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PREFACE

The nature and theory of geometry, finite or infinite, relies on and springs 
from the ‘interesting’ examples.

It is, of course, well known that any projective or affine geometry of 
dimension larger than two corresponds to the lattice of vector subspaces of 
a vector space over a skewfield. In this context, a geometry of dimension 
two shall mean simply a projective or affine plane. That such geometries 
do not or may not correspond to such lattices is precisely what makes the 
study of projective planes intriguing. But, what are some examples, what 
makes them interesting and what is to be learned from them?

In the early 1960s, when I became interested in the general area of com­
binatorial geometry and, more particularly, in projective planes, there were 
very few examples of ‘interesting’ projective planes, particularly in the finite 
case. In fact, the then current hot research centered on the Lenz-Barlotti 
classification of projective planes by the extent of so-called point-line tran­
sitivities (see [5]) and the possible determination of examples in the various 
classes or the nonexistence of the same.

When I met Ted Ostrom in 1964, he was creating, to my mind, the most 
stunning, deep and, at the same time, simple examples of finite projective 
planes that had ever been seen.

In the early 1960s, T.G. Ostrom created the concept of the ‘derivation 
of an affine plane’. We will get to the precise definition but, basically, this 
is a procedure by which one finite affine plane is transformed into another 
by a renaming of what are called ‘lines’. Some of the lines of the new plane

iii



iv PREFACE

are subplanes of the old plane.
About this time, two striking results emerged. I might actually use the 

term ‘shocking results’ as this seemed to be the mood at the time.
The famous Hall planes (see [26]) had been constructed many years ear­

lier by Marshall Hall, Jr., who distorted the multiplication of a finite field 
to create a coordinate structure for an affine plane which was remarkably 
different from the original plane coordinatized by the associated field. But it 
was A.A. Albert ([1]) who was first able to use the derivation procedure ef­
fectively and showed that the Hall planes may be realized from Desarguesian 
planes (field planes) by the Ostrom derivation process.

D.R. Hughes [27] had previously constructed a class of finite projective 
planes containing no point-line transitivities. These were marvelously inter­
esting in their own right, but that they could be seen to be ‘derivable’ was 
an unbelievably propitious circumstance, since they ‘derived’ a class of finite 
projective planes admitting exactly one incident point-line transitivity—a 
completely ‘new’ class. Both Ostrom and G. Rosati were working on these 
planes independently, so these are called the Ostrom-Rosati planes (see [63], 
[69]).

I remember talking to Dan Hughes about this during a conference held 
at University of Illinois-Chicago Circle during the summer of 1967, where 
it seemed that the important open problem on derivation was to determine 
conditions for a plane to be derivable. But, Hughes mentioned that it was 
much more interesting and important to ask whether this technique was 
‘geometric’ in any sense of the word. He kept insisting that he knew he was 
missing something; he just couldn’t put his finger on it, so to speak.

I guess you could say that the motivation to write this book came from 
years of trying to put a metaphorical finger on the construction technique 
of derivation.

Perhaps the most productive study of derivable affine planes came from 
the simple idea of separating the derivable net from the affine plane which 
contained it. Now we have a net which is covered by affine Baer subplanes 
whose parallel classes coincide with the parallel classes of the net. Of course, 
from this point of view, there is nothing special about having Baer subplanes 
as opposed to simply having ‘subplanes’ whose parallel classes coincide with 
the parallel classes of the net. That is, we may consider ‘subplane covered 
nets’.
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In this monograph, we attempt to provide a completely self-contained 
account of the beautiful geometry that envelops the derivation process and 
the analysis of subplane covered nets.

In fact, the intuition of Hughes was correct; derivation is a geometric 
process and this book is an attempt to explain how this is so and how to 
generalize this explanation to understand completely the nature of subplane 
covered nets.

The ideas encountered in this monograph are amalgamations of ideas of 
T.G. Ostrom, A.A. Albert, D.R. Hughes, G. Rosati, J. Cofman, A. Barlotti, 
D.A. Foulser, R.C. Bose, R.H. Bruck, M. Hall, J.A. Thas, F. De Clerck, 
V. Jha, P.J. Cameron, N. Knarr, A. Bruen, J.C. Fisher, G. Lunardon, M. 
Walker, H. Liineburg, M. Biliotti, and T. Grundhofer, to mention a few who 
contributed to this area and related disciplines.

While I am enormously indebted to each of these mathematicians for 
their insights, these ideas have also been twisted and interwoven to fit into 
my scheme of doing things, so I accept full responsibility for any distortions.

I would like to thank Brian Treadway for programs that created all of 
the diagrams found in this book and for all the varied and many things he 
did in assembling the text.

I am most indebted to my wife who, after years of patiently listening to 
me ‘spin’ about geometries, still manages to provide continuous and unfailing 
support.

I dedicate this book to my wife, Bonnie L. Hemenover, with gratitude 
and love.

Norman L. Johnson
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Chapter 1

A BRIEF OVERVIEW

The reader unfamiliar with the terms used in this small chapter might like 
to skip this initially and go on to read the chapters on projective geometries 
and beginning derivation before returning to read this for a preview of what 
the book is all about.

Let 7r be a finite affine plane of over q2. An affine subplane of order q 
is said to be a ‘Baer subplane’. Let D  denote a set of q -f 1 parallel classes 
such that for any two distinct affine points P  and Q , such that the line Cp q̂ 
joining them is an element of one of the parallel classes of £>, there exists a 
Baer subplane 7t^ q  that contains P  and Q such that the set of q + 1 parallel 
classes of ispiQ are those of D. In this situation, we call 7r a ‘derivable’ affine 
plane. Furthermore, D is called a ‘derivation set’.

In the early 60's, T.G. Ostrom ([62], [61]) realized that when such a set 
D exists, a potentially new affine plane tt(D) may be constructed from 7r in 
the following manner:

The ‘points’ of n(D) are the points of n and the ‘lines’ of 7r(D) are the 
lines of 7r which are not in a class of D together with the Baer subplanes
*P,Q-

A.A. Albert [1], showed that the derivation process applies to affine 
planes ‘coordinatized’ by finite fields K  of order q2. Considering the affine 
plane as an analogue to the real affine plane, points are elements (x,y) of 
K  x K  and lines are given by equations y =  xm  +  b and x  = c where 
juxtaposition denotes multiplication in K  for all m,6, c E K . The set D 
consists of the slopes (a) such that a  is in the unique subfield of K  of q

1
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elements together with the parallel class (oo) containing the lines x  =  c for 
c e K .

Previously, in 1943, Marshall Hall Jr. had constructed an interesting 
and important class of affine planes by altering the multiplication in a field 
K  and using this new coordinate structure to create the plane.

The planes derived from the field planes, which we call Desarguesian 
planes, turn out to be the planes of Hall.

There were a number of striking results concerning derivation proved in 
the early '60;5 but, for us here, the main questions involve the nature of an 
affine plane which admits a derivation set and the nature of the substructure, 
called a ‘derivable net’, which contains the Baer subplanes that become ‘new’ 
lines of the ‘new’ plane.

W h a t makes an  affine p lane derivable?
How can a  derivation  set be  recognized?
Of course, we want to address the fundamental question:
Is derivation  a  geom etric process?
Considering the last question, one wonders what it means to be geomet­

ric. Perhaps a reasonable definition might be that something is ‘geometric’ 
if it is closely connected to some property of an affine or projective geometry.

In fact, it turns out that, taking the above definition, derivation can be 
viewed geometrically.

In order for the reader to understand fully how to see this, we provide 
chapters on projective and affine geometries and a few results on projective 
and affine planes. Coordinatization is considered so as to better understand 
how to recognize a derivable affine plane and for use in later chapters on 
direct product nets and their reconstruction.

After focusing initially on the affine plane containing a derivable net, 
we consider the structure of the net itself. Hence, for such an analysis, we 
separate the net from the plane and study derivable nets themselves. At 
this point, we show how to associate a projective geometry with a derivable 
net. Furthermore, we discuss embedding and extension problems.

For example:
Is it possible to  em bed a  derivable ne t into a  p ro jec tive  space 

and  w hat do em beddings im ply ab o u t th e  s tru c tu re  of th e  net?
I f  a  derivable ne t is s tru c tu ra lly  de term ined  w ith o u t th e  am ­

bien t affine plane containing it, m ust th e  net necessarily be ex­
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tend ib le  to  an  affine plane? F urtherm ore , if a  n e t can be  so ex­
tended , how m any affine planes ex tend  it?

Although we initially considered finite affine planes, there is really no 
good reason to do so apart from the intuition that is obtained. So, we 
consider general or arbitrary affine planes that could be derivable and arbi­
trary derivable nets and ask of their structure. For the arbitrary subplane 
situations, we require possibly infinite dimensional vector spaces over skew- 
fields (structures that do not have necessarily commutative multiplication 
but otherwise have the properties of a field).

Thus, we study projective geometry, beginning derivation and ask what 
are some classes of derivable affine planes. To provide some examples and 
for reference to subsequent research discussions, we consider ‘translation 
planes’ and their duals. It will be seen that many dual translation planes 
automatically become derivable.

The ideas of Cofman [19] figure prominently into the relationship with 
derivable nets and affine geometry and these shall be fully developed.

The connection between derivable nets and projective geometry is the 
heart of the book although it is not the most general result that we shall 
prove. A derivable net is a net which is covered by subplanes of a certain 
type that we called ‘Baer subplanes’. A natural generalization is the concept 
of a ‘subplane covered net’.

D efinition 1.1 A isubplane covered net’ is a net with parallel class set T> 
such that given any two distinct points P  and Q that are incident with a 
line of the net, there is an affine subplane np^Q containing P  and Q whose 
parallel classes are exactly those ofT>.

All of the previous questions now are appropriate for subplane covered 
nets; can th ey  be em bedded into a  pro jective geom etry, a re  th e re  
extensions to  affine planes?

The most important result in the book and the justification for its exis­
tence is the complete classification of subplane covered nets which establishes 
close connections with projective geometries and this shall be given in detail.

It is important to point out that herein lie various connections and ap­
plications to many types of finite geometries, although the results provided 
do make any assumptions about finiteness.
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When Ostrom was working on finite derivable affine planes, Bruck [14], 
[15] had previously been giving the foundational studies for finite nets. In 
particular, extension problems were extremely important. Bruck was able 
to show that once a net has more than a certain ‘critical’ number of parallel 
classes, there is a unique extension to an affine plane provided there is an 
extension at all. The ‘critical’ number turns out to be exactly the number of 
parallel classes in a finite derivable affine plane minus the number of parallel 
classes in a derivation set; that is, if the order is g2, the critical number is 
q2 - q .

Ostrom [64] was able to show that any finite net of order q2 with q2 — q 
parallel classes has at most two extensions to affine planes and, if two, they 
are related by the derivation process; one is the derived plane of the other.

The work of Bruck was influenced by the work of R.C. Bose [12] on 
partial geometries which was very graph theoretic. The ideas of extension 
came from the formulation of certain ‘cliques’ of the graph associated with 
a finite net.

In certain situations, it is convenient to study ‘dual nets’ as their point- 
line properties become phrased more closely to the point-line properties of 
affine or projective geometries.

J.A. Thas and F. De Clerck ([21], [75]) have provided basic and important 
contributions to both (finite) partial and semi-partial geometries concerning 
both embedding questions and characterization results. Certain finite dual 
nets satisfying a point-line property called the axiom of Pasch are, perhaps 
in somewhat disguised form, the duals of subplane covered nets.

Our treatment and characterization of subplane covered nets in the gen­
eral case was influenced both by the work of Cofman on an associated affine 
geometry of three dimensions and the work of Thas and De Clerck on dual 
nets in the finite case.

The geometries associated with derivable nets turn out to be the projec­
tive geometries and the derivation process becomes a natural generalization 
of duality of a projective space. So, ‘derivation’ becomes a geometric pro­
cess. It is one of the goals of this monograph to show how this is so.

The study of derivable nets which may be embedded in a three dimen­
sional projective space leads to the analysis of subplane covered nets which 
also have a similar embedding into projective space although the dimension 
in this case can be infinite.
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There are many affine planes which are covered by derivable nets or more 
generally covered by subplane covered nets in various ways. If an affine plane 
is covered by subplane covered nets, there is an associated projective space 
and hence an associated vector space and, when this occurs, there is probable 
cause to believe that the affine plane is a translation plane. This idea will 
be explored after the classification theorem for subplane covered nets has 
been given.

When an affine plane which is covered by subplane covered nets is, in 
fact, a translation plane, there are often other associated geometries. For 
example, translation planes which are covered by subplane covered nets de­
fined by reguli in PG(3, K ) all of which share a common line correspond to 
flocks of quadratic cones in a three dimensional projective space. Further­
more, such translation planes are also associated with certain generalized 
quadrangles. Translation planes which are covered by derivable nets that 
share two common lines are connected with flocks of certain Minkowski 
planes and when the derivable nets are defined by reguli in PG (3,X ), the 
Minkowski plane is classical.

There are other connections with partial geometries and affine planes 
which are subplane covered. Note that the translation planes associated with 
the above mentioned geometries may be derived using one of the derivable 
nets involved in the covering. In this case, where the derivable nets initially 
share a common line, there is now a system of derivable nets sharing a Baer 
subplane of the derived plane so there is not a covering in the usual sense. 
However, translation planes admitting such a generalized cover correspond 
to what might be called ‘partial flocks’ of deficiency one in that such planes 
correspond to partial flocks ‘missing’ one conic.

We also consider the ‘direct product’ of two Desarguesian affine planes 
and show, under an assumption as to how the two sets of parallel classes 
line up, that such a direct product always produces a derivable net. This 
leads to the consideration of sets of such direct products which then turns to 
the study of ‘parallelisms’ in projective spaces. Recalling that a ‘spread’ in 
the three-dimensional projective space PG(3,g) is a set of q2 +  1 lines that 
covers the point set, a ‘parallelism’ is a set of 1 H-g +  g2 spreads which covers 
the line set. In a sense which shall be made clear, a parallelism in PG(3,q) 
leads to a spread in PG(7,q) by the notion of direct products of affine 
planes. As we are emphasizing general theory concerning derivable nets, we,
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therefore, consider parallelisms in PG (3,K) where K  is a skewfield. There is 
a wonderful connecting theory where particular families of direct products 
of affine Desarguesian planes with spreads in PG (3,K ) are equivalent to 
certain spreads in PG (7,K). However, since K  may not be commutative, 
special care must be taken and, in fact, it is only true that ‘left parallelisms’ 
in P G (3,K ) produce ‘right spreads’ in PG (7,K).

We have noted that there is a rich geometry associated with nets which 
are subplane covered. When there is at least one subplane of a net, one might 
consider what, if anything, can be determined as to the structure of the net. 
Since we are also interested in nets which can be embedded into translation 
planes and also derivable nets, we consider vector space nets which admit 
Baer subplanes. Here there is also a nice structure theory and when there 
are at least three Baer and Desarguesian subplanes, the net turns out to be 
a derivable net.

We have noted above connections to flocks of quadric sets with spreads 
which are unions of reguli. But, derivable nets, it is shown, do not always 
correspond to reguli but do, in fact, correspond to close cousins, the ‘pseudo- 
regulus’ nets. We generalize these ideas of flock spreads by the consideration 
of spreads which are unions of ‘pseudo-reguli’. Furthermore, partial flocks, 
particularly of deficiency one, may be considered which entails an analysis 
of vector space nets admitting a Baer subplane that is pointwise fixed by 
particular groups (Baer groups).

So, we consider the structure and nature of vector space nets containing 
one or more Baer subplanes and their Baer groups. All of this leads to a 
complete theory of the spreads which correspond to partial flocks of quadric 
sets of deficiency one.

Thus, the major theme running through the text is how the existence of 
subplanes of a net or affine plane tend to determine the geometry and we 
formulate a reasonably complete theory in two major situations when the 
subplane(s) happens to be Baer or when there is a complete covering by 
subplanes.



Chapter 2

PROJECTIVE 
GEOMETRIES

P rerequ isites  and  B ackground

This book is intended to be self-contained in the sense that only a knowl­
edge of beginning group theory and linear algebra is required. However, an 
acquaintance with infinite dimensional vector spaces over skewfields is as­
sumed.

There are, of course, a few theorems which we shall not prove.
At one point, we shall require the theorems of Artin-Zorn and the Bruck- 

Kleinfeld/Skornyakov/San Soucie theorem. A good reference for the first 
theorem is Hall [26] pp. 375-382.

T heorem  2 .1  (The Theorem of Artin-Zorn). A finite alternative division 
ring is a field.

T heorem  2.2 (Bruch-Kleinfeld/Skomyakov/San Soucie [16], [71], [70]).
A projective plane which is a translation plane with respect to all lines 

incident with a given point is a translation plane with respect to all lines; 
the plane is a Moufang plane.

We shall be interested in affine planes which are covered by ‘subplane 
covered nets’ and shall require results of Gleason, Liineburg and Kegel which 
we shall state without proof. We define both affine and projective Fano

7
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planes and planes which satisfy the little Reidemeister condition later in the 
book.

T heorem  2.3 (Gleason /24])• A finite Fano plane is Desarguesian.

We also require a technical result of Gleason which we shall give in the 
appropriate chapter.

T heorem  2.4 (Gleason [24], Luneburg [60], Kegel and Liineburg [55]).
A finite projective plane is Desarguesian if  and only if  it satisfies the 

little Reidemeister condition.

In the few occasions where a complete proof is not given, a sketch is 
provided from which the reader could easily fill-in the details. There are 
places in the text where a proof by the Klein quadric would provide an 
alternative proof which may be more elegant than the arguments given. 
However, we have chosen to provide proofs which are more directly related 
to derivable nets by coordinate and vector space methods and are thus able 
to avoid the use of the technical results and methods involved in the use of 
the Klein quadric.

N o ta tion  and  con ten tions

We have adopted the convention of normally referring to ‘points’ by 
capital letters P, Q , R  etc. and normally referring to ‘lines’ by small letters 
a, 6, c etc. or by the symbol L Furthermore, £oo shall be used, in particular, 
to denote the ‘line at infinity’ of an affine plane which is then equivalent 
to the ‘set of parallel classes’. In addition, we shall use small Greek letters 
a,/3 etc. to denote parallel classes of affine planes with the exception that 
normally we reserve 7T to denote an affine plane and 7xE the extension to 
the associated projective plane. In an affine plane, the unique line of the 
parallel class a  incident with the (affine) point P  is denoted by aP.

We shall normally use capital Greek letters S, n  to denote projective 
spaces.

Furthermore, we shall use the notation PQ  to denote a line between two 
points P  and Q of an affine or projective plane or a net when the points 
are collinear and use a fl b to denote the point of intersection of two lines a
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and b of a projective plane or of an affine plane or a net when there is an 
intersection.

Normally, sets of points, lines etc., will be given calligraphic lettering P , 
£, etc. We shall employ the symbol to denote isomorphic structures.

We shall use ‘0’ to denote both a zero vector or zero of a skewfield where 
context indicates the precise meaning. Occasionally, we shall also use the 
symbol ‘O’ to denote a zero vector.

Finally, we denote the end of a proof by the symbol □.
In this chapter, we provide some of the fundamental background on 

projective and affine geometries required for the analysis of derivation and 
subplane covered nets and discuss briefly projective and affine planes.

2.1 Projective and Affine Geometries.
D efinition 2.5 Projective Geometry.

Let V  be a vector space over a skewfield K . We note that V  need not be 
finite dimensional.

The ‘projective geometry’ PG (V,K) is defined as the lattice of nonzero 
vector subspaces o fV .

We shall use the terminology of ‘points’ for 1-dimensional vector 
subspaces, ‘lines’ for 2-dimensional vector subspaces, and ‘planes’ for 
3-dimensional vector subspaces.

More generally, an ‘i-dimensionalprojective subspace’ shall mean a i+ 1- 
dimensional vector subspace.

In the case when V  has finite dimension n , we shall use the notation 
PG (n—l,K )  interchangeably with PG (V,K) and call PG (V ,K ) the ‘(n—1)- 
dimensional projective geometry over K  ’.

I f  K  is a finite field with q elements and V  has finite dimension n, we 
shall use the notation PG(n — l,q) to denote PG (V,K) provided the specific 
field K  is not important to the discussion.

We call PG (2,K) the ‘projective plane over K  ’ and PG (1,K ) the ‘pro­
jective line over K  ’. For historical reasons which we shall discuss in the 
chapter on Desarguesian Planes, we also refer to PG (2,K) as the ‘Desar­
guesian projective plane over the skewfield K  ’.

When it becomes important, we shall specify whether the vector space is 
to be a ‘left’ or a ‘right’ vector space. Although this is not important for
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vector spaces over fields, it can be relevant when the vector space is defined 
over a skewfield.

D efinition 2.6 Co-Dimension.
Given any vector subspace W  of V, it is possible to choose a basis B w  for 

W  which extends to a basis B y  for V  as is well known from linear algebra. 
The subspace generated by By  — B w  is called a ‘complement’ o fW .

I f a complement of a subspace has dimension k , we shall say that W  has 
‘co-dimension’ k.

Equivalently, W  has co-dimension k if and only if the quotient space 
V /W  has dimension k.

A subspace of co-dimension 1 is called a ‘hyperplane1 both in the projec­
tive and vector space senses.

Of course, if a vector space has finite dimension n and a subspace has 
dimension m  then the co-dimension of the sub space is n — m.

The reason for the introduction of this terminology is that we will be 
considering possibly infinite dimensional vector spaces where the dimension 
of a subspace could be infinite whereas the co-dimension could be finite. In 
particular, we shall be considering subspaces of co-dimension two.

R em ark  2.7 I f W  is a vector subspace o fV , we let P (W ) denote the corre­
sponding projective subspace in PG (V,K). For vector subspaces T  and M, 
T  © M  shall denote the external direct sum.

We now consider possible intersections.

P roposition  2.8 (1) Two distinct projective hyperplanes P(W ), P (S ) in­
tersect in a hyperplane P (W  n  S) of P(W ) and/or P{S).

(2) Any two distinct projective subspaces of the same finite dimension 
n which are contained in a common projective subspace of dimension n +  1 
intersect in a projective subspace of dimension n — 1.

(3) Any two distinct projective subspaces of the same finite co-dimension 
n which are contained in a common projective subspace of co-dimension n —1 
intersect in a projective subspace of co-dimension n -1-1.
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Proof: (1) W  and S  are vector subspaces of co-dimension 1. This means 
that the quotient spaces V /W  and V /S  have dimension 1. Since the sub­
spaces are distinct, there exists a nonzero element w € W  — S  and a nonzero 
element 5 £ S  — W. Let Si 0  (5) =  S  and W\ © (w) — W  where Si and W\ 
are hyperplanes of S  and W  respectively.

Hence, (W\ © (w)) © s =  (Si © (5 )) ©  (w) from which it follows that 
7  =  ( ^ n S ) © ( ^ , s ) .

Hence, V /(W  Pi S) has dimension 2 and W  fl S has co-dimension 2 with 
respect to V  and clearly co-dimension 1 with respect to either W  or S. That 
is, W  fl S is a hyperplane of W  or S. This completes the proof of (1).

Assume the conditions of (2). Let W  and S be vector subspaces of 
dimension n such that {W,S) = T  has dimension n +  1. By the rank- 
nullity theorem, dim W  +  dim S — dim W  fl S =  n +  1 from which it follows 
that dim W  fl S =  n — 1 from which the projective analogue is immediately 
implied. This proves (2).

Assume the conditions of (3). Let W  and S be vector subspaces of 
co-dimension n such that (W, S) =  T has co-dimension n — 1.

So, (W, S) =  W  © {s) = S  © {w) where s € S — W  and w € W  — S. By
(1), the co-dimension of WC\ S  in (W, S) is 2. So, the co-dimension of WD S  
is (n — 1) H- 2. This proves (3).D

D efinition 2.9 Affine Geometry.
Let PG (V iif) be a projective geometry. Let W  be a vector subspace 

o fV  of co-dimension 1 and let PG (W ,K ) denote the associated projective 
geometry.

The ‘affine geometry' A G (V ,K ) s/iaZZ 6e defined as the deletion of 
PG (W ,K ) from PG (V,K ) as follows:

The ‘points’ of AG (V,K) are the points of PG (V,K ) -  PG (W ,K ), 
the ‘lines1 of A G (V ,K ) are the lines I of PG (V,K) which do not lie in 
W  minus the point of intersection t  fl W .

(Note that a line is a 2-dimensional vector sub space and a hyperplane is a 
co-dimension-1 subspace corresponding to a co-dimension-1 vector subspace 
W. It follows that £ n W  is a 1-dimensional vector subspace or rather a point 
of the projective space.)

Further, the ‘planes3 of AG (V,K) are the planes of PG (V ,K ) which do 
not lie within PG(W, K) minus the intersection line and the ‘subspaces ’ of
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AG(V , if)  are the projective subspaces of PG(V , if)  minus the intersecting 
sets of points, lines, planes, etc.

We shall use the notation AG{n — 1 , i f ) when PG(V , if)  is PG(n — 1, i f ) 
and AG{n — l,g) when PG (V,K) is PG(n — 1 ,g).

furthermore call AG(2 , if) the ‘affine plane over if * and/or the ‘De­
sarguesian affine plane over the skewfield if

re/er AG(l,if) as the ‘affine line over K ’.

D efinition 2 .1 0  Parallelism in AG (V,K).
Two hyperplanes of AG(V , if) correspond to hyperplanes of PG(V , if) 

minus the intersections on a given hyperplane W  of PG(VyK). We have 
noted previously that two distinct hyperplanes intersect in a hyperplane with 
respect to the subspaces themselves.

Hence, if the intersection relative hyperplane of the two projective sub­
spaces lies within W  then they are disjoint within AG{V,K).

We define two hyperplanes of AG (V,K) to be ‘parallel7 if and only if they 
are disjoint.

Two affine subspaces are said to be ‘parallel’ if and only if the projective 
versions intersect in the same subspace of the hyperplane which is deleted to 
form the space.

In particular, this means that any two lines are parallel if and only if  
they lie in a common AG (2,K) and are disjoint.

Furthermore, two spaces are parallel if given any line of either space, 
there is a line of the remaining space which is parallel to it.

We also allow that any affine subspace is parallel to itself.

D efinition 2 .1 1  Semi-linear and linear group.
Let V  be a left vector space over if. By this, we shall mean that scalar 

multiplication occurs on the left of the vector. Hence, ax  shall denote the 
scalar multiplication of the vector x by the scalar a  € if.

An additive mapping a is said to be ‘semi-linear’ over if or ‘K-semi- 
linear’ if and only if a {ax) = apa(x) for all a £ if and for all x E V  where 
p is an automorphism of if.

We shall use the terminology that a is ‘K-linear’ or simply ‘linear’ if 
and only if p — 1 .

The group of all bijective semi-linear additive mappings over if is called 
the ‘general semi-linear group over K ’ and is referred to by TL(V ,K ).
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The subgroup of TL(V , K ) consisting of linear mappings is called the 
‘general linear group over K ’ and is denoted by G L(V ,K).

We note that when V  has finite dimension n over the skewfield K  then 
GL(V, K ) is isomorphic to the set of non-singular n x n  matrices with entries 
in K  and furthermore GL(V , K ) is denoted by GL(n , K ). When K  has finite 
cardinality q then G L(V,K) is denoted by GL(n,q).

We note that G L(V,K) is a normal subgroup of TL(V,K).

D efinition 2.12 When V  has finite dimension n, and K  is a field, the 
subgroup of GL(n , K ) consisting of the n x n  matrices of determinant 1 is 
called the ‘special linear group over K ’ and is denoted by S L (n ,K ).

It is easy to verify that SL(V , K ) is a characteristic subgroup of GL(V , K ) 
so that S L (V ,K ) is also a normal subgroup of TL(V,K).

D efinition 2.13 Projective semi-linear group.
The 1projective semi-linear group1 is the group induced on PG(V\ K ) by 

TL(V,K) and is denoted by PTL(V ,K ).
Clearly, the projective general semi-linear group is TL(V^K) modulo the 

subgroup o fYL(V ,K ) which leaves invariant each 1-dimensional vector sub­
space and hence leaves invariant each vector subspace.

P roposition  2.14 The subgroup o fTL(V ,K ) which fixes each 1-dimension­
al subspace is the set of mappings of the form:

Furthermore, Z  — {g$ ; 6 € K } is a normal subgroup o fT L (V ,K ).

Proof: Simply note that (x) =  (ax) for any a  € K  — {0}. Hence, any 
mapping g which fixes each 1-dimensional subspace must map x  onto 6xx  for 
some 8X G K  which possibly depends on x. However, x  +  y must map onto 
6x+y(x 4- y) =  6x+yx  +  8x+yy which must be 6xx  +  6yy since g is additive, 
so it clearly follows that 6X = 6 for all x  6E V.

Since the indicated group is the kernel of the group induced on PG(V , if), 
it follows that the subgroup is normal.D
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R em ark  2.15 Note that Z  n  G L(V,K) = {g6 ; 6 € Z(K )} where Z(K ) 
denotes the center o fK  (the set of elements which commute with all elements
of K ).

Hence, we may make the following definitions.

D efinition 2.16 The ‘projective general semi-linear group’ PTL(V ,K ) is 
the group T L (V ,K )/Z . The ‘projective general linear group’ PG L(V,K ) is 
GL(V, K ) /  (Z  C\GL(V, K )) . The 1projective special linear group’ P SL(V ,K )  
is S L (V ,K ) /(Z n S L (V ,K )) .

2.2 Projective and Affine Planes.

In the previous section, we have defined projective and affine geometries and 
furthermore defined projective and affine planes over skewfields as PG(2, K) 
and AG(2, K ) respectively where K  is a skew-field.

R em ark  2.17 In PG (2,K ), every two distinct points are contained in a 
unique line and every two distinct lines intersect in a unique point.

In AG (2,K), every two distinct points are contained in a unique line 
and every two distinct lines intersect in at most one point

Furthermore, two lines of AG(21K ) are \parallel ’ if and only if they are 
disjoint or equal.

However, point-line incidence structures satisfying the properties listed 
in the previous remark are not necessarily projective or affine geometries of 
the type PG (2,K) or AG (2,K).

Rather than attempt to deal with specific examples in this chapter, we 
close with two definitions and some fundamentals.

D efinition 2.18 Projective plane.
A projective plane is a set of \points’ and a set of ‘lines’ with an incidence 

relation £ such that the following three properties are satisfied:
(1) Any two distinct points are incident with a unique line,
(2) any two distinct lines are incident with a unique point, and
(3) there exist at least four points no three of which lie on a common 

line.
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D efinition 2.19 Affine Plane.
Let 7t be a projective plane and let denote a specific line of it.
An affine plane A(n) is a set of ‘points 7, ‘lines 7 with an incidence relation 

and defined as follows:
The \points7 of the affine plane are the points o fn  which are not incident 

with the line and the ‘lines7 of the affine plane are the lines o fn  not equal 
to 4o with the corresponding intersection points removed. Incidence in the 
affine plane is inherited from the incidence relation in it.

Furthermore, the points of £oo o/re called the 1infinite points7 and the line 
itself the ‘line at infinity7 of A(n).

I f  there are finitely many points, the projective plane is said to be a finite 
projective plane7 and the corresponding affine planes, finite affine planes7.

R em ark  2.20 It is straightforward to show that any finite projective plane 
with n +  1 points on a given line has n +  1 points on any line. We say that 
the finite projective plane has (order n 7 in this case.

A projective plane of order n has then n2 +  n +  1 points and the same 
number of lines.

A corresponding affine plane, also said to be of order n, has n2 points, 
r? + n lines, n +  1 parallel classes and n points per line.

D efinition 2.21 Let 7Ti and 7T2 denote two projective planes, two affine 
planes, two projective geometries or two affine geometries. The two struc­
tures are said to be ‘isomorphic7 if and only if there is a bijection a from the 
points of 7Ti onto the points of 7T2 which induces a bijection from the lines 
of 7Ti onto the lines of 7T2 that preserves incidence.

That is, P,Q are points on the line £ of 7Ti if and only if a(P),a(Q ) are 
points on the line a(£) 0/ 7̂ .

I f  ̂  1 =  7T2> the isomorphism is called a (collineation7.
The set of all collineations under composition mapping forms a group 

called the 1collineation group7.

The following is basic to our discussions:

T heorem  2.22 Let 7Ti fo r i =  1,2 be projective planes a n d A ^ i)  fo r i =  1,2 
the corresponding affine planes obtained by the deletion of lines £0 0 ^ of 7r* 
for i = 1,2 respectively.
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Then A{7Ti) ~  A(7T2) if and only if there exists an isomorphism a from 
7Tionto 7T2 which maps ^oo}i onto £oq,2-

Proof: The reader is invited to complete the proof.D

R em ark  2.23 Given an incident point-line pair we shall adopt stan­
dard usage and say that the point P  is ‘on’ the line i  and the line I  is ‘thru ’ 
the point P.

In the next chapter, we begin the discussion of derivation dealing first 
with certain derivable planes that fall into particular classes of a classifica­
tion of projective planes by point-line transitivities due to Lenz and Barlotti 
(see Barlotti [5]).

D efinition 2.24 I f G is a group acting as a permutation group on a set X  
and x  G X , then Gx is the subgroup which fixes x. G is said to be ‘transitive ’ 
on X  if and only if for any pair x ,y  G X , there exists an element g of G 
such that g{x) = y.

D efinition 2.25 By a ‘(P,£)-transitivity’ of a projective plane, we shall 
mean a collineation group that fixes P, all points on £, all lines thru P  and 
acts transitively on the non-fixed points on any line thru P.



Chapter 3

BEGINNING DERIVATION

The concept of a finite derivable affine plane was conceived by T.G. Ostrom 
in the early 1960's (see [61] and [62]) and has been arguably the most impor­
tant construction procedure of affine planes developed in the last thirty-five 
years. Certain finite affine planes may be ‘derived’ to produce other affine 
planes of the same order. For example, the Hall planes of order q2 originally 
constructed by Marshall Hall Jr. [26] by coordinate methods were shown by 
Albert [1] to be constructible from any Desarguesian affine plane of order 
q2 by the method of derivation. The Hughes planes [27] of order q2 were 
shown to be derivable and the projective planes constructed were the first 
examples of finite projective planes of Lenz-Barlotti class II-l (there is a 
single, incident, point-line transitivity). The planes obtained were indepen­
dently discovered by T.G. Ostrom [63] and L.A. Rosati [69] and are called 
the ‘Ostrom-Rosati planes’.

The description of a finite derivable affine plane is as follows:

D efinition 3.1 Let 7r denote a finite affine plane of order q2 and let tve 
denote the projective extension o fn  by the adjunction of the set loo of parallel 
classes as a line.

Let V qo denote a subset of q -h i  points of (too- T>oo is said to be a 
‘derivation set3 if and only it satisfies the following property:

I f A  and B  are any two distinct points of 7r whose join in ke  intersects 
loo in T>oo then there is an affine subplane tta,b of order q containing A  and 
B  and whose g +  1 infinite points are exactly those o fV 0©.

17
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Given any derivation set V o©, there is a corresponding set B ofq2(q-f-1) 
affine subplanes of order q each of which has V qq as its set of infinite points.

7r is said to be ‘derivable ’ if it contains a derivation set.

The main result of Ostrom is

T heorem  3.2 (Ostrom [62]). Let it be a finite derivable affine plane of 
order q2 with derivation set V qq. Let B denote the associated set ofq2(q + 1) 
subplanes of order q each of which has X>oo as Us set of infinite points.

Form the following incidence structure ^(Voo): The \points’ o / 7r('D00) 
are the points of 7T and the ‘lines’ of ,k(V00) are the lines of K which do not 
intersect V qo in the projective extension and the subplanes of B.

Then 7r(X>oo) is an affine plane of order q2.

Proof: To prove this, we need only show that two distinct points are 
incident with a unique line and two lines either uniquely intersect or are 
disjoint.

Let P  and Q be distinct points of 7r and let PQ  denote the unique line 
of 7r containing P  and Q. If PQ  is not a line of Poo then PQ  is also a line 
of ^(Voo). If PQ  is a line of Dqo, there is a subplane containing P  
and Q whose parallel classes are exactly those of Pqo- Note that the infinite 
points together with P  and Q generate a ‘unique’ subplane containing P  and 
Q. Hence, given two distinct points of 7r, there is a unique line of 7r(Poo) 
containing the two points.

The lines of ^ (P qo) are of two types; lines of 7r and the subplanes of
B. Two distinct lines must either be disjoint or share a unique point. By 
the above remark on the generation of subplanes, we need only consider the 
situation where there is a line of each type. A subplane nptQ and a line £ 
which does not lie in X>oo must share at least one common point by a simple 
counting argument and cannot share more than two points since otherwise 
£ would not appear in the construction process.D

D efinition 3.3 The affine plane 7r(X>oo) is called the plane ‘derived’ from 
7r by the derivation of Doo or merely the 6plane derived from it ’.

We shall now establish that any AG(2,q2) is a derivable affine plane.
We would like to determine the collineation group of the projective and 

affine geometries. It is now clear the subgroup which is induced from the


