Introduction to Hypoplasticity

D. Kolymbas

Advances in Geotechnical Engineering and Tunnelling

INTRODUCTION TO HYPOPLASTICITY

ADVANCES IN GEOTECHNICAL ENGINEERING AND TUNNELLING

1

Introduction to Hypoplasticity

D. KOLYMBAS

University of Innsbruck, Institute of Geotechnics and Tunnelling

Published by Taylor & Francis 2 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN 270 Madison Ave, New York, NY 10016

Transferred to Digital Printing 2007

© 2000 Taylor & Francis

All rights reserved. No part of this book may be reprinted or reproduced or utilised in any form or by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying and recording, or in any information storage or retrieval system, without permission in writing from the publishers.

British Library Cataloguing in Publication Data A catalogue record for this book is available from the British Library

Library of Congress Cataloging in Publication Data A catalog record for this book has been requested

ISSN 1566-6182

ISBN 90 5809 305 0 (hbk) ISBN 90 5809 306 9 (pbk)

Publisher's Note

The publisher has gone to great lengths to ensure the quality of this reprint but points out that some imperfections in the original may be apparent

Printed and bound by CPI Antony Rowe, Eastbourne

Contents

Foreword of the Editor

1	Simple questions and answers					
	1.1	What i	s a constitutive equation?	1		
	1.2	What f	For is a constitutive equation useful?	1		
	1.3	What i	s elasticity?	2		
	1.4	the theory of elasticity inappropriate to describe the behaviour	2			
	1.5	How c	an we describe anelastic (i.e. irreversible) deformations?	2		
	1.6	What i	s elastoplasticity?	3		
	1.7	What i	s hypoplasticity?	3		
	1.8	are the advantages of hypoplasticity?	3			
	1.9 What does the hypoplastic constitutive equation?1.10 Why are there several versions of hypoplastic equations?					
	1.11	What i	s the range of validity of hypoplasticity?	4		
2	Expo	eriment	tal results on soil behaviour	6		
	2.1	Triaxial test		6		
		2.1.1	Barotropy and pyknotropy	7		
		2.1.2	Critical state	10		
		2.1.3	Unloading	11		
		2.1.4	Homogeneity of deformation	11		

ix

Contents

		2.1.5 Behaviour of undrained samples	12
		2.1.6 The true triaxial test	14
	2.2	Oedometric test	15
3	Func	lamentals of Continuum Mechanics	17
	3.1	Deformation	17
	3.2	Stretching	17
	3.3	Simple shear	18
	3.4	Cauchy stress	20
	3.5	Change in observer	22
	3.6	Objectivity, objective time rates	25
	3.7	General constitutive equation	27
	3.8	Principle of macrodeterminism	27
	3.9	Internal constraints	28
	3.10	Effective stress	29
	3.11	Isotropy groups	30
	3.12	Rate dependence	31
4	Нур	oplasticity	33
	4.1	Rate equations	33
	4.2	Incremental non-linearity	34
	4.3	Homogeneity in stress	35
	4.4	Hypoelasticity	36
	4.5	Elastoplasticity	36
	4.6	Hypoplasticity	38
	4.7	Response envelopes	41
	4.8	Numerical simulation of element tests	42
	4.9	Calibration	44
	4.10	Dilatancy and pore pressure	46
	4.11	Cyclic loading, ratcheting, shake-down	47

	4.12	pment of hypoplastic equations — a review	48					
	4.13	Relation	n of hypoplasticity to other theories	50				
	4.14	FEM-in	nplementations of hypoplasticity	51				
	4.15	Initial s	tress	52				
5	Uni	queness	and limit loads	53				
	5.1	Limit s	states	53				
	5.2	Invertibility and controllability						
	5.3	Softening						
	5.4	Shear Bands						
	5.5	Bifurcation modes for 2D and 3D problems						
		5.5.1	Formulation with finite elements	62				
		5.5.2	Bifurcation modes	63				
6	Exe	rcises		66				
R	References							
Ir	Index							

Foreword of the Editor

This booklet inaugurates the series *Advances in Geotechnical Engineering and Tunnelling*. Subsequent issues will follow in irregular terms, either in German or in English language.

The present publication aims to give the reader a short, tractable and as far as possible complete introduction to the young theory of hypoplasticity, which is a new approach to constitutive modelling of granular media in terms of rational continuum mechanics.

I wish to thank Dr. I. Herle and Dr. W. Fellin for many valuable suggestions, Josef Wopfner and Christoph Bliem for working out the exercises and also Marlies Span for the thorough typing.

D. Kolymbas Institute of Geotechnics and Tunnelling University of Innsbruck August, 1999

