

The Unified Process
Inception Phase

Best Practices in Implementing the UP

Scott W. Ambler and Larry L. Constantine,
Compiling Editors

Masters collection from

0 CRC Press
Taylor & Francis Group

Boca Raton London New York

CRC Press is an imprint of the
Taylor & Francis Group, an informa business

Development

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works

This book contains information obtained from authentic and highly regarded sources. Reason-
able efforts have been made to publish reliable data and information, but the author and publisher
cannot assume responsibility for the validity of all materials or the consequences of their use. The
authors and publishers have attempted to trace the copyright holders of all material reproduced in
this publication and apologize to copyright holders if permission to publish in this form has not
been obtained. If any copyright material has not been acknowledged please write and let us know so
we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced,
transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or
hereafter invented, including photocopying, microfilming, and recording, or in any information
storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.
copyright.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc.
(CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organiza-
tion that provides licenses and registration for a variety of users. For organizations that have been
granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and
are used only for identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

Copyright © 2000, Taylor & Francis.

ISBN 13: 978-1-138-41226-2 (hbk)
ISBN 13: 978-1-929629-10-7 (pbk)

First issued in hardback 2017

Cover art design: Robert Ward and John Freeman

http://www.copyright.com/
http://www.taylorandfrancis.com
http://www.crcpress.com
www.copyright.com
www.copyright.com

To my aunts and uncles:
Bruce, Shirley, June, Peter, Viola, and Ross.

- Scott Ambler

Taylor & Francis
Taylor & Francis Group
http://taylorandfrancis.com

http://taylorandfrancis.com

Table of Contents
Foreword . xi

Preface . .. XIII
The Inception Phase ... xiv
About This Series .. xv
About the Editors ... xvi
Acknowledgments ... xvii

Chapter 1 Introduction . 1
1.1 The Unified Process ... 2
1.2 The Enhanced Lifecycle for the Unified Process 7
1.3 The Goals of the Inception Phase 10
1.4 How Work Generally Proceeds During the Inception Phase 12

1.4.1 The Business Modeling Workflow 12
1.4.2 The Requirements Workflow 13
1.4.3 The Analysis and Design Workflow 14
1.4.4 The Implementation Workflow 15
1.4.5 The Deployment Workflow 15
1.4.6 The Test Workflow 16
1.4. 7 The Configuration and Change Management Workflow 16
1.4.8 The Project Management Workflow 16
1.4.9 Environment Workflow 18

v

VI Table of Contents

1.4.10 The Infrastructure Management Workflow 18
1.5 The Organization of this Book 19

Chapter 2 Best Practices for the Business Modeling
Workflow 21
Chapter 2 Introduction .. 21

2.1 The Articles . 26
2.1.1 "How the UML Models Fit Together" 26

by Scott Ambler
2.1.2 "Data-Based Design" 36

by Hugh Beyer and Karen Holtzblatt
2.1.3 "Organizing Models the Right Way" 44

by Bruce Powel Douglass
2.1.4 "Getting Started with Patterns" 50

by Luke Hohmann
2.1.5 "CRC Cards for Analysis" 55

by Nancy Wilkinson

Chapter 3
Workflow.

Best Practices for the Requirements
. 65

Chapter 3 Introduction .. 65
3.1 Putting the Requirements Workflow into Perspective 69
3.2 Requirements Gathering Techniques 71
3.3 User Interfaces and Internationalization 72
3.4 Lessons from the Real World 73
3.5 The Articles ... 74

3.5.1 "Decoding Business Needs" 74
by Ellen Gottesdiener

3.5.2 "Customer Rights and Responsibilities" 81
by Karl Wiegers

3.5.3 "Requirements Engineering Patterns" 87
by Scott W. Ambler

3.5.4 "Don't Get Mad, Get JAD!" 92
by Jim Geier

3.5.5 "Capturing Business Rules" 96
by Ellen Gottesdiener, edited by Larry Constantine

3.5.6 "Learning the Laws of Usability" 100
by Lucy Lockwood

3.5.7 "Your Passport to Proper Internationalization" 103
by Benson I. Margulies

3.5.8 "Thirteen Steps to a Successful System Demo" 112
by Larry Runge

Table of Contents VII

3.5.9 "Real Life Requirements" 116
by Larry Constantine

Chapter 4 Best Practices for the Test Workflow 121
Chapter 4 Introduction .. 121

4.1 Why Test? .. 122
4.2 Starting Testing Off on the Right Foot 124
4.3 Testing Techniques for the Inception Phase 125
4.4 The Articles ... 126

4.4.1 "A Business Case for QA and Testing" 126
by Nicole Bianco

4.4.2 "Determining Your Project's Quality Priorities" 132
by Johanna Rothman

4.4.3 "Plan Your Testing" 137
by Robin Goldsmith

4.4.4 "Reduce Development Costs with Use-Case Scenario Testing" 143
by Scott Ambler

4.4.5 "The Seven Deadly Sins of Software Reviews" 152
by Karl Wiegers

Chapter 5 Best Practices for the Project Management
Workflow . 157
Chapter 5 Introduction .. 157

5.1 Starting Out Right .. 158
5.2 Technical Project Management Activities 159

5.2.1 Justifying Your Project 159
5 .2.2 Planning Your Project 162
5.2.3 Managing Project Risk 163
5.2.4 Managing Web-Based Projects in Web-Time 164
5.2.5 Outsourcing and Subcontractor Management 165
5 .2.6 Managing Your Measurement Efforts 165

5.3 Soft Project Management Activities 168
5.4 A Few More Thoughts .. 170
5.5 The Articles ... 171

5.5.1 "Debunking Object-Oriented Myths" 171
by Scott Ambler

5.5 .2 "A Project Management Primer" 17 5
by Karl Wiegers, edited by Larry Constantine

5.5 .3 "Mission Possible" 179
by Jim Highsmith and Lynn Nix

5.5.4 "Creating a Project Plan" 186
by Joseph Launi

VIII Table of Contents

5.5.5 "Know Your Enemy: Software Risk Management" 192
by Karl Wiegers

5.5.6 "Estimating Internet Development" 198
by William Roetzheim

5.5.7 "Web Time Software Development" 204
by Dave Thomas, edited by Larry Constantine

5.5.8 "Managing Outsourced Projects" 209
by Steve McConnell, edited by Larry Constantine

5.5.9 "Selecting the Best Vendor" 213
by Neil Whitten

5.5.10 "A Software Metrics Primer" 218
by Karl Wiegers

5.5.11 "Metrics: 10 Traps to Avoid" 222
by Karl Wiegers

5.5.12 "Don't Fence Me In" 228
by Warren Keuffel

5.5.13 "Software Measurement: What's In It for Me?" 231
by Arlene Minkiewicz

5.5.14 "Habits of Productive Problem Solvers" 237
by Larry Constantine

5.5.15 "From Engineer to Technical Lead" 241
by Andrew Downs

5.5.16 "Effective Resource Management" 246
by Susan Glassett

5.5.17 "What's Wrong with Software Development" 249
by Christine Comaford

5.5.18 "Scaling Up Management" 252
by Larry Constantine

Chapter 6 Best Practices for the Environment
Workflow 257
Chapter 6 Introduction 257

6.1 Selecting and Deploying the Right Tools 258
6.2 Deploying Your Software Process, Standards, and Guidelines 259
6.3 The Articles .. 260

6.3.1 "The Ten Commandments of Tool Selection" 260
by Larry 0 'Brien

6.3.2 "Lessons Learned from Tool Adoption" 264
by Karl Wiegers

Table of Contents IX

6.3.3 "Timing is Everything" 268
by Roland Racko

6.3.4 "Improve Your Process with Online 'Good Practices'" 271
by Karl Wiegers

Chapter 7 Parting Words 277
7.1 Looking Towards Elaboration 278

Appendix A Bibliography 281

Appendix B Contributing Authors 285

Appendix C References and Recommended Reading 289
Printed Resources ... 289
Web Resources ... 295

Index ... 297

X Table of Contents

Foreword
There was a time when one or two talented programmers with a vision could create useful,
even groundbreaking, software applications on their own. Today, though, most significant
applications demand the resources of a team of professionals with diverse skills to create and
refine a substantial body of code and supporting documents. The most effective teams
thoughtfully apply sensible software development processes that suit the nature of their
project, its context and constraints, and the organization's culture.

One of the well-established, contemporary software development processes is the Unified
Process from Rational Corporation. You can buy books that describe the Unified Process in
great detail. Such books tell you what to do, but they provide scant guidance about how to
do it practically, effectively, and efficiently. Editors Scott Ambler and Larry Constantine close
the gap in this book and the others in the series. Scott and Larry bring a vast background of
software experience, insight, and perspective to the table. In this book, they collect the even
broader experience, insight, and perspective contributed by dozens of authors to more than
ten years of Software Development and Computer Language magazine. The forty-one arti
cles, together with Scott and Larry's additional commentary, provide a wealth of guidance on
how to tackle the first phase of the enhanced lifecycle for the Unified Process, the Inception
phase. Few of these articles describe projects that specifically followed the Unified Process.
However, Scott and Larry have selected key papers that address important recurring themes
in software development - best practices - and aligned them with the Unified Process
phases. Every software engineer and project manager should know of these best practices and
understand how to apply them to whatever process their project uses.

The Inception phase is perhaps the most critical of all. It deals with the "fuzzy front end"
of the project, in which the team lays the foundation for success - or for failure. If you don't
have a good understanding of your customers' functional, usability, and quality needs, it
doesn't matter how well you execute the later phases of Elaboration, Construction, Transition,

XI

XII Foreword

and Production. If you begin with unclear business objectives, ill-understood user require
ments, unrealistic plans and schedules, or unappreciated risks, your project is born with one
foot already in the grave.

The Unified Process recognizes that key process workflows, including requirements,
implementation, test, and project management, span multiple lifecycle phases. This book
therefore includes articles that provide specific recommendations on how to perform the crit
ical activities in each workflow during the Inception phase. Scott Ambler and Larry Constan
tine also recognize that no single process or methodology can supply a formulaic solution to
the diverse challenges and situations a software development organization will encounter.
Nonetheless, this book will go a long way toward helping you apply the Unified Process to
your projects. And even if you don't care about the Unified Process, the articles provide a
solid foundation of current thinking on software engineering best practices.

Karl E. Wiegers
Principal Consultant at Process Impact

Preface
A wealth of knowledge has been published on how to be successful at developing software in
Software Development magazine and in its original incarnation, Computer Language. The
people who have written for the magazine include many of the industry's best known experts:
Karl Wiegers, Steve McConnell, Ellen Gottesdiener, Jim Highsmith, Warren Keuffel, and Lucy
Lockwood, to name a few. In short, the leading minds of the information industry have
shared their wisdom with us over the years in the pages of this venerable magazine.

Lately, there has been an increased focus on improving the software process within most
organizations. This is in part due to the Year 2000 (Y2K) debacle, to the significant failure
rate of large-scale software projects, and to the growing realization that following a mature
software process is a key determinant in the success of a software project. In the mid-1990s,
Rational Corporation began acquiring and merging with other tool companies. As they con
solidated the companies, they consolidated the processes supported by the tools of the merg
ing companies. The objective of the consolidation was to arrive at a single development
approach. They named the new approach the Unified Process. Is it possible to automate the
entire software process? Does Rational have a complete toolset even if it is? We're not so sure.
Luckily, other people were defining software processes too, so we have alternate views of how
things should work. This includes the OPEN Consortium's OPEN process, the process pat
terns of the Object-Oriented Software Process (OOSP), and Extreme Programming (XP).
These alternate views can be used to drive a more robust view of the Unified Process, result
ing in an enhanced lifecycle that more accurately reflects the real-world needs of your organi
zation. Believing that the collected wisdom contained in Software Development over the
years could be used to flesh-out the Unified Process - truly unifying the best practices in our
industry - we undertook this book series.

Why is a software process important? Step back for a minute. Pretend you want to have a
house built and you ask two contractors for bids. The first one tells you that, using a new
housing technology, he can build a house for you in two weeks if he starts first thing tomor
row, and it will cost you only $100,000. This contractor has some top-notch carpenters and
plumbers that have used this technology to build a garden shed in the past, and they're willing

XIII

XIV Preface

to work day and night for you to meet this deadline. The second one tells you that she needs
to discuss what type of house you would like built, and then, once she's confident that she
understands your needs, she'll put together a set of drawings within a week for your review
and feedback. This initial phase will cost you $10,000, and, once you decide what you want
built, she can then put together a detailed plan and cost schedule for the rest of the work.

Which contractor are you more comfortable with - the one that wants to start building
or the one that wants to first understand what needs to be built, model it, plan it, then build
it? Obviously, the second contractor has a greater chance of understanding your needs, the
first step for successfully delivering a house that meets them. Now assume that you're having
software built - something that is several orders of magnitude more complex and typically
far more expensive than a house, and assume once again that you have two contractors want
ing to take these exact same approaches. Which contractor are you more comfortable with?
We hope the answer is still the second one; the one with a sensible process. Unfortunately,
practice shows that most of the time, organizations appear to choose the approach of the first
contractor; that of hacking. Of course, practice also shows that our industry experiences
upwards of 85% failure rate on large-scale, mission-critical systems. (In this case, a failure is
defined as a project that has significantly overrun its cost estimates or has been cancelled out
right.) Perhaps the two phenomena are related.

In reality, the situation is even worse than this. You're likely trying to build a house and all
the contractors that you have available to you only have experience building garden sheds.
Even worse, they've only worked in tropical parts of the world and have never had to deal
with the implications of frost, yet you live in the backwoods of Canada. Furthermore, the
various levels of Canadian government enforce a variety of regulations that the contractors
are not familiar with- regulations that are constantly changing. Once again, the haphazard
approach of the first contractor is likely to get one into trouble.

The Inception Phase
In the enhanced lifecycle for the Unified Process, the Inception phase is the first of five phases
-Inception, Elaboration, Construction, Transition, and Production- that a release of soft
ware experiences throughout its complete lifecycle. The primary goal of the Inception phase is
to set a firm foundation for your project. To accomplish this, you will need to:
• justify both the system itself and your approach to developing/obtaining the system,
• describe the initial requirements for your system,
• determine the scope of your system,
• identify the people, organizations, and external systems that will interact with your sys

tem,
• develop an initial risk assessment, schedule, and estimate for your system, and
• develop an initial tailoring of the Unified Process to meet your exact needs.

When you step back and think about it, the most important thing that you can do is
ensure that your system, and your approach to it, is justified (i.e., that you have a business
case). If the project doesn't make sense- either from an economic, technical, or operational
point of view - then you shouldn't continue. Seven out of eight large-scale projects fail.
Without a firm foundation, an architecture that will work, a realistic project plan, and a com
mitted team of professionals, your project is very likely going to be one of the seven failures.

About This Series XV

This book collects articles written by industry luminaries that describe best practices in
these areas. One goal of this book, and of the entire series, is to provide proven alternative
approaches to the techniques encompassed by the Unified Process. Another goal is to fill in
some of the gaps in the Unified Process. Because the Unified Process is a development process,
not a software process that covers development and the operations and support of software
once in production, it inevitably misses or shortchanges some of the concepts that are most
important for software professionals. Fortunately, the writers in Software Development have
taken a much broader view of process scope and have filled in many of these holes for us.

About This Series
This book series comprises four volumes: one for the Inception phase, one for the Elaboration
phase, one for the Construction phase, and a fourth one for the Transition and Production
phases. Each book stands on its own, but for a complete picture of the entire software process
you need the entire series. The articles presented span the complete process without duplica
tion among the volumes.

Overall organization of this book series.

Workflow /Topic

Business Modeling

Requirements

Analysis and Design

Implementation

Test

Deployment

Operations and
Support

Configuration and
Change Management

Project Management

Environment

Infrastructure
Management

Inception
Phase

(volume 1)

X

x·

. x

X
X

Elaboration
Phase

(volume2)

X

X

X

X

X

X

Construction
Phase

(volume3)

X

X

X

X

X

X

Transition and
Production

Phases
(volume4)

X

X

X

X

X

X

It has been a challenge selecting the material for inclusion in this compilation. With such
a wealth of material to choose from and only a limited number of pages in which to work,
narrowing the choices was not always easy. If time and space would have allowed, each of
these books might have been twice as long. In narrowing our selections, we believe the arti
cles that remain are truly the creme de la creme. Furthermore, to increase the focus of the
material in each book, we have limited the number of workflows that each one covers. Yes,

xvi Preface

most workflows are pertinent to each phase; but as the previous table indicates, each book
covers a subset to provide you with a broader range of material for those workflows.

About the Editors

Scott Ambler
An avid reader of Computer Language and then Software Development for years, I started
writing for the magazine in 1995 and eventually became the object columnist in 1997. I
started developing software in the early 1980s, writing code in languages such as Fortran and
Basic, and later in the mid-1980s in Turing (don't ask), C, Prolog, and Lisp. In the late 1980s,
I realized that there was more to life than programming and started picking up skills in user
interface design, data modeling, process modeling, and testing while I programmed in
COBOL and a couple of fourth-generation languages for IBM mainframes. Disillusioned with
structured/procedural techniques, in 1990, I discovered objects and readily jumped into
Smalltalk development, then into C++ development, then back to Smalltalk. Having worked
at several organizations in mentoring and architectural roles, I decided to combine that expe
rience and apply my skills gained as a teaching assistant at the University of Toronto and get
into professional training in the mid-1990s. I quickly learned several things. First, that
although I liked delivering training courses (and still do so today), I didn't want to do it full
time. Second, and of greater importance, I learned how to communicate complex concepts in
an easy-to-understand manner, such as how to develop object-oriented software. This led to
my first two books, The Object Primer (Cambridge University Press, 1995), now in its second
edition (2000), and Building Object Applications That Work (Cambridge University Press,
1997/1998), which describe the fundamentals of object technology from a developer's point
of view. I then decided to follow up with two books that describe the Object-Oriented Soft
ware Process (OOSP) in Process Patterns (Cambridge University Press, 1998) and More Pro
cess Patterns (Cambridge University Press, 1999), focusing on the hard-won experiences that
I gained working for one of Canada's leading object technology consulting firms. Since then
I've helped several organizations, large and small, new and established, in a variety of indus
tries to improve their internal software processes. My latest writing endeavors include this
book series as well as co-authoring The Elements of Java Style (Cambridge University Press,
2000). I am now President of Ronin International (www.ronin-intl.com), a Denver-based
process and software architecture consulting firm, and a freelance writer with my own web
site, www. ambysoft. com, where I post a variety of white papers. I think I've found my niche.

Larry Constantine
My association with Software Development and its forerunner, Computer Language, has
been both long and fruitful, and my association with software development and computer
language goes back even further. From my first Fortran program back in the dark ages of
computing, I have been keenly interested in figuring out how to do things better and to help
others do them better - interests that soon led me beyond technology into management and
process issues, as well as the essential matter of the usability of the products we design and
build. Throughout my nearly 40 years in the field, I have continued to criss-cross that river
that too often divides the people side from the technology side. In my view, success in soft-

www.ambysoft.com
http://www.ronin-intl.com

Acknowledgments XVII

ware development hinges on an understanding and a mastery of material from both sides of
this divide, and this has been reflected in my writing for the magazine and elsewhere. That
work now spans over 150 articles and papers and 14 books, including, now, this collabora
tive compilation with Scott Ambler. With Scott's concurrence, some of my own columns and
articles in the magazine have been included in these volumes. Others appear in The People
ware Papers (Prentice Hall, 2000), which reprints in its entirety the contents of my long-run
ning "Peopleware" column, and in Managing Chaos: The Expert Edge in Software
Development (Addison-Wesley, 2000), which incorporates the best from the popular Soft
ware Development Management Forum that appears at the back of every issue. In recent
years, my professional interests have been particularly focused on increasing the usability of
software, which has led to the development of usage-centered design and to the book with
Lucy Lockwood, Software for Use: A Practical Guide to the Models and Methods of
Usage-Centered Design (Addison-Wesley, 1999). The magazine honored us by giving that
book the Jolt Product Excellence Award for best book of 1999. Of late, it seems I cross
oceans even more often than rivers, because, although I live in the United States, I also teach
at the University of Technology, Sydney, Australia, where I am an Adjunct Professor of Com
puting Sciences. Despite the title, I teach a mix of management and design topics. I am also a
working trainer, designer, and consultant helping clients around the world build software that
is easier to use. With Lucy Lockwood, I founded Constantine & Lockwood, Ltd.
(www. forUse.com), where I am Director of Research and Development and am currently
working on the integration of usage-centered design with the Unified Process and Unified
Modeling Language, among other things.

Acknowledgments
We'd like to thank the following people for their insightful comments during the development
of this book: Susan Ambler, John Nalbone, Mark Peterson, Neil Pitman, Doug Smith, Art
Staden, and Robert J. White Jr.

www.forUse.com

XVIII Preface

1

Chapter 1

Introduction
What is a software process? A software process is a set of project phases, stages, methods,
techniques, and practices that people employ to develop and maintain software and its associ
ated artifacts (plans, documents, models, code, test cases, manuals, etc.). Not only do you
need a software process, you need one that is proven to work in practice - a software pro
cess tailored to meet your exact needs.

Why do you need a software process? An effective software process will enable your orga
nization to increase its productivity when developing software. First, by understanding the
fundamentals of how software is developed, you can make intelligent decisions, such as
knowing to stay away from SnakeOil v2.0- the wonder tool that claims to automate funda
mental portions of the software process. Yes, tools are important, but they must support and
accommodate the chosen process, and they should not introduce too much overhead. Second,
it enables you to standardize your efforts, promoting reuse, repeatability, and consistency
between project teams. Third, it provides an opportunity for you to introduce industry best
practices such as code inspections, configuration management, change control, and architec
tural modeling to your software organization. Fourth, a defined software process establishes
a baseline approach for greater consistency and future enhancements.

An effective software process will also improve your organization's maintenance and sup
port efforts - also referred to as production efforts - in several ways. First, it should define
how to manage change and appropriately allocate maintenance changes to future releases of
your software, streamlining your change process. Second, it should define both how to transi
tion software into operations and support smoothly and how the operations and support
efforts are actually performed. Without effective operations and support processes, your soft
ware will quickly become shelfware.

1

2 Chapter 1: Introduction

An effective software process considers the needs of both
development and production.

Why adopt an existing software process, or improve your existing process using new tech
niques? The reality is that software is growing more and more complex, and without an effec
tive way to develop and maintain that software, the chance of achieving the required levels of
quality decreases. Not only is software getting more complex, you're also being asked to cre
ate more software simultaneously. Most organizations have several software projects in
development at one time and have many moare than that in production - projects that need
to be managed effectively. Furthermore, the nature of the software that we're building is also
changing- from the simple batch systems of the 1970s for which structured techniques were
geared toward, to the interactive, international, user-friendly, 7/24, high-transaction,
high-availability online systems that object-oriented and component-based techniques are
aimed. And while you're doing that, you're asked to increase the quality of the systems that
you're delivering, and to reuse as much as possible so that you can work faster for less money.
A tall order - one that is nearly impossible to fill if you can't organize and manage your staff
effectively. A software process provides the basis to do just that.

Software is becoming more complex, not less.

1.1 The Unified Process
The Unified Process is the latest endeavor of Rational Corporation (Kruchten, 2000), the
same people who introduced what has become the industry-standard modeling notation, the
Unified Modeling Language (UML). The heart of the Unified Process is the Objectory Process,
one of several products and services that Rational acquired when they merged with lvar
Jacobson's Objectory organization several years ago. Rational enhanced Objectory with their
own processes (and those of other tool companies that they have either purchased or part
nered with) to form the initial version (5.0) of the Unified Process officially released in
December of 1998.

Figure 1.1 presents the initial lifecycle of the Unified Process comprised of four serial
phases and nine core workflows. Along the bottom of the diagram, you can see that any given
development cycle through the Unified Process should be organized into iterations. The basic
concept is that your team works through appropriate workflows in an iterative manner so
that at the end of each iteration, you produce an internal executable that can be worked with
by your user community. This reduces the risk of your project by improving communication
between you and your customers. Another risk-reduction technique built into the Unified
Process is the concept that you should make a "go/no-go" decision at the end of each phase
- if a project is going to fail, then you want to stop it as early as possible. Granted, the
important decision points are actually at the end of the Inception and Elaboration phases (by
the time you've hit the end of the Construction phase, it's usually too late to cancel). This is
an important concept in an industry with upward of an 80%-90% failure rate on large-scale,
mission-critical projects (Jones, 1996).

The Unified Process 3

Figure 1.1

Organization
along content

The initial lifecycle of the Unified Process.

Core P rocess Workflows

iness Modeling Bus

Req

Ana

uirerrents

~sis & Design

lerrentatio ltnJ
Test
Dep l(ly'ment

upporting Workflows CoreS
Conf
Proj
Erw

iguration & Change Mamt
ect Managerrent
ironment

Organization along time

Phases
I nee ptio n 1 Elaboration I C ons!r uctio n

'~ ''ft.'-· ~

--- "'
.... - -

- - ---
p.e lrn •a If IHIIH IIH ltHIIH
1Rratl:l1~ 111 112 Ill 111+1 111+2

Iterations

I Transition 1

r'-.... ./\.

lo.. -

-
IH I IR\1
Mn llm+1

The Inception phase, the topic of this volume, is where you define the project scope and
the business case for the system. The initial use cases for your software are identified and the
key ones are described briefly. Use cases are the industry standard technique for defining the
functional requirements for systems. They provide significant productivity improvements
over traditional requirement documents because they focus on what adds value to users as
opposed to product features. Basic project management documents are started during the
Inception phase, including the initial risk assessment, the estimate, and the project schedule.
As you would expect, key tasks during this phase include business modeling and requirements
engineering, as well as the initial definition of your environment, including tool selection and
process tailoring.

You define the project scope and the business case during
the Inception phase.

The Elaboration phase focuses on detailed analysis of the problem domain and the defini
tion of an architectural foundation for your project. Because use cases aren't sufficient for
defining all requirements, a deliverable called a supplementary specification is defined which
describes all non-functional requirements for your system. A detailed project plan for the
Construction Phase is also developed during this phase based on the initial management doc
uments started in the Inception phase.

4 Chapter 1: Introduction

You define the architectural foundation for your system during
the Elaboration phase.

The Construction phase is where the detailed design for your application is developed as
well as the corresponding source code. The goal of this phase is to produce the software and
supporting documentation to be transitioned to your user base. A common mistake that
project teams make is to focus primarily on this phase, often to their detriment because orga
nizations typically do not invest sufficient resources in the previous two phases and therefore
lack the foundation from which to successfully develop software that meets the needs of their
users. During the Inception and Elaboration phases, you invest the resources necessary to
understand the problem and solution domains. During the Construction phase, there should
be very little "surprises," such as significantly changed requirements or new architectural
approaches - your goal is to build the system.

You finalize the system to be deployed during the Construction phase.

The purpose of the Transition phase is to deliver the system to your user community.
There is often a beta release of the software to your users - typically called a pilot release
within most businesses - in which a small group of users work with the system before it is
released to the general community. Major defects are identified and potentially acted upon
during this phase. Finally, an assessment is made regarding the success of your efforts to
determine whether another development cycle/increment is needed to further enhance the sys
tem. It is during this time that your non-functional requirements, including technical con
straints such as performance considerations, become paramount. You will focus on activities
such as load testing, installation testing, and system testing - all activities that validate
whether or not your system fulfills its non-functional requirements. As you will see in Chap
ter 3, there is far more to developing requirements than simply writing use cases.

You deliver the system during the Transition phase.

The Unified Process has several strengths. First, it is based on sound software engineering
principles such as taking an iterative, requirements-driven, and architecture-based approach
to development in which software is released incrementally. Second, it provides several mech
anisms, such as a working prototype at the end of each iteration and the "go/no-go" decision
point at the end of each phase, which provides management visibility into the development
process. Third, Rational has made, and continues to make, a significant investment in their
Rational Unified Process (RUP) product (http://www.rational.com/products/rup), an
HTML-based description of the Unified Process that your organization can tailor to meet its
exact needs. In fact, the reality is that you must tailor it to meet your needs because at 3,000+
HTML pages, it comprises far more activities than any one project, or organization, requires.
Pick and choose from the RUP the activities that apply, then enhance them with the best prac
tices described in this book series and other sour~es to tailor a process that will be effective
for your team. Accepting the RUP right out of the box is naive at best - at worst, it is very
likely a path to failure.

http://www.rational.com/products/rup

The Unified Process 5

Attempting to use the Unified Process out of the box is
a recipe for woe and strife. - Neil Pitman

The Unified Process also suffers from several weaknesses. First, it is only a development
process. The initial version of the Unified Process does not cover the entire software process.
As you can see in Figure 1.1, it is obviously missing the concept of operating and supporting
your software once it has been released into production. Second, the Unified Process does not
explicitly support multi-project infrastructure development efforts such as organization/enter
prise-wide architectural modeling, missing opportunities for large-scale reuse within your
organization. Third, the iterative nature of the lifecycle is foreign to many experienced devel
opers, making acceptance of it more difficult, and the rendering of the lifecycle in Figure 1.1
certainly does not help this issue.

The software industry has a capacity for almost infinite self-delusion.
- Capers Jones

In The Unified Process Elaboration Phase (Ambler & Constantine, 2000a), the second
volume in this series, we show in detail that you can easily enhance the Unified Process
to meet the needs of real-world development. We argue that you need to start with the
requirements for a process - a good start at which is the Capability Maturity Model
(CMM). Second, you should look at the competition - in this case, the OPEN Process
(Graham, Henderson-Sellers, and Younessi, 1997; http: I /www. open. org. au) and the
process patterns of the Object-Oriented Software Process (Ambler 1998, Ambler 1999),
and see which features you can reuse from those processes. Figure 1.2 depicts the con
tract-driven lifecycle for the OPEN process and Figure 1.3 depicts the lifecycle of the
Object-Oriented Software Process (OOSP), comprised of a collection of process patternsl.
Finally, you should formulate an enhanced lifecycle based on what you've learned and sup
port that lifecycle with proven best practices.

The Unified Process is a good start, but likely needs to be tailored and
enhanced to meet the specific needs of your organization.

1. A process pattern is a collection of general techniques, actions, and/or tasks (activities) that solve a
specific software process problem taking the relevant forces/factors into account. Just like design pat
terns describe proven solutions to common software design problems, process patterns present proven
solutions to common software process patterns. More information regarding process patterns can be
found at the Process Patterns Resource Page, http: I /www. ambysoft. com/process Patterns Page. html.

http://www.open.org.au
http://www.ambysoft.com/processPatternsPage.html

6 Chapter 1: Introduction

Figure 1.2 The OPEN Contract-Driven lifecycle.

Evolutionary
Development

OOA
OOD
OOP
V&V

x3 User
Review

Consolidation

Build

Evaluation

Implementation
Planning

Programme
Planning

Resource
Planning

Other Projects

Use of System

The Enhanced Lifecycle for the Unified Process 7

Figure 1.3 The Object-Oriented Software Process (OOSP) lifecycle.

Initiate Construct Deliver Maintain and Support

Assure Quality, Manage the Project, Train and Educate, Manage People, Manage Risk, Manage Reuse, Manage Metrics, Manage Deliverables, Manage Infrastructure

"Serial in the large, iterative in the small, delivering incremental releases over time."

1.2 The Enhanced Lifecycle for the Unified Process
You've seen overviews of the requirements for a mature software process and the two com
peting visions for a software process. Knowing this, how do you complete the Unified Pro
cess? Well, the first thing to do is to redefine the scope of the Unified Process to include the
entire software process, not just the development process. This implies that software pro
cesses for operations, support, and maintenance efforts need to be added. Second, to be suffi
cient for today's organizations, the Unified Process also needs to support the management of
a portfolio of projects- something the OPEN Process has called "programme management"
and the OOSP has called "infrastructure management." These first two steps result in the
enhanced version of the lifecycle depicted in Figure 1.4. Finally, the Unified Process needs to
be fleshed out with proven best practices; in this case, found in articles published in Software
Development.

The enhanced lifecycle includes a fifth phase, Production, representing the portion of the
software lifecycle after a version of a system has been deployed. Because, on average, soft
ware spends 80% of its lifetime in production, the Production phase is a required feature of a
realistic software process. Explicitly including a Production phase also enhances the 20% of
the lifecycle that is spent in development because it makes it clear to developers that they need
to take production issues into account and it provides greater motivation to work towards a
common architecture across projects. As the name implies, its purpose is to keep your soft
ware in production until it is either replaced with an updated version - from a minor release
such as a bug fix to a major new release- or it is retired and removed from production. Note
that there are no iterations during this phase (or there is only one iteration depending on how
you wish to look at it) because this phase applies to the lifetime of a single release of your
software. To develop and deploy a new release of your software, you need to run through the
four development phases again.

8 Chapter 1: Introduction

Figure 1.4 The enhanced lifecycle for the Unified Process.

Organization
along content

Core P rocess Workflows

iness Modeling Bus

Req

Ana

uirerrents

tysis & Design

lerrentatio lrrp
Te&

Dep loyment

Ope rations & Suppo

upporting Workflows CoreS
Conf
Proj
Errv
Infra

iguration & Change Mamt
ect Managerrent
ironment
structure Manaoement

Organization along time

Phases

Inceptionl Elaboration I CowtNCtion I Trarl5ition I Production I

---- ' _A

- --....
-
-......,..., - -- -

p~ ltn I a I{ ''"- 1 ~~>r. IIH I "''·I "''· "''· I "''· ll>ra1lH~ ~1 112 ~· ~1+1 ~1+2 Mn ~m+1

herations

The Production phase encompasses the post-deployment portion
of the lifecycle.

Figure 1.4 also shows that there are two new workflows: a core workflow called Opera
tions & Support and a supporting workflow called Infrastructure Management. The purpose
of the Operations & Support workflow is exactly as the name implies: to operate and support
your software. Operations and support are both complex endeavors, endeavors that need
processes defined for them. This workflow, as well as all the others, span several phases. Dur
ing the Construction phase, you will need to develop operations and support plans, docu
ments, and training manuals. During the Transition phase, you will continue to develop these
artifacts, reworking them based on the results of testing, and you will train your operations
and support staff to effectively work with your software. Finally, during the Production
phas,e your operations staff will keep your software running, performing necessary backups
and batch jobs as needed, and your support staff will interact with your user community in
working with your software. This workflow basically encompasses portions of the OOSP's
Release stage and Support stage as well as the OPEN Process's Implementation Planning and
Use of System activities. In the Internet economy, where 24/7 operations is the norm, you
quickly discover that high quality and high availability is crucial to success - you need an
Operations and Support workflow.

The Enhanced Lifecycle for the Unified Process 9

The Operations and Support workflow is needed to ensure high quality
and high availability of your software.

The Infrastructure Management workflow focuses on the activities required to develop,
evolve, and support your organization's infrastructure artifacts such as your organiza
tion/enterprise-wide models, your software processes, standards, guidelines, and your reus
able artifacts. Your software portfolio management efforts are also performed in this
workflow. Infrastructure Management occurs during all phases; the blip during the Elabora
tion phase represents architectural support efforts to ensure that a project's architecture
appropriately reflects your organization's overall architecture. This includes infrastructure
modeling activities such as the development of an enterprise requirements/business model, a
domain architecture model, and a technical architecture model. These three core models form
your infrastructure models that describe your organization's long-term software goals and
shared/reusable infrastructure. The processes followed by your Software Engineering Process
Group (SEPG) - responsible for supporting and evolving your software processes, stan
dards, and guidelines- are also included in this workflow. Your reuse processes are included
as well because practice shows that to be effective, reuse management needs to be a
cross-project endeavor. For you to achieve economies of scale developing software, increase
the consistency and quality of the software that you develop, and to increase reuse between
projects, you need to manage your common infrastructure effectively. You need the Infra
structure Management workflow.

Infrastructure Management supports your
cross-project/programme-level activities such as reuse management

and organization/enterprise-wide architecture.

If you compare the enhanced lifecycle of Figure 1.4 with the initiallifecycle of Figure 1.1,
you will notice that several of the existing workflows have also been updated. First, the Test
workflow has been expanded to include activity during the Inception phase. You develop
your initial, high-level requirements during this phase - requirements that you can validate
using techniques such as walkthroughs, inspections, and scenario testing. Two of the underly
ing philosophies of the OOSP are that (a) you should test often and early and, (b) that if
something is worth developing, then it is worth testing. Therefore, testing should be moved
forward in the lifecycle. Also, the Test workflow needs to be enhanced with the techniques of
the OOSP's Test in the Small and Test in the Large stages.

Test early and test often. If it is worth creating, it is worth testing.

The second modification is to the Deployment workflow - extending it into the Inception
and Elaboration phases. This modification reflects the fact that deployment, at least of busi
ness applications, is a daunting task. Data conversion efforts of legacy data sources are often
a project in their own right - a task that requires significant planning, analysis, and work to
accomplish. Furthermore, our belief is that deployment modeling should be part of the
Deployment workflow- not the Analysis & Design workflow as it is currently - due to the

10 Chapter 1: Introduction

fact that deployment modeling and deployment planning go hand-in-hand. Deployment plan
ning can, and should, start as early as the Inception phase and continue into the Elaboration
and Construction phases in parallel with deployment modeling.

Deployment is complex and planning often must start early in
development to be successful.

The Environment workflow has been updated to include the work necessary to define the
Production environment - work that would typically occur during the Transition phase.
(You could easily do this work earlier if you wish, but the Transition phase often proves the
best time for this effort). The existing Environment workflow processes effectively remain the
same - the only difference being that they now need to expand their scope from being
focused simply on a development environment to also include operations and support envi
ronments. Your operations and support staff need their own processes, standards, guidelines,
and tools- the same as your developers. Therefore, you may have some tailoring, develop
ing, or purchasing to perform to reflect this need.

The Configuration & Change Management workflow is extended into the new Production
phase to include the change control processes needed to assess the impact of a proposed
change to your deployed software and to allocate that change to a future release of your sys
tem. This change control process is often more formal than what you do during development
due to the increased effort required to update and re-release existing software.

Change control management will occur during the Production phase.

Similarly, the Project Management workflow is also extended into the new Production
phase to include the processes needed to manage your software once it has been released. It is
light on metrics management activities and subcontractor management, a CMM level 2 key
process area, needed by of any organization that outsources portions of its development
activities or hires consultants and contractors. People management issues, including training
and education as well as career management, are barely covered by the Unified Process
because those issues were scoped out of it. There is far more to project management than the
technical tasks of creating and evolving project plans. You also need to manage your staff and
mediate the interactions between them and other people.

There is far more to project management than planning,
estimating, and scheduling.

1.3 The Goals of the Inception Phase
During the Inception phase, your project team will focus on understanding the initial require
ments, determining scope, and organizing the project. To understand the initial requirements,
you will likely perform business modeling and essential modeling activities (Constantine and
Lockwood, 1999). Essential models are intended to capture the essence of problems through
technology-free, idealized, and abstract descriptions. Your resulting design models are more

The Goals of the Inception Phase 11

flexible, leaving more options open and accommodating changes more readily in technology.
Essential models are more robust than concrete representations, simply because they are more
likely to remain valid in the face of both changing requirements and changes in the technol
ogy of implementation. Essential models of usage highlight purpose, what it is that users are
trying to accomplish, and why they are doing it. In short, essential models are ideal artifacts
to capture the requirements for your system.

Your project's scope can be determined through negotiation with project stakeholders as
to the applicability of the results of your business and requirements modeling efforts. The
optional development of a candidate architecture enables you to determine both the technical
feasibility of your project and its scope because you may find that some aspects of your sys
tem are better left out of the current release. Significant project management effort also
occurs during the Inception phase where you'll organize your future work, including the
development of schedules, estimates, plans, and risk assessments.

The focus of the Inception phase is to define and come to agreement with respect to the
high-level requirements, vision, and scope of your project, as well as to justify the project and
obtain resources to continue work on it. As you work towards these goals, you will create
and/or evolve a wide variety of artifacts, such as:

• A vision document
• An initial requirements model (10-20% complete)

• An initial project glossary
• A business case
• An initial domain model (optional)
• An initial business model (optional)
• A development case describing your project's tailored software process (optional)
• An architectural prototype (optional)

The phase is concluded with the Lifecycle Objective (LCO) milestone (Kruchten, 2000).
To pass this milestone, you must achieve:
• a consensus between project stakeholders as to the project's scope and resource require

ments,
• an initial understanding of the overall, high-level requirements for the system,
• a justification for your system that includes economic, technological, and operational

iSSUes,

• a credible, coarse-grained schedule for your entire project,
• a credible, fine-grained schedule for the initial iterations of the Elaboration phase,
• a credible, risk assessment and resource estimate/plan for your project,
• a credible initial tailoring of your software process,
• a comparison of your actual vs. planned expenditures to date for your project, and
• the development of an initial architectural prototype for your system (optional).

A beginning is the time for taking the most delicate care that the
balances are correct. - Maud'Dib

12 Chapter 1: Introduction

1.4 How Work Generally Proceeds During
the Inception Phase
A fundamental precept of the Unified Process is that work proceeds in an iterative manner
throughout the activities of the various workflows. However, at the beginning of each itera
tion, you will spend more time in requirements-oriented activities and towards the end of
each iteration, your focus will be on test-oriented activities. As a result, to make this book
easier to follow, the chapters are organized in the general order by which you would proceed
through a single iteration of the Inception phase. As Figure 1.4 indicates, the workflows
applicable during the Inception phase are:
• Business Modeling (Chapter 2)
• Requirements (Chapter 3)
• Analysis & Design (covered in Vols. 2 and 3, The Unified Process Elaboration Phase and

The Unified Process Construction Phase, respectively)
• Implementation (covered in Vols. 2 and 3, The Unified Process Elaboration Phase and

The Unified Process Construction Phase, respectively)
• Test (Chapter 4)
• Deployment (covered in Vol. 4, The Unified Process Transition Phase)
• Operations and Support (covered in Vol. 4, The Unified Process Transition Phase
• Configuration & Change Management (covered in Vol. 3, The Unified Process Construc-

tion Phase)
• Project Management (Chapter 5)
• Environment (Chapter 6)
• Infrastructure Management (covered in Vols. 2 and 3, The Unified Process Elaboration

Phase and The Unified Process Construction Phase, respectively)

1.4.1 The Business Modeling Workflow
The purpose of the Business Modeling workflow, described in detail in Chapter 2, is to model
the business context of your system. During the Inception phase, the focus of the Business
Modeling workflow is to:

Identify the context of your system. A context model shows how your system fits into
its overall environment. This model will depict the key organizational units that will work
with your system, perhaps the marketing and accounting departments, and the external sys
tems that it will interact with. By developing the context model, you come to an understand
ing of the structure and culture of the organization and the external business environment
your system will exist in and support.

Identify the basis for a common understanding of the system and its context with
stakeholders. Your goal is to begin working towards a common understanding of what
your project team will deliver to its stakeholders as well as a common understanding of the
environment in which you will work. Stakeholders include your direct users, senior manage
ment, user management, your project team, your organization's architecture team, and poten
tially even your operations and support management. Without this common understanding,

How Work Generally Proceeds During the Inception Phase 13

your project will likely be plagued with politics and infighting and could be cancelled prema
turely if senior management loses faith in it.

Model the business. When you are modeling a business, you want to understand its goals,
strengths, weaknesses, and the opportunities and challenges that it faces in the market place.
A business model is multifaceted - potentially including a process model, a use-case model,
and a conceptual object model. Your project's business model should reflect your enterprise
requirements model. Enterprise modeling is a key aspect of the Infrastructure Management
workflow which is covered in detail in The Unified Process Elaboration Phase (Ambler &
Constantine, 2000a) and The Unified Process Construction Phase (Ambler & Constantine,
2000b). Business process models show how things get done, as opposed to a use-case model
that shows what should be done and can be depicted using UML activity diagrams. Concep
tual object models show the major business entities, their responsibilities, and their inter-rela
tionships, and should be depicted using UML class diagrams. Your business model should
include a glossary of key terms and important technical terms optional that your project
stakeholders need to understand. The business model is important input into your Require
ments workflow efforts.

Your business model shows how your system fits into its
environment and helps you to evolve a common understanding

with your project stakeholders.

1.4.2 The Requirements Workflow
The purpose of the Requirements workflow, the topic of Chapter 3, is to engineer the require
ments for your project. During the Inception phase, you will:

Identify the initial requirements. You need to identify the requirements for your soft
ware to provide sufficient information for scoping, estimating, and planning your project. To
do this, you often need to identify your requirements to the 10-20% level -to the point
where you understand at a high-level what your project needs to deliver, but may not fully
understand the details. You are likely to develop several artifacts as part of your requirements
model, including, but not limited to, an essential use-case model (Constantine & Lockwood,
1999; Ambler, 2001), an essential user interface prototype (Constantine & Lockwood, 1999;
Ambler, 2001), a user-interface flow diagram (Ambler, 2001), and a supplementary specifica
tion (Kruchten, 2000). A supplementary specification is a "catch-all" artifact where you doc
ument business rules, constraints, and non-functional requirements. During the Elaboration
phase, you will develop your requirements model to the 80% level and finalize it during the
Construction phase.

Use cases are only a small part of your overall requirements model.

Develop a vision for the project. The vision document summarizes the high-level require
ments for a project, including its behavioral requirements, its technical requirements, and the
applicable constraints placed on the project.

14 Chapter 1: Introduction

Elicit stakeholder needs. A software project often has a wide range of stakeholders,
including, but not limited to, its end users, senior management, and your operations and sup
port staff. An important part of understanding the requirements of a system is eliciting the
needs of its stakeholders so that the overall vision for the project may be negotiated.

Define a common vocabulary. A project glossary should be started during the Inception
phase and evolved throughout the entire lifecycle. This glossary should include a consistent
and defined collection of business terms applicable to your system. It is also common to
include technical terms pertinent to your project - such as essential modeling, use case, iter
ation, and Java- that your project stakeholders need to be familiar with.

Define the scope of the project. An important part of requirements engineering is the
definition of the boundary, the scope, of your system. Your goal is to define what require
ments your project team intends to fulfill and what requirements it will not. For example, if
you were developing a banking system, you may decide that the current version will support
international transactions, although it will do so in a single currency only - leaving
multi-currency support for a future release of the system.

1.4.3 The Analysis and Design Workflow
The purpose of the Analysis and Design workflow is to model your software. During the
Inception phase, your modeling efforts are likely to focus on understanding the fundamental
business and the requirements of your system - activities of the Business Modeling and
Requirements workflows. It is often quite common to identify, and then model, a candidate
architecture that is likely to meet your project's needs - an architecture that should be proto
typed as part of your Implementation workflow efforts. By showing that your candidate
architecture works, you help to show the technical feasibility of your approach, an important
aspect of justifying your project to senior management as part of the Project Management
workflow.

For projects that involve significant integration with existing systems, you may find that
you need to invest resources in understanding the interfaces that you have with those systems
- an effort often called legacy analysis, external interface analysis, or simply data analysis.
Your context model, developed as part of your business modeling efforts, will indicate the
external systems that yours will interact with. Once these external systems are identified, you
may decide to begin work analyzing the interfaces. Ideally, you would merely need to obtain
access to the existing documentation, although you will often find that little or no documen
tation exists and therefore, significant analysis must occur. This work can begin in the Incep
tion phase and continue into the Construction phase. Legacy analysis techniques are
described in The Unified Process Elaboration Phase (Ambler & Constantine, 2000a).

Analysis of interfaces to legacy systems is often a significant part of
the modeling efforts for a project, an activity that often begins

during the Inception phase.

