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Preface

In this book we develop the mathematical tools for the description of quan-
tum many-body systems and apply them to the many-electron system. These
are the formalism of second quantization, field theoretical perturbation the-
ory, functional integral methods, bosonic and fermionic, and estimation and
resummation techniques for Feynman diagrams. The physical effects discussed
in this context are mainly BCS superconductivity, s-wave and higher l-wave,
and we take a short look to the fractional quantum Hall effect. A central
question of this book is, to what extent the approximations, which are done
in the BCS theory of superconductivity, or more generally, in the theory of
the weak coupling many-electron system, can be mathematically rigorously
justified. Thus the style is mathematical in the sense of working with precise
definitions and statements at all times, but, as we hope, close to the physics
point of view in that we tried to emphasize actually how to compute things,
not just proving that they exist and are well defined.

This book came into being as a combination of lecture notes, handed out
to students attending the course Mathematical Physics III at TU Berlin, and
the Habilitationsschrift of the author, entitled ‘Perturbation Theory for the
Many-Electron System with Short-Range Interaction and Its Resummation’.
As such, we think that the text may be useful for the following groups of
readers. First those who want to pursue the project of trying to mathemati-
cally rigorously explore the issue of exactly ximation
schemes in this field actually do work, and when they can be shown to break
down. Those researchers may find many results of this kind together with a
great deal of worked-out detail which should also be useful for approaching
similar problems. And second students, who are having trouble figuring out
exactly what is going on in one or the other computation while reading
tablished physics literature, may find some useful supplemental explanations.

I owe special thanks to my former supervisors, J. Feldman, H. Knoerrer
and E. Trubowitz, who taught me field theoretical methods and to my former
and current employers, ETH Ziirich, IAS Princeton, UBC Vancouver and
TU Berlin, for excellent working conditions and their, in part, very generous
financial support over the last years.

Berlin, February 2004
Detlef Lehmann
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Chapter 1

Introduction

The computation of field theoretical correlation functions is a very difficult
problem. These functions encode the physical properties of the model under
consideration and therefore it is important to know how these functions be-
have. As it is the case for many mathematical objects which describe some not
too idealized systems, also these functions, in most cases, cannot be computed
explicitly. Thus the question arises how these functions can be controlled.

A quantum many-body system is given by a Hamiltonian H(A) = Hy +
AH;nt. Here, usually, the kinetic energy part Hy is exactly diagonalizable
and Hi, describes the particle-particle, the many-body interaction. There
are many situations where it makes sense to consider a small coupling A. In
such a situation it is reasonable to start with perturbation theory. That is,
one writes down the Taylor series around A = 0 which is the expansion into
Feynman diagrams. Typically, some of these diagrams diverge if the cutoffs
of the theory are removed. This does not mean that something is wrong with
the model, but merely means first of all that the function which has been
expanded is not analytic if the cutoffs are removed. The following example
may be instructive. Let

Gs( e=? (1.1)

= o~ da fy dksptae
where § > 0 is some cutoff and the coupling A is small and positive. One
may think of § = T, the temperature, or § = 1/L, L% being the volume of
the system, and G corresponds to some correlation function. By explicit
computation

Go(N) = lim Gs(\) = [;¥ dz (VI+ Az—VAz)e™® = 1+0(N)—O(VN) (1.2)

6—0

Thus, the § — 0 limit is well defined but it is not analytic. This fact has to
show up in the Taylor expansion. It reads

Z (__) fo dx fo m N+ T (UR)

Jj=0

Apparently, all integrals over k diverge for j > 1 in the limit § — 0. Now, the
whole problem in field theoretic perturbation theory is to find a rearrangement
which reorders the expansion (UR) (‘UR’ for ‘unrenormalized’) into a new



expansion

n

Go()\)zz:(%)fooodxxee_'”)\e — VA +Rpps (R)

£=0

(‘R for ‘renormalized’) which, in this explicitly solvable example, can be ob-
tained from (1.2) by expanding the v1+ Az term. In (R), all coefficients
are finite and, for small )\, the lowest order terms are a good approximation
since |R,41] < n! A"T1 although the whole series in (R), obtained by letting
n — oo, still has radius of convergence zero. That is, the expansion (R) is
asymptotic, the lowest order terms give us information about the behavior
of the correlation function, but the expansion (UR) is not, its lowest order
terms do not give us any information. The problem is of course that in a typ-
ical field theoretic situation we do not know the exact answer (1.2) and then
it is not clear how to obtain (R) from (UR). Roughly speaking, this book
is about the passage from (UR) to (R) for the many-electron system with
short-range interaction which serves as a typical quantum many-body sys-
tem. Thereby we will develop the standard perturbation theory formalism,
derive the fermionic and bosonic functional integral representations, consider
approximations like BCS theory, estimate Feynman diagrams and set up the
renormalization group framework. In the last chapter we discuss a somewhat
novel method which is devoted to the resummation of the nonanalytic parts
of a field theoretical perturbation series.

In the first three chapters (2-4) we present the standard perturbation theory
formalism, the expansion into Feynman diagrams. We start in chapter 2 with
second quantization. In relativistic quantum mechanics this concept is impor-
tant to describe the creation and destruction of particles. In nonrelativistic
many-body theory this is simply a rewriting of the Hamiltonian, a very useful
one of course. The perturbation expansion for exp{—3(Hy + A\V)} is pre-
sented and Wick’s theorem is proven. In chapter 4 we introduce anticommut-
ing Grassmann variables and derive the Grassmann integral representations
for the correlation functions. Grassmann integrals are a very suitable tool
to handle the combinatorics and the rearrangement of fermionic perturbation
series.

In the fifth chapter, we use these formulae to write down the bosonic func-
tional integral representations for the correlation functions. These are typ-
ically of the form [ F(¢)eVet(#)dg/ [e=Vert(#)dp. Here F' depends on the
particular correlation function under consideration but the effective potential
Vet is fixed once the model is fixed. Usually it is given by a quadratic part mi-
nus the logarithm of a functional determinant. In particular, we consider the
case of an attractive delta-interaction and we give a rigorous proof that the
global minimum of the full effective potential in that case is in fact given by the
BCS configuration. This is obtained by estimating the functional determinant
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as a whole without any expansions and is thus a completely nonperturbative
result.

In chapter 6, we discuss BCS theory, the Bardeen-Cooper-Schrieffer theory
of superconductivity. Basically the BCS approximation consists of two steps.
The interacting part of the full Hamiltonian, which is quartic in the annihi-
lation and creation operators, comes, because of conservation of momentum,
with three independent momentum sums. The first step of the approximation
consists in putting the total momentum of two incoming electrons equal to
zero. The result is a Hamiltonian, which is still quartic in the annihilation
and creation operators, but which has only two independent momentum sums.
Sometimes this model is called the ‘reduced BCS model’ but one may also call
it the ‘quartic BCS model’. The model, which has been solved by Bardeen,
Cooper and Schrieffer in 1958 [6] is a quadratic model. It is obtained from
the quartic BCS model by substituting the product of two annihilation or cre-
ation operators by a number, which is chosen to be the expectation value of
these operators with respect to the quadratic Hamiltonian, to be determined
selfconsistently. This mean field approximation is the second step of the BCS
approximation.

In section 6.2 we show that the quartic BCS model is already explicitly
solvable, it is not necessary to make the quadratic mean field approxima-
tion. This result follows from the observation that in going from three to
two independent momentum sums one changes the volume dependence of the
model in such a way that in the bosonic functional integral representation
the integration variables are forced to take values at the global minimum of
the effective potential in the infinite volume limit. That is, the saddle point
approximation becomes exact. Even for the quartic BCS model the effective
potential is a complicated function of many variables but with the results
of chapter 5 we are able to determine the global minimum which results in
explicit expressions for the correlation functions. For an s-wave interaction
the results coincide with those of the quadratic mean field formalism, but for
higher ¢-wave interactions this is no longer necessarily the case.

Chapter 7 provides a nice application of the second quantization formalism
to the fractional quantum Hall effect. We show that, in a certain long range
limit, the interacting many-body Hamiltonian in the lowest Landau level can
be exactly diagonalized. However, the long range approximation which is used
there has to be considered as unphysical. Nevertheless we think it is worth
discussing this approximate model since it has an, in finite volume, explicitly
given eigenvalue spectrum which, in the infinite volume limit, most likely has
a gap for rational fillings and no gap for irrational fillings. This is interesting
since a similar behavior one would like to prove for the original model.

Chapters 8 and 9 are devoted to the rigorous control of perturbation theory
in the weak coupling case. These are the most technical chapters. Chapter 8
contains bounds on individual Feynman diagrams whereas chapter 9 estimates
sums of diagrams. First it is shown that the value of a diagram depends on
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its subgraph structure. This is basic for an understanding of renormalization.
Then it is shown that, for the many-electron system with short range inter-
action, an n’th order diagram without two- and four-legged subgraphs allows
a const™ bound which is the best possible case. Roughly speaking, one can
expect that a sum of diagrams, where each diagram allows a const™ bound, is
at least asymptotic. That is, the lowest order terms of such a series would be a
good approximation in the weak coupling case and this is all one would like to
have. Then it is shown that n’th order diagrams with four-legged subgraphs
but without two-legged subgraphs are still finite but they produce n!’s. This
is bad since, roughly speaking, a sum of such diagrams cannot expected to be
asymptotic. That is, the computation of the lowest order terms of such an
expansion does not give any information on the behavior of the whole sum.
For that reason diagrams without two- and four-legged subgraphs are called
‘convergent’ diagrams but this does not refer to diagrams with four-legged but
without two-legged subgraphs, although the latter ones are also finite. Finally
diagrams with two-legged subdiagrams are in general infinite when cutoffs are
removed (volume to infinity, temperature to zero).

In the ninth chapter we consider the sum of convergent diagrams. As al-
ready mentioned, such a sum can be expected to be asymptotic. More pre-
cisely, for a bosonic model one can expect an asymptotic series and for a
fermionic model, one may even expect a series with a positive radius of con-
vergence. In fact this is what we prove. We choose a fermionic model which
has the same power counting as the many-electron system and show that the
sum of convergent diagrams has a positive radius of convergence. The same
result has been proven for the many-electron system in two dimensions and
can be found in the research literature [18]. For those who wonder at this
point how objects like the ‘sum of all diagrams without two- and four-legged
subgraphs’ are treated technically we shortly remark that these sums are gen-
erated inductively by integrating out scales in a fermionic functional integral
and then at each step Grassmann monomials with two and four v’s are taken
out by hand.

Diagrams with two-legged subdiagrams have to be renormalized. Conceptu-
ally, renormalization is nothing else than a rearrangement of the perturbation
series. However, due to technical reasons, it may be implemented in different
ways. One way of doing this is by the use of counterterms. In this approach
one changes the model under consideration. Instead of a model with kinetic
energy, say, ex, = k?/(2m) — p, pu the chemical potential, one starts with a
model with kinetic energy e; + de. The counterterm de depends on the cou-
pling and may also depend on k. Typically, for problems with an infrared
singularity, like the many-electron system, where the singularity is on the
Fermi surface e, = 0, the counterterm is a finite quantity. It can be chosen
in such a way, that the perturbation series for the altered model with kinetic
energy e(k) + de does no longer contain any divergent diagrams. In fact,
for the many-electron system with short-range interaction, it can be proven
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[18, 20, 16] that, in two dimensions, the renormalized sum of all diagrams
without four-legged subgraphs is analytic for sufficiently small coupling. This
is true for the model with kinetic energy e, = k%/(2m) — u which has a round
Fermi surface F' = {k|er = 0} but also holds for models with a more gen-
eral e which may have an anisotropic Fermi surface. Then, the last and the
most complicated step in the perturbative analysis consists in adding in the
four-legged diagrams. These diagrams determine the physics of the model.

At low temperatures the many-electron system may undergo a phase tran-
sition to the superconducting state by the formation of Cooper pairs. Two
electrons, with opposite momenta k and —k, with an effective interaction
which has an attractive part, may form a bound state. Since at small tem-
peratures only those momenta close to the Fermi surface are relevant, the
formation of Cooper pairs can be suppressed, if one substitutes (by hand) the
energy momentum relation ey = k?/(2m) — pu by a more general expression
with an anisotropic Fermi surface. That is, if momentum £ is on the Fermi
surface, then momentum —k is not on F' for almost all k. For such an e
one can prove that four-legged subdiagrams no longer produce any factorials,
an n’th order diagram without two-legged but not necessarily without four-
legged subgraphs is bounded by const™. As a result, Feldman, Knorrer and
Trubowitz could prove that, in two space dimensions, the renormalized pertur-
bation series for such a model has in fact a small positive radius of convergence
and that the momentum distribution <a§aakg> has a jump discontinuity across
the Fermi surface of size 1 — &) where d) > 0 can be chosen arbitrarily small
if the coupling A is made small. Because of the latter property this theorem
is referred to as the Fermi liquid theorem.

The complete rigorous proof of this fact is a larger technical enterprise [20].
It is distributed over a series of 10 papers with a total volume of 680 pages.
J. Feldman has setup a webpage under www.math.ubc.ca/ feldman /fl.html
where all the relevant material can be found. The introductory paper ‘A Two
Dimensional Fermi Liquid, Part 1: Overview’ gives the precise statement of
results and illustrates, in several model computations, the main ingredients
and difficulties of the proof.

As FKT remark in that paper, this theorem is still not the complete story.
Since two-legged subdiagrams have been renormalized by the addition of
a counterterm, the model has been changed. Because e; has been chosen
anisotropic, also the counterterm dey, is a nontrivial function of k, not just a
constant. Thus, one is led to an invertability problem: For given ey, is there
a ey, such that €, + dep, = ex? If this question is addressed on a rigorous level,
it also becomes very difficult. See [28, 55| for the current status. The articles
of [28] and [20] add up to one thousand pages.

Another way to get rid of anomalously large or divergent diagrams is to
resum them, if this is possible somehow. Typically this leads to integral
equations for the correlation functions. The good thing in having integral
equations is that the renormalization is done more or less automatically. The



correlation functions are obtained from a system of integral equations whose
solution can have all kinds of nonanalytic terms (which are responsible for
the divergence of the coefficients in the naive perturbation expansion). If
one works with counterterms one more or less has to know the answer in
advance in order to choose the right counterterms. However, the bad thing
with integral equations is that usually it is impossible to get a closed system
of equations without making an uncontrolled approximation. If one tries to
get an integral equation for a two-point function, one gets an expression with
two- and four-point functions. Then, dealing with the four-point function,
one obtains an expression with two-, four- and six-point functions and so on.
Thus, in order to get a closed system of equations, at some place one is forced
to approximate a, say, six-point function by a sum of products of two- and
four-point functions.

In the last chapter we present a somewhat novel formalism which allows
the resummation of two- and four-legged subdiagrams in a systematic and
relatively elegant way which leads to integral equations for the correlation
functions. Although this method too does not lead to a complete rigorous
control of the correlation functions, we hope that the reader feels like the
author who found it quite instructive to see renormalization from this point
of view.



Chapter 2

Second Quantization

In this chapter we introduce the many-body Hamiltonian for the IN-electron
system and rewrite it in terms of annihilation and creation operators. This
rewriting is called second quantization. We introduce the canonical and the
grand canonical ensemble which is the framework in which quantum statistical
mechanics has to be formulated. By considering the ideal Fermi gas, we try
to motivate that the grand canonical ensemble may be more practical for
computations than the canonical ensemble.

2.1 Coordinate and Momentum Space
Consider one electron in d dimensions in a finite box of size [0, L]?. Tts
kinetic energy is given by

WA (2.1)

2m

ho =
and its Schrédinger equation hop = ¢ is solved by plane waves ¢(x) = e**.
Since we are in a finite box, we have to impose some boundary conditions.
Probably the most natural ones are Dirichlet boundary conditions ¢(x) = 0 on
the boundary of [0, L]¢ but it is more convenient to choose periodic boundary
conditions, p(x) = ¢(x+Le;) forall 1 < j < d. Hence e**iL must be equal to 1
which givesk = (ki, ..., kg) = 2%(ma, ..., mq) with m; € Z. Thus, a continuous
but bounded coordinate space gives a discrete but unbounded momentum
space. Similarly, a discrete but unbounded coordinate space gives a continuous
but bounded momentum space and a discrete and bounded coordinate space,
with a finite number of points, gives a discrete and bounded momentum space
with the same number of points.

To write down the Hamiltonian for the many-electron system in second
quantized form, we will introduce annihilation and creation operators in coor-
dinate space, 1(x) and ¢+ (x). Strictly speaking, for a continuous coordinate
space, these are operator-valued distributions. To keep the formalism sim-
ple, we found it convenient to introduce a small lattice spacing 1/M > 0 in
coordinate space which makes everything finite dimensional. We then derive
suitable expressions for the correlation functions in the next chapters and at
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the very end, the limits lattice spacing to zero and volume to infinity are
considered.
Thus, let coordinate space be

F:{x:ﬁ(nl,---,nd)|0§m§ML—1}

= (£2)" /(L2 (2.2)

Momentum space is given by
M:=T¥ = {k X (my, - ,md)|0§mi§ML—1}
(2" Jemarzy (2.3

such that 0 < k; < 27M or —nM < k; < wM since —k; = 2nM — k;.
Removing the cutoffs, one gets

By = g ()Y e / £ (2.4)

m m [=mM,xM]4

e D= / dx (2.5)

n [(-L/2.L/2]¢

A complete orthonormal system of L2(T") = (CNd, N = ML, is given by the
plane waves

i 2m d e j mn
PK(X) = Pm(n) = —<M1L)% i Lico mini = ﬁeQ’”N (2.6)

The unitary matrix of discrete Fourier transform is given by F' = (Fynpn) where

Foon = ﬁe”’”‘% (2.7)
One has
) |
Fr=F'=F=|- pu(x) - (2.8)
|
The discretized version of
. d . A
= [dlxe ™ f(x), f) = [ e et f) (29

reads in terms of F

F0) = 3 S e (x) = (£)F S Faf(x) = (&) (Ff)(K)

X X

Fo) = & S e ) = (A)2 S B fk) = (M) (P f)(x) (2.10)

k k
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Derivatives are given by difference operators

an f(x) = M (f(257) — f(37)

= Z MMd(éﬂ%y — 0 y) f(y) (2.11)
Yy
d
(Af)(X) = 2 > M*M* Z(5x+%,y 0y oy —20xy) f(y) (2.12)
y =1

which are diagonalized by F,

o pnl(x) = M(e2™ % = 1) (x) (2.13)
which gives
[FEFT] = MEF 1) bmm
M 28 G = K i (2.14)
[F(—A)F*]m’m zd: M2 2 — 2 cos( 2”’“ Z AM? sin? o Omm/
=1
Moo (%’Tm)2 Sm,m’ = K2 i (2.15)

In the following we will write k; for the Fourier transform of %% instead of
v ©J
writing the exact discretized expressions.

2.2 The Many-Electron System
The N-particle Hamiltonian Hy : Fny — Fn is given by

ZAXm +3 ) Vixi—x)) (2.16)

i,j=1
i#]

which acts on the antisymmetric IV-particle Fock space
Fy = {FN e L2[( x {1, 1)N] = ()N |vr e S, : (2.17)
FN(Xp10x1, ", XeNOrN) = signm Fiy(x1071, - ,XNJN)}
Since we assume a small but positive temperature T'=1/8 > 0, we have to do

quantum statistical mechanics. Conceptually, the most natural setting would
be the
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Canonical Ensemble: An observable has to be represented by some operator
Ay : Fny — Fn and measurements correspond to the expectation values

_ Trgy Ay e PHN

A = 2.18
< N>-7:N Trey e—BHN ( )

Example (The Ideal Fermi Gas): The ideal Fermi gas is given by

N
Hon =—3=3 Ay, (2.19)
=1

We compute the canonical partition function
Qn = Trz, e PHon (2.20)

To this end introduce an orthonormal basis of F; of eigenvectors of —A which
is given by the plane waves

{(bka(xr) = 0pr Lre™ | (k,0) € M x {1, i}} (2.21)

L2

where the set of momenta M is given by (2.3). The scalar product is

(¢k07 ¢k’,o”,).7:1 = # Z ¢k0 (XT)Q_sk/O'/ (XT) = 50’,(7/6k,k/ (222)

XT

and we have
d
—A¢ko = e(k)pko, e(k) = ZZMQ(l — cos[ki/M]) "2F K2 (2.23)

=1

An orthogonal basis of F,, is given by wedge products or Slater determinants

¢k10'1 AN '/\¢knan (X17-17 T 7Xn7-n)

= % Z Signﬂ-(bklal (X'rrlTﬂ'l) to ¢knan (Xﬂ'nT-rrn)
TES

= % det [¢kigi (XjTj)]lgi,jgn (224)
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The orthogonality relation reads

( Prior A A Pkpon s Pitor A Airor )

N

= W Z ¢k1(71 AREN /\(bknan(xlle" : ;XnTn) X

X171 XnTn

Puror Ao AN Biror (X110, XnTh)

= ﬁ Z n_llz Z Signﬂ— ¢k101 (XTK‘ITTK‘I) e qskn(r“ (X7rn7—7rn) X

X171 XnTn TES,

det [@ur o0 (x;75)]

=0 D ke (KaT1) - Gko, (XnTn) det (o (x,75)]

X1T1 - XnTn

= Mlnd Z % Z SigNT Pk, oy (XlTl) ko (XnTn) X

X171 XnTn TESK

¢)k7r1‘77r1 (XlTl) T ¢kﬂ'n0'7r’n, (XnTn)

= L det |:(¢ki0w¢k}‘73')]:1:|

+1if {kyoy,- -+, knon} = {Kjo},- - K,0)
:%{0618{611 }={kjo} } (2.25)

Thus an orthonormal basis of Fy is given by
{VN G0 Ao A ey [ Kio1 <+ < ko, (i, i) € M x {1, 11}

where < is any ordering on M x {1, |}. Another way of writing this is
{\/N! AGio)™ | o € (0,13, Y ey = N} (2.26)
ko ko

Since

ZAXL /\ ¢k nk" = angé /\ ¢k )nk" (2.27)
ko

one ends up with

QN =Tr eiﬁHOvN — Z eiﬁ > ko (K)nko (228)
{nkeo?
Ynge=N

for the canonical partition function of the ideal Fermi gas. B
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Because of the constraint ) nk, = N formula (2.28) cannot be simplified

any further. However, if we consider a generating function for the @ n’s which
involves a sum over IV, we arrive at a more compact expression:

Z NQn = Z Z (z e‘ﬁs(k))nkg

N=0 {nkos}
Ynge=N
E I (ze e( ) e I [1 + ze*ﬁe(k)} (2.29)
ko ko

{nko }

Thus, from a computational point of view, it is not too practical to have
the constraint of a given number of particles, Y nyx, = N. Therefore, instead
of using the canonical ensemble one usually computes in the

Grand Canonical Ensemble: Let 7 = ®F_(Fn, H = ®F_oHn. An
observable has to be represented by some operator A = ®F_,An : F — F
and measurements correspond to the expectation values

Trg Ae PH-—uN)
Tr]_— @_5(H_NN)

(A5 = (2.30)

where the chemical potential y has to be determined by the condition (N) =
N, N being the given number of particles and N the number operator,
N(]., Fl, FQ, i ) = (0, Fl, 2F2, e )

Example (The Ideal Fermi Gas): We compute the chemical potential
w=u(B,N,L) = (B3, p) for the ideal Fermi gas with density p = N/L? and
we calculate the energy for the ideal Fermi gas.

To this end introduce the ‘fugacity’ z which is related to p according to
z = €P*. One has

Yo NZVQy _ zd%Z(z)
Z?:o ZNQN Z(Z)
e~ Pelk

— ,d —Be(k)
_zdzg:log[l—kze } Zl—kze—ﬁs(k)

—Be(k)
d [ alk %€
2L / oL —y (2.31)

N=(N)r= zz%ng(z)

Q

where we have used (2.4) in the last line and the integral goes over [~ M, 7M.

Recalling that z = ¢’# and introducing
ex :=¢ck)—p (2.32)

we obtain in the zero temperature limit

—Bei
_oyd [ 4% _°© B0 ord [ _dk
N =2L /WW 2L /W X(ek < 0) (233)
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which determines x as a function of the density p = N/L?. The expectation
value of the energy is obtained from Z(z) according to

—Pex
_ d _ d —Be €
<H0>]: = —%IOgZ'F/J/N— —%2;105; [1+€ B k} +/l2zl(:m
e Pex d [ a%
=2) e(k) T o = 2L | g e(k) x(e(k) < p) (2.34)

and the last approximation holds for large volume and small temperature. B

2.3 Annihilation and Creation Operators

2.3.1 Coordinate Space
Let o € {1, |} be a spin index and let
5XOZ (XIO/) = 50(,04’ Mdax,x’ (235)

For Fy € Fn the wedge product dxq A Fny € Fny1 is defined by

(Oxa A FN) (X101, s XN p1QN11) =
N+1
=T Z )" xa(Xi0i) Fy (X101, -+, X, -+, Xny1an+1)  (2.36)

Then the creation operator at x is defined by 9™ (xa) : Fx — Fn11,

YT (xa)Fy := VN + 1630 A Fy (2.37)
and the annihilation operator ¥ (xa) : Fn41 — Fn is defined by the adjoint
of 7, Y(xa) = [ (xa)]".

Lemma 2.3.1 (i) The adjoint operator ¥)(xa) : Fyi11 — Fn 1s given by

(Y(xa)Fni1) (X100, xyan) = VN + 1 Fypi(xa,xi00, -+, Xyan)
(2.38)

(ii) The following canonical anticommutation relations hold:

{¥(xa), ¥ (yB)} = {¢" (xa),¢v" (yB8)} =0
{th(xa), T (yB)} = Gap M%xy . (2.39)
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Proof: (i) We abbreviate £ = (xa) and n = (y/3). One has

(FN+171/)+(5)GN)]:N+1 =
Z Fnii(&1, o Ens1)VN + 1 (8¢ AGN) (&1 v Ens)

&Nt
= 7 > Fvial&évg) x
&1ENga
N+1 , .
Z(—l)z_lfss(fi)GN(fl,"' iy ENt1)
=1
N+1 ‘ B
= ]\]/:+1 Z(_1)171 Z FN+1(£17"'75;"'75N+1) X
=1 &1 Eiybng
GN(glv T aéiv o '£N+1)
N+1 -
= \/1\}7_’_1 Z Z FN+1(£77717"' anN)GN(nla anN)
i=1 n1--nN
=VN+1(Fny(E, .),GN(.))FN - (1/;(§)FN+1,GN)fN : (2.40)

(ii) We compute {1, 1"}. One has
(VYT (MFN) (1, ,én) = VN +1 (P(€) oy A Fn) (&1, €N)

=(N+1) (6, ANFN) (61, ,6N) (2.41)
N

= 6y () PN (&rye - En) + D (DTN (G PN (€ 6y G 1 En)

=1

Since

(W FN) (&, &) = VN (T () Fn(E)) (&1, €N)
(=176, (E) Fn (€. &1, &y EN) (2.42)

M=

Nl
_NN
=1

the lemma follows. W

In the following theorem we show that the familiar expressions for the
Hamiltonian in terms of annihilation and creation operators is just another
representation for an N-particle Hamiltonian of quantum mechanics. So al-
though these representations are sometimes referred to as ‘second quantiza-
tion’, there is conceptually nothing new. We use the notation I's = T' x {1, |}
(‘s’ for ‘spin’) and write L2(T',) = CITsl.
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Theorem 2.3.2 (i) Let h = (hxa,yp) : L*(T's) — L*(T's) (one particle Hamil-
tonian) and let

HON—Zh : N_>fN (243)
where
(hiFn)(x101,- -, XNaN) =
> h(xiei, yB) Fx(x10n, -+, yf, -+, xyay)  (2.44)
yB
Then
o DU (xah(xa, YOO = How (2.45)

ﬂ[f

(ii) Let v:T' — R and let Vi : Fy — Fn be the multiplication operator

N
(VNEn)(x101, -+ ,XNON) 2% Z v(x; —x5)Fn(x1a1, -+, xyay) (2.46)
i,5=1
i#j

Then

Sarm )T (xa)y T (yB) v(x — ¥) Y (yB)v(xa) £ =N (247)

Proof: We abbreviate again £ = (xa) and n = (yf). One has
(v ©ne mumEy )€ 6n) =

N
Z(—l)i_l%(&) (M) FN) (& En)

ﬁ
N

o D (VFOE MM EN ) (€1, &)

€
N
:ZAI 65(5%) (fan)FN(fla"'vnv"'agN)

]v}d Zh(flan)FN(fla )1y ;gN)
n
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N
Z (hiFn) (€1, €N) (2.49)

This proves part (i). To obtain (ii) observe that because of (2.48) one has

N
(WHEOVEFN) (G, 6n) = D 0e(&) Fn (&, -+ ,&n)  (2.50)

i=1

Since

YE(xa)y T (yB) v(x — y) ¥(yB)v(xa)
= ¢ (xa)p(xa) v(x — y) ¥ (yB)y(ys)
- 5xa (Yﬂ) d}Jr (XOé) ( )1/’(}’5)

one gets, using (2.48) again,

(¥ (©vt o= y) ve©) F ) €1+ &n)

N
= > 6e(&) 0n(&)v(x —y) Fn (&, 1 én)
i,j=1
—Zég ()3 (&) v(x —y) Fn (&1, -+ ,En)

de(&i) o (&) v(x —y) Fn (&1, ) (2.51)

"’Z [0 (£)05 (&) — 0e(m)de ()] v(x —y) Fn (&1, 5 €n)

Since the terms in the last line cancel part (ii) is proven. H

2.3.2 Momentum Space

Recall that the plane waves ¢y, (x7) = 5U,TL’%6“‘X are an orthonormal
basis of F1. We define

ko = Md ZL2¢ka XT)wXT = Z _ikxwxa (252)
= af, = 3 ZL2¢k xT)Ut, = 5 Zezk"w:{g (2.53)

The following corollary follows immediately from the properties of 1) and ™.



