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Series Introduction 

The primary objectives of the Biostatistics series are to provide useful reference 
books for researchers and scientists in academia, industry, and government, and 
also to offer textbooks for undergraduate and/or graduate courses in the area of 
biostatistics. This series will provide comprehensive and unified presentations of 
statistical designs, analyses, and interpretations of important applications in bio-
statistics, such as those in biopharmaceuticals. A well-balanced summary will be 
given of current and recently developed statistical methods and interpretations for 
both biostatisticians and researchers/scientists with minimal statistical knowledge 
who are engaged in applied biostatistics. The series is committed to providing easy-
to-understand state-of-the-art references and textbooks. In each volume, statistical 
concepts and methodologies will be illustrated through real examples. 

Generalized linear models (GLMs) have been frequently used in pharmaceuti-
cal research and development, especially in clinical research and development for 
demonstration of the safety and efficacy of a pharmaceutical compound under in-
vestigation. However, the concept for the analysis of GLMs with mixed effects for 
categorical and/or longitudinal data is often misused or misinterpreted due to its 
complexity. This volume provides a comprehensive overview of key statistical con-
cepts and methodologies including the Bayesian approach for analysis of GLMs 
including logistic regression and log-linear models from both a theoretical and a 
practical point of view. In addition, it includes important issues related to model 
diagnostics and variable selection in GLMs. 

This volume serves as an intersection for biostatisticians, practitioners, and re-
searchers/scientists by providing a good understanding of key statistical concepts 
and methodologies for analysis and interpretation of GLMs and GLMs with mixed 
effects as well. This volume is in compliance with good statistics practice ( GSP) 
standards for good clinical practice (GCP) as required by most regulatory agencies 
for pharmaceutical research and development. 

Shein-Chung Chow 

ill 
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Preface 

Generalized Linear Models (GLMs) are widely used as flexible models in which 
a function of the mean response is "linked" to covariates through a linear pre-
dictor and in which variability is described by a distribution in an exponential 
dispersion family. These models include logistic regression and log-linear models 
for binomial and Poisson counts as well as normal, gamma and inverse-Gaussian 
models for continuous responses. Standard techniques for analyzing censored sur-
vival data such as Cox regression can also be handled within the GLM framework. 
Other topics closely related to GLMs include conditionally independent hierarchical 
models, graphical models, generalized linear mixed models (GLMMs) for estimating 
subject-specific effects, semi-parametric smoothing methods, pharmokinetic models 
and spatio-temporal models. 

GLMs thus provide a versatile statistical modeling framework for medical and 
industrial applications, but questions remain about how the power of these models 
can be safely exploited when training data are limited. This volume demonstrates 
how Bayesian methodology allows complex models (ranging from simple logistic 
regression models to semi-parametric survival models for censored data) to be used 
without fear of the "over-fitting" that can occur with traditional GLM methods 
which are usually based on normal approximation theory. Insight into the nature 
of these complex Bayesian models is provided by theoretical investigations and 
practical implementations. Presupposing only basic knowledge of probability and 
statistics, this volume should be of interest to researchers in statistics, engineering 
and medicine. 

This volume will serve as a comprehensive reference book for practitioners and 
researchers. Each part in the volume has chapters written by an expert in that 
particular topic, and the chapters are carefully edited to ensure that a uniform 
style of notation and presentation is used throughout. As a result, all researchers 
whose work uses GLM theory will find this an indispensable companion to their 
work and it will be the reference volume for this subject for many years to come. 
In particular, each chapter describes how to conceptualize, perform and criticize 
traditional GLMs from a Bayesian perspective. In addition, how to use modern 
computational methods to summarize inferences using simulation is elucidated. 

The primary users of this volume include professionals in statistics and other re-
lated disciplines who work in the pharmaceutical industry, medical centers (includ-
ing public health and epidemiology) and public and private research and academic 
institutions. 

Our hope is that this volume will also help researchers identify areas of impor-
tant future research and open new applications of generalized linear models using 
Bayesian approaches. 

The papers in this volume are divided into six parts: General overview, extension 
of the GLMs, categorical and longitudinal data, semiparametric and nonparametric 
approaches, model diagnostics and variable selection and challenging problems. 

In part I, Gelfand and Ghosh introduce Bayesian analysis of generalized linear 
models from its developments. Sun, Speckman and Tsutakawa describe random 
effects in generalized linear mixed model with fully explained examples. Ibrahim 
and Chen develop methods of prior elicitation and variable selection for generalized 

v 



VI Preface 

linear mixed models with an example of pediatric pain data. 
Chapters in Part II of the volume describe several extensions of GLMs. Ferreira 

and Gamerman introduce dynamic modeling approach for GLMs. They also lay out 
computational steps with two applications. Dey and Ravishanker extend GLMs in 
the presence of overdispersion. Both parametric and nonparametric approaches to 
overdispersed GLMs are considered. Nandram proposes Bayesian GLMs for infer-
ence about small areas and describes an application with mortality data of U.S.A. 

Part III concerns modeling categorical and longitudinal data. Modeling dichoto-
mous, polychotomous and count data are quite useful and challenging in the pres-
ence of correlation. In this part, first Chib describes methods for the analysis of 
correlated binary data using latent variables. He also describes three algorithms for 
implementation. Chen and Dey extend this to correlated ordinal data and propose 
algorithms for analysis of such data. Bayesian methods for time series count data are 
described by Ibrahim and Chen with an application to the analysis of pollen count. 
Albert and Ghosh propose and analyze item response modeling for categorical data. 
This part concludes with a case study using Bayesian probit and logit models by 
Landrum and Normand. 

Part IV describes G LMs using rich classes of non parametric and semi parametric 
approaches. Semiparametric GLMs are considered by Mallick, Denison and Smith 
using Bayesian approaches. The chapter by Basu and Mukhopadhyay presents a 
semiparametric method to model link functions for the binary response data. Next, 
Haro-L6pez, Mallick and Smith develop a data adaptive robust link function. In the last 
chapter of Part IV, Kuo and Peng present a mixture-model approach to the analysis 
of survival data. 

Part V deals with important issues relating to model diagnostics and variable 
selection in GLMs. In this part, the chapter by Dellaportas, Forster and Ntzoufras 
presents Bayesian variable selection in using Gibbs sampler. Next, Ibrahim and 
Chen describe variable selection methods for Cox models. This part is concluded 
by Dey and Chen on Bayesian model diagnostics for correlated binary data. 

Part VI concludes the volume with challenging problems. Wakefield and Stephens 
develop a case study by incorporating errors-in-variable modeling. Iyengar and Dey 
review parametric and semiparametric approaches for the analysis of compositional 
data. Denison and Mallick describe classification trees from a Bayesian perspective 
and apply the algorithm on a case study problem. In the next chapter, Gelfand, 
Ravishanker and Ecker develop a new modeling and inference method for point-
referenced binary spatial data. The part closes with the chapter by Best and Thomas 
on graphical models and software for GLMs. 

The cooperation of all contributors in the timely preparation of their manuscripts 
is greatly appreciated. We decided early on that it was important to referee and 
critically evaluate the papers which were submitted for inclusion in this volume. For 
this substantial task, we relied on the service of numerous referees to whom we are 
most indebted. Among those whom we wish to acknowledge are Sudipto Banerjee, 
Pabak Mukerjee and Kaushik Patra. 

Finally we thank the editors at Marcel Dekker, Inc. for considering our proposal. 
Our special thanks go to Debosri, Swagata and Mou for their encouragements in 
this project . 

Dipak K. Dey, 
Storrs, CT, USA 

Sujit K. Ghosh 
Raleigh, NC, USA 

and BaniK. Mallick 
College Station, TX, USA 
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Generalized Linear Models: A 
Bayesian View 

Alan E. Gelfand 
Malay Ghosh 

ABSTRACT Generalized linear models (GLMs) offer a unifying class of models 

which are widely used in regression analysis. Though initially introduced into the 

community from a classical viewpoint, in the past decade the Bayesian literature 

employing these models has witnessed rapid growth. This is due in part to their at-
tractiveness within familiar hierarchical modeling but as well to the wide availability 

of high speed computing to implement simulation based fitting of these models. The 
objective of this chapter is to provide a brief, somewhat selective, summary and 

overview of this recent literature. In particular, we focus upon the range of proposed 

GLMs, prior specification, propriety of the resultant posterior, semiparametric ap-

proaches and model determination, i.e., model adequacy and model choice. 

1. Introduction 

Generalized linear models (GLMs), originally introduced by Nelder and Wedder-
burn (1972), provide a unifying family of models that is widely used for regression 
analysis. These models are intended to describe non-normal responses. In particu-
lar, they avoid having to select a single transformation of the data to achieve the 
possibly conflicting objectives of normality, linearity and homogeneity of variance. 
Important examples include the binary and the count data. Over the years, GLMs 
have expanded much in scope and usage, and are currently applied to a very broad 
range of problems which include analysis of multicategory data, dynamic or state-
space extensions of non-normal time series and longitudinal data, discrete time 
survival data, and non-Gaussian spatial processes. 

By now, there are several excellent textbooks discussing inference for GLMs from 
a classical point of view (McCullagh and Nelder, 1989; Fahrmeir and Tutz, 1991, 
Lindsey, 1995). These books provide a rich collection of estimation and hypothesis 
testing procedures for various parameters of interest primarily from a frequentist 
point of view. Breslow and Clayton (1993) have extended these models further 
by introducing random effects in addition to the fixed effects. The resulting mod-
els, usually referred to as generalized linear mixed models (GLMM's) have further 
widened the scope of application of GLMs for data analysis. Software routines such 
as PROC MIXED in SAS have facilitated the computations involved in the classical 
implementation of GLMs. 

3 
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Bayesian methods for analyzing GLMs are of more recent origin. A general hi-
erarchical Bayesian (HB) approach for such analysis began with West (1985) and 
Albert (1988), although various special cases were considered earlier. Leonard and 
Novick (1986) considered Bayesian analysis of two-way contingency tables, while 
Albert (1985) considered simultaneous estimation of several Poisson means via a 
hierarchical log-linear model. 

The present article aims to review the Bayesian perspective with regard to G LMs. 
This includes a range of hierarchical model GLM specifications, approaches for 
Bayesian model fitting and techniques for model checking and model choice. In Sec-
tion 2, after a brief introduction to the model and the classical inference procedure, 
we proceed to the discussion of some of the Bayesian models that have appeared 
in the literature. We compare the various priors that have been proposed, and dis-
cuss also the methods required for their implementation. This includes the work of 
Albert (1988), Ibrahim and Laud (1991), Dellaportas and Smith (1993), Zeger and 
Karim (1991), Ghosh, Natarajan, Stroud and Carlin (1998) among others. Section 
3 discusses the propriety of posteriors under the different priors. In particular, we 
discuss the results of Ibrahim and Laud (1991), Natarajan and McCulloch (1995), 
Hobert and Casella (1996), Gelfand and Sahu (1999), Ghosh, Natarajan, Stroud and 
Carlin (1998). Section 4 discusses semiparametric and nonparametric Bayesian pro-
cedures for GLMs. Section 5 briefly looks at overdispersed GLMs. Finally, Section 
6 addresses the issues of model diagnostics and model selection. 

2. GLMs and Bayesian Models 

2.1 GLMs 
Consider measurements (discrete or continuous) for n individuals. For the ith 

individual, the response variable is denoted by y;, and the corresponding vector of 
covariates is denoted by x;. Responses may be continuous real variables, or counts 
or binary. Fahrmeir and Tutz (1991) contains many interesting examples of binary 
and count data. As an example of binary data, they consider infection from births 
by caesarean section. The response variable is the occurrence or non-occurrence of 
infection. They consider three dichotomous covariates: (a) planned or unplanned 
caesarean, (b) presence or absence of risk factors such as having diabetes or being 
overweight, and (c) use or nonuse of antibiotics as prophylaxis. An example of 
count data involves the effect of two agents of immune-activating ability that may 
induce cell differentiation (Piegorsch, Weinberg and Margolin, 1988). As response 
variable, one considers the number of cells that exhibited markers after exposure. 
The covariates are the agents TNF (tumor necrosis factor) and IFN (interferon). It is 
of interest to know whether these agents stimulate cell differentiation independently 
or whether there is an interaction effect. 

There are certain distributional and structural assumptions associated with GLMs. 
The key distributional assumption is that conditional on the 0;, the y; are indepen-
dent with pdf's belonging to the one-parameter exponential family, that is, 

(1) 

where the 0; are unknown, but the a(¢;)(> 0) are known. The usual structural 
assumption is that 0; = h(xTb), where his a strictly increasing sufficiently smooth 
function, b(p x 1) is the vector of unknown regression coefficients, and the x; (p X 1) 
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are known design vectors of dimension p. The parameters 0; are usually referred to as 
the canonical parameters. Important special cases include the binomial distributions 
with success parameters p; = exp(0;)/[1+ exp(O;)], a(¢;) = 1, and the Poisson 
distributions with means >.; = exp( Oi), a( ¢i) = 1. The N (J.li, a}) distributions are 
also covered by ( 1) with Oi = J.li, a(¢;;) = a}. The gamma and the inverse Gaussian 
distributions are other important special cases of ( 1). 

The classical estimation procedure for G LMs is maximum likelihood. For simplic-
ity, we assume that the ¢;; are known and that XT = (x 1 , · · ·, Xn) has rank p. The 
likelihood function is given by 

(2) 

The corresponding score vector is 

dlogL(b) ~ 1 1 T ) } 1 T ) db =~a; (¢;;){yi- '1f; (h(x; b) h (xi b x;, 
i=1 

(3) 

and the Fisher information matrix is 

I(b) = E [- d:~;:TL] = XT DV(b).6. 2 (b)X, (4) 

where D = Diag (a- 1 (¢i), · · ·, a- 1(¢n)), V(b) = Diag ('1f;"(h(xfb)), · · ·, 'lj;"(h(x~b)), 
and .6-(b) = Diag (h 1(xfb), · · ·, h 1 (x~b)). 

The maximum likelihood estimators are obtained as iterative solutions of the 
likelihood equations dlo~;(b) = 0. If the log-likelihood f(b) = logL(b) is concave, 
then the MLE is unique when there exists at least one b within the admissible 
parameter set where f(b) attains the local or global maximum. 

The asymptotic theory of the MLE works in this situation as well. Under mild 
regularity conditions, the MLE b of b is asymptotically N(b, n- 1 I- 1(b)). 

2.2 Bayesian Models 
For a Bayesian model associated with the likelihood (2), we require a prior for b. 

A commonly used choice is N(b0 , :E), where b0 and :E are known. This prior appears 
for example in Dellaportas and Smith (1993). Then, writing y = (Y1, · · ·, Yn)T, the 
posterior of b is given by 

1r(bly) ex exp [ ~ a- 1(¢;;){yih(xfb)- 'lj;(h(xf b))}- ~(b- bo)T:E- 1(b- bo)]. 

(5) 
The above posterior is not analytically tractable. In fact, there does not exist 

any closed form expression for the norming constant. Also, finding posterior means, 
variances etc. by numerical integration is not easy even for moderate p. The most 
convenient approach seems to be the Markov Chain Monte Carlo (MCMC) numer-
ical integration techniques which require generating samples from the posterior. 
They can be implemented in general using the Metropolis-Hastings algorithm, but 
if the posterior is log-concave, then one can also use the adaptive rejection sampling 
approach of Gilks and Wild (1992). 
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With little or no prior information, an alternative is to use noninformative priors. 
This implies that the posterior distribution is essentially the likelihood that the 
Bayesian analysis will be close to a likelihood analysis, possibly attractive to fre-
quentists. One of the commonly used noninformative priors due to Laplace (1812) is 
7rL(b) <X 1. However, the following example due to Laud and Ibrahim (1991), shows 
that such a prior can sometimes lead to an improper posterior. 
Example 1. Suppose n = 1, p = 1, and 

!(Y1Ix1) = (bx1)-1 exp[-yl/(bx1)]; y > 0, x1 > 0, b > 0. 

Then if 7rL(b) ex 1 
(6) 

Integration with respect to b over (0, oo) gives Jt 7r£(bly!)db = J000 z- 1 exp (- u;.) dz = 
+oo, so that the posterior is improper. 

Laud and Ibrahim (1991) proposed Jeffreys' prior for this problem given by 
71'J(b) ex II(b)l 112 with I(b) given in (4). They provided sufficient conditions under 
which the resulting posterior 7rJ(bly) is proper. 

The likelihood function given in (2) generalizes the normal fixed effects model to 
the one-parameter exponential family. Breslow and Clayton (1993) have extended 
this further to include mixed effects models. For a fixed effects model, under the 
link function g =: h-1, we have g(8;) = xTb. In contrast, for the random effects 
model, one incorporates the random effects as well, and writes g( 8;) = xT b + zT u;, 
where the z; are also known and the u; are i.i.d. N(O, ~ ... ). Breslow and Clayton 
(1993) advocated penalized quasi-likelihood estimates (PQL) for estimating b. 

We note an example of generalized linear mixed effects model (GLMM), consid-
ered in Crowder (1978), and also in Breslow and Clayton (1993). This concerns 
data on the proportion of seeds that germinated on each of 21 plates arranged 
according to a 2 x 2 factorial layout by seed variety and type of root extract. It 
turns out in this example that the within-group variation exceeds that predicted by 
the binomial sampling theory. The heterogeneity due to plate-to-plate variability is 
accounted for by Crowder (1978) and Breslow and Clayton (1993) by means of a 
GLMM that employs the canonical link setting 

8; = x[b+u;, 

i = 1, · · ·, 21, where b represents the fixed effects associated with seed and the 
extract, and the u;, assumed to be iid N(O, 0'~), represent random effects associated 
the plates. 

The Bayesian procedure, as before assigns a N(bo, ~b) distribution to b. More 
generally, a hierarchical Bayesian model is considered whereby one assigns distribu-
tions to ~b and O'u. One option is to use an inverse Wishart distribution for ~b and 
inverse gamma distribution for 0'~. Such distributions can possibly be improper, but 
care must be exercised in order that the resulting posterior is proper. 

Specifically, let ~b and 0'~ have independent priors 

(7) 

and 
( 2) ( a )( 2)-.il.-1 7r O'u <X exp --2 2 O'u 2 • 

O'u 
(8) 

We shall write symbolically ~b,..., IW(w,v) and 0'~,..., IG(%, ~). 
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The joint posterior of(} = ( (}1 , · · ·, Bn?, b, ~b and a-~ is now given by 
n 

i=1 

X 

X (9) 

This posterior is analytically intractable, and one needs numerical integration for 
posterior analysis. Gibbs sampling (Gelfand and Smith, 1990; Gelfand, Hill, Racine-
Poon and Smith, 1990) has proved to be very useful for implementation of the 
Bayesian model fitting. This requires sampling from the full conditionals 

[ble, ~b, a-~, y],...., N((a-;;2xr x +~b"1 )-1(a-;;2 xr e+~b"1bo), (a-;;2 xr x +~b"1 )-1]; 
(10) 

[~bl(}, b, a-~, y],...., IW(~ + (b- bo)(b- ba?, v + p); (11) 

(12) 

(13) 

where X= (a:1, · · ·,xn?· It is easy to generate samples from the normal, inverse 
Wishart and the inverse gamma distributions. The only nonstandard conditionals 
are the 7r(B;I.), i = 1, · · ·, n, which are known only up to multiplicative constants. 
One can use the Metropolis-Hastings algorithm to generate samples. Alternately, 
one can use the adaptive rejection sampling of Gilks and Wild (1992) since these 
posteriors are log-concave. 

The above model should be contrasted to that of Albert (1988). Albert (1988) 
begins with the likelihood given in ( 1), but does not model the B; as B; = h( a:T b). 
Instead, he considers independent conjugate priors for the B; at the first stage, 
namely 

II(B;Im;, A)= exp[A(m;B;- 'lj!(B;)) + k(m;; A)] (14) 
An easy calculation shows that E[ 'lj!' ( B; )] = m;. He models the prior means m; as 
m; = h(a:Tb). Thus Albert moves the GLM to the second stage specification, that 
is, for the B; 's rather than the customary first stage specification for the Yi 's. The 
remaining prior parameter A is a precision parameter that reflects the strength of 
one's prior beliefs about the means m;. As A approaches infinity, the prior distribu-
tion of the 'lj!' ( B;) becomes increasingly concentrated about the mean m;, and the 
Bayesian model approaches the first stage specification in (2). 

To complete the prior specification at the second stage, a distribution needs to 
be assigned to b and A. West (1985) assigns a normal distribution to b, and a 
chi-squared distribution to A. Albert (1988) assigns instead the prior II(b, A) ex: 
(1 + A)- 2 , that is a priori b and A are independent with b ,...., uniform (RP), and 
II(A) ex: (1 + A)-2, a heavy tailed prior with infinite first moment. 

With Albert's model, it is possible to calculate 

This implies 

(15) 
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Again, explicit evaluation of the conditional expectation given in the right hand 
side of (16) is difficult. Albert uses three approximations: (a) Laplace's method, (b) 
Quasi-likelihood approach, and (c) Brooks's method. A detailed application is given 
for the binomial-logit hierarchical model. 

Albert's model differs from the one given in (5), (7) and (8) in that he connects the 
regression variables not directly with the parameters of interest, but indirectly with 
the prior means. The approximations that he considers are attractive alternatives 
to direct numerical integration, especially when pis large. On the other hand, these 
approximations do not appear to be simpler than using MCMC integration methods. 

A slight variant of the model given in (1), (5), (7) and (8) is due to Zeger and 
Karim (1991). They consider a stratified sampling situation where Yij is the response 
of the jth unit in the ith stratum. (In a longitudinal data or repeated measurements 
situation, j denotes the jth measurement on the ith subject). The corresponding 
vector of auxiliary characteristics or covariates is denoted by :Eij (p x 1). The one-
parameter exponential family model is now given by 

where the link function h(.) yields h(Bij) = :E~b + z~u;, j = 1, · · ·, n;; i = 1, · · ·, m. 
The u; are iid N(O, ~u)· 

At the final stage of the hierarchical model, one assigns mutually independent 
priors to band ~u with b"' uniform (RP) and ~u "' IW(1 +, v). This posterior is 
also analytically intractable, and Gibbs sampling can be used to generate samples 
from the necessary conditionals. 

The Zeger-Karim formulation does not include possible error in misspecifying the 
model. Ghosh, Natarajan, Stroud and Carlin (1998) consider slightly more general 
modeling of g(B;j), namely h(B;j) = :E~b+ z~u; + eij· The errors e;j account for 
model misspecification. A special case of the latter model will be discussed in the 
next section for studying the propriety of posteriors. 

3. Propriety of Posteriors 

If only proper priors are used, then one necessarily gets proper posteriors. How-
ever, as mentioned earlier, Bayesian analysis often relies on diffuse and flat priors 
which are mostly improper. In such instances, it is imperative to verify the propri-
ety of posteriors. Otherwise, descriptive measures such as moments, quantiles etc. 
of the posteriors do not carry any meaning. Checking the propriety of posteriors is 
all the more important when the Bayesian procedure is implemented via MCMC 
technique as it may so happen that all the full conditionals are proper distributions, 
and yet the posterior is improper. (See Casella and George (1992) for an elementary 
example). 

As shown in the previous section, Laplace's prior does not necessarily lead to a 
proper posterior. The same comment applies to Jeffreys' prior. Ibrahim and Laud 
(1991) have investigated conditions under which Jeffreys' prior leads to proper pos-
teriors for GLMs. We present their main result below. 
THEOREM 1. Consider the likelihood function given in (2), and Jeffreys' prior 
II1 (b) ex JI(b)J 112 , where I(b) is given in (4). Assume that r(X) = p and the 
likelihood function is bounded. Then, a sufficient condition that the posterior dis-
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tribution II(biy) is proper is that the integrals 

(17) 

are finite for all i = 1, · · ·, n. 
Ibrahim and Laud (1988) also show that a necessary and sufficient condition 

for IIJ to be proper is that f8 [1f!"(O)Fi 2d0 is finite where 0 denotes the parameter 
space. Dey, Gelfand and Peng (1997) extend these results to the case of overdispersed 
GLMs (see Section 5). Hobert and Casella (1996) have provided conditions ensuring 
propriety of posteriors for normal models. Natarajan and McCulloch (1995) have 
considered a version of a hierarchical model for binary data which ensures the 
propriety of posteriors. 

Ghosh et al. (1998) have considered the model given in (14), but h(O;j) = x'{jb+ 
u; + e;j(j = 1, · · ·, n;; i = 1, · · ·, m). The u; and the eij are mutually independent 
with the u; iid N(O, cr~) and the e;j are iid N(O, cr2). Also, b, cr~ and cr2 are mutually 
independent with b....., uniform (RP), cr~....., IG Ga, ~g) and cr2 ....., IG (~c, ~d). 

Ghosh et al. (1998) provide sufficient conditions for the propriety of posteriors 
under this model. A slightly more general version of their theorem is proved in 
Ghosh and Natarajan (1998) which we present below. 
THEOREM 2: Assume that f(Yij IO;j) is bounded for all j = 1, · · ·, n;; i = 1, · · ·, m. 
Let S = {( i, j) : J f(Yii IO;j )dO;j < oo}, and s = cardinality of S. Assume that 
s 2: 1. Then the posterior 1r(8, b, cr~, cr2 iy) is proper if a> 0, c > 0, m + g > 0 and 
s + d > p. 

In a more recent article, Gelfand and Sahu (1999) have linked the issue of pro-
priety of posteriors with Bayesian identifiability. Suppose the Bayesian model is 
denoted by the likelihood L(9; y) and the prior 1r(8). Suppose 9 = (91 , 92 ). Fol-
lowing Dawid (1979), if 1r(82l81, y) = 7r(92l9!), we say that 82 is not identifiable. 
This means that if observing data y does not increase our prior knowledge about 
9 2 given 9 1, then 9 2 is not identified by the data. Noting that 

(18) 

82 is nonidentifiable if and only if £(91, 9 2; y) is free of 9 2, that is L(9; 9 2; y) = 
L(91 , y). Hence, Dawid's formal definition of non-identifiability is equivalent to lack 
of identifiability of the likelihood. We may also observe that if L( 9 1 , 92 ; y) is free of 
9 2 , then the posterior 

is proper if and only if both 1r( 9 1 iy) and 1r( 9 219!) are proper. 
To see how (19) works for GLMs suppose that rank (X) = r < p. Then it is 

possible to make a one-to-one transformation from b to (15, p) such that (2) has the 
alternate representation 

where X'[; = ( x 01 , · · · , X on) is a r x n matrix of rank r. Thus the likelihood does not 
depend on p. Since propriety of 1r(biy) is equivalent to the propriety of 7r(l5, ply), 
it follows from (19) and (20) that 1r(biy) is proper if and only both 7r(l5iy) and 
7r(pl15) are proper. If the latter holds, all we need to verify is that 7r(l5iy) is proper. 
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Gelfand and Sahu (1999) have shown that with the canonical link B; = xfb, if 
rank(X) = r < p, a sufficient condition for a proper 1r(bly) is that the likelihood is 
bounded, and that at least r of the y; 's belong to the interiors of their respective 
domains. 

4. Semiparametric GLMs 

Sections 2 and 3 contain discussion of fully parametric Bayesian GLMs. In this 
section, we enrich this class of models by wandering nonparametrically near (in a 
suitable sense) this class. As a result, parts of the modeling are captured parametri-
cally, in particular, the linear regression structure on some monotonically increasing 
transformed scale of the canonical parameters. Other aspects such as the link func-
tion or the distribution of the random effects are specified non parametrically. This is 
an example of what has now become known as semi parametric regression modeling. 

One of the difficulties with Bayesian modeling in the nonparametric case is that, 
unlike its parametric counterpart where the dimension of the parameter space is 
finite, nonparametric modeling requires an "infinite dimensional" parameter. Thus, 
the Bayesian approach, in assuming all unknowns are random, requires an infinite 
dimensional stochastic specification. However, significant advancement of research 
in this area during the past twenty five years or so has provided tractable ways to 
make such specifications. Further, more recent advances in Bayesian computation 
enable the fitting of models incorporating these specifications and even extensions 
of these specifications. 

The various probabilistic specifications which yield Bayesian nonparametric mod-
eling include discrete mixtures, Dirichlet processes, mixtures of Dirichlet processes, 
Polya tree distributions, Gamma processes, extended Gamma processes and Beta 
processes. Gelfand (1998) contains a review of all these. For brevity, we will discuss 
only the discrete mixtures and mixtures of Dirichlet processes in the context of 
conditionally independent hierarchical GLMs. 

We may note that the basic object which we are attempting to model is an 
unknown function, say g(} The parametric approach writes g as g(·, 8), Bf8 and 
then places a prior distribution over 8f8. The nonparametric approach assumes 
only that g E 9, where 9 is some class of functions. A Bayesian approach requires 
assigning a prior over the elements of(}. In what follows, we illustrate this with 
examples where the elements of 9 are monotone functions. 

We begin our discussion with mixture models. First we notice that modeling a 
strictly monotone function g is equivalent to modeling a distribution function. For 
instance, if the range of g is R1 , then T(g(-)) with T(z) = k1 exp(k2z)/[1 + k1 

exp(k2z)] with k1 > 0, k2 > 0 is a df. Similarly, if the range of g is R+, then T(g(-)) 
with T(z) = k1zk 2 (1 + k1zk 2 )- 1 with k1 > 0, k2 > 0 is a df. 

The mixture model approach models an unknown df using a dense class of mix-
tures of standard distributions. For instance, Diaconis and Ylvisaker (1985) observe 
that discrete mixture of Beta densities provide a dense class of models for densities 
on [0, 1]. 

As a special case, consider modeling the link function h in a generalized linear 
model. Mallick and Gelfand (1994) suggested modeling h(B) by 

r 
T(h(B)) = L wtlB(T(ho(B); ce, de), (21) 

l=l 
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where r is the number of mixands, Wt ~ 0, :z=;=1 Wt = 1 are the mixing weights, 
IB(u, c, d) = J0u {xc- 1(1- x)d- 1 / B(c, d)}dx, and h0 is a centering function for h. 
Then (21) provides a generic member of the dense class. Inversion of (21), pro-
vides a generic h. Since h is determined by specification of r, w(r) = ( w1, · · ·, Wr ), 
c(r) = (c1, .. ·,cr) and d(r) = (d1, .. ·,dr), introducing a distribution on g re-
quires specification of a distribution ofthe form f(r)f( w(r), c(r)d(r) jr). Mallick and 
Gelfand (1994) suggest-fixing c(r) and d(r) to provide a set of Beta densities which 
"blanket" [0, 1), for example Ct = .e, dt = r + 1 - .e, .e = 0, 1, · · ·, r, but treat w(r) 
as random, given r. As shown by these authors, if w(r)"' Dirichlet (alr), where 
lr = (1, · · ·1)T, then E[T(h(B))] ~ T(ho(B)), that ish is roughly centered about h0 . 

This class of models is easy for inferential purposes. Since finding the posterior of 
h is equivalent to finding the posterior of w(r), all one needs is to generate samples 
from the latter. 

Next we turn to Dirichlet processes. Since the appearance of the classic paper 
of Ferguson (1973), such processes have been used quite extensively for Bayesian 
nonparametric inference. A probability measure G on g is said to follow a Dirichlet 
process with parameter aG0 , symbolically written as G"' DP(aG0 ), iffor any mea-
surable partition B1, · · ·, Bm of(}, (G(Bl), · · ·, G(Bm)) "' Dirichlet (aGo(Bl), · · ·, 
aG0 (Bm)). Here, Go is a specified probability measures, and a is the "precision" pa-
rameter. This name for a is justified since V[G0(Bt)] = G0 (Bt)(1- G0 (Bt))/(a+ 1) 
which decreases in a for every .e. 

Computationally, it is most convenient to work with a family of Dirichlet mix-
ture distributions. Let {!(·10), 0f8 C RP} be a parametric family of densities with 
respect to some dominating measure Jl.. Consider the family of probability distribu-
tions :F = {FG: GEQ} with densities 

f(yjG) = j f(yjO)dG(O). (22) 

Here G(O) is viewed as the conditional distribution of 0 given G. It is assumed 
that G"' DP(aG0 ), whence f(yjG) arises by mixing with respect to a distribution 
having a Dirichlet process. 

Mukhopadhyay and Gelfand (1997) provide a general discussion of Bayesian in-
ference based on Dirichlet process mixed models. Mixtures of Dirichlet processes 
were first introduced in Antoniak (1974), and have been considered subsequently 
in Lo (1984), Brunner and Lo (1989, 1994), (1991), Escobar (1994), Escobar and 
West (1995), MacEachern and Miiller (1994), Gelfand and Mukhopadhyay (1995), 
and Newton, Czado and Chappell (1996) among others. 

To illustrate the implementation of the semi parametric Bayesian procedure in the 
context of GLMs, we begin with conditionally independent observations y; with pdf 
given in (1). In the next stage, we model h(B;) = ~Tb+u;, where the u; are iid from 
G with G"' DP(aGo). Integrating over G, the u; have joint pdf j(u1, · · ·, uniGo, a). 
They are no longer independent, but this joint distribution can be written explicitly. 

To complete the prior specification, one needs to specify Go, and also specify 
a distribution for b and a. Typically, one assigns a N(b0 , ~) distribution for b 
and, following Escobar and West (1995), a gamma distribution for a. (Empirical 
experience suggests setting a = 1 may be preferable to adding a hyperprior.) A 
simple choice for Go is a normal distribution. However, the Bayesian model fitting 
can be implemented, at least in principle, for an arbitrary Go and a. 

In order to implement the model fitting, one begins with the joint posterior of b 
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7C'(b, u, alGa, y) 
<X exp[2::7= 1 {y;h- 1 (xTb+u;)-1/J(h- 1 (xTb+u;))}] (23) 

x exp [-~(b-bof~- 1 (b-bo)] f(u1,···,uniGo,a)7C'(a). 

The MCMC implementation of the Bayesian procedure requires generating sam-
ples from the full conditionals 

(a) 7f' (blu, a, Go, y) <X exp JI:7=1 {y;h- 1 (xTb+ u;) -1/J (h- 1 (xTb+ u;)) }] 
x exp l-~(b-bof~- 1 (b-bo)]; 

(24) 

(b) 7f' ( u; lb, Uj (j f=.i), a, G0 , y), a mixed density placing point masses proportional 
to f(y; lb, Uj) at each Uj (j f=.i) and continuous mass proportional to af(y; lb, u;) 
f(u;IGo); 

(c) 1f'(alb,u) <X f(u1,···,uniGo,a)7C'(a). If 7f'(a) is gamma, Escobar and West 
(1995) have discussed how to generate samples from II( alb, u) by introducing 
an additional parameter, say, f. The reader is referred to their paper for 
details. 

5. Overdispersed Generalized Linear Models 

Being based on the one-parameter exponential family of distributions, GLMs as-
sume a known functional relationship between the mean and the variance. This 
makes these models unsuitable for certain applications, especially those where the 
samples are too heterogeneous to be explained by such a simple functional relation-
ship. In such instances, one is naturally led to a wider class of models. 

A popular approach for creating a larger class has been through mixture models. 
For instance, the one parameter exponential family defining the GLM is mixed with 
a two parameter exponential family for the canonical parameter (} (or equivalently 
the mean parameter J-l) resulting in a two parameter marginal mixture family for 
the data. The resulting overdispersed family of mixture models no longer belongs 
to the exponential family (e.g. beta-binomial, gamma-Poisson). More importantly, 
since the likelihood depends on the sample size, while the mixture distribution 
does not, the relative overdispersion of the resulting mixture family to the original 
exponential family tends to infinity as the sample size increases. An implication of 
such models is that taking additional observations within a population does not 
increase knowledge regarding heterogeneity across populations. 

A second class of models, usually referred to as exponential dispersion models 
(EDM), arises when a(¢)=¢ so that¢ behaves like a scale parameter. Jorgensen 
(1987) provides an extensive treatment of such models. The resulting two parameter 
family of distributions no longer belongs to the exponential family. 

An alternative approach due to Efron (1986) models overdispersion through so-
called "double-exponential" families. Such families are derived as a saddle point 
approximation to the density of an average of n* random variables from a one 
parameter exponential family with large n*. The parameter n* written as np for 
actual sample size n introduces p as a second parameter in the model along with 
canonical parameter B. Ganio and Schafer (1992) have shown that EDM's can be 



1. Bayesian GLMs 13 

embedded within Efron's double exponential family, and the associated asymptotic 
inference applies. These asymptotics result in overdispersion relative to the original 
exponential family which tends to a constant as n --+ oo, unlike the mixture case. 

A more general class of models was introduced by Gelfand and Dalal (1990). 
For a given one-parameter exponential family, they introduced a two-parameter 
exponential family where one parameter is the overdispersion parameter in addition 
to the canonical parameter. This model includes Efron's model as a special case, 
and also includes a family discussed in Lindsay (1986). 

Dey, Gelfand and Peng (1997) adopted a Bayesian approach for fitting these mod-
els using Jeffreys' prior. Following the technique of Laud and Ibrahim (1991), they 
also proved the propriety of posteriors under such priors under certain conditions. 
Some of their results are presented below. 

We begin with conditionally independent random variables y; (i = 1, · · ·, n) such 
that 

f(y;jB;, r;) = b(y;) exp(B;y; + r;T(y;) - p( B;, r;)]. (25) 

In the above f is a density with respect to some a--finite measure p,. Assuming 
that (25) is integrable with respect toy;, if T(y;) is convex, then for distributions 
with common means, V(y;) increases in T;. Let y = (Y1, · · ·, Yn)T, and define B; = 
h1 (xTb) and r; = h2 (zT a), where h1 and h2 are strictly increasing. The resulting 
likelihood is 

n 

L(b, a; y) = exp[L)B;y; + r;T(y;)- p(B;, r;)}]. (26) 
i=1 

We shall use the notation p(r,s) = 8pr+s /(8Br8r'). Then straightforward calcula-
tions yield 

( 82 logL) _ ~ c2,o) . . .. . , T 2. E - 8bj 8bk - {;;;tp (B,, r,)x,3 x,k[g (:c; b)] , (27) 

( 82 logL) ~(o 2) ['(T ]2. E - 8 .8 = L...JP ' (B;, r;)ZijZik h Z; a) , 
aJ ak i=1 

(28) 

( 82 logL) ~(11)( '(T)'(T) E - 8b·B = L...JP ' B;, r;)x;jZikY X; b h z; a . 
J CXk i=1 

(29) 

Writing xT = (:c1,···,:cn),zT = (z1,···,Zn), Me as then X n diagonal ma-
trix with (Me);;= pC 2 •0)(B;,r;)(g'(:cTb)) 2 ,M7 a diagonal matrix with (Mr)ii = 
pC0 •2)( B;, r; )( h' (zT a) )2 , and M e,r a diagonal matrix with (M e,r );; = / 1·1)( B;, r;)g' 
(:cTb)h'(zT a), one gets the Fisher information matrix 

(30) 

Jeffreys' prior is then given by JI(b, a)ll/ 2 . 

Suppose we assume that X and Z are of full column rank, and that L(b, a; y) is 
bounded above. Then, the posterior of (b, a) is proper if, for each y;(i = 1, · · ·, n), 

f f exp[By; + rT(y;)- p(B, r)](pC 2•0 )(B, r)/0 •2)(8, r) 112 dBdr < oo. (31) JTJe 
This result is proved in Dey et al. (1997). 

Recognizing the limitations of the one parameter exponential family, for exam-
ple, an implicit mean-variance relationship and unimodality, Mukhopadhyay and 
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Gelfand (1997) introduced a Dirichlet process mixed GLM (DPMGLM). These mod-
els provide a more flexible first stage specification, while retaining linear structure 
on a transformed scale. 

6. Model Determination Approaches 

With the availability of a wide range of GLMs to consider in analyzing a dataset, 
the problem of model determination becomes critical. Model determination com-
prises model checking - is the model adequate? - and model selection - among a set 
of adequate models, which one is best? 

First we consider model adequacy which has received much less attention in the 
literature than model choice. In providing the probabilistic components of a hi-
erarchical model, we rarely believe that any of the distributions is correct. Those 
specifications further removed from the data are often intentionally made less pre-
cise, not because we believe them to be correct but in order to permit the data 
to drive the inference. However, what is true is apart from model checking. If we 
undertake model criticism we must examine the adequacy of what is specified and 
we must assume proper priors (or else the observed data could not have arisen un-
der the model). High dimensional models, e.g., those having more parameters than 
data points, as well as very vaguely specified hierarchical models will be difficult to 
criticize. 

A formal Bayesian model adequacy criterion (as in Box, 1980) proposes that the 
marginal density of the data be evaluated at the observations. Large values support 
the model, small values do not. Assessment of the magnitude of this value could 
be facilitated by standardizing, using the maximum value or an average value of 
this density (Berger, 1985). However, a high dimensional density ordinate will be 
difficult to estimate well and hopeless to calibrate. In addition, with hierarchical 
models, failures, such as outliers, mean structure errors, dispersion misspecifica-
tions and inappropriate exchangeabilities, can occur at each hierarchical stage. The 
formal procedure does not provide feedback regarding the adequacy of the stagewise 
specifications. 

Chaloner and Brant (1988), Chaloner (1994) and Weiss (1995), focusing on outlier 
detection suggest posterior-prior comparison. Their strategy is to identify random 
variables whose distribution, a priori, is a standard one. In particular, they choose 
functions of so-called realized residuals. Given the data, the posterior distribution 
of each such function is obtained. If it differs considerably from its associated prior, 
using tail area comparison, a lack of model fit is claimed. For a realized residual itself, 
an outlying observation is asserted. If the entire model specification is correct, such 
comparisons will be successful on average but will fail to recognize the variability 
in the posterior. 

A second approach, referred to as model expansion or elaboration, captures model 
failures by specifying a more complex model using mixtures. Though most often 
used to detect outliers, recently, Albert and Chib (1997) use this approach for other 
model failures, in particular, exchangeability in the direction of partial exchange-
ability. Regardless, the model of interest becomes nested within the expanded or 
full model, so model choice procedures replace model checking to criticize the ade-
quacy of the reduced one. Recent work of Muller and Parmigiani (1995) and Carota, 
Parmigiani and Polson (1993) combines elaboration with posterior-prior comparison 
using the Kullback-Leibler distance between these two distributions for the elab-
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oration parameter. This approach requires, for each sort of failure, a non-unique 
specification of an expanded model. 

A third approach is taken up in Gelman, Meng and Stern (1995) who propose 
a posterior predictive strategy. These authors define a discrepancy measure as a 
function of data and parameters, treating both as unknown in one case, inserting 
the observed data in the other. They then compare the resulting posterior distri-
butions given the observed data. Gelman, et al. dismiss prior predictive checking 
arguing that the prior predictive distribution treats the prior as a true "population 
distribution" whereas the posterior predictive distribution treats the prior as an 
outmoded first guess. However, model checking must examine the acceptability of 
the model fitted to the data. Model parameters must be generated from the prior 
prescribed under the model. Gelman, et al. can be criticized for using the data twice. 
The observed data, through the posterior, suggests values of the parameter which 
are likely under the model. Then, to assess adequacy, the observed data is checked 
against data generated using such parameter values, apparently making it difficult 
to criticize the model. 

A fourth approach is developed in recent work of Hodges (1998). Limited to 
the case where all levels are Gaussian, he reexpresses linear hierarchical models as 
standard linear models with simple covariance structure. He then suggests the use 
of familiar linear models diagnostic tools, e.g., residual plots, added variable plots, 
transformations, collinearity checks, case influence, etc. Ad-hoc method is needed 
in tailoring some of these tools to the hierarchical structure. 

Finally, Dey, Gelfand, Swartz and Vlachos (1998) suggest an approach which is 
entirely simulation based, requiring only the model specification and that, for a 
given data set, one be able to simulate draws from the posterior under the model. 
By replicating a posterior of interest using data replicates obtained under the model, 
the extent of variability in such a posterior can be seen. Then, the posterior obtained 
under the observed data can be compared with this medley of posterior replicates to 
ascertain whether the former is in agreement with them and accordingly, whether it 
is plausible that the observed data come from the proposed model. Such comparison 
can be implemented using a Monte Carlo test. Many such tests can be run, each 
focusing on a potential model failure. 

Turning to model choice, for a collection of models m = 1, 2, · · ·, M, the formal 
Bayesian approach assumes that one is "true" but which is the true one is unknown. 
Assigning prior probabilities Pm that model m is true, the posterior probability of 
model m, is Pr(mjy) <X f(yjm)pm where f(y I m) is the marginal or prior predictive 
density of y under model m. Hence, if Yobs denotes the realized data, the model 
which maximizes f(Yobsim)Pm is selected. If Pm = M- 1 for all m, we choose the 
model with the largest f(Yobslm), suggesting the use of this quantity as a general 
screening criterion. When models are compared in pairs, the Bayes factor emerges, 
B = f(Yobs jmt)/ f(Yobslm2) for say models m1 and m2. B is viewed as a weight of 
evidence; B > 1 supports model m1, B < 1 supports model m2. 

Bayes factors have a wide advocacy in the Bayesian community; see Kass and 
Raftery (1995) for a review. However, they lack interpretation in the case of im-
proper priors which are frequently used in complex hierarchical specifications and 
they are difficult to compute for such models with large datasets (though there 
is much recent discussion, see, e.g., Raftery, 1995). The use of Schwarz's (1978) 
Bayesian information criterion (BIC) as an approximation to the Bayes factor re-
quires the specification of model dimension. Unfortunately in the context of GLMs 
involving mixed effects, the dimension of the model is unclear. Moreover, the asymp-
totics associated with such approximation are invalid when the number of model 
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parameters grows with sample size, as in random effects settings where the number 
of individuals grows large. 

Recently, attractive alternatives have appeared. Gelfand and Ghosh (1998), not-
ing that posterior prediction is often a primary use for a model, suggest a formal 
utility maximization approach for model selection. In particular, their approach 
amounts to obtaining a minimized expected posterior predictive loss for a given 
model and then selecting the model which provides the overall minimum. 

For a version of log scoring (or deviance) loss, the minimization for a given model 
can be done explicitly yielding an expression which can be interpreted as a penal-
ized deviance criterion. The criterion is comprised of a piece which is a Bayesian 
deviance measure and a piece which is interpreted as a penalty for model complex-
ity. The penalty function arises without specifying model dimension or asymptotic 
justification. 

Under the model in (1) with a(¢i) = ¢/wi, Wi known, the criterion becomes, for 
model m, 

(32) 

In (32), t(y) = yB(y)- '1/J(B(y)) where B(f..l) = 'l/J'- 1 (f..l),f-l~m) = E(YiiYobs>m) and 
lm)= 

~ 

E(t(yi)IYobs> m), and k is a weight which typically does not affect the ordering of 
the models and so may be set to 1 for convenience. Since t(y) is convex, Jensen's 
inequality ensures that each term in the right side of (32) is nonnegative. Gelfand 
and Ghosh clarify that the first term can be interpreted as a penalty function 
and the second as a goodness-of-fit term. The choice (1) determines t(y), hence 
(32). For instance, in the Possion case t(y) = y logy - y, in the binomal case, 
t(y) =log(~)+ n~y log (n~y). Usual continuity corrections are imposed to ensure 
that t(y) can be calculated for any Yi,obs and that t~m) exists. 

Another, somewhat similar criterion has been discussed in Spiegelhalter, Best 
and Carlin (1998). Motivated by the work of Dempster (1974), their suggestion is 
to obtain the posterior distribution of the log likelihood at the observed data for 
each model and then compare these across models. In particular, for (1) they define 
the "Bayesian deviance" D(8) to be L:7=l D(Bi) where 

D(Bi) = -2logf(YiiBi) + 2logf(ydB(yi)). (33) 

Defining D = E(D(B)IY) and PD = D- D(E(BIYobs)), Spiegelhalter, et al. propose 
the criterion 

DIG= D+pn (34) 

where DIC denotes Deviance Information Criteria. They argue that D, the poste-
rior expected deviance, summarizes model fit while PD, interpreted as the effective 
number of parameters, measures the complexity of the model. They show that DIC 
generalizes the familiar Akaike Information Criteria (AIC) (Akaike, 1973). 

Both the Gelfand and Ghosh criteria and the DIC are readily computed from 
posterior samples. The BUGS software (Spiegelhalter, et al. 1996) provides a con-
venient package for fitting most Bayesian GLMs, and thus for providing posterior 
samples. 

Finally, informal Bayesian model selection in the case of nested GLMs can beef-
fected by obtaining the posterior distribution of the discrepancy parameter between 
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the full and reduced models as in Albert and Chib (1997). Exploratory approaches 
using cross validation ideas, applicable to small or even moderate sized datasets are 
discussed in Gelfand, Dey and Chang (1992) and Gelfand (1995). 
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ABSTRACT In this chapter, we examine the use of special forms of correlated ran-
dom effects in the generalized linear mixed model (GLMM) setting. A special feature 
of our GLMM is the inclusion of random residual effects to account for lack of fit 
due to extra variation, outliers and other unexplained sources of variation. For ran-
dom effects, we consider, in particular, the correlation structure and improper priors 
associated with the autoregressive (AR) model of Ord (1975) and the conditional 
autoregressive (CAR) model of Besag (1974). We give conditions for the propriety 
of the posterior distribution of the GLMM when the fixed effects have a constant 
improper prior and the random effects have a possibly improper conditional au-
toregressive prior. Several examples of exponential families as well as computational 
details for Markov chain Monte Carlo simulation are also presented. 

1. Introduction 

Traditional treatment of random effects in mixed linear and nonlinear models 
generally assumes that these effects are independent following some standard dis-
tributions such as normal or gamma. However, with the advent of Markov chain 
Monte Carlo (MCMC) methods and, in particular, the Gibbs sampler (cf. Gelfand 
and Smith, 1990), such restrictions are no longer necessary, and a much broader class 
of models, including those with correlated random effects, can be used in practice. 
(See Clayton (1996) for a general review of this recent development.) 

In this chapter we consider generalized mixed linear models with random effects 
having the autoregressive and conditionally autoregressive properties commonly en-
countered in temporal and spatial covariates where one expects similarities among 
closely situated observations. Examples from disease mapping will be used to mo-
tivate these models. 

The computational simplicity of MCMC methods enables one to extend the com-
monly used generalized linear mixed model (GLMM) to one that appends random 
residual effects to the linear term to account for lack of fit. These extra terms al-
low for the minor perturbations and occasional outliers commonly encountered in 
practice. However, the remarkable ease of application of the Gibbs sampler does 
not come without a price: There is potential nonconvergence and other annoying 
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problems when using the algorithm, especially in situations where noninformative 
prior distributions are employed. 

In Section 2 we formally define the GLMM with residual effects. Two examples 
are given. One has the normal distribution and the other the gamma distribution, 
with the choice depending on the nature of the observed data. For example when 
the data are Poisson, it is more natural to use the conjugate gamma distribution, 
although the normal may be just as appropriate and simple to use. 

In Section 3 we discuss several forms of correlated random effects including the 
AR process of Ord (1974) and the CAR process of Besag (1974), which are useful in 
describing spatial correlations. We examine the joint distributions associated with 
these processes to get a better understanding of the underlying association implied 
by these models. Of particular interest are distributions that are improper and could 
create problems when used in the GLMMs. 

In Section 4, we consider the incorporation of these spatial random variables 
into the GLMM setting and emphasize the special role of the link function in a 
Bayesian hierarchical framework. In the case where the residual effects are normally 
distributed, the fixed effects have a constant prior and random effects may have an 
improper prior, we give sufficient conditions for the existence of a proper posterior 
distribution of all parameters including the fixed and random effects and variance 
components. 

In Section 5, we summarize the computational details including the full condi-
tional distributions required for the implementation of the Gibbs Sampler. 

2. The Model 

Let Y1 , ... , YN be the independent random observations, where Y; has the prob-
ability density 

/;(y; 117;, ¢) = exp[A;( ¢ )-1 {Yi17i - B; ( 17;)} + C; (y;; ¢ )] · (1) 

The function A;(¢) is commonly of the form A;(¢) = ¢w; 1 , where the w; are 
prespecified weights. It is often assumed that the scale parameter ¢ is known. Con-
sider, for example, the case when the population size in area i is m; with un-
known mortality rate p;, and Y; is Poisson distributed with mean m;p;. This is a 
special case of (1) with ¢ = 1, A;(¢) = 1, 17i = log(m;p;), B;(17;) = exp(17;), and 
C; (y;; ¢) = -log(y; !) . When Y; has a binomial distribution with parameters m; 
and p;, ¢ = 1, A;(¢) = 1, 17i = log{p;/(1- p;)}, B;(17;) = m; log{1 + exp(17;)}, and 
C;(y;; ¢) = log[m;!/{y;!(m; -y;)!}]. 

Generalized Linear Models. We wish to model the variability in 17i to account for 
various fixed covariates. The natural parameters 17; are modeled as 

(2) 

where the h; are known monotone functions, X 1 = (x11 , ... , X1n)t is an Nxp design 
matrix and (} is the vector of fixed effects. Such a model is commonly referred to as 
a generalized linear model (GLM) with canonical parameter 17i, scale parameter ¢, 
and link function h; ( cf. McCullagh and Nelder, 1989). (Note that usually there is 
a single link function h; = h.) 

Generalized Linear Mixed Models. We now extend the model to include random 
effects as follows. Let 

(3) 
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where h; is a known monotone function, X 1 = (zn, ... , Z'ln)t and X 2 = (z21, ... , Z'2n)t 
are N x p and N x k design matrices, the px 1 vector 0 represents fixed effects, 
and Z is a k x 1 vector of random effects. Models given by (1) and (3) are often 
called generalized linear mixed models (GLMMs) and have been widely used m 
many problems such as disease mapping e.g., Breslow and Clayton (1993). 

We can further extend the model to add additional residual effects by taking 

(4) 

Here e = ( e1 , ... , eN )t are residual effects satisfying some restriction such as IE( e;) = 
0 or IEexp(e;) = 1. In addition, Z and e are assumed mutually independent. We 
include random residual effects e; to account for the lack of fit of (3) due to extra 
variation, outliers, and other unexplained sources of variation. Note that the random 
effect e; is quite different from Z in the sense that Z often accounts for some special 
pattern such as random geographical effects and spatial correlation. In addition, the 
number of components of Z is often much smaller than N, the number of residual 
effects e;. By a suitable choice of the design matrix, ( 4) may be encompassed under 
(3), but we do not do this in order to emphasize the separate roles of Z and e. We 
will call the model given by (1) and (4) a GLMM as well. 

There are many possible choices for the link functions h; in models (2)-( 4). For 
example, in the mortality setting cited earlier, Y; has the Poisson distribution with 
mean m;p; and 'f/i = log( m;p;). One possibility is to take h; ( 'T/i) = 'T/i - log( m;) = 
log(p;), and a loglinear regression model may be applied. Alternatively, Y; can 
be modeled with a binomial distribution. Then the logit link is canonical, and 
logit(p;) = log{p;/(1- p;)} = 'T/i- log(m; - el)') = h;(TJ;), resulting in logistic 
regression. 

The random effects term Z in (3)-( 4) is typically assumed to have a multivariate 
normal distribution. We will discuss in detail the choice of the distribution of Z in 
the next section. 

Distribution of Residual Effects. We will assume that the residual effects e; or 
some monotone functions of e; have distributions belonging to an exponential family 
(1), with known common canonical parameter 'TJ but unknown scale parameter¢. For 
illustration, we will consider the following two classes of distributions for residual 
effects. 

• Normal Residual Effects. Residual effects e; are independent and identically 
normal with mean 0 and variance 80 . 

• Gamma Residual Effects. The exp(e;) are iid gamma(R, R). Here a random 
variable W has the gamma( a, {3) distribution if W has p.d.f. 

Special cases of these models have appeared previously. Clayton and Kaldor 
(1987) and Waller et al. (1997) use a Poisson-normal model (Poisson for Y; and 
normal for Z) but without the residual term e. This a special case of (3). Ghosh 
et al. (1998) use e in the binomial-normal model and treat spatial effects by taking 
X 2 Z = U, with U having a distribution defined by the conditional auto regressive 
CAR(1) model of Besag (1974). This is a special case of (4). In Sun, Tsutakawa, 
Kim and He (1997) and Sun, Tsutakawa and He (1998), Z consists of block-wise 
independent random effects, where each block contains random effects and the e; 
are independent random variables with mean 0 and a common variance. West and 



26 Sun, Speckman & Tsutakawa 

Aguilar (1997) give another interesting example analysing hospital quality monitors 
with an extra residual term in (1.4). 

Special cases of Poisson-gamma models are found in Clayton and Kaldor (1987) 
and Tsutakawa (1988). Specifically, in Tsutakawa (1988), Z contains independent 
random effects, and the exp( e;) are independent gamma variables with mean 1 and 
a common vanance. 

The general model (1) and (2) can be used for both continuous and discrete data. 
A discrete example of ( 4), which motivated much of this work, is studied in Sun, 
Tsutakawa, Kim and He (1998), where a spatia-temporal model for cancer mortality 
data is proposed. For a given gender, let Yijk denote the frequency of deaths from 
some specific cause in the ith region and jth age group during the kth time period, 
i = 1, ... , I; j = 1, ... , J; k = 1, ... , K. Conditionally on the fixed and random 
parameters, assume the Yii k are independent and Poisson with means m;j kPij k, 
where m;j k is the size of the ij kth target population. The model of Sun et al. takes 
the form 

log(Pii k) = Bj + Z; + (J.Li + W;i )(tk -f) + e;i k, 

where (}i is the effect ofthe jth age group, Z; is the effect of the ith region, tk is the 
midpoint of the kth time period, and f = I:f=l tk / K. The rate of change over time 
is represented by (J.Lj + W;j) for the jth age group in the ith region. Both Bj and J.li 
are treated as fixed effects, while Z; and Wii are random. The residual effects eijk 
are also random. A detailed description of the distributions of the random effects 
and prior distributions are given in Sun et al. (1998), where disease mapping and 
interpretation of numerical results for male lung cancer in the state of Missouri can 
be found. 

3. Random Effects 

3.1 Independent Random Effects 
Historically, it was common to assume independent random effects for linear 

mixed models, i.e., zl, 0 0 0, ZN are independently and identically N(O, bl) distributed. 
(See Harville (1977).) Typical examples include one-way ANOVA and two-way 
ANOVA models with random effects. Hobert and Casella (1996) gave necessary 
and sufficient conditions for the propriety of the posterior distribution for a class of 
noninformative priors for variances components assuming independence of random 
effects. 

3.2 Correlated Random Effects 
There are many important situations where the random effects should be modeled 

as correlated. Correlated models are especially appropriate for spatial effects. A 
number of related methods are commonly used. 

Direct specification of correlation matrix. If the random effects are linearly or-
dered, as for example with longitudinal data, it may be convenient to specify a 
correlation structure directly. For example, to model correlation decreasing with 
distance, Z = (Z1 , ... , Zk)t can be taken to have the MVN(O, E) distribution, 
where E = ( a;j) is the k x k matrix with elements 

a;i = rpli-il, (5) 


