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Preface


The theory of error-correcting codes is a branch of discrete mathematics with 
close ties to other mathematical disciplines, like design theory, combinatorial 
theory, linear algebra, finite fields, rings, Galois geometry, geometric algebra, 
algebraic curves over finite fields and group theory. The best known appli­
cation is in the transmission of messages over noisy communication channels. 
Other fields of application are to be found in statistics (design of experiments), 
cryptography (authentication, the design of ciphers) and in many areas of 
theoretical computer science. 

In this textbook we present a self-contained introduction to mathematical 
coding theory and to its major areas of application. High school algebra 
and some exposition to basic linear algebra are sufficient as mathematical 
background. Part I is designed for use in a one semester undergraduate course. 
A second semester would start with the theory of cyclic codes. In Part II the 
emphasis is on cyclic codes, applications of codes, liear programming bounds 
and the geometric description of linear codes. The mathematical tools are 
developed along the way. Part III offers a brief introduction to some of the 
basics of the theory of function fields in one variable (algebraic curves) over 
a finite field of constants, a basic construction of codes (algebraic-geometric 
codes) and the properties of some interesting families of examples. 

A brief overview 

The historical origins of coding theory are in the problem of reliable com­
munication over noisy channels. This is a typical problem of the discipline 
now called Information Theory. Both disciplines, Coding Theory and 
Information Theory, originated with Claude Shannon’s famous 1948 paper 
[183]. It contains the celebrated channel coding theorem (see Chapter 9) 
which states roughly that good long codes are guaranteed to exist, without 
giving a clue how to construct them. Closely related is the development of 
Cryptography. Its aim is to ensure reliable communication in the presence 
of ill-willed opponents. These problems are rather different. In the coding the­
ory scenario we have to overcome a technical problem (the shortcomings of a 
communication channel), whereas in Cryptography we have to beat an oppo­
nent. Nonetheless the mathematical tools used in these two areas have a large 

xiii 
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intersection. Historically the development of both disciplines was boosted by 
the efforts of World War II. Another famous paper of Claude Shannon, [184] 
from 1949, is perceived as the origin of modern cryptography. 

The information-theoretic problem prompted the definition of a mathemat­
ical structure called error-correcting code or simply code. Coding theory 
can be seen as the study of error-correcting codes, their construction, bounds 
on their parameters, their implementation and so forth. The most important 
parameter is the minimum distance. It measures the code’s capability of 
correcting transmission errors. 

Progress in coding theory was slow but steady. One important development 
was the theory of cyclic codes, which is traditionally couched in the language 
of ring theory. Cyclic codes are particularly useful because they admit a fast 
decoding algorithm. The theory of cyclic codes is a core topic of Part II. 
It is developed in Chapter 13, preceded by an introduction to some relevant 
features of finite fields in Chapter 12. Our approach is different from the 
traditional approach. It is based on the trace and the action of the Galois 
group. Ring theory does not come into play at all. 

Only the single most famous cyclic code, the binary Golay code, is intro­
duced in Part I, along with a closely related structure, the large Witt design 
(Chapter 7). 

The ties between coding theory and several areas of pure mathematics have 
grown stronger all the time. The most important insight goes back to the 
early 1980s. It is the discovery, by Goppa and Manin [97, 138], of a close re­
lationship between codes and algebraic curves (in algebraic language func­
tion fields). Algebraic curves are objects of number theory and algebraic 
geometry, mainstream mathematical disciplines with a long and rich his­
tory. The observation by Goppa and Manin makes it possible to use these 
number-theoretic tools for the construction of codes. The theory of those 
algebraic-geometric codes (AG-codes) is the objective of Part III. In fact 
we develop only some of the basics of the theory of algebraic curves with fi­
nite fields of constants, just enough to understand the basic construction of 
algebraic-geometric codes and to study some interesting families of examples. 

Coding theory and combinatorics are closely connected. As an example, 
block designs are important objects of modern discrete mathematics. For 
more information see the CRC Handbook of Combinatorial Designs 
[106]. We will encounter them repeatedly in the text. A formal definition 
is in Chapter 7, where we also derive the large Witt design from the binary 
Golay code. Other examples of block designs in the text include projective 
planes, projective and affine geometry over finite fields (Chapter 17), the small 
Witt design, which is derived from the ternary Golay code in Section 17.1, 
and the Denniston arcs in the same section. 

Linear codes can be studied from a geometric point of view. From this 
perspective coding theory can be seen as part of Galois geometry. The 
basic objects of Galois geometry are affine and projective spaces defined 
over finite fields (see Hirschfeld [113] or the beginning of Chapter 17). Linear 
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codes can be equivalently described as sets of points in projective spaces. In 
many cases the geometric language is more appropriate than the algebraic 
approach. In Part I we study 3-dimensional codes from this point of view 
(Chapter 10). This case is particularly easy to understand as the underlying 
geometrical structures are classical projective planes PG(2, q). The general 
mechanism is developed and used in Chapter 17. In many cases this leads 
to a better understanding of the codes. For instance, we use the geometric 
method to construct the ternary Golay code in Section 17.1. As a natural 
generalization, the additive codes (network codes) of Chapter 18 are described 
geometrically by families of subspaces of a fixed projective space. As a special 
case, the binary quantum codes of Chapter 18 are described by families of 
lines in binary projective spaces. 

Caps are sets of points in projective or affine geometry no three of which are 
on a line. They are formally equivalent to linear codes of minimum distance 
d = 4. It turns out that caps are best understood from a geometric point 
of view. This is why we study caps in Chapter 17. The case of caps in 
projective planes and 3-spaces leads to another link with classical algebra. In 
fact, parabolic and elliptic quadrics yield canonical examples of caps in those 
dimensions. We include a self-contained introduction to geometric algebra 
in Section 17.2 which gives a better understanding of those caps. 

Duality is emphasized throughout the text. The dual of a linear code with 
minimum distance d is an orthogonal array of strength d − 1. Originally 
orthogonal arrays were defined in the framework of design of experiments, 
in statistics. The same is true of block designs. The defining properties 
of orthogonal arrays and of block designs are both uniformity conditions. 
They look very similar. Orthogonal arrays can be interpreted as families of 
random variables (functions defined on sample spaces), which satisfy certain 
statistical independence conditions (see Chapter 6). The strength measures 
the degree of statistical independence. Such families of random variables are 
heavily used not only in statistics but also in the theory of algorithms. 
Whenever we construct a good linear code, we also obtain such a statistical 
object. 

Typically in coding theory duality is defined with respect to the usual dot 
product, the Euclidean bilinear form. However, each non-degenerate bilinear 
(or sesquilinear) form defines a notion of duality. An application to the 
construction of quantum codes in Chapter 18 demands the use of a special 
bilinear form, the symplectic form. This is another motivation for covering 
the theory of bilinear forms in Chapter 17. 

Some of the classical bounds, the Singleton bound, the Hamming bound, 
the Plotkin bound and the Griesmer bound on codes as well as the Bose-Bush 
bound on orthogonal arrays of strength 2, are derived when they are needed 
in the text. In fact, there is a multitude of bounds, each of which is better 
than all the others in certain parameter ranges, both for codes (when the 
minimum distance is the central parameter) and for orthogonal arrays (when 
the strength is in the center of attention). A general algebraic mechanism for 
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the derivation of bounds is related to orthogonal polynomials (in the case 
of codes these are the Kravchouk polynomials) and linear programming. 
There is a general linear programming bound. All the bounds used in the 
text, with the exception of the Griesmer bound, are special cases of the LP-
bound. Chapter 15 is a self-contained introduction to linear programming and 
contains unified proofs for all those explicit bounds on codes and orthogonal 
arrays. On the level of LP-bounds there is a relation of duality between 
bounds on codes and bounds on orthogonal arrays. This is another reason 
why the notion of an orthogonal array should be seen as the dual of the notion 
of an error-correcting code, even in the nonlinear case. 

This leads us to applications of codes. Traditionally coding theorists are bi­
ased towards the information-theoretic application that we encounter so often 
in this text. It still is one of the major applications. We use it as a motivation 
in the early chapters, discuss syndrome decoding in Chapter 3 and the decod­
ing algorithm of BCH-codes based on the Euclidean algorithm in Chapter 13. 
There is, however, a plethora of applications of a completely different nature. 
Many of them have surfaced in theoretical computer science, in particular in 
cryptography. Universal hash families yield a nice paradigmatic example. 
One version is presented in Part I, Chapter 6, while a more in depth treat­
ment is in Chapter 16. This chapter is dedicated to applications altogether. 
They range from statistics and cryptography to numerical integration and the 
theory of algorithms. 

The plan: Part I 

Part I forms an elementary introduction to the theory of codes and some 
typical applications. It assumes only high school mathematics. Some exposi­
tion to the basics of linear algebra would be helpful as well. 

Chapter 1 introduces some basic concepts like bits and bitstrings and de­
scribes the basic problem when messages are sent via a noisy channel. The 
transmission of pictures from space serves as an illustration. The first steps 
toward the algebraization of the problem are taken by introducing the field F2 

of two elements and giving the bitstrings of length n the structure of a vector 
space. We encounter the basic idea of error correction and the basic notion 
of Hamming distance. This leads to the formal definition of a binary code 
and of a q-ary code for an arbitrary natural number q ≥ 2. The binary sym­
metric channel is the most elementary model which describes how errors are 
introduced into the message. Basic facts on binomial numbers are reviewed. 
The sphere-packing bound (or Hamming bound) is our first general bound on 
codes. The football pool problem is a possible application of ternary (q = 3) 
codes. 
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Chapter 2 introduces the basics of binary linear codes. Key notions are 
minimum weight, dimension, generator matrix. After a review of basic facts 
of linear algebra (applied for vector spaces = codes over F2), we see how block 
coding works and study the effect on the probability of transmission errors. 
The dual code is defined with respect to the dot product. The repetition 
codes and the sum 0 codes are our first pair of dual codes. A check matrix of 
a code is a generator matrix of its dual code. An important family of codes 
are the binary Hamming codes. Their duals are the binary Simplex codes. 
The principle of duality shows how to read off the minimum distance from a 
check matrix. This leads to the notion of a binary orthogonal array (OA). A 
linear OA has strength t if and only if its dual has minimum weight t + 1. 

Chapter 3 generalizes linear codes from the binary (q = 2) to the q-ary, 
where q is an arbitrary prime-power. It is shown how finite fields Fq of q 
elements can be constructed. The definition of linear q-ary codes is given and 
the basic facts generalized from the binary to the q-ary: dimension, genera­
tor matrix, dual code, check matrix, principle of duality, orthogonal arrays. 
Basic methods of linear algebra are reviewed (rank, Gauß elimination, deter­
minants). Mutually orthogonal Latin squares are recognized as special para­
metric cases of OA. The MacWilliams formula links the weight distribution 
of a linear code and its dual. Our proof is probabilistic. This motivates the 
definition of probability spaces. The game of SET leads to natural questions 
concerning ternary (q = 3) linear codes. Syndrome decoding can in principle 
be used to decode linear codes. 

A large and important family of linear codes are the Reed-Solomon codes 
of Chapter 4. They meet the Singleton bound with equality (they are MDS­
codes). Lagrange interpolation shows that they form OA of index λ = 1. The 
dual of an RS-code is an RS-code. Mutually orthogonal Latin squares yield 
non-linear MDS-codes. Covering arrays and their use in software testing are 
discussed. 

Chapter 5 introduces some recursive constructions of codes: shortening and 
puncturing, the parity check bit for binary codes, the residual code and the 
Griesmer bound, concatenation and the (u, u + v)-construction. 

Chapter 6 presents our first application in computer science. The concept 
of universal hashing is introduced. ǫ-universal hash classes turn out to be 
formally equivalent with codes. 

Chapter 7 is a direct construction of the binary Golay code and the large 
Witt design. This motivates the definition of t-designs. Classical projective 
planes PG(2, q) are introduced. 

Chapter 8: Meaning and basic properties of the Shannon entropy of a 
probability space. The binary entropy function. The Jensen inequality as a 
tool. 

In Chapter 9 the concept of asymptotic bounds for infinite families of codes 
with length −→ ∞ is introduced and the asymptotic version of the Singleton 
bound given. The Plotkin bound on codes of large distance is proved. It 
implies an asymptotic bound and the Bose-Bush bound on OA of strength 
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2. Shannon’s channel coding theorem is proved. Basic notions and facts on 
probability theory (random variable, expectation, variance, Tschebyscheff in­
equality) are introduced. These are used in the proof. The Gilbert-Varshamov 
bound is an existence bound on linear codes (certain codes are guaranteed to 
exist), based on counting arguments. The Justesen codes form an explicit 
family of codes with asymptotically nontrivial parameters. 

Chapter 10 is an introduction to the geometric method. The 3-dimensional 
codes are described as multisets of points in the projective plane PG(2, q). 
An application allows the construction of congestion-free networks. 

The plan: Part II 

Chapter 12 starts with more basic properties of finite fields: Primitive el­
ements, field extensions, the Frobenius automorphism, the Galois group, the 
trace from a field to a subfield. Trace codes and subfield codes are defined. 
Delsarte’s theorem describes the dual code. We introduce the Galois closure 
of a linear code with respect to a subfield, prove the second main theorem 
and sketch the general strategy to construct cyclic codes. Different notions of 
equivalence of codes are discussed. 

Chapter 13 is dedicated to the general machinery of cyclic codes. An ex­
ample (binary, length 15) is used to illustrate this. This is a subfield code 
(and a trace code) of a Reed-Solomon code defined over F16. Basic notions 
of the general construction are cyclotomic cosets, the dimension formula and 
the BCH-bound on the minimum distance. Parametric examples of cyclic 
codes are given, as well as an application to fingerprinting. The Roos bound 
and the van Lint-Wilson method allow improvements on the BCH-bound in 
special situations. Generator matrices and check matrices of cyclic codes are 
almost canonically determined. BCH-codes are special cyclic codes. Their 
decoding algorithm is based on the Euclidean algorithm. Constacyclic codes 
are generalizations of cyclic codes. They can, however, be described within 
the theory of cyclic codes. This central chapter ends with two families of par­
ticularly good quaternary (q = 4) constacyclic codes and a comparison with 
the traditional ring-theoretic approach to cyclic codes. 

Chapter 14 complements Chapter 5 by introducing further recursive con­
structions of codes. Constructions X and XX can be applied using cyclic codes 
as ingredients. The covering radius is another basic parameter. It is related 
to lengthening and has its own applications. We describe an application in 
steganography and an application in the reduction of switching noise. 

Chapter 15 is dedicated to linear programming (LP). The first section is 
a self-contained introduction to the basics of linear programming. This in­
cludes basic notions and results like the simplex algorithm, the Farkas alterna­
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tive, duality theorems and the principle of complementary slackness. A basic 
notion, the Fourier transform, is introduced in the second section. This 
section also contains basic properties of the Kravchouk polynomials and the 
general LP-bound for codes and orthogonal arrays. Several explicit bounds are 
derived from the LP-bound in the third section. The fourth and last section 
of Chapter 15 contains a proof of the celebrated bound of four (McEliece, Ro­
demich, Rumsey, Welch [140]), an asymptotic bound on codes and orthogonal 
arrays. 

Chapter 16 discusses various applications. OA are interpreted as families 
of random variables with certain independence properties and as perfect local 
randomizers. We introduce linear shift register sequences and their relation 
to Simplex codes, describe the role of minimum distance and strength in the 
construction of block ciphers and the use of OA in two-point based sam­
pling and chips testing. Further topics include the relation between OA and 
resilient functions, applications of resilient functions for the wire-tap channel 
and the generation of random bits, applications of OA in the derandomization 
of Monte Carlo-algorithms, as well as a more detailed study of universal hash 
classes, their construction from codes and their applications in cryptography 
(authentication). 

Chapter 17 studies the geometric approach to linear codes. Linear codes are 
described as multisets of points in projective geometry PG(k−1, q). The main 
theorem determines the minimum distance in terms of hyperplane intersection 
sizes. The hexacode, ovals and hyperovals, extended Reed-Solomon codes 
and the Simplex codes are best understood from this point of view. Codes of 
dimension 2 and 3 are studied. The ternary Golay code is constructed starting 
from its parameters [12, 6, 6]3. Barlotti arcs and Denniston arcs as well as 
the corresponding codes are described. Caps are sets of points no three of 
which are on a line. They are formally equivalent to linear codes of minimum 
distance d = 4. We introduce the theory of bilinear forms and quadratic forms. 
This yields canonical models of large caps in PG(2, q) (parabolic quadrics) 
and in PG(3, q) (elliptic quadrics). Direct constructions of caps in PG(4, q) 
and general bounds on caps in arbitrary dimension are derived. Recursive 
constructions of caps use as ingredients elliptic quadrics or, in the ternary 
case, the Hill cap in PG(5, 3). 

Chapter 18 introduces codes whose alphabet forms a vector space over a 
ground field. They generalize the linear codes. Chen projection is a simple 
recursive construction. Application to caps yields codes which have been used 
in computer memory systems. Application to Reed-Solomon codes produces 
codes which have been used in deep space communication. Another recursive 
construction simplifies the Bose-Bush construction of OA of strength 2. We 
conclude Section 18.1 with a direct construction of an interesting family of low­
dimensional additive codes. A self-contained theory of cyclic additive codes 
is developed in Section 18.2. It generalizes the approach from Chapter 13. 
Quaternary additive codes are considered in Section 18.3. Geometrically those 
are described by multisets of lines in binary projective spaces. We concentrate 
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on codes of short lengths and obtain the best possible parameters for all 
lengths ≤ 13. Quantum stabilizer codes are by nature additive (q-linear, q2­
ary) codes which are contained in their symplectic dual. In Section 18.3 we 
develop the basic theory, using the geometric description in terms of systems of 
lines and applying the cyclic theory. In particular we determine all parameters 
of binary (q = 2) distance d = 3 quantum stabilizer codes. 

Additive codes have recently reappeared under the name of network codes 
(see Koetter and Kschischang [126]). The metric used in [126] is very different 
from what we used so far. It is based on the ranks of pairwise intersections 
of the subgeometries describing the code. We describe the solution of the 
smallest non-trivial problem in Section 18.5. It is surprisingly complicated. 

The plan: Part III 

In the early chapters of Part III we develop some of the basic theory of 
function fields of transcendence degree 1 over finite fields of constants, using 
Stichtenoth’s by now classical textbook [198]. Highlights are the Riemann-
Roch theorem and the Riemann-Hurwitz formula. As motivating examples we 
use the Klein quartic, hyperelliptic and Artin-Schreier extensions. The basic 
construction of codes from algebraic curves (AG-codes) is given in Chapter 22, 
where we describe some important families of AG-codes and an application to 
universal hashing. Some additional material is collected in the last chapter. A 
section on list decoding of Reed-Solomon codes has been included as this rep­
resents a rather recent development which uses some basic algebra/geometry 
in a transparent way. The sections on tms-nets and on sphere packings in 
Euclidean spaces (Chapter 23) are treated somewhat lighter than the appli­
cations in Chapter 16. The theory of tms-nets is to be seen in the context of 
quasi-Monte Carlo algorithms (related to uniformly distributed point sets in 
Euclidean space). This application of coding theory to numerical integration 
and the pricing of exotic options is rather surprising. The construction of 
dense sphere packings is a classical problem in Euclidean space with links not 
only to discrete mathematics but also to algebra and algebraic geometry. The 
remaining sections of Chapter 23 have the character of brief survey articles. 

How to use this text 

Part I arose from several one semester undergraduate courses on coding 
theory. Chapters 2 to 6 form the core of such an introductory course. The 
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only section which can (and maybe should) be skipped is Section 3.5 on the 
MacWilliams transform. The remaining time should be dedicated to one or 
several of the later chapters of Part I. Chapter 7 would be a natural choice 
as the binary Golay code probably is the most famous of all codes. Usually I 
cover Chapter 6 as it is the first example of a non-standard application and 
it can be done in one lecture. 

Another choice would be to cover Chapter 8 and some of the material from 
Chapter 9. These chapters form a unit as the entropy function is used in the 
asymptotic expressions of Chapter 9. 

The canonical starting point for the second semester of a two semester 
course is the theory of cyclic codes and their implementation, Chapters 12 
and 13, as well as Chapter 14. Some of the later parts of Chapter 13 are 
optional (the application to fingerprinting, the Roos bound, the van Lint-
Wilson bound, the comparison with the traditional approach and Section 13.4 
on constacyclic codes). Section 13.3 on the decoding algorithm of BCH-codes 
may be sacrificed as well. 

Chapter 17 may be considered another core area of coding theory as it 
gives a better understanding of many important codes. It would be a pity to 
sacrifice the main theorem of the first section. Some of the applications in the 
first section ought to be covered. 

From here on there are several choices. 

For a thorough introduction to the theory of codes and its links with Galois 
geometry one might concentrate entirely on Chapter 17. 

Another possibility is to cut short on Chapter 17 and to cover several ap­
plications from Chapter 16 instead. The sections on tms-nets and on sphere 
packings in Chapter 23 are then a good choice to round off a graduate course. 
This also has the advantage that the course ends with an introduction to an 
exceptional object, the Leech lattice. 

A third strategy is to concentrate on the theory of cyclic codes and their 
applications. Such a course would end with Chapter 18. 

The database 

Tables on parameters for linear and quantum codes are to be found in M. 
Grassl’s page 

http://www.codetables.de


http://www.codetables.de
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What has changed in the second edition? 

The changes are too numerous to be listed exhaustively. A macroscopic 
change is the addition of a new Part III in the second edition, dedicated 
to algebraic-geometric codes. A little section in the last chapter of the first 
edition has turned into a new Chapter 15 of the second edition, containing 
an introduction to linear programming and the derivation of explicit bounds 
on codes and orthogonal arrays. Chapter 18 on additive codes and network 
codes is a completely remodeled version of the corresponding chapter in the 
first edition. The cyclic case is based on a more general theory, the geometric 
approach has been greatly expanded and there is an additional section on 
network codes. The last chapter has undergone a mutation as well. Two of 
its sections in the first edition have vanished as they turned into chapters 
of their own. Sections on permutation codes and on highly symmetric codes 
have been added as well as two sections which should make the text more 
readable, one on the individual small fields that have been used in the text 
and another section on the individual short codes constructed in the text. 

Textbooks 

An early classic among the textbooks is Algebraic Coding Theory [11] by 
E. R. Berlekamp, which presents in particular an excellent introduction to 
the traditional theory of cyclic codes. The 1977 book The Theory of Error-
Correcting Codes [142] by MacWilliams and Sloane is considered something 
like the bible of traditional coding theory. A more recent introduction is 
J. H. van Lint’s Introduction to Coding Theory [211], a relatively short and 
dense text which helped a great deal in attracting pure mathematicians to 
the area. H. Stichtenoth’s book Algebraic Function Fields and Codes [198] is 
a self-contained introduction to the theory of algebraic function fields in one 
variable (equivalently: algebraic curves) and to the codes derived from them. 
Among the undergraduate textbooks we mention Vera Pless, The Theory of 
Error-Correcting Codes [165] and R. Hill, A first course in coding theory [112]. 
Hill’s book is the first of its kind presenting an introduction to the geometric 
approach to codes. 

Orthogonal Arrays: Theory and Applications [109] by Hedayat, Sloane and 
Stufken introduces to orthogonal arrays (dual codes) and their applications 
to the design of experiments. 
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Chapter 1


The concept of coding


1.1 Bitstrings and binary operations 

Basic concepts: bits, bitstrings, transmission of messages, transmitting pic­
tures from space, the Morse code, XORing, the field F2, the model of message 
transmission, a first idea of error correction. 

The object of coding theory is the transmission of messages over noisy 
channels. Figure 1.1 shows the standard picture visualizing the situation. 

At first we need to understand what the elements of this picture mean: what 
is a message, a channel, what is noise? Along the way we will encounter 
more basic notions. In this first chapter some of these will be explained. We 
start with the message. 

receiverdecode 

errors 

channel 

encodetransmitter 

FIGURE 1.1: Information transmission over a noisy channel 

3 
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If there are 8 possible messages to be sent, say, then we can represent each 
message as a bitstring of length 3, like 000 or 011 or 110. We will generally 
assume this has been done and define a message to be a bitstring. Here are 
some examples of bitstrings and their lengths: 

bit string length 
000 3 
110 3 

110011 6 
0000011111 10 

Transmitting pictures from space 

Assume we wish to transmit a photograph from outer space, like one of 
the pictures of Saturn taken by the Voyager spacecrafts in the early 1980s 
(Viger for Star Trek buffs). The picture is divided into 800 × 800 pixels; 
each pixel is assigned one of 256 = 28 degrees of brightness. The brightness 
of a pixel is thus represented by a bitstring of length 8 and the total black 
and white picture consists of 800 × 800 × 8 bits. As the picture really is in 
color, the same photo is transmitted three times, each time through a different 
color filter. The full color picture will thus be represented by a bitstring of 
length 3 × 800× 800 × 8 = 15, 360, 000. This is our message. The channel is 
determined by the properties of space between the spacecraft and the receiver 
on Earth, above all by the Earth’s atmosphere. A certain number of bits will 
be destroyed. Here we only consider errors of the type that 0 is transmitted 
and 1 is received or vice versa. 

The Morse code 

Another illustration for the claim that every message can be represented by 
bitstrings is the Morse code, which has been in use for telegraphy since the 
1840s. It represents each of the 26 letters A, B, . . . , Z, each digit 0, 1, . . . , 9 
as well as the period, the comma and the question mark by a sequence of at 
most five dots and dashes. The dot stands for a short signal, the dash for a 
long signal. Dashes are about three times as long as dots. For example, the 
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letter E is represented by a single dot, S is represented by dot-dot-dot and Z 
is dash-dash-dot-dot. 

However, the graphical representation is purely conventional. We can rep­
resent a dash by 1, a dot by 0 and obtain a representation of letters and 
numbers as bitstrings: E=0, S=000, Z=1100, and T=1, Q=1101, V=0001. 

Back to the general model 

Assume we wish to send one of 8 possible messages (the bitstrings of length 
3), for example, message 011. If it should happen along the way (in the chan­
nel) that the second bit is flipped (the second coordinate is in error), then 001 
will be received. 

We want to express this situation in mathematical terminology. 

1.1 Definition. F2 = {0, 1} with addition 

0 + 0 = 0, 0 + 1 = 1, 1 + 0 = 1, 1 + 1 = 0 

Here the letter F stands for field. It indicates that this tiny structure of 
only two elements has something in common with the field of real numbers 
and the complex number field: each of these structures satisfies the same set 
of axioms. Each of them is a field. We will come back to this topic later. 

The idea behind the addition in F2 is to model the errors in information 
transmission: a coordinate of a message is in error if and only if 1 is added to 
the entry in this coordinate. This explains why we must have 1 + 1 = 0 : if a 
bit is flipped twice, then no error occurs, or: if 1 is flipped, then 0 is received. 

Addition in F2 is also known as XORing, in particular in the computer 
science literature. Here XOR stands for exclusive or, a logical operation, 
where 1 stands for true and 0 for false. The relation 1 + 1 = 0 (true or true 
= false) is what makes it “exclusive”: in order for the result to be true, one 
of the two ingredients has to be true, but not both (the ordinary or operation 
would have 1 + 1 = 1). 

Another motivation for our binary addition comes from arithmetic: if we 
distinguish even and odd integers, the following familiar rules hold: 

even + odd = odd + even = odd, even + even = odd + odd = even. 

With even = 0 and odd = 1 these are exactly the rules of binary addition. 
Addition in F2 describes what happens in each coordinate. Calculation 

with bitstrings is formalized as follows: 

1.2 Definition. Fn 
2 consists of bitstrings x = (x1, x2, . . . , xn) of length n, 

where xi ∈ F2. Addition in Fn 
2 is coordinatewise. 
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For example, let x = 001 ∈ F3
2 and y = 101 ∈ F2

3 . Then x + y = 100. With 
this terminology it is easier to express the relation between messages, errors 
and received messages. Let x = 001100 be the message sent. Assume errors 
occur in coordinates 2 and 4. We can express this by adding the error vector 
e = 010100. The received message will then be the sum 

y = x + e = 011000. 

Let us do this the other way around: if x = 010101 was sent and y = 010111 
was received, then an error occurred in coordinate 5. This means e = 000010. 

Return to the situation where we send one of eight messages (the elements 
of F3

2), for example, x = 011. No matter what the error vector e is, the received 
message y = x + e is again one of the legitimate messages. There is no way 
for the receiver to suspect that an error occurred, let alone to correct it. So 
how can we hope to correct errors? 

Error correction: The first idea 

Here is the easiest of all error-correcting systems: encode each 0 of the 
message to be sent as a block 000 and analogously each 1 by 111. If the 

′ original message is x = 011, the encoded message is now x = 000111111. 
The receiver knows what encoding scheme has been used. He will therefore 
divide the received message in blocks of length 3. If such a block is 000 or 111, 
then decoding is obvious: 000 7→ 0, 111 7→ 1. Assume a block of the received 
message is 101. The receiver knows that at least one transmission error must 
have happened. It is a basic assumption that a small number of errors is 
more probable than many errors. The decoding will therefore be 101 7→ 1 (by 
majority decision). 
The initial picture begins to make sense now. We have seen that messages 
can be encoded by the transmitter and decoded by the receiver such that the 
following holds: if not more than one error occurs during transmission (in the 
channel), then the error will automatically be corrected. What we have used 
is known as the repetition code of length 3. 
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1. We learned how to calculate with bitstrings. 

2. Fn 
2 consists of the bitstrings of length n. 

3. The received message is the binary sum of the sent message and 
the error vector. 

4. The repetition code of length 3 corrects one bit error. 

Exercises 1.1 

1.1.1. Compute the sum of 11001 and 01110. 

1.1.2. Assume 000000 was sent and two errors occurred. List all possible 
received messages. 

1.1.3. Let x = 1101 be the message to be sent. Encode x using the repetition 
code of length 3. 

1.1.4. Assume the repetition code of length 3 is used and 000110111101 is 
received. What is the result of decoding? 

1.1.5. Why does the Morse code represent letters E and T by strings of length 
1, whereas letters like Q, V, Z are represented by longer bitstrings? 

1.2 The Hamming distance 

Basic concepts: The Hamming distance as a metric, the weight of a 
bitstring. 

1.3 Definition. Let x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) be bitstrings 
in Fn 

2 . The distance (or Hamming distance) between x and y is 

d(x, y) = number of coordinates i where xi = yi. 
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Here are some examples: 

d(0000, 1111) = 4, d(00110, 00101) = 2, d(111111, 001100) = 4. 

Expressed in the context of messages and errors, d(x, y) is the minimum 
number of errors transforming x into y. In fact, consider the second example 
above: x = 00110 and y = 00101 differ in the last two coordinates, d(x, y) = 2 
and x + 00011 = y. 

Things get even easier when we use the weight. 

1.4 Definition. The weight wt(x) of the bitstring x ∈ Fn 
2 is the number of 

nonzero coordinates in x. 

Here are some examples: 

wt(0000) = 0, wt(1111) = 4, wt(00110) = 2, wt(001101) = 3. 

The weight of a bitstring is its distance from the all-0 bitstring. If the all-0 
bitstring is sent and w errors occur during transmission, then the received 
message has weight w. If x is sent, e is the error vector and y = x + e is 
received, then d(x, y) = wt(e). 

The Hamming distance is also called the Hamming metric. The general 
notion of a metric is widely used in mathematics. Here is the definition: 

1.5 Definition. Let X be a set. For every pair x ∈ X, y ∈ X let a real 
number d(x, y) be given (the distance from x to y). The function d is called 
a metric if the following are satisfied: 

• d(x, y) ≥ 0 for all x, y. 

• d(y, x) = d(x, y) for all x, y. 

• d(x, y) = 0 if and only if x = y. 

• d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z. 

The last requirement is the most important. It is known as the triangle 
inequality. A famous metric is the Euclidean metric in Euclidean space. If, 
for example, x = (x1, x2) and y = (y1, y2) are two points in the plane, then 

their Euclidean distance is 
�

(x1 − y1)2 + (x2 − y2)2 . 

1.6 Theorem. The Hamming distance is a metric on Fn 
2 . 

Most of the properties of Definition 1.5 are obvious. Only the triangle 
inequality is a little interesting. This is left as an exercise. 
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1. The Hamming distance between two bitstrings of the same length 
is the number of coordinates where they differ. 

2. d(x, y) is the number of bit errors needed to transform x into y. 

3. The Hamming distance is a metric. 

4. The weight is the distance from the all-0 vector. 

5. d(x, y) = wt(x + y). 

6. If bitstring x is sent and y is received, then 
d(x, y) = wt(e) is the weight of the error vector. 

Exercises 1.2 

1.2.1. Compute d(11001, 01110) and d(0000, 0110). 

1.2.2. Find wt(00110) and wt(10111). 

1.2.3. List all vectors in F6
2 at distance 3 from 111000. 

1.2.4. The alphabet has 26 letters. If we want to represent all possible words 
of length ≤ 3 (all letters, pairs of letters and triples of letters) as bitstrings of 
the same length n, what is the smallest number n such that this is possible? 

1.2.5. Prove that the Hamming distance is a metric. 

1.2.6. Assume x is sent and y = x + e is received. What can we say about 
d(x, y) and about wt(e) if not more than 3 errors have occurred? 

1.3 Binary codes 

Basic concepts: Length, minimum distance. The idea of error correction. 
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We saw that no errors can be detected or corrected if all elements of Fn 
2 

are used as messages. The obvious idea is to use only a certain subset. Such 
subsets will be called codes. 

Let us send bitstrings of length 6. Instead of using all elements of F6
2 as 

(encoded) messages, we use only the following subset: 

000000 001011 
100110 101101 
010101 011110 
110011 111000 

Such a family of bitstrings of length 6 is also called a binary code of length 
6. Its elements are codewords. In our example we have 8 codewords. 

The most important property of this code is the following: any two different 
codewords are at distance ≥ 3. We say that 3 is the minimum distance of 
the code. Please check for yourself that this is true. The parameters of this 
binary code are then recorded as (6, 8, 3)2 : we have a binary code (indicated 
by subscript 2), of length 6, consisting of 8 codewords, with minimum distance 
of 3. 

The idea of error correction 

Transmitter and receiver agree on the code to be used. Only codewords will 
be sent. If only one error occurs in the channel, then the received word will 
be in a ball of radius 1 around a codeword (in the Hamming metric). Assume 
the code has been chosen such that any two codewords are at distance at least 
3. Then the balls of radius 1 do not overlap: if a bitstring has distance 1 from 
some codeword, then it has a larger distance from any other codeword. In 
other words, the receiver will decode any vector at distance ≤ 1 from some 
codeword as that codeword. 

In the picture: the whole ball (or call it a disc) of radius 1 is decoded as the 
center of the ball, or: the received tuple is decoded as the codeword which it 
resembles most closely. If not more than one error occurred, then this error 
will be corrected. Observe that Figure 1.2 serves only as an illustration. 

The metric in the Euclidean plane is used to illustrate the situation in a 
rather different metric, the Hamming metric. 
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FIGURE 1.2: Non-overlapping balls centered at codewords 

1.7 Definition. A binary code (n,M, d)2 is a set of M bitstrings in Fn 
2 such 

that any two different elements of the code (codewords) are at distance ≥ d. 
We call n the length and d the minimum distance of the code. 

A code of minimum distance 5 can correct 2 errors, minimum distance 7 
can correct 3 errors and so on. A fundamental problem of coding theory is 
the following: Given n and d, find the largest M such that there is a code 
(n,M, d)2. 

1. A binary code (n,M, d)2 is a collection of M bitstrings of length 
n such that any two different of these codewords are at Hamming 
distance at least d. 

2. A basic problem of coding theory: determine the maximum M 
such that an (n,M, d)2-code exists. 

3. A code can correct e errors provided its minimum distance is 
d ≥ 2e + 1. 

4. We saw a (6, 8, 3)2−code. 

Exercises 1.3 

1.3.1. If we want to correct 8 bit errors, what would the minimum distance 
of the code have to be? 



6

12 Introduction to Coding Theory, Second Edition 

1.3.2. Using our code (6, 8, 3)2, decode the following received vectors: 

111100, 111011, 000001, 011110. 

1.3.3. Does a code (5, 6, 3)2 exist? 

1.4 Error-correcting codes in general 

Basic concepts: Basic code parameters. Telegraphy codes as early exam­
ples. 

The notion of a binary code is too narrow, although it is most frequently 
used in information transmission. Here is the general concept of an 
(error-correcting) code: 

1.8 Definition. Let A be a finite set of q elements (the alphabet). A q-ary 
code C of length n is a family of n-tuples with entries in A : 

n .C ⊆ A

For example, let q = 3 and A = {0, 1, 2}. Then A4 consists of the 34 tuples 
of length 4 with entries 0, 1, 2, like, for example, 

0000, 0102, 2221 or 2100. 

A 3-ary code (also called ternary) of length 4 consists of a collection of such 
ternary 4-tuples. The Morse code from Section 1.1 really is a ternary code. 
The reason is that the individual letters need to be seperated. If we represent 
a dot by 0, a dash by 1 and a gap between letters as 2, the message SOS will 
be represented by the ternary word 00021112000. 

1.9 Definition. Let x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) be elements 
(strings, vectors, words) in An . The distance (or Hamming distance) 
between x and y is defined as 

d(x, y) = number of coordinates i where xi = yi. 
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This is the same as in Definition 1.3. As before, the minimum distance of a 
code is the minimum of the distances between different codewords, and again 
the Hamming distance defines a metric. 

1.10 Definition. A q-ary code (n,M, d)q is a set of M strings in An (where 
|A| = q) such that any two different elements of the code (codewords) are at 
distance ≥ d. Call n the length and d the minimum distance of the code. 

Here are the words of a ternary code (4, 27, 2)3 : 

0000 1002 2001 0102 1101 2100 0201 1200 2202 
0012 1011 2010 0111 1110 2112 0210 1212 2211 
0021 1020 2022 0120 1122 2121 0222 1221 2220 

As in the binary case, in order to correct e errors, we need a code of min­
imum distance at least 2e + 1. Our code (4, 27, 2)3 will not suffice to correct 
one error. For example, if 0000 was sent and 0010 received (only one error 
occurred), the received vector has distance 1 not only from 0000 but also from 
0012 and from 0210 and from 2010. 

A basic problem of coding theory is the following: given q, n, d, find the 
maximum number M such that a code (n,M, d)q exists. 

Error detection in telegraphy codes 

Error detection is a more modest aim than error correction. It is suitable in 
situations where the channel is very good. On the rare occasions that an error 
occurs (and is detected), the receiver can then simply ask for retransmission. 
The alphabet of the telegraphy codes consists of the 26 letters A, B, . . . , 
Z. The classical commercial codes use five letter groups as codewords. Each 
trade had its own elaborate codes. The primary aim of these codes was to 
save transmission time and thus to save money. As an example, take the 
Acme Code. It saves time to send the codeword BUKSI when Avoid arrest 
if possible is intended, and AROJD is shorter than Please advertise the birth 
of twins. It is a little unclear if PYTUO for Collided with an iceberg really 
achieves much in this respect, as such collisions do not happen all the time. In 
modern terminology, this business of representing messages by short strings 
is called Data Compression or Source Coding. It is not our concern in 
this book. 

However, commercial telegraphy codes also took the reliability of message 
transmission into consideration. A general rule known as the two-letter dif­
ferential stipulated that any two codewords had to differ in at least two 
letters. This means that each commercial code has minimum Hamming dis­
tance ≥ 2, enough to detect single errors. The Acme code also safeguarded 
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against a different type of error: no two codewords (necessarily of Hamming 
distance 2) may result from each other by transposition of two adjacent letters. 
For instance, if AHXNO is a codeword (it stands for Met with a fatal accident 
in the Acme code), then HAXNO, AXHNO, AHNXO, AHXON cannot be 
codewords. 

This material is from Chapter 22 of D. Kahn’s The Codebreakers [122]. 

1. A q-ary code (n,M, d)q is a collection of M q-ary n-tuples (the 
codewords) such that any two different codewords are at Ham­
ming distance at least d. 

2. A basic problem of coding theory: given q, n, d, 
maximize M such that an (n,M, d)q-code exists. 

3. A code can correct e errors provided its 
minimum distance is d ≥ 2e + 1. 

4. We saw a ternary code (4, 27, 2)3. 

Exercises 1.4 

1.4.1. Find the smallest length n such that an (n, 27, 2)3 exists. 

1.4.2. Prove the following: if there is an (n,M, d)q, 
then there is an (n + 1,M, d)q. 

1.4.3. Prove the following: If there is an (n,M, d)q−1, 
then there is an (n,M, d)q. 

1.5 The binary symmetric channel 

Basic concepts: The BSC, binomial numbers, subsets and paths, 
the Pascal triangle. 
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FIGURE 1.3: The BSC 
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So how do we model the noise mentioned in Section 1.1? In the case of 
the binary alphabet, the easiest and most widely used model is the binary 
symmetric channel (BSC). It assumes that there is a certain fixed probability, 
a number p, where 0 < p < 1, for a bit transmission error. Clearly a value 
p > 1/2 does not make sense (why?) and p = 1/2 would mean that pure noise 
is received. We can therefore assume p < 1/2, and for all practical purposes 
p will be rather small. 

The probability that a sent 0 will be received as 0 is 1 − p. Likewise the 
probability that a sent 1 will be received as 1 is 1 − p. The probability that a 
sent 0 is received as a 1 is p, just like the probability that a sent 1 is received 
as 0. 

This model of a channel is called symmetric because 0 and 1 play sym­
metric roles. It is also called a memoryless channel because the probability 
of a bit error is independent of the prehistory. Can you think of situations 
when this model will not be appropriate? 

In order to be able to do some combinatorial counting based on the BSC 
we take a look at the binomial numbers. 
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Binomials, subsets and paths 

The number of bitstrings of length n and weight m is the binomial number 
n 

. This is the number of error patterns that can occur in n bits when the 
m 

total number of errors is m. For example, the bitstrings of length 4 and weight 
2 are 

0011, 0110, 0101, 1001, 1010, 1100. 
�
4
� 

Accordingly, = 6. 
2 

Another interpretation of the binomials uses subsets: identify each coordi­
nate of a bitstring of length n with an element of a set, for example with the 
numbers 1, 2, . . . , n. Each bitstring of length n can then be identified with a 
subset of {1, 2, . . . , n}. If the entry in the corresponding coordinate is 1, we 
include that element in the subset; if the entry is 0 we will not include it. For 
example, 0011 corresponds to the subset {3, 4}, 1001 to the subset {1, 4}, 1111 
to the total set {1, 2, 3, 4} and 0000 to the empty set. We see that the bit-
strings of length n and weight m correspond precisely to the subsets of m 
elements of a fixed set with n elements. 

A third interpretation of the binomials involves paths in a triangle; see 
Figure 1.4. 

Consider paths starting at the top of the triangle, where in each step the 
choice is between going southeast or southwest. We may encode this decision 
by a string of E and W, for example EEWWE for going at first southeast 
twice, then southwest twice and a final step in southeast direction. Denote 
the top level by level 0. Then our path will end at level 5, at a node labelled 10 
in Figure 1.4. Why that label? Our string with entries E and W is a bitstring 
in disguise. We can write 1 for E and 0 for W, obtaining bitstring 11001. Each 
path in the triangle is described by a bitstring. Bitstrings of length n end on 
level n. Two bitstrings end in the same spot if they have the same length and 
the same weight. This explains our labels: the label of the node on level n 
and weight m (start with weight 0 on the western end of the level, end with 
weight n on the eastern end) is the number of paths ending there. This is the 
number of bitstrings of length n and weight m, in other words the binomial 
� � �

5
� 

n 
. The endpoint of our path is labeled 10, as = 10 is the number 

m 3 
of paths ending there. The labels 1 on the western border are the numbers 
n 

= 1 (there is only one bitstring with all entries 0 of any given length); 
0 

n 
the labels 1 on the eastern border are the numbers = 1 (there is only 

n 
one bitstring with all entries 1). 
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FIGURE 1.4: Pascal’s triangle 

The triangle is known as the Pascal triangle. It can be used to compute 
the binomials recursively. In fact, each label not on the border is the sum of 
the labels directly to its northeast and to its northwest, in formulas 

n n − 1 n − 1 
= + for 0 < m < n. 

m m − 1 m 

A direct formula to compute the binomials is 

n 
= 

n(n − 1) . . . (n − m + 1) 
. 

m m(m − 1) . . . 2 1· 
�
4
� 

4 3 
�
5
� 

5 4 
As examples, = 

· 
= 6, = 

· 
= 10,

2 2 2 2 
�
6
� 

=
6 · 5 · 4 

= 20 and in general 

� 
n 
� 

= 
n(n − 1) 

. 
3 3 2 2 2· 

Back to the channel 

Assume a word (a bitstring) of length n is sent through the channel. The 
probability that no bit error occurs is (1 − p)n . The probability that exactly 
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one error occurs is np(1 − p)n−1 (there are n choices where the error could 
happen; the probability of a certain error pattern involving just one error 
is p(1 − p)n−1). The probability of a certain error pattern with precisely k 
errors is p k(1 − p)n−k . The number of such error patterns is the number of 

n 
possibilities of choosing k elements out of n. This is . The probability 

k 

that precisely k errors occur is therefore 
n

p k(1 − p)n−k . If we want to 
k 

compute the probability that at most k errors happen, we have to sum up 
these probabilities. 

1. The binary symmetric channel is the simplest model for noise. 

2. If a binary n-tuple is sent via the BSC, the probability that at 
k � �


most k bit errors occur is 
� n

p i(1− p)n−i .

i 

i=0 

While the BSC is conceptually simple, there are other channels which are 
easier to handle. An example is the binary erasure channel where the 
probability of correct transmission of 0 and 1 is 1 − p just as in the BSC, but 
in addition the receiver knows when problems occurred. Formally this can be 
described as a channel with three possible outputs: 0, 1 or E, where E stands 
for erasure. 

Exercises 1.5 

1.5.1. Compute the probability that no more than one error occurs in the 
transmission of a bitstring of length 10, when the bit error probability is p = 
10−3 , or p = 10−4 , or p = 10−5 . 

1.5.2. Describe a generalization of the BSC from the binary 
to the general q-ary case. 

1.5.3. Sketch a formal picture of the binary erasure channel, analogous to 
Figure 1.3 for the BSC. 

1.5.4. Show that, if a code of minimum distance d is used for the erasure 
channel, then any d− 1 errors can be corrected. 
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1.5.5. Use the subset interpretation of the binomials to prove the binomial 
formula 

n � � 

(a + b)n = 
� n

a ibn−i . 
i 

i=0 

1.5.6. Prove 
n � � 

(1− b)n = 
� 

(−1)i n
bi . 

i 
i=0 

1.6 The sphere-packing bound 

and the ternary Hamming code; the football pool problem. 

As in all mathematical optimization problems, the problem of finding the 
maximum number M, such that a code (n,M, d)q exists, splits into two parts: 
we have to construct good codes (with high M), and we have to prove upper 
bounds showing that a higher value of M is impossible. In this section we 
will prove our first upper bound. It is a direct consequence of the basic idea 
of error correction. 

As a preparation, we need a counting argument (this is a typical problem 
of elementary combinatorics) of the same type as the argument in Section 1.5. 
Given a vector x ∈ An (recall that A is our alphabet of size q), how many 
vectors are there at distance ≤ i from x? We call this set of vectors the ball 
of radius i with center x. 

1.11 Definition. Consider the space An of vectors of length n, with the 
Hamming metric, where |A| = q. This is also called a Hamming space. 
The number of vectors at distance ≤ i from a given vector is denoted Vq(i, n). 
We call Vq(i, n) the volume of a ball of radius i. 

Fix some distance j and count the vectors at distance precisely j from the 
n 

given vector. There are choices for the set of coordinates where the 
j 

entries are different. Once this set is fixed, there are q − 1 possibilities for 
the possible entries in each of these j coordinates. We count 

�
n
�
(q− 1)j . The j 

volume Vq(i, n) is obtained by adding up these numbers, for j ≤ i. We have 
seen the following: 
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1.12 Proposition. The volume of the ball of radius i is 

i � � 

Vq(i, n) = 
� n 

(q − 1)j . 
j

j=0 

We are close to our bound. Let C be a code (n,M, d)q. Let e = ⌊(d− 1)/2⌋
(the largest integer less than or equal to (d − 1)/2). We have chosen e such 
that 2e + 1 < d. Our standard argument shows that the balls of radius e 
centered at the codewords must be disjoint. As each such ball has Vq(e, n) 
vectors, we must have MVq(e, n) ≤ qn (counting all vectors in these balls, we 
cannot get more vectors than the whole space contains). 

1.13 Theorem (sphere packing bound). Each q-ary code C of length n and 
minimum distance d satisfies 

nq
.|C| ≤ 

Vq(e, n) 

Here e = ⌊(d− 1)/2⌋. 

Codes for which equality holds in Theorem 1.13 are known as perfect 
codes. The parameters of perfect codes have all been classified. 
Our first code was a (6, 8, 3)2. What is the maximum M for a code (6,M, 3)2? 
Here e = 1. We have V2(1, 6) = 7. The sphere-packing bound says 7M ≤ 64, 
hence M ≤ 9. We claim that a code (6, 9, 3)2 cannot exist. The reader is 
asked to provide a proof along the lines sketched in Exercises 1.6.4 and 1.6.5. 

Here is a nice parameter situation: consider a possible code (11, 729, 5)3. 
Observe that 729 = 36 . We have e = 2 and V3(2, 11) = 1 + 11 2 +

�
11 
� 

4 = · 2 · 
1 + 22 + 220 = 243 = 35 (quite a coincidence). It follows that a ternary 
code (11,M, 5)3 has M ≤ 311/35 = 36 = 729. We see that the parameters 
(11, 36 , 5)3 are extremal. If such a code exists, then it is perfect. A perfect code 
(11, 729, 5)3 does indeed exist. It is uniquely determined by its parameters 
and known as the ternary Golay code, named after the Swiss engineer who 
described it in 1949 (see Golay [94], reprinted in Berlekamp [13]). 

A betting system 

Here is how the ternary Golay code can be used in a betting system: in 
most European countries it is popular to bet on the results of football matches 
(football is not to be confused with American football. In the US the game is 
known by the bizarre name of soccer). Each match has one of three possible 
results: 1= home team wins, 2=guest wins, or 0= a draw. This is why we 
use ternary codes. There are 11 or more matches in the pool. If there are 
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11 matches, we can use the 729 codewords of the ternary Golay code as bets. 
As every vector is at distance ≤ 2 from a codeword, it is guaranteed that no 
matter what the results of the 11 matches are, one of our bets has at least 
9 results correct. Assume there are 13 matches in the pool. Then we may 
choose two matches whose results seem to be safe and use the Golay code for 
the remaining 11 matches. 

Incidentally, the ternary Golay code is older than Golay. The Finnish jour­
nalist Juhani Virtakallio published it in 1947 in the Finnish football journal 
Veikaaja (see Cohen et al. [55]). It is no coincidence that this discovery was 
made in Finland. This country has a rich tradition in coding theory and 
related questions. 

1. The sphere-packing bound is our first general bound on codes. 

2. Codes meeting it with equality are called perfect. 

3. The ternary Golay code (11, 729, 5)3 is perfect. 

Exercises 1.6 

1.6.1. Construct a code (4, 2, 3)2 (this is really trivial). 

1.6.2. Show that there is no (4, 3, 3)2-code 

1.6.3. Construct a code (5, 4, 3)2 (hint: use our code (6, 8, 3)2)). 

1.6.4. Show that there is no (5, 5, 3)2. 

1.6.5. Using the preceding exercise, show that there is no (6, 9, 3)2. 

1.6.6. What does the sphere-packing bound tell us about the length n of a 
binary code (n, 27 , 5)2? 

1.6.7. Six candidates are examined by 9 referees. Each referee assigns a pass­
fail grade to each candidate. Any two referees assign the same grade to not 
more than 3 of the candidates. Can this really happen? 

1.6.8. Show that the minimum distance of a perfect code must be odd. 

1.6.9. Use the sphere-packing bound to show the nonexistence of (5, 6, 3)2. 

1.6.10. Does a (7, 9, 3)2-code exist? 
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Chapter 2


Binary linear codes


2.1 The concept of binary linear codes 

Basic concepts: Dimension, generator matrices, minimum weight. 
Linear algebra over F2 : basis, rank, linear independence, determinant. 

Our binary code (6, 8, 3)2 has an additional structure, which greatly sim­
plifies its description. Consider the following three of its codewords: 

100110 
010101 
001011 

Call them z1, z2, z3. Consider all linear combinations of z1, z2 and z3, 
that is, all vectors of the form λ1z1 + λ2z2 + λ3z3, where λi ∈ F2. These 
linear combinations are different and they are just exactly the words of our 
code. We call {z1, z2, z3} a basis of our code and say that the code is linear. 
Another way of seeing this is by the following observation: the sum of any 
two codewords is a codeword again; the code is closed under sums. We take 
this as a definition: 

2.1 Definition. A binary code is linear if it is closed under addition. 

It is a basic fact from linear algebra that each linear code (abstractly: each 
linear space, each vector space) has a basis. Linear algebra applies to arbitrary 
fields. Most people are familiar with fields like the rational numbers, the real 
numbers and the complex numbers, but we can apply the basics of linear 
algebra to finite fields like F2 as well. This leads to the following basic fact: 

23 
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2.2 Theorem. A binary linear code (n,M, d)2 has M = 2k for some k. The 
number k is the dimension of the code. There is a basis {z1, z2, . . . , zk} of 
k codewords. Each codeword is a linear combination of the zi. 

There is a general tendency to restrict attention to linear codes. One 
reason is that these are much easier to describe and to work with than codes 
in general. For example, a binary linear code of dimension k has M = 2k 

codewords, but it is uniquely described by a basis, which has only k elements. 
This is a much more compact representation of the code than a list of all its 
words. 

2.3 Definition. The parameters of a k-dimensional binary linear code of 
length n and minimum distance d are written 

[n, k, d]2 

(the number of codewords is M = 2k). 

The basic problem of binary linear codes is the following: determine the 
maximum k such that a code [n, k, d]2 exists. Our code (6, 8, 3)2 is a linear 
code, a [6, 3, 3]2-code. The compact representation described above leads to 
the notion of a generator matrix. 

2.4 Definition. Let C be a linear code [n, k, d]2. A generator matrix G of 
C is a (k, n)-matrix whose rows form a basis of C. 

If we know a generator matrix G, then we know the code. The codewords 
are just all linear combinations of the rows of G; in other words, the code is 
the rowspace of G. 

Here is another binary linear code. Please check that it is indeed linear. 
The minimum distance is 3. 

0000000 1100110 
1101000 0100101 

1010100 1000011 

0110010 0001110 

1110001 1001101 
0111100 0101011 

1011010 0010111 

0011001 1111111 

As there are 16 = 24 codewords, its dimension is k = 4. The parameters are 
[7, 4, 3]2. It is known as the binary Hamming code. How can we be sure 
the minimum distance is really 3? We would have to check 

�
16 
� 
= 120 pairs 2 

of codewords. Here is a simplification, valid for linear codes: 

2.5 Proposition. For a binary linear code, the minimum distance equals the 
minimum of the weights of nonzero codewords (observe that the all-0 word is 
automatically contained in each linear code). 
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PROOF We know that each weight also is a distance. It suffices to 
show that the distance between two codewords also is the weight of some 
codeword. Let x, y be different codewords at distance d(x, y). Addition of the 
same vector to both words does not change the distance. We add x. This 
yields d(x, y) = d(0, y + x) = wt(y+ x). Here 0 is the all-0 word. As the code 
is linear, x + y is a codeword again. As x = y, we have x + y = 0. 

Because of Proposition 2.5, it suffices to check that each of the 15 nonzero 
codewords has weight ≥ 3 to check that indeed d = 3. Here is a generator 
matrix: 

 



 

1 0 0 1 1 0 1 
0 1 0 1 0 1 1 
0 0 1 0 1 1 1 
0 0 0 1 1 1 0 

 



 

How can we be sure? At first we check that each row of the matrix is 
a nonzero codeword. One method of controlling that we have a generator 
matrix is to make sure that each codeword is indeed a linear combination of 
rows, equivalently that different linear combinations of rows yield different 
codewords. We can speed up by using basic facts of linear algebra. One such 
fact is the following: we have a generator matrix if and only if the matrix 
has rank equal to the number of rows (= k), if and only if there is a (k, k)­
submatrix with nonzero determinant. In our case the last check is fastest: the 
first four columns form a triangular matrix with ones on the diagonal, hence 
of determinant = 1. We repeat: 

2.6 Proposition. Let C be a binary [n, k]2-code (the minimum distance is 
irrelevant here). Let G be a matrix whose rows are codewords of C. The 
following are equivalent: 

1. G is a generator matrix. 

2. G has rank k (remember that the rank of a matrix is a basic term from 
linear algebra). 

3. There is a (k, k)-submatrix of nonzero determinant (recall that the 
determinant of a matrix is another basic notion from linear algebra). 

4. The rows of G are linearly independent

(yet another such basic notion).
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1. A binary code is linear (or a subspace of Fn 
2 ) 

if it is closed under addition. 

2. A binary linear code (subspace) has 2k codewords; 
k is the dimension. 

3. The parameters of binary linear codes: [n, k, d]2. 

4. Each binary linear code has a basis, consisting of 
k codewords. 

5. A (k, n)-matrix whose rows form a basis is a 
generator matrix. 

Exercises 2.1 

2.1.1. Show that our code [7, 4, 3]2 is perfect. 

2.1.2. Try to decide if an [8, 4, 4]2 exists. 

2.1.3. Give an example showing that the basis of a code 
is not uniquely determined. 

2.1.4. Determine the parameters of the binary linear code 
generated by the rows of the matrix 

 
1 0 0 1 1 0 1


0 1 0 1 0 1 1 


0 0 1 0 1 1 1


2.1.5. Compute the parameters [n, k, d]2 of the binary linear code generated 
by 

 
1 1 0 0 0 0 1 1 0 1 

G = 0 0 1 1 0 0 1 0 1 1  

0 0 0 0 1 1 0 1 1 1 

Find a nonzero codeword of minimum weight. 
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FIGURE 2.1: Block coding 

2.2 Block coding


using binary linear codes. Information rate, relative distance. 


