
− 7

(
3
−5

)
�

Example 1.34. Similarly, given

A =

 3 −1
2 2
−1 3

 and v =

(
7
−5

)
the dot-product approach gives

Av =


(3,−1) · (7,−5)

(2, 2) · (7,−5)

(−1, 3) · (7,−5)

 =

 26
4

−22


�

1.35. Eigenvectors. Among matrices, square matrices—matrices
having the same number of rows and columns—are particularly inter-
esting and important. One reason for their importance is this:

When we multiply a vector x ∈ Rm by a square matrix Am×m, the
product Ax lies in the same space as x itself: Rm.

This fact makes possible a phenomenon that unlocks some of the deep-
est ideas in linear algebra: The product Ax may actually be a scalar
multiple of the original vector x. That is, there may be certain “lucky”
vectors x ∈ Rm for which Ax = λx, where λ (the Greek letter
lambda) is some scalar.

Definition 1.36 (Eigenvalues and eigenvectors). If A is an m ×m
matrix, and there exists a vector x 6= 0 in Rm such that Ax = λx
for some scalar λ ∈ R, we call x an eigenvector of A, and we call
λ its eigenvalue. �

Example 1.37. The vectors (1, 1) and (−3, 3) in R2 are eigenvectors
of the matrix

A =

[
1 2
2 1

]
but the vector (2, 1) is not an eigenvector. To verify these statements,
we just multiply each vector by A and see whether the product is a
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scalar multiple of A or not. This is easy to verify using the dot-product
method of matrix/vector multiplication:[

1 2
2 1

](
1
1

)
=

(
1 + 2
2 + 1

)
=

(
3
3

)
= 3

(
1
1

)
Thus, when x = (1, 1), we have Ax = 3x. This makes x an eigenvec-
tor of A with eigenvalue λ = 3.

Similarly, when x = (−3, 3), we have[
1 2
2 1

](
−3

3

)
=

(
−3 + 6
−6 + 3

)
=

(
3
−3

)
= −1

(
−3

3

)
Thus, when x = (−3, 3), we again have Ax = −x, which makes x an
eigenvector of A, this time with eigenvalue λ = −1.

On the other hand, when we multiply A by x = (2, 1), we get[
1 2
2 1

](
2
1

)
=

(
2 + 2
4 + 1

)
=

(
4
5

)
Since (4, 5) is not a scalar multiple of (2, 1), it is not an eigenvector
of A. �

Example 1.38. The vector x = (2, 3, 0) is an eigenvector of the matrix

B =

 1 2 3
0 4 5
0 0 6


since (again by the dot-product method of matrix/vector multiplica-
tion)

Bx =

 1 2 3
0 4 5
0 0 6

 2
3
0

 =

 2 + 6 + 0
0 + 12 + 0
0 + 0 + 0

 =

 8
12
0

 = 4

 2
3
0


In short, we have Bx = 4x, and hence x = (2, 3, 0) is an eigenvector
of B with eigenvalue λ = 4.

In an exercise below, we ask the reader to verify that (1, 0, 0) and
(16, 25, 10) are also eigenvectors of B, and to discover their eigenvalues.
Most vectors in R3, however, are not eigenvectors of B. For instance,
if we multiply B by x = (1, 2, 1), we get Bx = (8, 13, 6) which is
clearly not a scalar multiple of (1, 2, 1). (Scalar multiples of (1, 2, 1)
always have the same first and third coordinates.) �



18 1. VECTORS, MAPPINGS, AND LINEARITY

Eigenvectors and eigenvalues play an truly fundamental role in linear
algebra. We won’t be prepared to grasp their full importance until
Chapter 7, where our explorations all coalesce. We have introduced
them here, however, so they can begin to take root in students’ minds.
We will revisit them off and on throughout the course so that when we
reach Chapter 7, they will already be familiar.

– Practice –

1. Find the vector sum and difference a± b, if

a) a = (2,−3, 1) and b = (0, 0, 0)

b) a = (1,−2, 0) and b = (0, 1,−2)

c) a = (1, 1, 1, 1) and b = (1, 1,−1,−1)

2. Guided by the proof of associativity for Proposition 1.4, prove that
Proposition’s claim that vector addition is also commutative.

3. Compute

a) 5 (0, 1, 2, 1, 0)

b) −1 (2,−2)

c) 1
10

(10, 25, 40)

4. Rework the proof of Proposition 1.6 for the case of three vectors
x, y, and z instead of just two vectors x and y.

5. Compute these additional linear combinations of the vectors a1, a2,
and a3 in Example 1.9.

a) a1 + 2a2 + a3 b) − 2a1 + a2 − 2a3 c) x a1 + y a2 + z a3

(In part (c), treat x, y, and z as unevaluated scalars, and leave them
that way in your answer.)

6. Find a linear combination of the vectors v = (1, 2, 3) and w =
(−2, 3,−1) in R3 that adds up to (8,−5, 9).

7. Find 3 different linear combinations of a = (1,−2), b = (2, 3), and
c = (3,−1) that add up to (0, 0) in R2.
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8. Without setting the scalars x and y both equal to zero, find a linear
combination x(1, 1) + y(1,−1) that adds up to (0, 0) ∈ R2, or explain
why this cannot be done.

9. Express each vector below as a linear combination of the standard
basis vectors:

a) (1, 2,−1)

b) (1,−1,−1, 1)

c) (0, 3, 0,−4, 0)

10. Write each linear combination below as a matrix/ vector product
Ax.

a) 2

(
−1

1

)
− 3

(
1
−1

)

b) 1
2

 1
1
0

+ 0.9

 0
1
1

+ π

 1
0
1


c) x1

(
1
0

)
− x2

(
0
1

)
+ x3

(
1
3

)
− x4

(
2
4

)

d) z


1
2
3
4

− w


4
3
2
1



11. Expand each matrix/vector product below as a linear combination,
then simplify as far as possible, writing each product as a single vector.

a) [
1 −2 3
−4 5 −6

]  1
1
1


b)  1 0 0

0 1 0
0 0 1

 a
b
c


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c) 
1 2 0
2 1 2
0 2 1
1 1 1


 x
−1
π



d)  1 2 3 4 5
2 3 4 5 1
3 4 5 1 2

 
1
−2

4
−2

1


12. Complete the proof of Proposition 1.25 by showing that for any
x = (x1, x2, . . . , xm) and y = (y1, y2, . . . , ym) in Rm, we have

Ax + Ay = x1a1 + y1a1 + x2a2 + y2a2 + · · ·+ xmam + ymam ,

the same result we got there for A (x + y).

13. Compute each matrix/vector product below using dot products, as
in Examples 1.33 and 1.34 above.

a) [
1 −2 3
−4 5 −6

]  1
1
1


b)  1 0 0

0 1 0
0 0 1

 a
b
c


c) 

1 2 0
2 1 2
0 2 1
1 1 1


 x
−1
π


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d)  1 2 3 4 5
2 3 4 5 1
3 4 5 1 2

 
1
−2

4
−2

1



14. Show that (1, 0, 0) and (16, 25, 10) are both eigenvectors of the
matrix B of Example 1.38. What are the corresponding eigenvalues?
Is (0, 2, 3) an eigenvector? How about (0,−3, 2) ?

15. A 3-by-3 diagonal matrix is a matrix of the form a 0 0
0 b 0
0 0 c


where a, b, and c are any (fixed) scalars. Show that the standard basis
vectors e1, e2, e3 ∈ R3 are always eigenvectors of a diagonal matrix.
What are the corresponding eigenvalues? Do the analogous statements
hold for 2× 2 diagonal matrices? How about n× n diagonal matrices?

16. Consider the matrices

Y =

[
2 −1 0 3
0 −2 −3 1

]
Z =

 1 z y
0 1 x
0 0 1


a) How many rows and columns does each matrix have?

b) What are y21, y14, and y23? Why is there no y32?

c) What are z11, z22, and z33? What is z13? z31?

17. Compute the dot product x · y for:

a) x = (1, 2, 3), y = (4,−5, 6)

b) x = (−1, 1,−1, 1), y = (2, 2, 2, 2)

c) x = (π, π), y = (1
4
, 3

4
)

18. Prove commutativity of the dot product (i.e., the first identity in
Proposition 1.30 of the text).
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19. Prove the third identity of Proposition 1.30 (the distributive law)
in R2 and R4 directly:

a) In R2, consider arbitrary vectors u = (u1, u2), v = (v1, v2)
and w = (w1, w2), and expand out both

u · (v + w) and u · v + u ·w
to show that they are equal.

b) In R4, carry out the same argument for vectors u,v,w ∈ R4.
Do you see that it would work for any Rn ?

20. Suppose x ∈ Rm is an eigenvector of an m×m matrix A. Show
that if k ∈ R is any scalar, then kx is also an eigenvector of A, and
has the same eigenvalue as x.

Similarly, if both v and w are eigenvectors of A, and both have the
same eigenvalue λ, show that any linear combination av + bw is also
an eigenvector of A, again with the same eigenvalue λ.

— ?—

2. Functions

Now that we’re familiar with numeric vectors and matrices, we can
consider vector functions—functions that take numeric vectors as in-
puts and produce them as outputs. The ultimate goal of this book
is to give students a detailed understanding of linear vector functions,
both algebraically, and geometrically. Here and in Section 3, we lay
out the basic vocabulary for the kinds of questions one seeks to answer
for any vector function, linear or not. Then, in Section 4, we introduce
linearity, and with these building blocks all in place, we can at least
state the main questions we’ll be answering in later chapters.

2.1. Domain, image, and range. Roughly speaking, a func-
tion is an input-output rule. Here is is a more precise formal definition.

Definition 2.2. A function is an input/output relation specified by
three data:

i) A domain set X containing all allowed inputs,

ii) A range set Y containing all allowed outputs, and

iii) A rule f that assigns exactly one output f(x) to every input
x in the domain.
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We typically signal all three of these at once with a simple diagram like
this:

f : X → Y

For instance, if we apply the rule T (x, y) = x + y to any input pair
(x, y) ∈ R2, we get a scalar output in R, and we can summarize this
situation by writing T : R2 → R. �

Technically, function and mapping are synonyms, but we will soon
reserve the term function for the situation where (as with T above)
the range is just R. When the range is Rn for some n > 1, we
typically prefer the term mapping or transformation.

2.3. Image. Suppose S is a subset of the domain X of a function.
Notationally, we express this by writing S ⊂ X. This subset S may
consist of one point, the entire domain X, or anything in between.

Whatever S is, if we apply f to every x ∈ S, the resulting outputs
f(x) form a subset of the range Y called the image of S under f ,
denoted f(S). In particular,

• The image of a domain point x ∈ X is the single point f(x)
in the range.

• The image of the entire domain X, written f(X), is called
the image of the mapping f .

The image of any subset S ⊂ X lies in the range, of course. But even
when S = X (the entire domain), its image may not fill the entire
range.

Example 2.4. Consider the familiar squaring rule f(x) = x2. If we
take its domain to be R (the set of all real numbers), what is its image?
What is its range?

Since x2 cannot be negative, f(x) has no negative outputs. On the
other hand, every non-negative number y ≥ 0 is an output, since
y = f(

√
y). Note that f(−√y) = y too, a fact showing that in

general, different inputs may produce the same output.

In any case, we see that with R as domain, the squaring function has
the half-line [0,∞) (all 0 ≤ y <∞ ) as its image.

We may take the image—or any larger set—to serve as the range of
f . One often takes the range to be all of R, for instance. We would
write

f : R→ [0,∞) or f : R→ R
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to indicate that we have a rule named f with domain R, and range
either [0,∞) or R, depending on our choice. Technically speaking,
each choice yields a different function, since the domain is one of the
three data that define the function.

Now consider the subset S = [−1, 1] in the domain R. What is
the image of this subset? That is, what is f(S) ? The answer is
f(S) = [0, 1], which the reader may verify as an exercise. �

We thus associate three basic sets with any function:

• Domain: The set of all allowed inputs to the function f .

• Range: The set of all allowed outputs to the function.

• Image: The collection of all actual outputs f(x) as x runs
over the entire domain. It is always contained in the range,
and may or may not fill the entire range.

Remark 2.5. It may seem pointless—perhaps even perverse—to make
the range larger than the image. Why should the range include points
that never actually arise as outputs?

A simple example illustrates at least part of the reason. Indeed, sup-
pose we have a function given by a somewhat complicated formula like

h(t) = 2.7 t6 − 1.3 t5 + π t3 − sin |t|

Determining the exact image of h would be difficult at best. But we
can easily see that every output h(x) will be a real number. So we can
take R as the range, and then describe the situation correctly, albeit
roughly, by writing

h : R→ R

We don’t know the image of h, because we can’t say exactly which
numbers are actual outputs—but we can be sure that all outputs are
real numbers. So we can’t easily specify the image, but we can make
a valid choice of range. �

2.6. Onto. As emphasized above, the image of a function is always
a subset of the range, but it may not fill the entire range. When the
image does equal the entire range, we say the function is onto:

Definition 2.7 (Onto). We call a function onto if every point in the
range also lies in the image—that is, the image fills the entire range.
Figures 1 and 2 illustrate the concept. �
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Figure 1. A function sends each point in the domain to
one in the range. The function on the left is onto—each
point in the range also lies in the image. The function on the
right is not onto: the lowest point in the range does not lie
in the image. That point has no pre-image (Definition 2.9).

Example 2.8. The squaring function with domain R is onto if we
take its range to be just the interval [0,∞) of non-negative numbers.
If we take its range to be all of R, however, it is not onto, because R
contains negative numbers, which do not lie in the squaring function’s
image. �

There is a useful counterpart to the term image which, among other
things, makes it easier to discuss the difference between the image and
range of a function.

Definition 2.9 (Pre-image). Suppose we have a function f : X → Y ,
and a subset S of the range Y . Notionally, S ⊂ Y . The pre-image
(or inverse image) of S consists of all points x in the domain X
that f sends into S—all points whose images lie in S. We denote the
pre-image of S by f−1(S) (pronounced “f inverse of S ”). �

Remark 2.10. We are not claiming here that f has an inverse function
f−1. It may or may not—this is a topic we take up later. In general,
“f−1” by itself means nothing unless it occurs with a subset of the
range, as in f−1(S) or f−1(x), in which case it means the pre-image
of that subset, as defined above.

In certain cases, we can define an inverse mapping called f−1 (see
Section 2.17). Then the pre-image f−1(S) equals the image of S
under the inverse mapping f−1, so our notation f−1(S) is consistent.
�
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Figure 2. The image of g (above) fills its entire range, so
g is onto. The image of f (below) does not fill the range, so
f is not onto.

We can use the concept of pre-image to offer an alternate definition of
the term onto:

Observation 2.11. A function is onto exactly when every point in
the range has at least one pre-image.

Indeed, if every point in the range has a pre-image, then every point in
the range is the image of some point in the domain. In this case, the
image fills the entire range, and our function is indeed onto.

Pre-image is also a useful term because it gives an alternate name for
something quite familiar, and very central to mathematics: the solution
of an equation. The most basic question we ask about any equation
f(x) = y is whether we can solve it for x, given y. But this is the
same as finding a pre-image f−1(y) . Solving an equation and finding
a pre-image are exactly the same thing.
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Example 2.12. Again consider the squaring function f : R→ R given
by f(x) = x2. What is the pre-image of 4 ? Of 0 ? Of −4 ?

According to Definition 2.9 above, the pre-image of 4 consists of all x
such that f(x) = 4. Here f is the squaring function, so that means
we seek all x for which x2 = 4. Clearly, this means

f−1(4) = {−2, 2}

Similarly, we get the pre-image of y = 0 by solving x2 = 0. Here there
is only one solution—only one point in the pre-image:

f−1(0) = {0}

The pre-image of −4, on the other hand, consists of all solutions to
x2 = −4. Since this equation has no solutions in the domain R we
specified here, −4 has no pre-image; its pre-image is the empty set:

f−1(−4) = ∅

Finally, we might ask for the pre-image of a set larger than just one
point; say the pre-image of the interval [0, 1]. Since every number in
[0, 1] has a square root in [0, 1], and also a square-root in [−1, 0], it is
easy to see that

f−1 ([0, 1]) = [−1, 1]

Note that f−1[−1, 1] is also [−1, 1]. �

2.13. One-to-one. By definition, a function f : X → Y sends
each point x in the domain X to a point y = f(x) in the range
Y . In that case, x belongs to the pre-image of y. But the pre-image
of y may contain other inputs beside x. This happens, for instance,
with the squaring function f(x) = x2. The pre-image of any positive
number contains two inputs. For example, f−1(4) contains both 2
and −2.

A nicer situation arises with the function g : R→ R given by g(x) =
2x + 3. Here, the pre-image of an output y always contains exactly
one point—no more, and no less. We know this because we can easily
solve for 2x + 3 = y for x, and we always get exactly one solution,
namely x = (y − 3)/2 (try it).

Since each point in the range of this function has a pre-image, it is
onto. But we also know that pre-images never contain more than one
point. This makes g one-to-one:
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Definition 2.14. A function f : X → Y is one-to-one if each point
in the range has at most one point in its pre-image. Examples show
(see below) that a function may be one-to-one, onto, both, or neither.
�

Example 2.15. The function depicted on the left in Figure 1 (above,
not below) is both onto and one-to-one, because each point in the
range has one—and only one—point in its pre-image. The function on
the right in that figure, however, is neither one-to-one nor onto. It’s
not one-to-one because the pre-image of the middle point in the range
contains two points (a and c). Neither is it onto, since the lowest point
in the range has no pre-image at all.

The functions in Figure 3 below, on the other hand, each have one of
the properties, but not the other. The function on the left is one-to-one
but not onto. The one on the right is onto, but not one-to-one. (Make
sure you see why.)

Figure 3. The function on the left is one-to-one, but not
onto. The function on the right is onto, but not one-to-one.

�

Remark 2.16 (One-to-one vs. Onto). The definitions of one-to-one
and onto compare and contrast very nicely if we summarize them like
this:

• A function is one-to-one if every point in the range has at
most one pre-image.

• A function is onto if every point in the range has at least one
pre-image. �
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2.17. Inverse functions. When a function f : X → Y is one-
to-one, each y in the image has exactly one pre-image x = f−1(y),
hence exactly one solution of f(x) = y. If f is also onto, then every
y in the range has a unique pre-image x in this way. In this case, the
assignment y → x defines a new function that “undoes” f :

Definition 2.18 (Inverse mapping). If f : X → Y is both one-to-one
and onto, the mapping that sends each y ∈ Y to its unique pre-image
x = f−1(y), is called the inverse of f . We denote it by f−1. �

Example 2.19. Consider the mapping f : R → R given by f(x) =
x + 1. The solutions of f(x) = y constitute the pre-image of y, and
here that means solving y = x + 1. Doing so, we get x = y − 1.
There’s no restriction on y here—this gives a solution for every y. In
fact, it gives exactly one solution for every y, so the function is both
one-to-one and onto, and hence has an inverse. The inverse maps each
y in the range to its unique pre-image in the domain, and our solution
gives a formula for it: f−1(y) := y − 1. �

Example 2.20. The identity mapping I(x) = x on Rm is its own
inverse, since each x is obviously its own pre-image. Thus, I−1 = I.
A slightly less trivial example is given by the doubling map on Rm,
given by D(x) = 2x. To solve D(x) = y, we write 2x = y, which
implies x = y/2. It follows that the inverse of D is the “halving”
map: D−1(y) = y/2. �

– Practice –

21. Define a function f : X → Y whose domain and range both con-
tain just the first five letters of the alphabet: X = Y = {a, b, c, d, e} .
Define the “rule” f for this function by setting

f(a) = b, f(b) = c, f(c) = a, f(d) = b, and f(e) = c

a) Find the images of these sets: {a, b, c}, {a, b, d}, {a, b, e}.
b) Find the pre-images of these sets: {a}, {a, b}, {a, b, c}, {c},

and {d, e}.
c) What is the image of f?

d) Is this function one-to-one? Is it onto? Explain.
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e) Define a function g : X → Y (same X and Y as above)
which is one-to-one, onto, and satisfies g(a) = c.

22. Suppose X and Y are the sets of young men and young women
at a dance where the protocol is that each x ∈ X chooses a dance
partner y ∈ Y . Let f : X → Y be the “choosing” function, so that
for each young man x, y = f(x) is the partner he chooses.

a) What does it mean for f to be onto?

b) What does it mean for f to be one-to-one?

c) What is the image of f?

d) If S ⊂ Y is a subset of the young woman, what does f−1(S)
correspond to?

e) If S ⊂ X is a subset of the young men, what is f(S)?

23. The following questions refer to Figure 4.

a) If we take R as the domain of the constant function c(x) ≡ 1,
what is the image of c ? (The triple equal sign emphasizes that
c(x) = 1 for all inputs x in the domain.)

b) Assuming 1, 0 and −1 are in the range of c, what are the
pre-images c−1(1), c−1(0), and c−1(−1) ?

c) Could the interval [0,∞) serve as the range of c ? How about
the interval (−∞, 0] ? How about the entire real line R ? Is
c onto in any of these cases?

24. The following questions refer to Figure 4.

a) Suppose we take R as both the domain and range of the
function g(x) = 2x+ 1. What is the image of g ? Is g onto?

b) What are the pre-images g−1(1), g−1(0), and g−1(−1) ?

c) If R is the domain of g, could the interval [0,∞) serve as its
range? How about the interval (−∞, 0] ? Why or why not?

d) If we changed the domain of g from R to just the the interval
[−1, 1] (all −1 ≤ x ≤ 1 ), what would the image be?
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25. Devise examples of:

a) A function N : Z→ Z that is one-to-one, but not onto.

b) A function F : Z→ Z that is onto, but not one-to-one.

Figure 4. Graphs of the functions in Exercises 23 and 24.

26. Let Z be the set of all integers (positive and negative), and let
E ⊂ Z be the subset of even integers. Show that the map H : E → Z
given by the rule H(n) = n/2 is onto.

Thus, even though E is a proper subset of Z (E is not all of Z ), we
can map it onto Z. This is only possible because Z contains infinitely
many elements (integers). A proper subset of a finite set Y can never
map onto Y . Can you give a reason for this?

27. Let A,B,C be scalars with A 6= 0 and consider the quadratic
function

Q(x) = Ax2 +Bx+ C

a) Give a precise description of the image of Q (in terms of the
coefficients A,B,C ). Thinking about the shape of the graph
of Q should help you answer.

b) What is the pre-image f−1(0) ? How about f−1(y) if y 6= 0 ?
(Again, your answers will be functions of the coefficients.)


