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Preface

Nonparametric statistical methods are extremely useful for researchers in bio-
statistics, pharmaceutical statistics, business, psychology, and social sciences.
These methods are precursors for the tools used in analyzing right-censored
data. Few books deal extensively with nonparametric statistical methods and
pave the way to the analysis of censored data.

This book fills this gap and discusses most of the commonly used nonpara-
metric methods for complete data and then extends those methods to cen-
sored data settings. This book can be used as a textbook for a one-semester
junior-senior or first-year graduate course. It will also be a useful reference
book for researchers who are analyzing censored data or complete data with
nonparametric methods.

This is not a theorem proof format book. While most of the available books
are either cookbook type or highly mathematical, this book attempts to in-
troduce the concepts intuitively with minimal mathematical statistics back-
ground. Most of the methods discussed are in relation to a univariate response
variable. Methods for the analysis of complete data with binary, categorical,
and continuous variables are given initially in each setting and then extended
to right-censored data on a continuous response. The main text is free of
difficult mathematical details, which enables the reader to follow the discus-
sion easily and master the details. The omitted mathematical derivations and
other details are given in Appendix A at the end of each chapter. These details
can be mastered by individuals with one or two semesters of mathematical
statistics training. To facilitate the understanding of the methods, computer
programs are given in Appendix B to each chapter. These programs are writ-
ten in the SAS language so they can be run on the SAS system. The coding
for the programs can be found o011 the CRC Press website, www.crcpress.com,
under electronic products/downloads/updates.

In addition to nonparametric methods for analyzing complete and censored
data, this book provides excellent discussions 011

1. optimal linear rank statistics
2. clinical equivalence

3. analysis of block designs

4

. precedence tests
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CHAPTER 1

Procedures for a single sample

1.1 Introduction

In this chapter we consider procedures for analyzing a random sample on the
response variable X . Two cases are of interest: (1) X is binary and (2) X is
continuous. First we discuss some statistical problems concerning a sample
with binary data. Then we discuss procedures for dealing with data on a
continuous response variable. We discuss methods for complete data, then
methods for censored data situations.

1.2 Binary response

A researcher is interested in studying the effectiveness of a new drug under
development. For this purpose, suppose 14 patients were recruited and treated.
The researcher will be interested in further investigations of the drug if the
drug is effective in more than 20% ofpatients. The researcher may like to know
how many ofthe 14 treated patients should find the drug effective in order that
further study is warranted. Furthermore, if 4 of the 14 treated patients found
the drug effective, the researcher may like to set up a confidence interval for
the probability of effectiveness of the drug. Similarly, a marketing company
developed a new commercial and showed it to 30 respondents. Five people
liked the commercial. The company wants to set up a confidence interval for
the probability of liking this commercial. If 4 out of 30 examinees answered a
question incorrectly, does this constitute evidence that 10% of the examinees
answered the question incorrectly? Problems of this type also occur in other
branches of research and we will discuss these issues in this section.

Consider a random experiment with only two possible outcomes. Tradition-
ally, the outcomes are called success and failure and the experiment is usually
referred to as a Bernoulli trial. The probability model for this Bernoulli trial
is

P (success) = 9, and P (failure) =1—6,

where 0 < 9 < 1. In order to learn about 9, the success probability, one
usually repeats such a Bernoulli trial a fixed number of times, say n, where
the repetitions are independent. The entire experiment is called a binomial
experiment with n trials. In relation to each trial we define a random variable.
Suppose that X, is the random variable denoting the outcome of the ith trial
(i = 1,2,...,n). The variable Xi takes the value 1, when the outcomeis a
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2 PROCEDURES FOR A SINGLE SAMPLE

"success," and the value 0. otherwise. Thus the probability model for X, is
defined by the probability function

f(x:0) = P(Xj = 1) = 0J(1 - x=0,1. (E1)

where 0 < 9 < 1. The data are the set of observations on the random variables
XUX2 X n, where these variables are i.i.d. (independent and identically
distributed) random variables with the common distribution defined by the
probability function f(x:9) given in (1.1). This common distribution is called
the Bernoulli distribution with the parameter 9 and the data is called a random
sample, of size n, from a Bernoulli distribution.

The two statistical problems of interest are: (1) the estimation of 9 (point
estimation and interval estimation, and (2) testing a hypothesis about the
value of 9. The researcher also may be interested in determining n. the sample
size to meet the objectives of the study.

1.2.1 Estimation of success probability

The point estimate can be obtained from the maximum likelihood method.
It is known that the maximum likelihood estimate of 9 is the proportion of
successes, i.e.,

d="tiXi/n = Su/n = Xn. (1.2)

It. should be noted that the statistic S,, denotes the number of successes.

Binomial distribution
Let X be the number of successes in a binomial experiment with » trials
and probability (of success) 9. Then the probability function of X is

/(rin.0)= P(X =x) = - <. (1-3)

for x = 0,1 n. Here 0 < 9 < 1.

We denote such a variable X by Bin(n,0)and A’is said to have the bi-
nomial distribution. Sometimes the parameter nis called theindex and the
parameter 0 is called the probability. The probability function (1.3) reduces
to the probability function (1.1) of the Bernoulli distribution when » = 1. In
later sections we need to use the cumulative distribution function (cdf) of the
binomial distribution and so we note some results about the cdf. For real x,
the cdf F is

F(x:n 9= P{X <x).
Clearly

0. forx <O,
F(x:n 9) =
1. forx >n.
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BINARY RESPONSE 3

However, for 0 < x < n, we have
J
F(x:n,0) =" (nV (i - 0)n~\ (1.4)
i=0

where j is the integral part of x. This sum can be related to an incomplete
beta function, which is an integral.

Incomplete beta function
The incomplete beta function I(x\ a, b) is defined for positive constants a
and band for 0 < x < 1 as

I'((()I' (6)/0 ua~i(i ~uy-'du,

where T(.) is the usual gamma function. It may be noted that /(1:a, b) = 1,
and 7(0; @, b) = 0. It can be shown that, for 0 < x < n,

/N nl—9
Fi{x\n,6)= (n—3)( ,J urdu = 1 (1—0;n—,j+1), (1.5)

where j is the integral part of x. The proof concerning the integral represen-
tation appears in Appendix Al. From the integral representation (1.5), it is
easy to see that the cdf of the binomial distribution is a decreasing function
of 0. We also note that

E[Bin(n,0)\ = n8, and var[Bin(n, 0)] = nd(l —9). (1-6)

We recall that the statistic S»n follows the binomial distribution with pa-
rameters n and 9. Hence from (1.6), it follows that

E) = "E[Bin{n.e)] = 0. (1.7)
So 0 is an unbiased estimator of 6. Further,

var(Q) = -nA;var[Bin(nﬁ)] = 9(1 —Q)/n. (1-8)

For the construction of a confidence interval we need an estimate of this vari-
ance. An unbiased estimator of this variance is

2
In large samples, the distribution of

Z=(0-0)/v

Copyrighted Material



4 PROCEDURES FOR A SINGLE SAMPLE

can be approximated by the standard normal distribution. Using this result,
a 100(1 —a)% confidence interval for 0 is (9i,9u), where

6i=0- c1 02w, and 9U= 6+ Zi a/2 wv, (1.9)

with zp the 100j) percentile of the standard normal distribution.
A detailed discussion about the confidence intervals is given in Subsection
1.2.7.

1.2.2 Testing one-sided hypotheses about 0

First we consider the problem of testing the simple null hypothesis
Ho :0 = 00. (1.10)
against the simple one-sided alternative hypothesis
HA :0 =01(>0., (1.11)

The Neyman-Pearson lemma can be used to get themost powerful test. This
test is to

reject HOif Sn > C+, (1-12)

where the constant C+ is chosen so that
P(type I error) < a.
In other words, C+ is the smallest integer such that
P(Sn >C+ 100 = P(Bin(n,00)> C +)<a. (1.13)

In some applications, it is appropriate to use the composite version of (1.11),
which is

H+:9>6%. (1.14)

For this problem we also use the test (1.12), since the critical value C+ depends
only on do, not on 9\

The most general problem is concerned with testing the composite null
hypothesis

HO -.9< 90 (1.15)

against the composite (one-sided) alternative hypothesis A + of (1-14). It turns
out that the test (1.12) is also the most powerful test for this general testing
problem. This assertion follows from Theorem 8.3.2 of Casella and Berger
(1990).

Now let us consider testing the null hypothesis (1.10) against the other
one-sided alternative hypothesis,

i/ 9 <09q (1-16)
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Table 1.1 Tests for one-sided alternatives

Null Alternative Critical
Hypothesis Hypothesis Region
HO:0 = do H+ :0 > do Sn > C+
Hqg :0< do H+ :d> do Sn > C+

= H.:d< do Sn < C-
H? :0>do H :d< do Sn < C-

We also need to consider the more general problem of testing

Hq* 0 >0n (1.17)
against the alternative H of(1.16). Ananalysis similar to the above gives
the test. This test is to

reject the null hypothesis if Sn < (7_, (1-18)

where C- is the largest integer such that
P(Sn < C- |d0)= P{Bin(ii,60) < CL) < a. (1.19)

A summary of the one-sided tests appears in Table 1.1.
A computer program for obtaining the critical values, C+ and CL. is given
in Appendix B1l. However, we can approximate the distribution of

= (L20)
Vno(1- 0)

by the standard normal distribution, when niin{nO,n(1 —6)} > 5. Using this
result, we obtain approximations to the critical values C+ and C . Start-
ing from equation (1.13), andusing the continuity correction, we have the
condition

P(Sn >C+- 05 |do) < a.

In turn, this condition is the same as

< a,

where
V ondo(l - d()
The condition on the probability can be restated as
P(Z(0o) <C*+) > l-a.

Under Hqg, a normal approximation can be used for the distribution of the
statistic Z(do). So we can satisfy the above condition by choosing Cf as
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a PROCEDURES FOR A SINGLE SAMPLE

2(1—Q), the 100(1 —a) percentile of the standard normal distribution. Thus an
approximation to C'+ is

C+ « ndo + 0.5+ 2(i_,,) \/nOo(i - 8a).

Since we want an integer value for C'+. this approximation is restated as
C+ « [iib+ 0.5+ 23 Jn90) (1 —9¢)\ + 1. (1-21)

where [/J denotes the integral part of .r.
A similar analysis gives

C- ss | .nd0 —0.5 A zn \Ju0()(1 —do) j. (1.22)

Equations (1.21) and (1.22) give very good approximations, whenever
min{ii6(),n(1—00} > 5. For example, when n =20, 0 —0.25. and n = 0.05, the
exact values are obtained using the computer program given in Appendix BI.
These are C+ = 9. and C_ = 1. From equations (1-21) and (1.22) the approx-
imations are C+ ~ 9 and C- s» L. In this case the approximations are the
same as the exact values.

1.2.3 P-values for onesided tests

Instead of calculating tin' critical values and performing the test, one can
compute the P-value (of the data), which is a measure of the strength of
evidence against the null hypothesis, and compare it with the chosen a value.
Let s be the observed value of the' statistic Sn. The P-value for the test (1.12)
is

P+ = P(Bin(n.00) > »), (1.23)
and when min{n0o,n(l —do} > 5. an approximation is
P+ w - 8+ 0.5)/"n(do(l -d 0)]. (1.24)
The P-value for the test (1.18) is
P = P(Bm(u.00) <s), (1.25)
and when min{n0Oo,n(l - do} > 5. an approximation is
P $[(» + 0.5 —u0o0)/y/n(d()(1 —do)]. (1.26)

In (1.24) and (1.26), $(.) is the cdf of the standard normal distribution. It is
customary to give the P-value while reporting the results, and the computer
programs usually report the P-values for tests.

We can also use' the P-value for performing a test of hypothesis, as men-
tioned earlier. This method can be stated as follows:

Reject the null hypothesis if P-value < a. (1-27)
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Example 1.1. The first example discussed at the beginning of Section 1.2 can
be formulated as a problem of testing the null hypothesis

H*:0 < 0.2 against, the alternative H+ :9 > 0.2.

Let us take a = 0.05. From the computer program we get C+ = 6. Thus under
the test (1.12), the researcher should reject Hqg in favor of H+ and develop
the drug further when .Sij > 6.

Suppose as indicated before that S14 = 4. The exact E-value from (1.23) is

P+= P(Bin{14,0.2) > 4) = 0.3017,

which is obtained from the corresponding SAS function. Since P+ > a = 0.05,
we do not reject Hqg : 9 < 0.2

Now we will study the power function of the test (1.12). It will be used for
designing a study, which is the subject of Subsection 1.2.5.

1.2.4 Power function of one-sided tests
The power function of the test (1.12) is
m+(0)= P(rejecting Ho j9)

=P(Sn>C+19)
=1- P(Sn<C+- 1|9
=1~F(C+ —1;n,9)
=1-/(1 -9-n-C+ +1,C+)
=1(9-C+,n-C++ 1)

The last equality follows from the previous one by changing the variable of
integration (see Appendix Al). From the integral representation, it is easy to
see that this power function is an increasing function of 9. An approximation
to the power function is useful for determining the size of an experiment. Using

the normal approximation to the binomial distribution, an approximation to
the powerfunction is derived. Since the power function of test (1.12) is

nt(9) - 1- P(Sn < C+- 1j9),

the normalapproximation for the distribution of S»n, with continuity correc-
tion, gives the approximation

TiHO») 1s 1 - d>[(C+ - 0.5 - n9)/y/n9(l -9)}.

Using the symmetry property of the normal cdf, we can simplify the riglit-
hand-side expression and then we have

1+(0) « $[(n6l+ 0.5 - C+)/~/n0{l - 0)]. (1.28)
Similarly, the power function of the test (1.18) can be seen to be

tt (0) =I(] -0\n-C-,C- + 1), (1.29)
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8 PROCEDURES FOR A SINGLE SAMPLE

and it can be approximated as

« $[(C_ + 0.5- n0)/y/n0(l - 0)]. (1.30)

1.2.5 Sample size

We want to set up a study with n trials to test Ho : 9= do versus H+ : 9 > 9o,
at a significance level a. Consequently, the problem is to decide upon the
sample size n so that the test, based on our study, has adequate power for
all 6 > 9\{> (Oy). We want the power of the test (1.12) to be at least 1 —/?
for all 9 > 9\. In view of the monotone property of the power function, this
requirement on the power is satisfied by requiring the power at 9| to be at
least 1 —/3 Here, for convenience, we denote the critical value by c. Using the
power function expression, the requirements are

TM+(90) < a ; TPH(6fi)) > 1- (3
These requirements are the same as
1(90;¢,n - ¢+ 1) < a; /(6fi;c,n —c+1) > 1 —/3 (1.31)

In the power function expression we had the constant C+ and this is replaced
by c for convenience. Thus we need to choose n and c so as to satisfy the
inequalities (1.31).

An iterative technique is needed to find the required » and c. To start the
iteration one can use approximations for » and c. Now we obtain a set of
useful approximations.

Using the normal approximation with the continuity correction for the
power function and changing the inequalities to equalities in (1.31), two equa-
tions are obtained. These are

ndo+ 0.5 —c n9l + 0.5 —c
a; L
y/n90(l ~ 9q y/nQ\(1—8\)
These equations are the same as

n9o + 0.5 —c ii91+ 0.5 —c

My i T — — Z\—p.
\Jn9o(l —9q) y/n6if\ - 9i)

Solving these equations, approximations for the required sample size and the
critical value are obtained. The solution is (n*,c*), where

2a\JOQ ~ o) —Z1-p\J9i(1 —9))
@, - 90)2

zayj0o(l —00) + z{0)\/01(1 —"1)
01 - a2
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BINARY RESPONSE 9

We can also rewrite the formula as

e\ /"ol — Qoj+ M=/ - 00 ’ A
(1.32)
(0i - "~0)2 (0i -00)2°
and
c* =n*0ot+ 0.5 - zal/n*60(l - 00. (1.33)
Thus an integer approximation to the sample size is
nu ss| n*] + le U-34)
An integer approximation to cis
cu « [c*J + 1. (1.35)

A better approximation can be obtained using the results of Levin and Chen
(1999) and these modified values will be given now. The n* is modified as

ill —“~0 + \/1 + 2(0i —00)/A]2,
where A4 is defined in (1.32) and the c* is modified as

cl =nlL0o+ 0.5- zQ\Au,00(l - 0o0)-
Using these values the modified integer approximations are

riLC ~ L'»lJ + 1 (1.36)
and
cle « [el\+ I- (1-37)

A computer program for doing these calculations is given in Appendix Bl.

This sample size problem is the same as the problem of designing a Phase 11
clinical trial as discussed by Thall and Simon (1995). They give a table of n
and c values that are solutions to (1.31). In connection with the Phase II trials,
Thall and Simon indicate that reasonable values for the difference (0i —0o) are
from 0.15 to 0.20. Now we illustrate the calculation of approximations (1.34)
and (1.35) with an example.

Example 1.2. While testing Hqg :0 < 0.2 against H+ : 0 > 0.2 with a = 0.05,
the experimenter wants to have a power of 0.80 for the test, when 0 = 0.35.
Then from (1.32), we have

n* = [(1.645v/(0.2)(0.8) + 0.84x/(0.35)(0.65)]2/(0.35 - 0.2)2] = 49.81.

Using this value in (1.34), we get

nu « [49.81] + 1= 50.
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10 PROCEDURES FOR A SINGLE SAMPLE

Using the n* value in (1.33) we get the ¢* value and using this ¢* in equation
(1.35) we get cu ~ 16. Thus the rejection region of an approximate 0.05-level
test is S50 > 15. The modified approximations will turn out to be u/c¢ = 57,
and c/c¢ = 17. These are taken from the output of a computer program given
in Appendix B1l. With the modified solution, the error probabilities are much
closer to the specifications, compared to the unmodified solution.

Another approximation to the sample size can be obtained by using the
arcsine transform of the statistic yj(Sn/n). The relevant details are given in
Desu and Raghavarao (1990). This derivation is assigned as Problem 2. Using
this transformation, Natrella (1963) prepared a table of the n-values.

1.2.6 Testing a two-sided hypothesis about 6

Suppose we want to test the simple null hypothesis (1.10) that 6 9 against
the two-sided composite alternative hypothesis

Ha : 9+ 90. (1.38)
The usual test is to
reject HO if Sn < ci  or Sn > c2, (1.39)
where Cl is the largest integer and c2 is the smallest integer such that
P(Sn < cl 1H0) < (a/2); P(Sn > c2 \HO) < (a/2). (1.40)

This test can be derived from the union-intersection principle. The details of
this derivation appear in Appendix Al. Using the normal approximation for
the binomial distribution we can obtain approximations for the required cq
and c2 values. In particular, these approximations are

Ci ss [n90 —0.5 + Z(Q2)\/n0o (1 —#0)J,
and

c2 « Lneo + 0.5 I-Z(i-a/2)\/n6q{l - 00)] + I- (1-41)

An important special case is the one for which 0g = 0.5, and it will be discussed
in Subsection 1.3.2.

Remark 1.1. In this case, the P-value is usually computed as 2min(P+.P ),
where P+ and P_ are given by (1.23) and (1.25).

1.2.7 Confidence intervals for 9

In some applications the researcher may be interested in a confidence interval
for 9. We need to find two functions 9/ (Su) and 9a(Sn) of the random variable
Sn such that

P(9L(Sn)<e<O0u(Sn))>1-a. (1.42)
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Then the interval (di(Sn),0u (Sn)) is a confidence interval for 9 with confi-
dence coefficient (1 —a). These limits are usually derived from the acceptance
region of the two-sided test (1.39). As a prelude to this derivation, we consider
the problem of finding one-sided confidence limits or confidence bounds. From
these bounds we can get a confidence interval.

An upper confidence bound OuB{Sn) is a function of S»n such that

P(0 <0<jB(Sn))> 1-a, (1.43)
and a [ower confidence bound OLB(Sn) is a function of Sn such that
P(OLB(Sn) <0)> 1-a. (1.44)

From these bounds we get the one-sided confidence intervals {6/ » {Sh), 1) and
(0Jub(S,)). In the case of Phase II trials one wants to ensure that the re-
sponse rate is not too low. A lower bound for the response rate will enable a
researcher to decide to proceed or not with the development of a new drug.
An upper bound for the proportion of nonconforming units will enable an
engineer to accept or reject manufactured items supplied by a vendor.

Upper confidence bound

To derive an upper confidence bound consider the lower tail o-level test
(1.18). Let s be the observed value of Sne Under this test we reject the null
Ho :0=0,, ifs < ¢, where P(Sn < cjdy) < a. In other words, we reject Hg if

F(s;n,90) < a,

where F is the cdf of Sn. Since the cdf is a decreasing function of 0o, we can
find 9u b such that

F(s;n,9b)= a-
Note that 90b is a function of s. We also have
F(s;n, d0) < a, for 60> 0UB,
and
F(s; n,d0) > a, for d0 < 9UB.

Thus we do not reject Hqg for d) < 9uB(s), where s is the observed value of
Sn. As the probability of uot rejecting is at least 1 —a, we have

P(9 < OUB(Sn)\0) > I-a.

Thus 6uB{Sn) is a (1 —a) upper confidence bound for d. Using the incomplete
beta function representation for the cdf of Sn, the bound 9jjB can be seen as
the solution of the equation

I(9ub\Sn + 1,n- Sn)=1-0.
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This leads to the formula
eUB{Sn) = BINV(1- 0;Sn+ 1,n - Sn) (1.45)

for Sn < n, where BINV(p;a, b) is the 100p percentile of the Beta(a,b) distri-
bution. The beta percentiles are standard SAS functions. When Sn = n, the
upper bound is taken as one.

Lower confidence bound
A similar analysis will give an expression for the lower confidence bound as

OiB(Sn) = BINV{a;Sn,n - Sn+ 1) (1.46)

for Sn > 0 and for Sn = 0 the lower bound is taken as zero.

For example, suppose an inspector examined a sample of 100 items and
found that 3 of them are defective. To decide whether or not to accept the
lot, an upper bound is calculated. For these data the 95% upper bound for 6
is

9ub(S), = B/IW(0.95;4,97),

which turns out to be 0.0757, that is, 7.57%. So, in the worst case scenario,

the percentage of nonconforming units could be as high as 7.57%. If this

percentage is larger than the acceptable percentage, the lot would be rejected.
For example, suppose is 4. Then the lower bound is

0ib {4) = BINV(0.05;4,11) =0.104.

The researcher will proceed further only if there is evidence that 0 is at least
0.2. Because this lower bound is less than 0.2, further development of the drug
will not be pursued.

Exact confidence limits
Let 9i{Sn) be the lower (1 —a/2) confidence bound and 6u{Sn) be the
upper (1 —a/2) confidence bound. Then we have

pleL(sn) < o< Ou(sn)}=i- p(o <eL(sn)) - p(ev(sn) > e).
However,
P(eL(Sn) < 6) > (1 - a/2) =» - P (6 < 0L(Sn)) > -(a/2)
and

P(0 < 0u(Sn)) > (1 - a/2) F»-P{0u(Sn) >9)> -(al2).

Hence

P[OL(Sn) < 9 < 9u(Sn)} > 1- (a/2) - (a/2) = 1- a.
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In other words (8L(Sn),0u(Sn)) is a (1 —a) confidence interval for 0. Thus,
for 0 < Sn < n these confidence limits are given by

eL(Sn)= BINV(a/2;Sn,n - Sn+ 1),

and

9u(Sn) = BINV{1- a/2;Sn+ L,n - Sn). (1.47)

If Sn = 0, the lower limit is taken as zero and if Sn = n, the upper limit is
taken as 1. Several tabulations of these limits have been made. One reference
is the set of tables edited by Lentner (1982).

Example 1.3. Suppose we observed 3 successes in 20 trials. We want to find a
95% confidence interval for the parameter &, the success probability. The point
estimate 9 = (3/20) = 0.15. Using the formula (1.47) and a SAS program (see
Appendix Bl), we get the confidence limits 9/ = 0.0321 and 9)j = 0.3789. In
other words, a 95% confidence interval for the parameter 9 is (0.0321,0.3789).

Confidence limits using the asymptotic distribution

For large or moderate n, the confidence limits are usually derived using the
normal approximation to the distribution of 9. In elementary textbooks the
interval

[9- 2i-q/2) +vi, 9+ z(1_a/2) uj) (1.48)

is suggested as a confidence interval where 9 is given by (1.2) and vl =
[0(1 —9)\/n, a biased estimator of var{9).

Samuels and Lu (1992) give a set of guidelines for deciding the situations
when this interval provides a good answer.

Ghosh (1979) has investigated and recommended a method that is as simple
as the above method for constructing a confidence interval and as good as
the exact method. We give the result here and the method of derivation is
relegated to Problem 1. This confidence interval for 9 is

((0+ C —Z(1_Q2) 'v*)/(1 + 2C), (0+ C + Z(l~a/2) -V *)/(1 + 2C)), (1.49)
where
C = {z(x_a/2)f/ 2n- vl = [0(1 - 0)+ (C/2)\/n = vl + (C/2n).

Recent studies of Agresti and Coull (1998) and Newcombe (1998) reinforced
the recommendation of the interval (1.49). Also see Agresti and Caffo (2000)
for further discussion on the confidence interval of 0. A computer program for
calculating the interval (1.49) is given in Appendix Bl.

For example, for n = 20 and s = 3 the 95% confidence interval (1-49) is
(0.0523, 0.3604).
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14 PROCEDURES FOR A SINGLE SAMPLE

Using a confidence interval for testing

A confidence interval can be used to test the simple null hypothesis (1.10)
that 9 = 90 against the two-sided alternative (1.38). The corresponding test
is to

reject Ho if 9¢ is not in the interval. (1.50)

1.3 Complete data on continuous responses

In some studies the response variable can be viewed as a continuous random
variable. In reliability studies and in clinical trials the response variable is time
to an event. It may be the time to first breakdown of a machine or time to
death of a patient with terminal cancer. In these studies we want to estimate
some characteristics of the distribution of the variable of interest. Suppose we
are interested in studying the properties of lifetime distributions.

Dunsmore (1974) obtained data on time to first breakdown for 20 machines.
This set of 20 machines is viewed as a random sample. The time to first break-
down is the response variable. The data obtained here are observations on i.i.d.
random variables X 1. X2 X n, where the common probability distribution
is defined by some probability density function f(x). We have very limited
knowledge about the density function. The objective is to estimate some char-
acteristics of the (population) distribution of the time to first breakdown.

We assume that the probability distribution has a unique median. We want
to estimate this median, which is usually used as a measure oflocation. In some
cases we may want to test a hypothesis about the median. For example, a social
scientist may be interested in testing that the median annual family income
in a county is $25,000 based on a random sample of family annual income
data. This testing problem is also of interest in the evaluation of a cancer
treatment, where the efficacy of a treatment is characterized by the median
survival time. In clinical studies, observations on some subjects frequently are
not complete, since different subjects enter the study at different times and
for some subjects the event did not occur before the end of the study. These
incomplete observations are called right-censored observations. In this section
we discuss the results for complete data situations. Some generalizations for
the censored data cases are discussed in Section 1.4.

1.3.1 Point, estimation of the median

We have observations on (Afi, X 2 Xn), a random sample from the distri-
bution defined by the pdf/(.). The cdf of the population distribution is F(.).
Using these data we want to estimate the median, £, and test a hypothesis
about the median.

The intuitive choice for the point estimator is the sample median. To give
an expression for the sample median we need the order statistics of the sam-
ple. These are the sample values arranged in increasing order of magnitude.
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COMPLETE DATA ON CONTINUOUS RESPONSES 15

We denote these order statistics by A'd), -Y(2), **, X(n), where < X(2) <
< X A point estimate of / is £, the sample median, and is defined as
I ( ifn = 2A:+1,

[ (A@)+ A(fFi))/2, ifn = 2A.

The sampling distribution of this statistic depends on the population dis-
tribution in a complicated wav. However, some properties of this estimator
can be obtained by making certain assumptions about the population density
function. Desu and Rodine (1969) showed that for symmetric densities, the
sample median is an unbiased estimator of the population median, which is
equal to the population mean. The interested reader is referred to their paper
for the proofs and other details.

Sometimes one order statistic X(s) is used as an estimator of the median,
where s is the integer | (n/2)J +1. Further discussion along these lines appears
in Subsection 1.3.6.

We first discuss the testing problem and then proceed to the problem of
finding a confidence interval for the median £. This discussion can Ire carried
out without any restrictions on the population distribution.

1.3.2 Sign test for testing a simple null hypothesis about, the median

Let f be the population median. Consider the case of testing the null
hypothesis

HO: £ = £o (1.51)

against the one-sided alternative
/Uu £>£() (1-52)

From the definition of the population median it is clear that P (X[ > £) =
1/2 or P(X-i - £> 0) = 1/2. Let 6 = P(X, - £0 > 0). It follows that 0 = 1/2
or >1/2 depending on whether (1.51) or (1.52) is true. Thus this hypothesis
testing problem can be translated into a testing problem in relation to a binary
data set. This translation will be explained now. We transform the data by
defining

1, ifXi- £0> 0.

Zi .
0. otherwise.

Denoting the P(Zi — 1) by 0, and using Zs, the statistical problem can be
restated as that of testing the null hypothesis
Ho'- 9 = 1/2, against the alternative H+ :9 > 1/2. (1.53)

From the discussion in Subsection 1.2.2, it is obvious that we can use the
test defined by the critical region (1.12). Here the test statistic Sn is equal
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16 PROCEDURES FOR A SINGLE SAMPLE
to YIlj %- 11l other words. S, stands for the number of X values that are
greater than £o- The critical region of the test is
Sn > CH,
where the constant C+ is the smallest integer such that
P(Bin{n,1/2) > C+) < a. (1.54)
For n > 10, we can approximate C+ of (1.54) as

C+« L("2)+ 05+ zl-aS/{n/4)\ + L. (1.55)

Now let us consider the problem oftesting the null hypothesis (1.51) against
the other one-sided alternative,

H p:g < fr. (1.56)

This problem isequivalent to testing the null hypothesis of(1.53)against the
other one-sided alternative,

H- :6<1/2. (1.57)

Clearly this testing problem can be handled by the test defined by the critical
region (1.18).
Suppose the alternative hypothesis is a two-sided one. namely,

H t:£"o0. (1.58)
This testing problem is equivalent to testing
Hgq :9 = 1/2 against the alternative H\ : 0~ 1/2. (1.59)
The relevant test for this two-sided alternatives case is to
reject HO if Sn < C. or Sn>n —C, (1.60)

because thenull distribution of S»n is symmetrical underHo- Here C is the
largest integer such that

P(Bin(n, 1/2) < C) < (a/2). (1.61)

Using the table from MacKinnon (1964). we can obtain this C value. For
n > 10, using the normal distribution approximation to the distribution of
Sn- C can be approximated as

C« Ln/2) - 0.5+ z(0/)~JI)\. (1.62)

Example 1.4. For n = 10 and a = 0.05, from (1.62) we have

Cwil5-05- 1.961J2.5)J = L

Using the computer program given in Appendix B1, we find that C = 1. Here
the normal approximation and the exact value for C coincide.
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These procedures can be adopted easily to test hypotheses about other
percentiles. Since the Z is 1 or 0 depending on whether the difference (X —£)
is positive or negative, these tests are sometimes referred to as sign tests.

A distribution-free confidence interval for the median £

This interval can be obtained from the acceptance region of the two-sided
test (1.60). Assume that for the given sample size n and the confidence coef-
ficient (1 —a), the constant C{> 0) satisfying (1.61) exists. Let d = C + 1.
Then the acceptance region of the two-sided test (1.60) can be seen to be

{£0 :d < <n —dj. (1.63)

This means that the number of X -values greater than £0 is at least d and
not more than » —d. Thus a 100 (1 —a)% confidence interval for £ is [Iij),
X (n_d+1)), where X(,;)’s are the order statistics of the sample. Van der Parren
(1970) published a table of d-values, which can be used for constructing the
confidence intervals. This table also gives the exact coverage probability, which
is not available in the table of MacKinnon (1964).

Remark 1.2. In this discussion it is implicitly assumed that there are no ties.
When there are tied values in the sample, a modification of this procedure is
needed. This modification is given in Subsection 1.3.6.

Example 1.5. Dunsmore (1974) observed 20 machines and obtained data on
times (in hours) to first breakdown. We consider only 10 observations. These
are

18, 23, 29, 409, 24, 74. 13, 62, 46, and 4.
The order statistics, Xm, of the sample can be seen to be
4, 13, 18, 23, 24, 29, 46, 62, 74, and 409.

The sample median is /X(5| + X*f1/2 = 26.5, which is a point estimate of £,
the population median. In addition, we want a 95% confidence interval for the
median f. Heren = 10, and a = 0.05. In Example 1.4, we found that C =1
and hence d = 2. Thus the confidence interval is [Ay2),Ay9)). Hence a95%
confidence interval for the median £ is [13, 74).

1.3.3 Estimation of the cdf

Sample distribution function plays an important role in the analysis of contin-
uous response data. It can be used to obtain estimates of certain probabilities
ofinterest and from it we can also obtain a confidence band for the population
distribution function.

Copyrighted Material



18 PROCEDURES FOR A SINGLE SAMPLE

Suppose that our sample is (A'l, X->........ A',)). The sample distribution func-
tion (or empirical distribution function) denoted by Fn(x) is defined as

F,(x) = {number of X values which are < :c}/n
n

= u(Xh<x)/n< (1-64)
h=1i

where u(a,b) = 1, if a < b and = 0. otherwise. It may be noted that this
function depends on the sample values; however, our notation does not indicate
this fact.

In general, if X is our response variable, the probability P(X < x) = F(x)
is estimated by Fn(x), for each real x. In other words, for each real x,

F(x) = F. (x). (1.65)

Some properties of this estimator are noted for future use. For a fixed x, the
statistic nFn(x) follows a binomial distribution, with parameters n and F(x).
So it follows that

E(Fn(x)) = E(vFn(x))/n = F(x). var(Fn(x)) = F(x)(1- F(x))/n.

By identifying F(x) as 0. nF, (x) as Sn. and Fn(x) as 0 in relation to the bi-
nary data setting of Section 1.2. we can find an exact or asymptotic confidence
interval for F(x). Let v2(x) be the unbiased estimator of the var(Fn(x)), so
that

e-fr) = F,(x)(1—F, .(x))/(n —1). (1.66)

For large n,the distribution of F,,(.r) can be approximated bya normal dis-
tribution and using this approximate distribution, it can be seen that

(Fn(x) —2z(l-n/2) me(x), F, (x) + 2(1-a/2)'v(x)) (1-67)
is a confidence interval for F(x) and the associated confidencecoefficient is

approximately equal to (1 —a).

Example 1.5 (cont'd.). From the Dunsmore data of Example 1.5, suppose we
want to estimate the probability that the time to first breakdown is not greater
than 46 hours. This probability is

P(X < 46) = F(46).

So it can be estimated by F,(4G) = (7/10) = 0.7. Now let us compute a
confidence interval for F(46). We first compute

i2(46) = (7/10)(3/10)/9 = 0.0233,
and then

%0975 +e(46) = 1.96(.1527) = 0.2994.
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COMPLETE DATA ON CONTINUOUS RESPONSES 19

Using the formula (1.67), we get a confidence interval for F(46) as
(0.7 —0.2994,0.7 + 0.2994). In other words an approximate 95% confidence
interval for F(46) is (0.4006. 0.9994).

1.3.4 Estimation of survival function

In reliability or survival studies, the researcher is interested in estimating the
probability of surviving beyond x. This probability is

S(x) =P(X >x) = 1- F(x), (1.68)
and this function is called the survival function. A natural estimator of S(x) is
S(t)=1-F(x) =1- Fn(x) = Sn(x), (1.69)

It is easy to verify that Sn(x) in the above equation is the proportion of x
values that are greater than x. This function is called the sample survival
function.

Let us examine this estimator of S(x) in more detail so that we can general-
ize this result for censored data. Let Y| < Y>... < Yr be the distinct ordered
values of the random sample of size n and let d, be the number of times Yi

occurs inthe sample. Recursively define m = »n and m = n»_i —d, 1, for
i=2,3,...r. Note that «* arethe number of observations>Y).From (1.69),
we have
1. for x < Yi,
S(x) =\ 1_ £--=ud, forYj <x <VYi+l,j=1,2,...,r- 1, 11-70)
0, for x > Yr.

Noting that

HiJ \ n-2

we get

[ - =TT (\1 _
2
Thus the expression (1.70) can be rewritten as

1 for x < Yj,

C /%) — 1 -
§*) <LH.,:). oy 1- 1~1}, for x > Yi. (=71)

This equation means that the estimated survival probability is the product of
the probabilities of surviving in the F-intervals preceding x.
It is easy to see that for fixed x,

E(S(x)) = 1- E(Fn(x)) = 1- F(x) = S(.r),
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and
var(S{x)) = var(Fn(x)) = F(x)[1 - F(x)]/n = S{x)(l - S(x))/n. (1.72)

For large n, a confidence interval for S(x) with confidence coefficient 1 —a is

(5,,(.r) —"(i-a/2) "v(x), Sn(x) + 2(1_q/2) *v(x)) i (1-73)
where w2(.r) is given by (1.67).
Example 1.6. For the Dunsmore data of Example 1.5, suppose we want to
estimate the probability that the first, breakdown occurs after 46 hours. This
probability is 5(46) = 1 —F(46). Thus 5,,(46) = 1 —Fn(46) = 0.3. It is easy
to see that an approximate 95% confidence interval for 5(46) is (0.3 —0.2994,

0.3+ 0.2994). In other words, the required confidence interval is (0.0006,
0.5994).

Remark 1.3. Since F(x) and 5(x) are probabilities we can use the exact meth-
ods of Subsection 1.2.7 for constructing the confidence intervals. Here we only
give the large sample methods, since these generalize to the case of censored
data.

1.3.5 Point estimation of population percentiles
For each positive fraction p, fp is called the population 100p percentile if
P(X <fp)=p. e F(fp)=p (1.74)
This percentile can also be defined as
S(fp) =1- P. (1.75)

It is easy to see that the population median is £0.5¢ The above implicit defini-
tion can be reworded as

£p= F~I(p) = 5~1(1 —p).

The inverse function of F is called the population qua.nt.ile function and is
denoted by Q(.). In other words, for 0 < p < 1.

O(p) = F-\p)=[fp.

In connection with the estimation of population percentiles, the inverse of the
sample distribution function is useful. This function is denoted by On(p) and
is called the sample quantile function. For each positive fraction p, it is defined
as

On(p) s F~\p) =inf{x :Fn(x) > p}, (1.76)
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where Fn(.) is the sample distribution function. This definition of the inverse
function is needed since Fn is a step function. This simply means that Qn(p)
is the smallest x-value such that Fn(x) is not less than p for the first time.
Let j = [np\. If there are no ties in the sample, it is easy to see that for
0<p<l,

where Ayp is the jth order statistic. This definition results in one order statis-
tic and it is generally used in asymptotic discussions. This Qn{.) function is
used for estimating the percentiles. A point estimate ofthe 10Qp percentile s

G —0np*

This estimate can also be expressed in terms of the sample survival function.
Sn(.). It is easy to see that

= On(p)
= infix :Fn(x) >p)

= inf{x : 1- Sn(x) > p}.

Finally, we have

G = inf{x :Sn(x) < (1 - p)}. (1.77)

Remark 1.4. The last expression can easily be applied to cases where the data
contain some right-censored observations.

In our breakdown time example, discussed in Subsection 1.3.3, the estimate
of the first quartile £0.25, is A'(3) = 18 hours and the estimate of the median
Co.s0 is X (5) = 24 hours.

1.3.6 Confidence intervals for percentiles

Suppose we want a 100(1 —a)% confidence interval for the 100p percentile fp.
Let us consider the order statistics A’(l)) < X(2) < *¢+ < X (,) of the random
sample. (We are assuming that there are 110 ties.) These order statistics parti-
tion the real line into (n + 1) intervals. We first compute the probability that
(P belongs to the half open interval [Aqq, We have

P(X(i) < @ < X (i+l)) = P{exactly i values are < £p)
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Now considering the union of such succesivo intervals, we get the interval

an(l

P{X(i) <ZP< X {j) =P (Xu) < ZP < A'iji)

= = (1.78)

Thus the interval (A),), X*)) is a confidence interval for Zpi with confidence
coefficient C(i,j). Generally, the confidence coefficient is chosen in advance.
Thus we need to choose integers i and j such that C(i,j) is at least (1 —a),
the chosen confidence coefficient. In other words, we choose integers i and j
so as to satisfy the condition

P(i < Bin(ii,p) <j —1)> 1- a. (1.79)

Now the interval (X~. X ) will he a 100(1 —a) confidence interval for Zp.
It is obvious that more than one pair of integers (7,j) will satisfy the con-
dition (1.79). For some additional remarks about the choice of i and j see
Appendix Al

One choice of i and j (as given in Appendix Al) is that

P(Bin(n.p) < i) < (a/2), P(Bin(n,p) >j - 1)< (a/2).

A computer program has been developed for this purpose and is given in
Appendix Bl

A method for determining a lower confidence bound is also given in
Appendix Al

Example 1.7. Suppose we want a 95% confidence interval for the first (lower)
quartile, Co25- With n = 10. from the output of the computer program, we
have i = clower +1 = 1and j —1= cupper —1= 5. Hencej = 6 and a 95%
confidence interval is (-.Y*p Aq0)). For the data, of Example 1.5, this interval
is (4, 29).

Remark 1.5. In this discussion we assumed that there are no tied observations.
If there are tied observations, we proceed as follows. For the integers i and
j determined to satisfy (1.79). find the quantiles Zp = QOn{i/n) and Zp =
On{j/n), where On(.) is the sample quantile function. The resulting confidence
interval is (Zp iZp)- Further details are available in Hutson (1999).

1.3.7 Kolmogorov's goodness-of-fit test

Sometimes we want to test a simple null hypothesis about the population
distribution function. In other words, the null hypothesis is

HO wF(x) = FO(x), (1.80)
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where Fg is a completely specified cdf and the two-sided alternative is
Ha :F(x) » Fo(x),for some x. (1-81)

The test proposed by Kolmogorov tells us to evaluate the closeness of the sam-
ple distribution function Fn(x) to the hypothesized cdf Fo(x). The suggested
closeness measure is

Dn = supx[l Fn(x) - Fq(x) 1]. (1.82)
This is the test statistic and an a-level test
rejects H() if Dn > CX a. (1.83)

It should be noted that the null distribution of the test statistic Dn does
not depend on Fq(x). So this test is a distribution-free test. Birnbaum (1952)
tabulated the distribution of Dn and gave a table of the critical values for
a = 0.05 and 0.01. An extensive table of percentage points is contained in
Miller (1956).

To implement the test, a convenient formula for computing the test statis-
tic is needed. This expression for the statistic will enable us to infer that
the null distribution of the statistic is independent of the distribution Fyq.
For simplicity, let us assume that there are no ties. We observe that the
order statistics (Am < em < A(ra) partition the real line into (n + 1) in-
tervals and the sample distribution, Fn, is constant in each of these inter-
vals. These (n + 1) intervals, which constitute a partition of the real line, are
JO= (-o00, = [A(j),A0+1)), forj = 1,.,.,n- 1, and /,, = [A(n),00).
First we note that

Dn = maxj{supxelj\Fn(x) - FO(x)|}.
Next we calculate each of the supremums. It is easy to see that
supXtiO\Fn(x) - FO(x)| = sup\0 - FO(x)| = FO(A(1)),
and
supx(El, Fn(x) - EO(x-)| = sup\l - Fq(x)| = 1- ,FO(A()).
Forj = 1,..., n —1, we have
supxelj\Fn(x) - FO(X)| = rnax{(j/n) - FO(X{j), FO(X{j+l) - (j/n)}.
Using the supremums in the (n + 1) intervals we have
Dn = max0<j<n[max{(j/n) - FO(A()), FOAG+1)) - (j/n)}}. (1.84)

We note that Fo(A'(0)) = 0 and FO(A(,,+1)) = 1. Under the null hypothesis the
joint distribution of (FO(A(1)),..., FO(A(,))) is the same as the joint distribu-
tion of the order statistics of a sample of size n from the uniform distribution
on the interval (0.1). Thus the statistic Dn does not depend on FO, which
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implies that Dn is a distribution-free statistic. The above formula (1.84) for
the statistic is equivalent to

Dn = max{D+. Dn}, (1.85)
where
D+ = max0<j<n[{j/n) - FO(X{j))] (1.86)
and
Dn = max0<j<n[FO{X{j+1)) - (j/n)). (1.87)

The expressions for the statistics Df and D~ can be simplified as follows:
Dt = max

and

/)

D, —max maxi<j<n *U))~

max

It should be noted that these expressions are valid only for data sets with no
ties.

Tests for one-sided alternatives

Even though these cases are of secondary importance, the test statistic Dn
turned out to be a function of the two statistics £)+ and D ~ These two
statistics, D+ and D~ are useful for testing one-sided alternatives. For the
alternative

H+ :F(x) > Fq(x), for some x, (1.88)

the critical region is D f > C(_Q and for the alternative
H :F(x) < -Fo(x), for some x, (1.89)
the critical region is D~ > Cl a.

Null distributions of D f and D~

Birnbaum and Tingey (1951) derived the null distribution of Df. and they
showed that

P(Df > c\HO) - (n(l-c-(j/n))n-i(c+(j/n)y-1= ti(c), (1.90)
3=0 ~ '

where J = [n(l - ¢)J. So Cf a is the solution of the equation

HCi+ Q) = a.
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