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Preface 

Interfacial phenomena (adsorption, desorption, evaporation, boil-
ing, wetting, spreading, drop and bubble formation and migration, 
rippling, etc.) are essential for life and for many natural and arti-
ficial technological processes. In particular, interfacial convection is 
ubiquitous in nature; it appears all around us and inside us (small 
scale flows and microhydrodynamics when body forces and inertia, 
generally, have negligible influence). Its role in engineering processes 
(metallurgy, electrochemistry, welding, painting, drying, etc.) has 
been emphasized by numerous writers (see e.g. Levich and Krylov, 
1969, Szekely, 1979). Recently, it has become obvious that in various 
processes in the (free fall) microgravity or variable effective-gravity 
environment of space laboratories, and the International Space Sta-
tion, due to the practical absence of buoyancy, interfacial convection 
is the basic mechanism of fluid motion even in large scale processes 
(see, e.g. Ostrach, 1982; Walter, 1987; Ratke et al., 1989). 

At an open surface, or at the interface between two liquids, the 
surface or interfacial tension accounts for the jump in normal stresses 
proportional to the surface curvature across the interface (Laplace 
hypothesis), and hence affects the surface shape and its stability. 
Gravity competes with the Laplace (overpressure) force in accom-
modating equipotential levels with curvature (minimizing the corre-
sponding free energy). This balance permits, for instance, the stable 
equilibrium of the (practically) spherical shape of drops and bubbles 
as we see them around us. 

When surface tension varies with position along an interface, its 
change takes care of the jump in the tangential stresses. Hence its 
gradient acts like a shear stress applied by the interface on the ad-
joining bulk phases and thereby generates flow or alters an existing 
one (Marangoni effect). Surface tension gradient-driven (Marangoni-
driven) flows are known to affect the evolution of growing fronts, and 
measurements of heat and other diffusion coefficients. 

Gradients may be due to heat or mass transfer processes occur-
ring along or across an interface (hence leading to thermocapillarity 
or solutocapillarity as forms of the Marangoni effect) or, indirectly, 
may originate in buoyancy-driven convection or in any other form of 
flow. Electric and magnetic fields can influence surface tension and 
hence flow at an interface. Electrocapillarity and magnetocapillarity 
can also, by extension, be considered as forms of the Marangoni ef- 
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fect. An interface, clearly, provides a nontrivial coupling mechanism 
between two bulk phases, surface and body forces, flow, and trans-
port processes. From such coupling occurs a large variety of phenom-
ena. Noticeable is that although no Marangoni effect may originally 
occur in a liquid-liquid system, interfacial (Marangoni-driven) con-
vection could develop due to temperature variations resulting from 
positive or negative heats of solution. 

Needless to say, concentration and/or temperature gradients may 
help in reducing or producing convection. Take the growth of crys-
tals from a melt, which is a process where the elimination of con-
vection in the melt is desirable because flow produces non-uniform 
growth conditions and, thereby, an increase in the generally uncon-
trollable number of dislocations and other defects in the crystal (see, 
e.g. Ostrach, 1982, 1983; Regel, 1987; Walter, 1987; Ratke et al., 
1989). The evaporative purification of a levitated melt is a process 
in which the opposite result is desired: convection is important here 
because it increases the rate of purification by replenishing the im-
purity concentration at the surface and because it tends to maintain 
a uniform composition throughout the melt. Furthermore, interfaces 
often contain traces of surface active substances (surfactants) that 
alter, significantly, the surface tension. In general, surface tension-
lowering solutes adsorb preferentially in the interface (Gibbs adsorp-
tion hypothesis). The longer the characteristic time for a solute to 
redistribute itself between the interface and the bulk of the liquid, 
the more surface active the solute is. If the interface expands locally, 
these surfactants are swept outward with the movement, creating a 
gradient in their concentration. This concentration gradient implies 
a surface tension gradient which acts opposite to the movement. This 
effect was well explained by Levich (1962), particularly when dealing 
with drop migration in the presence of thermal gradients (see also 
Bakker et al., 1966). 

Progress in the theory, numerics, and experiments with interfa-
cial phenomena has been made in the past decades, leading to our 
understanding of the conditions for interfacial instability and/or in-
terfacial convection to occur. Some examples are the study of cel-
lular (Benard) convection and its evolution, rippling and the gener-
ation of (nonlinear) waves and solitons, drop and bubble migration 
in the presence of thermal gradients, and three-dimensional surface 
tension gradient-driven (Marangoni-driven) flows and related spatio-
temporal problems. Interfacial convection has, however, been much 



less studied than buoyancy-driven, natural convection, and other 
flows driven by pressure gradients and body forces. In fact, the 
study of liquid flow along an interface from places with low surface 
tension to places with a higher surface tension started long ago when 
the Italian scientist Marangoni studied the conditions for spreading 
of one liquid on another in, among other places, the largest basin 
of the Tuileries gardens in Paris. He stated that a liquid A spreads 
on a liquid B when the sum of the interfacial tension and the sur-
face tension of A is lower than the surface tension of B. He reported 
on this phenomenon in an 1865 brochure, and made his research 
more widely available six years later (1871a,b), because of his fear 
that publications by the Belgian scientist, and Plateau's son-in-law, 
Van der Mensbrugghe (1870, 1873) and the German scientist Lfidtge 
(1869), the latter partially in error, would render his priority on 
this subject unacknowledged. Plateau, in a book published in 1873, 
gives proper credit to the work of Marangoni. He also describes the 
work of Dupre de Rennes (1869) with findings identical to those of 
Marangoni. Young (1805) and later Maxwell (1871, 1878) correctly 
stated the spreading laws that, finally, Harkins and Feldman (1922) 
established on sound thermodynamic ground. 

James Thomson (1855, 1881), the older brother of Lord Kelvin, 
also established, albeit qualitatively only and not with fully correct 
understanding of the phenomena, though he distinguished buoyancy 
from surface tension effects, that when gradients in surface tension 
arise due to concentration differences within one fluid, flow arises as 
well (1855). He explained the tears found in a glass of wine or any 
other strong alcoholic liquor in terms of surface tension gradients, and 
for this reason the Marangoni effect has on occasion been referred 
to as the Thomson effect. Worth mentioning also is the work of 
Weber (1854), who described convective motions occurring at the 
surface of bubbles placed in alcohol solutions. Earlier, Varley (1836) 
had described curious motions in evaporating drops observed under 
a microscope. 

In observing but not explaining some of the above-described phe-
nomena, both Marangoni and Thomson were far outdated by other 
authors. In 1686, Heyde observed dancing camphor on olive oil. 
Much earlier, Plutarch and Pliny the Elder (Levich, 1962) reported 
the calming of the sea as a result of sailors spreading olive oil over 
the sea surface, a phenomenon also studied by Benjamin Franklin 
(1774; Tanford, 1989; see also Tomlison, 1864, 1869 and Scriven and 
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Sternling, 1960). 
In the present book, we provide a succinct account of results 

concerning interfacial phenomena and convection in various systems, 
albeit in each case limited to the simplest possible but significant 
model-problem from which we have extracted universal features. In 
the Introduction, we give a brief description of the hydrodynam-
ics needed to understand the remainder of the book in a relatively 
selfconsistent way. We recall the Navier-Stokes, Fourier, and Fick 
equations as well as their corresponding boundary conditions, as in-
terfaces are treated as boundaries rather than genuine, autonomous 
phases. We also discuss phenomena related to chemical reaction, 
heat and mass transfer along or across interfaces, and features of 
adsorption and desorption phenomena. We delineate the role of the 
Marangoni effect that flow at an interface or an open surface occurs 
whatever there is variation of surface tension, but whether or not 
the initial flow disturbance is sustained and/or penetrates in the ad-
joining bulk phases depends on the strength of such gradient relative 
to viscous damping and, eventually, on the ratio of their kinematic 
viscosities and heat or mass diffusivities. 

We then proceed with the consideration of the relatively simple 
but important case where convection is caused by imposed concen-
tration or temperature gradients along the interface (Chapter 2). 
The following chapters are devoted to the development of linear and 
nonlinear theory of surface tension gradient-driven flows which ap-
pear spontaneously as a result of instability of the interface, and 
eventually, flow generated by growing disturbances induced by the 
Marangoni effect. 

In Chapter 3 we concentrate on the phenomena of drop (bubble) 
migration and features of drop spreading due to the Marangoni effect. 
In particular, we show how a surface tension gradient-driven instabil-
ity may either augment drag or, the opposite, may help overcoming 
hydrodynamic drag, hence leading to the spontaneous selfpropulsion 
or autonomous motion of a drop whose surface is affected by a (sur-
face) chemical reaction or by internal heating. 

In Chapter 4 we provide a succinct description of salient features 
of interfacial convection in the form of patterned, cellular flows. As 
in other cases, our study is limited to the simplest albeit significant 
model-problems, with particular attention paid to the consequences, 
hence the solutions, of an equation proposed by Knobloch, together 
with significant generalizations to account for the salient features 
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of patterns in surface tension gradient--driven (Benard-Marangoni)  
convection. 

In Chapter 5 we deal with oscillations and waves of different 
physical nature though all excited by the Marangoni effect. A de-
tailed analysis is provided of two types of interfacial waves. One 
is the capillary-gravity wave which corresponds to membrane-like 
transverse oscillations. The other, first studied by J. Lucassen, corre-
sponds to an elastic, longitudinal expansion-compression (sound-like) 
motion of a membrane that can only occur when there are tangential 
stresses and the Marangoni effect. The latter, as well as viscosity, 
indeed affect capillary-gravity waves, but as secondary factors. For 
the longitudinal (also called dilational) waves, the Marangoni effect 
and viscosity are key for their onset and evolution and hence dila-
tional waves are strictly dissipative waves. We also provide a suc-
cinct account of recent findings about mode mixing and resonance 
of interfacial wave modes. Furthermore, we recall major (theoreti-
cal, numerical, and experimental) results about solitonic aspects of 
interfacial waves, whose observation was made three decades ago by 
H. Linde before the soliton concept was coined. In particular, as 
the simplest significant model we discuss the generalization of the 
Boussinesq-Korteweg-de Vries equation for waves in shallow liquid 
layers when the Marangoni effect is added. 

In Chapter 6 discussion is provided first about the stability of 
flows generated by a longitudinal surface tension gradient (includ-
ing a short account of the combined action of thermocapillarity and 
buoyancy) already introduced in Chapter 2, and subsequently, about 
film flows with transverse thermal gradients. In the latter case, the 
model-problem chosen is the Kapitza-Shkadov falling film case with 
the Marangoni effect added. This chapter also contains a study of 
flows in two-layer systems and the corresponding stability analysis. 

Finally, Chapter 7 is devoted to speculative comments about a 
few problems and topics that we feel have great interest, both basic 
and application-oriented. 

When writing the book we had in mind graduate students and re-
searchers from applied mathematics, the nonlinear sciences, and var-
ious engineering branches. We have done our best to make the mate-
rial reasonably self-contained and accessible to the reader. Through-
out the book we offer not just a description of phenomena but as 
much as possible heuristic argumentation and significant portions of 
methodologies whose utility exists well beyond the domain of prob- 
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lems discussed here. 
In the Bibliography we offer the reader reference to original publi-

cations as well as somewhat redundant references, thus offering alter-
native and diverse reading material, particularly when citing books 
and review articles. 

This monograph is part of the training effort done by the authors 
in the framework of the Interfacial Convection and Phase Change 
(ICOPAC) Network sponsored by the European Union. 
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Chapter 1 

Introduction 

In this chapter we shall recall the concept of surface or interfacial ten-
sion, the Navier-Stokes, Fourier, and Fick hydrodynamic equations, 
and we shall discuss various heat and mass transfer phenomena oc-
curing at an interface, deformable or not. The Marangoni effect is 
also discussed. 

1.1 The interface as a physical system 

1.1.1 Interfacial tension 

The transition layer (Fig. 1.1) between two immiscible fluids (as well 
as between a fluid and a solid body) has a thickness of microscopic 
size (usually few molecular diameters) and is considered as a two-
dimensional surface from the point of view of macroscopic theories 
(thermodynamics, fluid mechanics, etc.). 

In the thermodynamic approach, the interfacial region should be 
described as a specific two-dimensional medium which posesses its 
own interfacial internal energy, US (physically, it is the excess energy 
caused by the molecular interactions in the transition layer), interfa-
cial entropy, SS  (caused by a new possibility of randomness relative 
to that of bulk fluids), and interfacial numbers of molecules of various 
species, 	Let us note that 	may be either positive (adsorption)  
or negative (desorption). The first law of thermodynamics in refer-
ence to the interface may be written as (see, e.g. Defay, Prigogine, 
Bellemans and Everett, 1966; Landau and Lifshitz, 1980; Adamson, 
1982) 
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Figure 1.1: Geometry of an interface separating two liquids or 
a liquid (L) and ambient air, gas (G), or vapor. pG (pL) and 
710 (17/, ) denote density and viscosity, respectively. In the simplest 
case, one neglects the internal structure and when the fluctuations 
of the interface out of the z = 0 plane can be considered small, the 
boundary conditions (b.c.) for each bulk phase can be expressed 
in terms of the fluid displacements evaluated at the geometrical 
level z = 0. Otherwise if one neglects the structure and transverse 
size of the interface but not its deformability, b.c. are taken at 
the moving interface surface, z(t). 

= TdSs  + adA, 	(1.1) 

where T is temperature, 	are interfacial chemical potentials, A is 
area of interface which replaces the volume characteristic for three-
dimensional media. The parameter a which describes the work which 
is necessary for changing the area of the interface is called interfacial 
tension. In the case where a liquid is in contact, equilibrium, with its 
own saturated vapour, this parameter is called surface tension of the 
liquid. Certainly, the interfacial internal energy may depend also on 
some additional thermodynamic parameters like density of electric 
charge, etc. 

For a stable interface, the interfacial tension should be positive 
(otherwise, the interface would be destroyed by fluctuations). The 
dependence of the interfacial tension on the thermodynamic parame-
ters (temperature, interfacial concentration of species, etc.) is similar 
to the equation of state for the three-dimensional medium. Gener-
ally, this dependence is not obtained from first principles and is taken 
from experiment. Typically, the interfacial tension decreases when 
the temperature is increased. This phenomenon is called normal 
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the rmocapillarity. However, several systems are known that display 
an opposite kind of behavior (anomalous thermocapillarity). 

The dependence of the interfacial tension on the interfacial con-
centration of species deserves a special discussion. In a thermody-
namic equilibrium state where all the intensive variables (tempera-
ture, interfacial tension, etc.) are constant, the extensive variables 
Us, SS , and ns are all proportional to the area of the interface A. 
Thus, Eq. (1.1) may be written as 

Us  = TSs  + o- A. 	 (1.2) 

Combining Eqs. (1.1) and (1.2), one can find the Gibbs adsorption 
equation 

—SsdT + 
	

+ Ada = 	 (1.3) 
3 

For sake of simplicity, let us consider the case of a single relevant 
species (e.g., the interface between a liquid and a gas soluble in the 
liquid) and omit the subscripts for ni and µ i. For the interfacial 
concentration 

(1.4) 

we find: 

At the same time, the following thermodynamic 
established 

atz 
ar T  

Thus, the interfacial concentration 

au _ (__ 
ar)T 

is positive (positive adsorption) if and only if 

(1.5) 

inequality can be 

(1.6) 

T 

(1.7) 

i.e., the interfacial tension decreases as the interfacial concentration 
increases. In other words, the interface tends to be enriched in the 
species which diminishes the surface tension. 



Chapter 1. Introduction 

The equilibrium interfacial concentration r depends on the vol-
ume concentration, C, of the species in the bulk fluid. For dilute 
solutions, they are proportional. For higher volume concentrations, 
the interfacial concentration may tend to a limit value corresponding 
to a monomolecular layer created by molecules adsorbed on the in-
terface which are called surface-active or surfactant molecules. Typ-
ical examples of surfactants generating interfacial monolayers even 
for quite small volume concentrations are hydrocarbons (and other 
substances with molecules containing hydrocarbon chains) on the 
interfaces water/air or water/oil. 

In some cases, the thermodynamic equilibrium between the vol-
ume and interfacial concentrations of surfactant is established during 
a rather long time. Therefore, the interfacial kinetics should be taken 
into account. The flux j characterized the mass exchange between 
the bulk solution and the interface is taken in the form 

j = kaC — kdr, 	(1.8) 

where ka  and kd  are the adsorption and desorption rate constants. 
The adsorption-desorption kinetics is discussed in more detail in sub-
section 1.2.2. 

1.1.2 Hydrodynamic properties of the interface 

Let us discuss now the hydrodynamic phenomena caused by the pres-
ence of an interface. 

First of all, the deformation of the interface changing its area 
changes its energy (1.1). This circumstance leads to additional force 
connected with the interface. Then the pressures pi  and p2  in two 
contacting media are not equal, and the difference (Laplace surface 
pressure or overpressure) is 

Pi — P2 (1.9) 

where R1  and R2 are the principal radii of curvature at a given point 
of the interface. The pressure is higher in the medium whose surface 
is convex, hence it is higher inside a drop or a bubble relative to the 
surrounding fluid. The difference of pressures may be considered as 
a normal force per unit area 
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directed along the normal n. 
Besides the normal force, there may be a force tangential to the 

interface if inhomogeneity of the interfacial tension exists (generated 
e.g. by the inhomogeneities of temperature or surfactant concentra-
tion on the interface). The tangential force per unit area is equal 
to 

ft = Vo" 

(because a is defined only on the interface, V denotes the surface gra-
dient and its corresponding stress is named after Marangoni). This 
force produces flow or alters an existing one and hence one has a sur-
face tension gradient-driven convection, thermocapillary convection 
or Marangoni-driven convection. Generation of motion by interfa-
cial tension inhomogeneities has also been called the Marangoni effect 
(Block, 1956; Scriven and Sternling, 1960). Near the interface, the 
motion is directed towards the region with larger surface tension; be-
cause of the incompressibility of fluids, a bulk motion in the opposite 
direction supported by a pressure gradient will arise (Fig. 1.2). 

Fluid Interface 

Surfactant 

Figure 1.2: The Marangoni effect. Since surfactant adsorption at 
a fluid interface generally lowers the interfacial tension, an inho-
mogeneous distribution of surfactant within the interface results 
in the creation of local interfacial tension gradients. The highest 
tension occurs in those regions where the surfactant density is low-
est; thus, the tensile restoring force acts in an opposite direction to 
the surfactant density gradient. The ensuing fluid motion arising 
from this interfacial tension gradient is named after Marangoni 
(reproduced by courtesy of Edwards, Brenner, and Wasan, 1991). 

Thus a system with an interface between two fluids may be in a 
mechanical equilibrium state only if the surface tension is constant 
on the whole interface. Otherwise, convection arises, however small 
are the inhomogeneities of the surface tension. However, in the case 



Chapter 1. Introduction 

where the temperature or volume concentration gradients are normal 
to the interface, they do not produce inhomogeneity of the surface 
tension, and hence they do not destroy the mechanical equilibrium 
of the system. Thus the interfacial or surface tension (up to the sign)  
is to the surface what pressure is to the bulks. 

It should be emphasized, however, that such a mechanical equi-
librium state may be unstable, and one observes convection even 
though the external conditions may be homogeneous. As a rule, 
such an instability occurs only if the applied normal gradients are 
strong enough. 

Various flows and instabilities leading to flows past a given thresh-
old generated by interfacial tension inhomogeneities and the Marangoni 
effect are the subject of this book. 

Table 1.1. Surface tension of various fluids 
Liquid o-(mN/m) in contact with T(°C) 
Benzene 28.9 air 20 
Ethylalcohol 22.3 air 20 
n-Hexane 18.4 air 20 
Mercury 470 air 20 
Water 74 air 20 
Helium 0.24 vapor -270 

Table 1.2. Order of magnitude of bulk properties of 
various fluids 

Liquid p(kg/m3) 

( /cm3) 

n(kg/ 
X106  

p(m2/0 

x106  
(cm2 /0  

A 
(W/ 	K) 

0.2/0 

x106  
m2 0 

a 
(1/K) 
x103 

Pr 

Mercury and 
molten metals 

104  
10 

1 10-3  cm2/s 10 10— 	— 10-2  
cm2/ 

> 10— 

Helium 10-2  
Water (room 
temperature) 

103  1 1 
10-2  cm2/s 

10-1  > 10-1  
10-3  cm2 /s 

0.32 (5.85) 
< 10 

Silicone oils < 103  10 > 10 
? lcm2 /s 

10-1  > 10-2  
10-3 	2 /s 

1 > 10 

Olive oil 103  
Glycerine 1 	— 	' > 10c 	/s 10-3  102-103  

Fluorinert 2 x 106  > 102  > 10 > 10-1  10-2  1 > 10 
Ethanol < 103  0.5 - 40 1.5 
Methanol < 103  > 10-1  > 10-1  > 10-1  > 10-1  1 10 
n-octane < 103  > 10-1  > 10-1  > 10-1  > 10-1  1 10 
Air and 
standard gases 

1 > 10-2  > 10 
10-1  cin2 /s 

2.2 0.02 
10-1c 

3.67 (0.71) 
< 1 

1.2 Mathematical formulation 

In the present section we shall describe some basic mathematical 
models corresponding to the above-mentioned phenomena. 



1.2. Mathematical formulation 

1.2.1 Heat transfer in a system with an interface 

i. Equations and boundary conditions 

Let us consider two fluids situated in regions L1  and L2 and sep-
arated by an interface. In a spatially inhomogeneous temperature 
field, convective motion of fluids arises for two main reasons. First, 
the temperature inhomogeneity produces a spatial inhomogeneity of 
the interfacial tension that leads to thermocapillary forces generating 
thermocapillary convection (Marangoni effect). Also, because of ther-
mal expansion, the densities of fluids are spatially inhomogeneous, 
which may cause bulk buoyancy forces generating buoyancy-driven 
convection (Rayleigh, 1916). 

For description of the bulk motions of both fluids we shall use 
the Boussinesq approximation (Oberbeck, 1879; Boussinesq, 1901, 
1903; Mihaljan, 1962; Perez-Cordon and Velarde, 1975; de Boer, 
1984, 1986; Joseph, 1976; Velarde and Perez-Cordon, 1976; Gershuni 
and Zhukhovitsky, 1976; Velarde et al., 2000). This approximation 
is valid in the case were the density variations caused by temper-
ature inhomogeneities are relatively small, while the characteristic 
temperature gradient is much larger than the adiabatic temperature 
gradient, gOTIcp, where g is gravity acceleration, 13 is the thermal ex-
pansion coefficient, T is absolute temperature, and cp  is the specific 
heat at constant pressure. Within this approximation, the depen-
dence of the density, p, on the pressure is ignored. Flow motions are 
limited to velocities much lower than the speed of sound in the liquid 
and hence the "incompressibility" assumed. Also, the dependence of 
the density on the temperature is ignored in the continuity equation, 
while in the equation of motion it is taken into account. The equa-
tions of motion are identical to those of an incompressible fluid with 
addition of a bulk buoyancy force, —gOT. In the equation of heat 
transfer, the compressibility effects and the viscous heat generation 
are neglected. Also, the values of (dynamic) shear viscosity, kine-
matic viscosity, heat conductivity and heat diffusivity n, v, A, and 
n are assumed to be constant; n = pv. A denotes the temperature 
gradient. 

Using the subscript m for the quantities corresponding to m-th 
fluid (7n = 1, 2), we can write the equations in the following form 
(Lamb, 1945; Moran, 1960; Chandrasekhar, 1961; Aris, 1962; Levich, 
1962; Batchelor, 1967; Segel, 1972; Lin and Segel 1974; Gershuni and 
Zhukovitsky, 1976; Joseph, 1976; Normand et al, 1977; Segel, 1977; 
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Velarde and Castillo, 1982; Miller and Neogi, 1985; Rosner, 1986; 
Landau and Lifshitz, 1987; Acheson, 1990; Zeytounian, 1998; Guyon 
et al., 2001): 

avm  
Pm + 

• V' T 

v2 + gfimTme, (1.10) 
t 

V • vm  = 0. 	 (1.12) 

Here e is a unit vector directed upward, pm  is the hydrostatic pres-
sure; the total pressure is equal to pm  — pmgz, where z is the vertical 
coordinate. 

Now, we have to write down the boundary conditions on the 
interface between the fluids. For simplicity, we shall assume that the 
interface is described by the equation 

z = h(x,y,t). 	(1.13) 

Taking into account both Laplace surface pressure and the thermo-
capillary stresses, we can write the following boundary condition de-
scribing the balance of stresses on the interface: 

is the viscous stress tensor for the m-th fluid, ni is the normal vector 
directed into the 1st fluid; because o is defined only on the interface, 
the expression 	denotes a surface gradient. Introducing also or- 

thogonal tangential vectors T(1) and T(2), we can rewrite separately 
the balance conditions for normal and tangential stresses: 



Oh Oh Oh 
,y ay  (1.18) 

1.2. Mathematical formulation 

Eq. (1.16) defines the Marangoni stress. 
Also, at the interface the velocities of both fluids are equal: 

2- 
	 (1.17) 

The motion of the interface itself is governed by the following 
kinematic condition: 

Finally, the conditions for temperatures and heat fluxes should 
be written. The temperature field is continuous: 

T1  = T2, 	 (1.19) 

and the normal components of heat fluxes are equal: 

aT2  

Also, some boundary conditions should be fixed on the external 
boundaries of domains D1  and D2, depending on the physical nature 
of these boundaries. 

If the energy spent by the interface deformation is taken into 
account, the following equation is obtained (Napolitano, 1978) 

(1.20) 

aT1V8 + ry  

where V8  = V —(n•V)n, a = —daldT,-y=d(cr-FaT)IdT. However, 
the correction is small under realistic conditions (Pukhnachev, 1987), 
and we shall neglect it. 

Let us note also that the deformation and expansion of the in-
terface may generate additional dissipation processes known as the 
"surface viscosity" (Boussinesq, 1913a-c; Scriven, 1960; Aris, 1962; 
Goodrich, 1981; Edwards et al., 1991). Experimental data concern-
ing this phenomenon are scarce. We shall not include the surface 
viscosity into our description. 

ii. One-fluid approach 

In the case of a liquid/gas interface, a simplified mathematical model 
may be used. Because of relatively low (dynamic) shear viscosity of 
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the gas, we can expect that the influence of the gas motion on the 
motion in the liquid is negligible and hence the terminology "free 
surface". Also, we can ignore the temperature field in the gas using 
some empirical boundary conditions for temperature. In this case, 
we can consider the processes that take place only in the liquid phase. 
Such a "one-fluid" approach may be justified only under some con-
ditions (see, e.g., Golovin et al., 1995), and in some cases makes it 
difficult to permit a comparison with experiments in the framework 
of such an approach (because of unmeasurable empirical coefficients 
used). Nevertheless, this approach may be useful for the qualitative 
description of the physical phenomena. 

Considering the motion of just the liquid, we drop the subscripts 
in equations (1.10)-(1.12): 

av + ( • V)v = —Vp + vV + gf3Te, 	(1.21) 

aT 	
• V)T = kV2T, 	 (1.22) 

V • v = O. 	 (1.23) 

In the boundary conditions for stresses we neglect the stresses 
caused by the gas (m=2) and omit the subscript 1 corresponding to 
the liquid: 

(p — pgh) (1.24) 

au (1     
a, ' k 2 

nk  + -7-• = 0, L = 1, . 	 (1.25) 

The condition (1.17) is cancelled, while the kinematic condition 
(1.18) is rewritten as 

ah ah + vx— + 	 (1.26) at 	s 	ay 
Instead of exact conditions for temperatures and heat fluxes we 

shall use some empirical condition, say, 

A 
OT 

 ni = K(T — Ty), 	(1.27) 
xi 

where K is a heat exchange coefficient which may depend on local 
curvature of the surface, local temperature etc, T9  is some character-
istic temperature of the ambient gas (recall that vector n is directed 
into the liquid). 

Oh 



p - Gah- Ca (1- 

xi  
ah ah 
at 

+ v ax   + 

OT n, = -Bi(T -  Ty  

z  T kr-  nk 

Tiknink 2 
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iii. Non-dimensional parameters or dimensionless groups 

Let us rewrite the system (1.21) - (1.27) in a non-dimensional form. 
Let us assume that a is a characteristic spatial size of the region filled 
by the fluid, and 0 is a characteristic temperature difference across 
this region. We shall choose a, a2/is, 	pc/a2  and 0 as units for 
length, time, velocity, pressure and temperature, respectively. The 
system of equations (1.21) - (1.27) takes the following form (expect-
ing no confusion by the reader, we use the same letters denoting 
non-dimensional variables): 

1 f av 
( • V 	-Vp + V v + RTe, 	(1.28) 

aT 	v2 	 (1.29) 

V • v = 0, 	 (1.30) 

where P = v IS is the Prandtl number which is the ratio of the typical 
heat diffusion time, Tic  = a2 /K:, and the viscous momentum transfer 
time, Tv  = a2/v, R is the Rayleigh number, R = #ga4Alvis, which 
governs buoyancy-driven, natural convection. There are cases where 
the Grashof number, Gr = RIP, is used. A thorough discussion 
of scaling and adimensionalization can be found in the books by 
Palacios (1964), Lin and Segel (1974), Barenblatt (1996) and Guyon 
et al. (2001) and the reviews by Segel (1972), Ostrach (1977) and 
Castans (1991). 

Let us assume that the dependence of the surface tension a on 
the temperature is linear: a = ao - aT. The boundary condition 
on the interface z = h (recall that we use the same letters denoting 
non-dimensional variables) are: 
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where Ga = ga3  1/K is the (modified) Galileo number (the Galileo 
number is, traditionally, defined as G = ga3/v2  and later we shall use 
it like this. Then G is a ratio of length scales that recalls the role of 
gravity and hydrostatic pressure variations relative to viscous flow), 
Ca = ryclo-oa is the capillary or crispation number (other authors use 
its inverse), M = aa2,417pc is the Marangoni number, Bi = Kal A 
is the Biot number, (Sa  = aOluo = MICa, and T9  = T9/0. Let us 
mention here also the (static) Bond number Bo = pga2  lo-o = GaCa 
and the dynamic Bond number Bd = pga2/a  = R/M. The physical 
meaning of each parameter will be discussed later. On the other 
hand, note that, for simplicity, here we denoted with R, M, and P 
the Rayleigh, Marangoni, and Prandtl numbers, respectively. Later 
we shall be using Ra, Ma, and Pr whenever we feel it might help 
clarity in the notation. For the Galileo number we shall be using Ga 
or G according to the context. The same would be the case with the 
capillary number, C or Ca. 

iv. Influence of convection on the deformation of the inter-
face 

It is necessary to emphasize that the formulated boundary problem 
is incorrect from the physical point of view if both the Rayleigh num-
ber, R, and the Galileo number, Ga, are taken of the same order. 
The Boussinesq approximation is based on the assumption of small 
relative deviations of density : 50  = [30 = R/Ga << 1. If the latter 
condition is violated, the consideration of non-Boussinesq corrections 
in the equation of motion and in the continuity equation are manda-
tory (Velarde et al., 2000). Also, such corrections are necessary for 
a self-consistent description of effects caused by small but nonzero 
So. Otherwise, some spurious results may be produced by using the 
system (1.28) - (1.34). 

Thus, when considering buoyancy-driven convection (R = 0(1)) 
we should assume that Ga >> 1, to be within the Boussinesq approx-
imation. Typically, on Earth Ga is large and C is small, while the 
Bond number is of order of unity. In the limit Ga -4 00, the terms in 
the right-hand side of the boundary condition (1.31) may be omitted 
in the leading order, because they are 0(1). Also, the quantity p de-
scribing the difference of pressures on both sides of the interface may 
be considered as a constant, because the gradient of pressure is 0(1). 
Thus, as earlier noted, the shape of the interface is determined by 
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the balance of normal stresses which are of hydrostatic and capillary 
origin: 

h+Bo l(1- 

In the case where the motion takes place in a closed cavity, the equa-
tion (1.35) is solved with a boundary condition on a lateral boundary 
corresponding to a certain contact angle. The influence of the lateral 
boundary vanishes on distances large compared with Bo-1/2. For 
an "infinite" layer (L >> Bo-112, L is the dimensionless horizontal 
size of the system) one can assume h = 0. In the opposite limit (for 
instance, under reduced effective gravity) the second term in the left 
hand side of (1.35) prevails over the first term. If 5„ is small, the 
interface has a constant curvature. 

The equation (1.35) may be considered as a zeroth approximation 
for the full problem in the limit of small 50. The fields of variables 
(velocity, pressure, temperature) calculated in the region with the 
shape governed by the equation (1.35) may be used for calculations 
of the next order corrections to the interface shape. For instance, in 
the case of an infinite layer the shape of the interface h= O(Ga-1)  
in the presence of buoyancy-driven convection and with no temper-
ature dependence of the surface tension may be calculated from the 
equation 

h- Bo (1.36) 

The next step (calculation of the influence of the surface deformation 
on the convective motion) cannot be done within the Boussinesq 
approximation, because this influence is of the same order in Si as 
some terms omitted in this approximation. 

Let us discuss now the case of finite values of (modified) Galileo 
number. Within the Boussinesq approximation, So -> 0 and thus 
R -* 0, so only thermocapillary convection may appear. This situa-
tion may take place in thin layers or under reduced effective gravity 
conditions. If the capillary number Ca is large enough, while (5„ 
is small, the shape of the surface is not essentially influenced by 
the thermocapillary motion. The zeroth order solution may be con-
structed for a fixed shape of the surface, then the corrections to the 
surface shape may be calculated, etc. However, in the case of long-
wave convection on the background of a flat surface, the capillary 
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term in the boundary condition for normal stresses does not prevail, 
and the full problem should be considered. 

1.2.2 Mass transfer in a system with an interface 

i. Mass transfer in the absence of a surface adsorption 

Let us consider a binary mixture characterized by the volume concen-
tration C. Let us assume that the interfacial kinetics is so fast that 
the interfacial concentration I' is determined by the volume concen-
tration C in a unique way. In this case the equations and boundary 
conditions governing the problem are actually identical to those for-
mulated in the previous subsection for the case of heat transfer (1.21) 
- (1.27). It is sufficient to introduce the concentration C instead of 
the temperature T, and replace the coefficients )3 and a by 

and 

ac 
Besides, the coefficient n and A) should be replaced by the corre-
sponding diffusion coefficient D. The same changes are done in the 
definitions of the nondimensional parameters. Thus, both models are 
isomorphic. 

A point to be noted is that there are systems for which a or 
a, may be negative or even vanish. Schwarz (1970) studied two-
phase systems like Cyclohexanol/Water with diffusion substances 
Methanol, n-Propanol, n-Butanol, n-Amylol and n-Hexanol in con-
centrations from 2 to 8 %. These systems are characterized by 
do-  I dC < 0 (the first three) and by dcr dC > 0 (the last two). Other 
cases showing positive growth in the surface tension or a minimum in 
the surface tension which can be considered as anomalous behavior, 
dcr I de > 0 or do-MT > 0, relative to that of pure water have been 
described by several authors (Vochten and Petre, 1973; Petre and 
Azouni, 1984; Petre et al., 1993; Azouni and Petre, 1998). 

In the case of a two-phase system, where the component charac-
terized by the volume concentration C diffuses through the interface, 
similar substitutions should be done for each fluid. The equation are 
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(1.39) 

1.2. Mathematical formulation 	 15 

written in the following form: 

avm 	 1 
+ 	) Pm + vmV2vm  + gfic,m (1.37) 

The boundary conditions (1.14), (1.17), (1.18) are not changed, the 
equation for normal components of fluxes is 

0C1  r 0C2  
oxi  x (1.40) 

The essential difference between the cases of heat transfer and mass 
transfer is that the limit values of the concentration on the interface 
from both fluids are not necessarily equal but proportional: 

C2 = kCi . 	 (1.41) 

This difference may be removed by a suitable transformation of vari-
ables. 

ii. Mass transfer with surfactant adsorption-desorption 

Expanding on what was said in subsection 1.1.1, let us consider now a 
general case where the "surface gas phase" of the surfactant is taken 
into account. The interfacial concentration of the surfactant should 
be considered as an additional variable. If there is no chemical re-
action on the interface, the evolution of the interfacial concentration 
is governed by the following equation (Levich, 1962; Rosner, 1986; 
Sadhal and Johnson, 1983; Edwards et al., 1991; Myers, 1999): 

ar 
at  + vs  • (rvs  — / VV ) = j, 	(1.42) 

where v denotes velocity along the surface, D, is the coefficient of 
the surfactant surface diffusion, V8  is the gradient along the surface, 
j is the flux of the substance from the bulk to the interface. 

Because the interface unit area possesses a mass mF, where m is 
the mass of the surfactant molecule, the boundary condition (1.14) 
should be rewritten in the form 

d 
(r vi,.) = — P — Pigh) — (P2 P29 h) 
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aCT 
+(T1 ik — T2,ik)nk ± aXi ' 	

(1.43) 

where d/dt is the Lagrangian derivative with respect to time, a is a 
function of r, which is the surface excess surfactant concentration. 
Usually, the mass of the surfactant layer is relatively small or pro-
cesses are quasisteady, and the term in the left-hand side of (1.43) 
may be omitted. 

The flux j characterizes the mass exchange between the bulk and 
the interface, If the surfactant is insoluble, j = 0. If the surfactant is 
soluble in the bulk liquid, the exchange is determined by its diffusion 
in the bulk fluid and the interfacial kinetics. From one side, the flux 
of the surfactant from the bulk to the surface is determined by the 
relation 

3 —Dn•V'C. 	(1.44) 

From another side, it is determined by the adsorption-desorption 
kinetics (1.8), recalled here: 

3 = kaC — k 	(1.45) 

The adsorption-desorption kinetics may be fast or slow. For fast 
enough kinetics a local adsorption-desorption equilibrium could be 
introduced which corresponds to j = 0. That is local equilibrium of 
the surface excess solute with the solute in the adjacent subphase. 
As it follows from (1.45), the (local) equilibrium values C and I' are 
connected by the relation 

I' = kakd 1C 	(1.46) 

which, in fact, corresponds to the ideal Gibbs adsorption isotherm 
for very dilute solutions. 

Deviations from the equilibrium of the system with surfactant 
may be due to various reasons, namely, initial nonequilibrium condi-
tions, desorption and adsorption of surfactant, chemical reaction at 
the interface, etc. If every term in the left hand side (1.h.$) of (1.45) 
exceeds greatly the diffusion flux j, then the mass transfer process 
could be treated as locally in equilibrium (then j is a small difference 
between two large values in the l.h.s.). In this case, at local equi-
librium the relation (1.46) between C and I', as a function of space 
and time, is fulfilled and the adsorption and desorption processes are 
controlled by bulk diffusion (1.44). 
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For moderately dense surfactant solutions, the departure from 
(1.46) is governed by the Langmuir adsorption isotherm 

r= C  
a + 

(1.47) 

and the surface tension obeys the Szyszkovsky state equation 

(1.48) ao = 	In 

that provides the surface pressure, where F corresponds to a com-
plete coverage or the surface excess saturation or maximum realiz-
able excess concentration, and a is constant for a given surfactant 
(adsorption coefficient). From (1.48) follows the relation 

For small deviations from an initial equilibrium state 

1 da 
RT dC 	

= const. 

Then (1.49) takes the form of the Gibbs equation (1.46 

r = LC. (1.50) 

For more general adsorption-desorption kinetics one needs to ap-
ply the non-equilibrium relation (1.45) with e.g. the equilibrium 
Langmuir adsorption isotherm (1.47). Otherwise one could use non-
linear kinetics as 

dr 	 (1.51) 

This and more general forms of nonlinear relations have been used 
in the literature (Bojadjiev and Beshkov, 1984; Ravera et al., 1993, 
1994; Stebe and Barthes-Biesel, 1995; Liggieri et al., 1996). 

If the adsorption and desorption processes are very slow, ka  and 
kd  are practically zero, and again j vanishes. The mass transfer in 
the sublayer near the interface is kinetically frozen, so the surface 
excess concentration, r, is effectively unchanged. 
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Chapter 2 

Interfacial flows 

As a straightforward follow-up of Chapter 1, in this second chapter 
we shall illustrate simple flows due to the Marangoni effect. However, 
we shall not consider the problem of stability of interfacial flows which 
will be the subject of subsequent chapters. 

2.1 	Flows generated by a longitudinal surface 
tension gradient 

Figure 2.1: Interface between two liquids and the Marangoni ef-
fect. The actual flow fields (U) in fluids 1 and 2, with motion from 
hotter to cooler regions due to the (tangential) Marangoni stress 
along the interface, depend on the values of the corresponding 
(dynamic) viscosity (1)). 

Typical flows generated by the Marangoni effect appear in Figs. 2.1-
2.3. In all cases non-uniform or unequal heating leads to inhomogene-
ity of the interfacial or surface tension and hence flow from points 

19 
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Free Surface 
(open to air)  

T2  Ti  

Figure 2.2: Thin liquid layer placed on a solid support and the 
Marangoni effect. The liquid layer is open to ambient air. Due to 
unequal heating (T2  > T1) along the horizontal, flow (U) driven 
by the Marangoni stress along the free surface brings liquid from 
the hotter to the cooler regions. 

Figure 2.3: Drop or bubble subjected to unequal heating at two 
opposite poles and the Marangoni effect. (a) A drop or a bub-
ble tends to move towards the hotter region as a reaction to the 
(outer) surface flow due to Marangoni stresses created by the un-
equal heating (T+  > T_); (b) For a drop, flows outside and inside 
are schematically shown for moderate temperature differences at, 
say, front and rear poles. 


