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Preface
This book was developed over several years while teaching courses in open channel flow to graduate 
students. Initially, while on the quarter system, two open channel graduate‑level courses were taught: 
the first dealing with steady-state flow was a four-credit course, including one credit for a laboratory; 
and the second dealing with unsteady flow, that is, numerical solutions of the St. Venant equations, 
was a three-credit course. When the university switched to the semester system, these two courses 
were both expanded into three-credit graduate‑level semester courses, and the amount of material 
covered was essentially that in the current book. Before undertaking the second course, most of the 
students had also taken a course dealing with numerical methods in engineering. While the material 
was developed and intended to complement lectures in this subject area, it should also be useful to the 
practicing engineer. There are numerous example problems throughout the book that elucidate prin-
ciples, formulate and set up problems, and/or apply techniques of problem solutions. Thus, the book 
is also intended for self-study for those who have taken courses in fluid mechanics and hydraulics.

The basic principles of conservation of mass, energy, and momentum are emphasized in the hope 
that this will help students master this important subject rather than just learn routine techniques in 
solving the large host of open channel applications. In so doing, students will enhance and enlarge 
their understanding of the fundamental principles of fluid mechanics and apply them in solving 
complex real problems. This emphasis is accomplished by devoting an entire chapter (Chapter 2) 
to the energy principle as it applies to open channel flow. Chapter 3 is devoted to the momentum 
principle, but since energy and conservation of mass have been covered previously, all three prin-
ciples are used in setting up and solving problems. (Since the principle of conservation of mass is 
relatively easily implemented in solving open channel problems, a separate chapter is not devoted 
to it.) Many of these equations are nonlinear, and therefore numerical means for solving them are 
covered in addition to the open channel hydraulics. Real channels generally do not consist of a single 
channel of constant size, but rather a series of channels with different sizes and control structures, 
and/or parallel systems. Therefore, in dealing with these principles, they are applied repeatedly to 
link the equations together, which must be solved simultaneously to obtain depths, velocities, and 
flow rates throughout channel systems. Again, numerical means for accomplishing the solution for a 
system of nonlinear equations are covered, and the techniques for accomplishing such solutions are 
documented through computer codes and program listings. The progression from a single channel 
to a multichannel system is a distinguishing feature that sets this book apart from other books on 
this subject.

Seldom is the flow in real channels uniform, that is, the depth varies with position along the 
channel. Except near control structures, these variations in depth can be handled as gradually 
varied flow, that is, the flow is assumed to be one-dimensional, or the dependent variables are 
only a function of the position along the channel. Such gradually varied flows are described by 
an ordinary differential equation (ODE), for which closed-form solutions are only possible using 
very restrictive assumptions and, therefore, seldom apply in practice. The longest chapter in the 
book, Chapter 4, deals with gradually varied flows. It begins by deriving the general gradually var-
ied flow equation, and documents numerical methods for solving this first-order ODE. Computer 
codes based on mathematical numerical methods rather than the traditional standard step method 
for solving a single ODE are provided, and these are then applied to solve a variety of problems 
associated with upstream and downstream controls, side weirs, etc. Again, as in previous chapters, 
after the student is thoroughly familiar with how gradually varied flow in single channels can be 
solved, he or she is shown how to set up and solve gradually varied flows in a system of channels. 
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This instruction involves numerical methods for solving systems of ordinary differential and non-
linear (with some linear) algebraic equations simultaneously. To assist in the instruction, computer 
codes and/or computer programs are provided. Following the line-by-line instructions for the com-
puter to follow is in fact a most effective means of learning how such complex problems can be 
solved. The setting up of simultaneous algebraic equations in Chapters 2 and 3 provides the basis 
for setting up the equations that govern gradually varied flows in channel systems. The extension 
is that now, not only are there algebraic equations involved, but also ODEs. Commonly available 
software packages are not capable of solving combined systems of ODEs and algebraic equations 
without “add-in.” Thus, much of the material in Chapter 4 is not available in other textbooks on 
this subject.

The variety of these complex problems is almost unlimited, but in an attempt to provide the 
student with the tools needed to set up and solve a particular problem that he or she may encoun-
ter, a large number of example problems are provided as an integral part of the text. The solutions 
to these example problems generally contain numerous computations and therefore require the 
use of a computer. Thus, many of the example problems contain computer programs. There are 
also a large number of homework problems at the end of the chapters. These problems provide the 
student not only with experience to solve problems somewhat similar to the example problems, 
but require him or her to also apply the principles to solve problems that expand upon the text 
material.

The material covered in Chapters 1 through 4 assumes that the channel’s geometry is rectan-
gular, trapezoidal, circular, or can be defined by simple parameters such as bottom width, side 
slope, diameter, etc. Chapter 5, entitled “Common techniques used in practice and controls,” 
describes how the geometry of natural channels can be defined using a table of xy values for 
its bottom shape, and how quantities such as areas, perimeters, and top widths can be obtained 
from this data rather than just by solving an equation. It then covers water measurements in open 
channels, gates, and transitions, and concludes with a section dealing with total least cost design 
of channels.

The last two chapters, Chapters 6 and 7, deal with unsteady flow. Chapter 6 derives the various 
forms of unsteady flow equations for one-dimensional flow, that is, the St. Venant equations, and 
describes their characteristics. By assuming that the difference between the slopes of the energy 
line and channel bottom is the same, these unsteady flow equations can be solved along character-
istic lines; this concept can then be used to obtain solutions to a variety of problems with upstream 
and downstream controls. Such simplified solutions provide the student with a good understanding 
of unsteady channel flow, and become almost indispensable in setting up the complete unsteady 
flow equations for a variety of problems, as described in Chapter 7. Initially, the material also 
included a follow-on chapter dealing with solutions of the two- and three-dimensional unsteady 
flow equations, but that has now been deleted. These two- and three-dimensional equations are now 
only derived.

I would like to express my heartfelt gratitude to Dr. Oulhaj Ahmed at the Institut Agronomique 
et Véterinaire Hassan II, Rabat, Morocco, who has translated this book into French and used it as 
course material for years now. He had translated material years ago, and recently updated that trans-
lation to include this book. The French version of this book is available at the Institut Agronomique 
et Véterinaire Hassan II, Rabat, Morocco.

An electronic “User’s Manual” is also available on the CRC Press Web site (www.crcpress.com) 
that contains the solutions to the homework problems that are located at the end of each chapter. To 
obtain these solutions, please contact the publisher (Taylor & Francis Group).

I wish to thank the many students who have participated in this course and in other courses. The 
satisfaction and joy associated with teaching are truly enormous, and the enthusiasm of students 
adds much thereto. It is difficult to think of any profession that is as rewarding as teaching at a uni-
versity. I sincerely hope that this book will contribute to the important subject of open channel flow 
and the use of numerical methods in engineering practice.
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For MATLAB® and Simulink® product information, please contact

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA, 01760-2098 USA
Tel: 508-647-7000
Fax: 508-647-7001
E-mail: info@mathworks.com
Web: www.mathworks.com

Guidelines for Studying This Book

The details of learning and internalizing a new subject until it becomes an integral part of your 
working knowledge cannot be described here. Rather, as a university student, or a professional, by 
now you should know how you learn best. Unless you are genius, it is unlikely that you will learn 
the subject of open channel flow by just reading, as you would read a newspaper, a magazine such 
as National Geographic, or a novel. Rather you will have to acquire the ability to set up and solve 
problems. Therefore, in these guidelines, I will suggest objectives and goals that you should set, 
and establish a means for measuring whether these goals are being systematically met. In other 
words, you will not really understand the subject of open channel flow unless you are able to set up 
mathematical equations that properly describe an open channel flow system and then solve those 
equations. To help in this process, this book contains numerous example problems, and an even 
larger number of homework problems. Some of these problems are what one might call routine, for 
example, problems that simply deal with solving a specified equation for a specified unknown vari-
able. Other problems require that you identify the basic principles that apply, and how the proper 
application of these principles produces the system of equations that needs to be solved simul-
taneously to get the numerical values that describe how the channel system will perform under 
given conditions. It is hoped that this course will help you appreciate how the mathematics and 
mathematical methods that were developed mainly for purely theoretical reasons in your previous 
courses on linear algebra, calculus, and differential equations, suddenly assume great importance 
when dealing with engineering problems.

In your previous math courses, practically all of the learning was associated with linear equa-
tions and differential equations for which “closed-form” solutions are possible. Real engineering 
problems are, most frequently, governed by nonlinear and differential equations that must be solved 
using numerical techniques. This is certainly true for open channel flow. In brief, engineering math-
ematics comes down, ultimately, to numerical results, for example, numbers that define a problem’s 
properties, such as depth, velocity, flow rate, force, etc., and the variations of these quantities in 
space and time. Consequently, much of what you will learn during this course deals with numerical 
methods. You will find that the material in the appendixes, especially Appendixes B and C, will 
need to be studied in detail, and fully mastered. Since numerical methods require a large amount of 
number crunching, beyond what can be practically accomplished by hand, it will be vital that you 
use a computer to solve many problems. Thus, plan on making your computer a heavily relied upon 
workhorse in studying this subject. It is for good reason that the title of this book contains not only 
open channel flow, but also numerical methods and computer applications.

Throughout the text there are listings of computer programs in Fortran, C (or C++), and math 
applications software such as Mathcad and TK-Solver that are used to solve example problems and 
to illustrate concepts. A folder on the CD-ROM on the back cover of this book contains MATLAB® 
programs that accomplish the same tasks of many of the Fortran programs. You might not be thor-
oughly familiar with these languages and/or applications for obtaining the numerical solutions, 
but it is relatively easy to gain sufficient understanding of Fortran (or C++) to follow the logic and 
computations needed to implement solutions. You will discover that it is often much easier to fully 
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understand how principles and equations are used to solve problems by studying these programs 
than by just reading the text. The listings of these programs will be a very important tool for you to 
accomplish the goals (as listed below) that you should establish for yourself during the courses you 
take using this book.

Most of our bodies of knowledge in engineering, and its practice, are based on, relatively, a few 
fundamental principles and/or laws. In open channel flow, the three underlying principles are (1) 
conservation of mass, (2) conservation of energy, and (3) conservation of momentum. A thorough 
and comprehensive understanding of these principles is vital to properly understanding open chan-
nel flows and to solving complex channel systems. The proper application of these relatively simple 
concepts often entails considerable insight; therefore, devote time and effort in understanding these 
principles completely, and how they are used in setting up the equations that provide solutions to a 
wide variety of open channel situations. The problems solved in Chapters 1 and 2 use only the first 
two of these principles and gets you acquainted with equations such as Manning’s equation and 
Chezy’s equation, which describe how energy is dissipated due to fluid friction. Chapter 3 adds the 
momentum principle to your working tools. Chapter 4 and Appendix C devote much space to solv-
ing first-order ODEs, because the vast majority of steady-state open channel flows are mathemati-
cally described by such equations. The ability you acquire in numerically solving ODEs related to 
open channel flows will enhance your ability to cope with many other engineering problems, since 
ODEs are a most important body of knowledge in engineering. The first five chapters assume that 
flow conditions do not change with time, that is, they deal with the subject of steady-state open 
channel flow. The last two chapters are devoted to unsteady flows in open channels. Initial conditions, 
or what the flow consists of at time zero, require that steady-state solutions be obtained. Thus, you 
will need to have a good understanding of Chapters 1 through 5 before beginning Chapter 6. Since 
there is a semester’s amount of study (or more) in Chapters 1 through 5, to study the material in this 
book will take at least two semesters of graduate-level course work. In fact, the last time I taught the 
last two chapters to PhD students in Fluid Mechanics Hydraulics Program at Utah State University, 
Logan, Utah, it took me two semesters, the second at the request of the students, so they could solve 
more general unsteady open channel problems.

Now, let us define goals you should set for yourselves. Below, only the goals for the first portion 
of the book will be outlined, that is, for steady-state flows. After studying this portion of the book, 
you should be able to set your goals associated with solving unsteady open channel flow problems. 
(You should repeatedly read these goals and assess your progress in completing them.)

Goal 1: Develop computer software that will solve for any of the variables associated with 
Manning’s equation for (a) rectangular channels, (b) trapezoidal channels, (c) circular 
channels, and (d) natural, or irregularly shaped, channels. A vital part of this goal is to 
understand why the Newton method works and how it is implemented to solve for variables 
that cannot be placed on the left side of the equal sign by manipulating an equation, for 
example, solving implicit equations.

Goal 2: Develop a similar software that solves the combined Chezy and Chezy-C equations. 
The simultaneous solution of these two equations can be considered a more fundamen-
tally sound approach to open channel flow than using the empirical Manning’s equation. 
A similar comparison in pipe flow is use of the Darcy–Weisbach equation (with the friction 
factor therein being a function of the relative roughness of the pipe wall, and the Reynolds 
number associated with the flow) versus use of the empirical Hazen–Williams equation.

Goal 3: Develop computer software that will solve the energy equation (and energies equate 
at two different positions) for any of the variables associated therewith for (a) rectangular 
channels, (b) trapezoidal channels, (c) circular channels, and (d) natural, or irregularly 
shaped, channels.
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Goal 4: Develop computer software that will solve the critical flow equation for any of the 
variables associated therewith for (a) rectangular channels, (b) trapezoidal channels, (c) 
circular channels, and (d) natural, or irregularly shaped, channels.

Goal 5: Develop computer software that will solve the momentum equation (and momentum 
functions equated at two different positions) for any of the variables associated therewith 
for (a) rectangular channels, (b) trapezoidal channels, (c) circular channels, and (d) natural, 
or irregularly shaped, channels.

Goal 6: Combine the solution capabilities of Goals 1 through 5 into a single software package 
that is easy to use by allowing you to select the type of problem you are solving, and what 
variable(s) is (are) to be solved.

Upon completing these first six goals, you will have developed a program similar to 
program CHANNEL that is available on the CD-ROM on the back cover of this book. 
You might wish to use your software to solve the problems given at the end of Chapter 3 
“Problems to solve using program CHANNEL.”

In addition to, or in conjunction with, the achievement of the above goals you should 
establish and complete the following goals:

Goal 7: Using the energy equations and/or critical flow equations associated with channel 
systems that consist of branched and parallel channels, write out the system of equations 
that describe the flow rates, velocities, and depths throughout the system.

Goal 8: Use linear algebra in combination with the expanded Newton method to solve the 
system of equations from Goal 7.

Goal 9: Use the momentum principle, in addition to the energy and critical flow equations, 
to define and solve problems involving branched and parallel channel systems that have 
controls such as gates that cause hydraulic jumps to occur.

The above goals deal with flow situations in which the depth does not vary with position 
along the channel, except in the immediate position of control structures, such as gates, 
intakes, etc., or, in other words, uniform flows occur. Similar goals need to be set to handle 
gradually varied flows (GVFs), or situations in which depths, velocities, and possibly flow 
rates vary with position along the channel. These latter types of flows are governed by 
ODEs, if steady state, or, if unsteady, by partial differential equations.

Goal 10: Become thoroughly familiar with the general ODE that defines GVFs, which allows 
for lateral inflow/outflow and changing channel size and shape, and how this equation sim-
plifies depending upon the conditions.

Goal 11: When possible solve the GVF equation by numerical integration, otherwise learn 
and obtain numerical solutions of this equation using techniques designed to solve ODEs, 
and apply these numerical methods to solving GVF problems in single channels. Part of 
this goal should be to develop computer software that implements the solutions.

Goal 12: Be able to write out the system of equations that define channel systems that involve 
both algebraic equations and ODEs.

Goal 13: Solve these combined systems of algebraic equations and ODEs using the Newton 
method in combination with numerical solutions of ODEs. Again, part of this objective 
is to develop computer software to obtain the solutions. This later software (or computer 
program), because of the variety of equations involved, will not be a general program, but 
will need to be modified to handle different given situations.

Chapter 4 is devoted to helping you achieve Goals 10 through 13. Because the subject of GVF is 
more complex, and the type of problems more varied, Chapter 4 is longer than Chapters 1 through 
3 combined.
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Computer Programs 
with Listings of Code
Name of Program What Program Does? Page

Chapter 1
EXPRB1_5.FOR Numerical integration using Simpson’s rule and cubic splines 

for natural channel 14
EXPRB1_5.C Numerical integration using Simpson’s rule and cubic splines 

for natural channel (solves Example Problem 1.5) 15
EPRB1_9.FOR Numerical integration using Simpson’s rule and cubic splines 

(Example Problem 1.9) 28
EPR1_15.FOR Solves Example Problem 1.15—Cubic splines and Simpson’s rule 35
EXPR1_15.C Solves Example Problem 1.15—Cubic splines and Simpson’s rule 36

Chapter 2
CHEZYC.FOR Solves Chezy’s C from transitional equation 48
CHEZYC.C Solves Chezy’s C from transitional equation 48
CH2PR2.FOR Solves Chezy’s equation and Chezy’s C in the transitional zone, 

simultaneously. (Example Problem 2.2) 50
CHEZYCTC.FOR Solves Chezy’s equation for any of the variables as unknown in 

both trapezoidal and circular channels 53
MANNING.PAS Solves Manning’s equation for any of the variables in both 

trapezoidal and circular channels 65
MANNING.FOR Solves Manning’s equation for any of the variables in both 

trapezoidal and circular channels 67
MANNING.C Solves Manning’s equation for any of the variables in both 

trapezoidal and circular channels 69
MANNTC.FOR Completely solves Manning’s equation with the Newton method 70
MANNTC.C Completely solves Manning’s equation with the Newton method 71
ALTDEP.FOR Solves energy equation for alternative depth 79
ALTDEP.CPP Solves energy equation for alternative depth 80
ROOTSE.FOR Uses cubic equation to solve alternative depth 81
ROOTSE.C Uses cubic equation to solve alternative depth 82
E_UN.FOR Simultaneous solution of energy and Manning’s equations 

(Example Problem 2.12) 86
E_UN.C Simultaneous solution of energy and Manning’s equations 

(Example Problem 2.12) 88
E_UN1.FOR Solves energy and Manning’s equations by substitution 89
E_UN1.C Solves energy and Manning’s equations by substitution 90
UENCHEZ.FOR Uniform flow 91
UENCHEZ.C Simultaneous solution of energy and Chezy’s equations 93
UENCHEZ1.FOR Simultaneous solution of energy and Chezy’s equations 94
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UENCHEZ1.C Simultaneous solution of energy and Chezy’s equations 95
E_CR1.FOR Simultaneous solution of energy and critical flow equations 

(Example Problem 2.13) 96
E_CR1.C Simultaneous solution of energy and critical flow equations 

(Example Problem 2.13) 97
E_CR.FOR Simultaneous solution of energy and critical flow equations 

(Example Problem 2.13) 97
E_CR.C Simultaneous solution of energy and critical flow equations 

(Example Problem 2.13) 99
E_UNTC.FOR Entrance trapezoidal channel to circular channel—Energy and 

Manning’s equations 107
E_UNTC.C Entrance trapezoidal channel to circular channel—Energy and 

Manning’s equations 108
THREEC.PAS Solves three channel branch 112
THREECH.FOR Solves three channel branch 113
THREECH.C Solves three channel branch 115
BRANCHCHL.FOR General branched channels—Trapezoidal or circular (Example 

Problem 2.18) 121
BRANCHCH.C General branched channels—Trapezoidal or circular (Example 

Problem 2.18) (also see: BRANCHCR.FOR, BRANCHC1.FOR, 
and BRANCHCH.FOR) 124

Chapter 3
ROOTSM.FOR Solves conjugate depth as cubic equation 191
LAGU.FOR Uses Laguerre’s method to find roots of momentum equation 199
LAGU.CPP Uses Laguerre’s method to find roots of momentum equation 201
LAGU5.FOR Uses Laguerre’s method to find roots of momentum equation 203
GATE_WAVE.PAS Solves moving wave problems 214
GWAVE.FOR Solves moving wave problems 214
WAVE.FOR Solves moving waves (Example Problem 3.9) 220
WAVE.C Solves moving waves (Example Problem 3.9) 221
WAVETR.FOR Moving wave (Example Problem 3.10) 222
WAVETR.C Moving wave (Example Problem 3.10) 223
PRB3_12.FOR Jump in steep to mild channel (Example Problem 3.12) 228
PRB3_12.C Jump in steep to mild channel (Example Problem 3.12) 230

Chapter 4
GVFXY1.FOR Solves dx/dY—Numerical integration (Example Problem 4.2) 272
GVFXY1.PAS Solves dx/dY—Numerical integration (Example Problem 4.2) 273
GVFXY1.C Solves dx/dY—Numerical integration (Example Problem 4.2) 273
EPRB4_2.FOR Solves dx/dY by calling on SIMPR (Simpson’s rule) (Example 

Problem 4.2) 274
EPRB4_2.C Solves dx/dY by calling on SIMPR (Simpson’s rule) (Example 

Problem 4.2) 274
EPRB4_2.FOR Solves dY/dx = (So − Sf)/(1 − Fr

2 ) by calling on ODESOL 276
EPRB4D.FOR Solves dY/dx = (So − Sf)/(1 − Fr

2 ) by calling on DVERK 277
EPRB4R.FOR Solves dY/dx = (So − Sf)/(1 − Fr

2 ) by calling on RUKUST 279
GVFDYXK.C Solves dY/dx = (So − Sf)/(1 − Fr

2 ) by calling on RUKUST 279
RUKUY4.FOR To solve ODE dY/dx (Example Problem 4.5) 283
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RUKUY4.C To solve ODE dY/dx (Example Problem 4.5) 284
RUKUX4.PAS To solve ODE dY/dx (Example Problem 4.5) 285
EPRB4_6.FOR Solves dY/dx Manning’s equation—Calls on RUKUY4 (Example 

Problem 4.6) 286
EPRB4_6A.FOR Solves dY/dx Manning’s equation—Calls on RUKUST 287
RUKUSTS.C Solves dY/dx Manning’s equation—Calls on RUKUST 288
EPRB4_6B.FOR Solves dY/dx—Chezys equation 289
EPRB4_8.FOR Solves gate at end of channel (Example Problem 4.9) 298
EPRB4_8.C Solves gate at end of channel (Example Problem 4.9) 300
SOLGVF.FOR Solve GVF in mild channel, three simultaneous equations 305
SOLGVF.C Solve GVF in mild channel, three simultaneous equations 307
SOLGATE.FOR GVF—Gate downstream (Example Problem 4.10) 311
GVFJMP.FOR Hydraulic jump downstream from gate 318
GVFJMP.C Hydraulic jump downstream from gate 320
GVFJMP2.FOR Hydraulic jump downstream from gate (Example Problem 4.12) 322
EPRB4_14.FOR Solves three equations—Gaussian elimination (Example 

Problem 4.14) 324
EPRB4_14.C Solves three equations—Gaussian elimination (Example Problem 

4.14) 326
SOLGVFDF.FOR Gradually varied flow from reservoir to steep rectangular 

channel at end. Solves three equations simultaneously 
(Example Problem 4.15) 328

SOLGVFKF.C Gradually varied flow from reservoir to steep rectangular channel 
at end. Solves three equations simultaneously (Example Problem 
4.15) 330

SOLINF.FOR Lateral inflow—Solves four equations (solves Example Problem 
4.16) 334

SOLINF.C Lateral inflow—Solves four equations (solves Example Problem 
4.16) 336

SOLINF2.FOR Lateran inflow—Solves five equations (solves Example Problem 
4.16) 337

EPRB4_18.FOR Solves GVF (Example Problem 4.18) 343
CULVERTU.FOR Solves culvert flow with upstream control 350
CULVERTD.FOR Solves culvert flow with downstream control 361
CULVERD1.FOR Solves culvert flow with downstream control in which the flow 

rate Q is specified. 365
EPR4_29.FOR GVF in nonprismatic channel (Example Problem 4.29) calls on 

ODESOL (EPR4_29K.FOR calls on RUKUSTF) 369
EPR4_29A.FOR GVF in nonprismatic channel (Example Problem 4.29) calls 

on ODESOL (EPR4_29K.FOR calls on RUKUSTF) calls on 
DVERK 373

SOLBRA.FOR Solves upstream channel branching into N downstream channels 
(Example Problem 4.30) 379

SOLJMP2.FOR Solves branched channel with hydraulic jump (Example Problem 4.33) 385
SOLPARG.FOR Solves N parallel channels with an upstream and downstream 

channels (Example Problem 4.35) 394
EPRB4_35.FOR Spatially varied outflow from side weir (Example 

Problem 4.37) 403
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1 Dimensions, Terminology, 
and Review of Basic 
Fluid Mechanics

1.1  Introduction

Open-channel flow is distinguished from closed-conduit flow by the presence of a free surface, or 
interface, between two different fluids of different densities. The two most common fluids involved 
are water and air. The presence of a free surface makes the subject of open-channel flow more 
complex, and more difficult to compute commonly needed information about the flow, than closed-
conduit flow, or pipe flow. In pipe-flow problems, the cross-sectional area of the flow is known to 
equal the area of the pipe. In open-channel flow, the area depends upon the depth of flow, which is 
generally unknown, and must be determined as part of the solution processes. Coupling this added 
complexity with the fact that there are more open-channel flows around us than there are pipe flows, 
emphasizes the need for engineers, who plan work in water-related fields, to acquire proficiency in 
open-channel hydraulics. The wide use of computers in engineering practice reduces the need for 
graphical, table lookup, and other techniques learned by engineers who received their training a 
decade ago.

Technical fields apply very specific meanings to words. With a knowledge of these meanings it 
is possible for individuals educated in that field to communicate much more effectively and, with 
fewer words, convey clear and concise information. Often these words have a more general, less 
concise, meaning in their general use and, therefore, have a less concise meaning for the public 
at large. Other words are coined especially for a technical discipline. This chapter introduces the 
terminology used in open-channel flow. It is important that some terminology be fully mastered to 
effectively read and understand the remainder of this book, and to converse verbally, or in writing 
with open-channel hydraulic engineers.

1.2 O ne-, Two-, and Three-Dimensional Flows

The dimensionality of a flow is defined as the number of independent space variables that are 
needed to describe the flow mathematically. If the variables of a flow change only in the direction 
of one space variable, e.g., in the direction along the channel x, then the flow is described as one 
dimensional. For such flows, variables such as depth Y and velocity V are only functions of x, 
i.e., Y(x) and V(x). If the variables of the flow change in two directions, such as the position along 
the channel x, and the position from the bottom of the channel y, or the position across the chan-
nel z, then the flow is described as two dimensional. For two-dimensional flows the mathemati-
cal notation of variables contains two arguments such as V(x,y) and Y(x,y), or V(x,z) and Y(x,z). 
If the variables of the flow change in three directions, such as the position along the flow, with 
the vertical position within the flow, and the horizontal position across the flow, then the flow is 
three dimensional. If a Cartesian coordinate system with axes x, y, and z (note here that lower 
case y is not the depth of flow, Y) is used, then three-dimensional flows are described math-
ematically by noting that the variables of the flow are a function of all three of these independent 
variables, or the velocity, for example, is denoted as V(x,y,z), to indicate that its magnitude varies 
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with respect to x, y, and z in space, and since velocity is a vector, its direction also depends on 
x, y, and z. If the velocity also changes with time, this additional dependency will be denoted by 
V(x,y,z,t).

A two-dimensional flow that changes in time would have its velocity described as V(x,y,t) or 
V(x,z,t), and thus depends upon three independent variables and, from a mathematical point of 
view, is three dimensional. However, in fluid mechanics such flows are called two dimensional, 
unsteady. A flow with V(x,z) is called two dimensional, steady. The notation for the variables of a 
one-dimensional, unsteady flow consists of Y(x,t), V(x,t), etc.

Since the computations needed to solve a one-dimensional problem are much simpler than 
a two-dimensional steady problem, we wish to define the flow as one dimensional, if assuming 
this does not deviate too much from reality. The equations describing one dimensional, non-
time-dependent or steady-state flows, are either just algebraic equations, or ordinary differen-
tial equations, whereas equations needed to describe two-dimensional flows are almost without 
exception partial differential equations. A one-dimensional flow that does change with respect 
to time must be described mathematically by partial differential equations also. Furthermore, 
because of the complex nature of the two- and three-dimensional flow equations that describe real 
flows, a very small number of closed form solutions to the mathematical boundary value prob-
lems governed by these partial differential equations are available for theoretically simple flows. 
Therefore, it is necessary to resort to approximate numerical methods to solve general two- and 
three-dimensional flows.

The term hydraulics of open channel flow is often used for one-dimensional free surface flow. 
The assumption made, that allows the flow in an open channel to be defined as one dimensional, 
is that the average velocity at a cross section can be used, and it is not necessary to be concerned 
with variations of the velocity with depth, or position across the flow. Based on this assumption 
the velocity, V(x) at any position along the channel equals the flow rate Q at this section divided 
by the cross-sectional area. Since the velocity varies from the bottom of a channel to the top at 
any position, and this velocity distribution may vary across the channel, correction factors are 
sometimes utilized to provide more accurate values of the kinematic energy per unit weight, and 
the momentum flux when the average velocity is used in the appropriate formula. However, the 
assumption is retained that the flow is one dimensional. These correction factors are discussed later 
in this chapter.

1.3 Stea dy versus Unsteady Flow

A fluid flow is steady if none of the variables that can be used to describe the flow change with 
respect to time. Mathematically, steady flow is described by having partial derivatives of such vari-
ables as the depth of flow, the velocity, the cross-sectional area, etc., with respective to time all equal 
to zero, e.g., ∂Y/∂t = 0, ∂V/∂t = 0, ∂A/∂t = 0.

A fluid flow is unsteady if any of the variables that describe the flow changes with respect to 
time. Thus a flow is unsteady if the depth at a given position in an open-channel flow changes with 
respect to time. Mathematically, a flow would be determined to be unsteady if any of the partial 
derivatives of any variable that describe the flow such as the depth, the velocity, the cross-sectional 
area, etc., with respect to time is different from zero. Generally, if one variable changes with respect 
to time all variables do.

Since for steady flows the variables that describe the flow are not a function of time, the indepen-
dent variable t is not included in describing the flow, mathematically. If the flow is one dimensional 
in space, then the variables of the flow are only a function of that space variable. Thus the depth var-
ies only as a function of the position variable x, or Y(x). If the flow is unsteady then the dependent 
variable Y varies with x and t, and this is denoted as Y(x,t). For a three-dimensional time-dependent 
flow, the depth is a function of the Cartesian coordinate system x,y, and z as well as time, and there-
fore the depth is denoted mathematically as Y(x,y,z,t).
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1.4  Uniform versus Nonuniform Flow

A flow is uniform if none of the variables that describe the flow vary with respect to position, x 
along the channel. Therefore, the flow is uniform if the depth, velocity, and cross-sectional area 
are all constant. When dealing with one-dimensional open-channel hydraulics, uniform flows are 
not dependent on x. In fact, there is not such a thing as one-, two-, or three-dimensional uniform 
flow since the variables of the flow do not change with respect to x, y, or z. In theory, there could 
be a time-dependent uniform open-channel flow, but in practice such flows never actually exist. 
To have a uniform unsteady flow, the depth would have to increase (or decrease) at the same rate 
throughout the entire length of channel so that at all times neither the depth nor the velocity changes 
with respect to position, but is constantly changing with time. Mathematically, a flow is uniform if 
∂Y/∂x = 0, ∂V/∂x = 0, ∂A/∂x = 0, etc., throughout the flow. Setting partial derivatives with respect 
to the position x equal to zero, and having this zero occur throughout the flow is synonymous with 
stating that there is no dependency upon x.

A flow is nonuniform if any of the variables of the flow vary from position to position. Thus, 
in a one-dimensional channel flow, if the depth either increases or decreases from one position to 
another in a channel, the flow is nonuniform. A nonuniform flow may be one, two, or three dimen-
sional, and may be either steady or unsteady. The flow over the crest of a dam’s spillway is nonuni-
form but steady if the flow rate does not change. If, however, the flow rate is either increasing or 
decreasing with time then the flow is nonuniform and unsteady.

Nonuniform flows will be further subdivided into gradually varied, rapidly varied, and spa-
tially varied. When the radius of curvature of the streamlines is large, e.g., the streamlines are nearly 
straight, such that the normal component of acceleration can be ignored, a nonuniform flow will be 
referred to as gradually varied. In a gradually varied open-channel flow the pressure will increase 
in the vertical direction just as it does in the same fluid for a uniform flow. This variation of pressure 
with depth is hydrostatic. A rapidly varied flow occurs when the change in depth is too rapid to 
ignore the normal acceleration component of the flow, and the pressure distribution is not hydrostatic.

Another way of looking at the difference between gradually varied and rapidly varied flow is 
that it is possible to use one-dimensional hydraulic equations for gradually varied flows, but rapidly 
varied flows are two dimensional, or three dimensional. Because of the complexities involved in 
solving two- and three-dimensional open-channel flows, often rapidly varied flows are handled by 
utilizing one-dimensional open-channel equations that are modified by experimental coefficient 
that account for the deficiencies in the one-dimensional assumption. This utilization of experimen-
tal coefficients distinguished one-dimensional hydraulics from pure fluid mechanics.

There is no parameter of measurement of the radius of curvature, or other characteristic of the 
flow with a threshold value that separates a gradually varied from a rapidly varied flow. Rather the 
distinction is subjective. Almost everyone would agree that the flow over a dam’s spillway crest 
is rapidly varied, whereas the flow in the channel upstream from the dam is gradually varied. 
Likewise the flow immediately downstream from a sluice gate, where the flow is contracting rap-
idly from the gate height, is rapidly varied whereas the flow both upstream and further downstream 
from the gate is gradually varied until the position downstream from the gate where a hydraulic 
jump occurs, should this be the case. The flow through the hydraulic jump is rapidly varied, again. 
Whether a flow through a transition between two channels of different sizes is rapidly or gradually 
varied may be debatable. The classification will depend upon how rapidly the transition changes the 
channel’s cross section, and how accurate it is necessary that the computed results correspond to the 
actual flow characteristics. An abrupt enlargement or an abrupt contraction will cause a small sec-
tion of rapidly varied flow to occur. Whereas the solution of one-dimensional hydraulic equations 
for gradually varied flow may represent an accurate method for solving the variation of depth across 
a 50 ft long smoothly formed transition. If so, the flow is gradually varied.

Spatially varied flows are those portions of the main channel flow over which either lateral 
inflow or lateral outflow occurs. Therefore, in a spatially varied flow, the flow rate changes with 
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position along the channel. Strictly speaking, the joining of two channels creates a spatially varied 
flow for a short distance. Generally, however, spatially varied flows occur where the lateral inflow or 
outflow is over some length of channel. A side weir that runs parallel to the direction of the channel 
over which discharge occurs creates a section of spatially varied flow. In this case spatially varied 
flow has distributed outflow from the channel, and the flow rate decreases in the direction of the 
main channel flow. Water accumulating from rainfall over a roadway surface and flowing into the 
gutters along the sides of the roadway causes a spatially varied open-channel flow in the gutters. In 
this case the channel flow in the gutter has a lateral inflow, and the flow rate increases in the direc-
tion of flow. As this gutter flow crosses the grates of a storm drain a spatially varied outflow occurs 
in the gutter, but in the storm drain that receives the flow from the grates, a spatially varied inflow 
occurs. If all the gutter flow can enter the storm drain then the channel flow in the gutter terminates 
at the end of the spatially varied flow.

1.5  Prismatic versus NonPrismatic Channels

Definitions that are closely associated with uniform and nonuniform flows, but apply to the channel 
rather than the flow in the channel, are prismatic and nonprismatic channels. A prismatic channel 
has the same geometry throughout its length. This may consist of a trapezoidal section, a rectan-
gular section, a circular section, or any other fixed section. If the shape and/or size of the section 
changes with position along the channel, the channel is referred to as a nonprismatic channel. In 
theory, it is possible for a natural channel created by nature to be prismatic. However, in practice 
natural channels are nonprismatic.

1.6 Su bcritical, Critical, and Supercritical Flows

An open-channel flow is classified according to how the average velocity, V, of the flow compares 
with the speed, c, of a small amplitude gravity wave in that channel. If V is less in magnitude than 
c, then the flow is subcritical. If V is greater in magnitude than c, then the flow is supercritical, and 
if V = c, then the flow is critical. The speed of a small amplitude gravity wave is given by

	 c
gA
T

gYd= = 	 (1.1)

where
g is the acceleration of gravity
A is the cross section of the flow
T is the top width of the flow
Yd is the hydraulic depth, A/T

Subcritical flows behave differently from supercritical flow because in a subcritical flow the 
effect of downstream changes are noted by the fluid and it adjusts in anticipation of that downstream 
occurrence. Thus, if an obstruction exists in a subcritical flow the depth will gradually increase to 
the depth needed to pass by the obstruction. This signal that something exists downstream is propa-
gated continuously to the upstream flowing fluid by gravity waves. These gravity waves can travel 
upstream because the velocity of flow is smaller than their speeds.

In supercritical flows the effect of changes cannot travel upstream because the velocity in the 
channel exceeds the propagation speed of gravity waves. Therefore, flow does not adjust itself for 
downstream conditions. For example, if a channel containing a supercritical flow ends abruptly, the 
depth at the end of the channel at the free overfall will be the same as if the channel had continued. If 
the flow were subcritical, the depth would decrease toward critical depth at the end of a free overfall, 
however.
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As a consequence of whether gravity waves can move upstream or not, subcritical flows have their 
control “downstream,” whereas supercritical flows are “upstream controlled.” An example of both 
downstream and upstream control exists at a gate in a channel. Upstream from the gate the flow must 
be subcritical because the gate, which is downstream, controls the depth, velocity, area, etc., of the 
flow. Downstream from the gate the flow will be supercritical, and the gate determines the magni-
tude of the variables of the flow. If the gate is lowered, for example, it will decrease the downstream 
depth while increasing the downstream velocity, and has the opposite effect on the upstream flow.

The Froude number, Fr, is the ratio of the velocity in a channel divided by the speed of propaga-
tion, or celerity of a small amplitude gravity wave c, or

	 F
V
c

V

gA/T

Q T

gA
r

2

3
= = = 	 (1.2)

Therefore, the determination of whether a flow is subcritical, critical, or supercritical is commonly 
accomplished by computing the Froude number of the flow. If this value is less than unity then the 
flow is subcritical. If the Froude number is exactly equal to one, then the flow is critical, and if the 
Froude number is larger than unity, then the flow is supercritical. It turns out that the Froude number 
is also the ratio of inertia to gravity forces. A more in-depth treatment of subcritical and supercriti-
cal flows and their associated Froude numbers is given in subsequent chapters.

1.7  Turbulent versus Laminar Flow

The Reynolds number, or the ratio of inertia to viscous forces, is used to distinguish whether a flow 
is laminar or turbulent. For open-channel flows the Reynolds number is defined by using the hydrau-
lic radius, Rh, or the cross-sectional area A divided by the wetted perimeter P as the length variable. 
Thus the Reynolds number is defined by

	 R
VR Q

P
VR

e
h h= = =

ν ν
ρ

µ
	 (1.3)

where
V is the average velocity of the flow
Q is the volumetric flow rate
μ is the absolute viscosity
ν is the kinematic viscosity of the fluid

If the Reynolds number is less than 500, the flow is laminar. Otherwise, the flow is turbulent. Often 
4Rh is used as the length parameter in Reynolds number for channel flows because this is equivalent 
to the diameter of a pipe, e.g., the hydraulic radius of a pipe is Rh = (πD2/4)/(πD) = D/4. When using 
this latter definition, the numerators on the left side of Equation 1.3 should be multiplied by 4.

Laminar flows are rare in open channels if the fluid is water. Examples of laminar flow might be 
the sheet flow over the surface of a watershed produced by precipitation, or the lateral flow over the 
crest of a roadway as it moves toward the side gutter. To have laminar water flow in an open chan-
nel, the depth generally has to be very small, in conjunction with a not too large velocity, since the 
kinematic viscosity of water is about 1.2 × 10−5 ft2/s.

1.8  Review of Basic Fluid Mechanics Principles

The rest of this chapter provides basic theory upon which the book is based. The presentation assumes 
that you are familiar with fluid mechanics, and therefore the remainder of this chapter should be 
considered a review; but this review is slanted toward open-channel hydraulics. Books dealing with 
engineering fluid mechanics will contain a more thorough treatment of this subject material.
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The application of fluid mechanics in solving engineering problems involves a thorough under-
standing of the following four related items: (1) Physical properties of fluids, e.g., density, specific 
weight, viscosity, surface tension, and how these cause pressures to change, resistance to motion, 
etc. (2) The conservation of mass, or the continuity principle. (3) The conservation of energy and 
its dissipation into non-recoverable forms. (4) Utilization of momentum fluxes as vector quantities 
to deal with external forces on fluid in motion. A section for each of these four important subjects 
follows as the rest of this chapter. The specific application of these subjects to the flow of water 
in open channels constitutes the remaining chapters of this book. The review in this chapter will 
introduce the symbols that will be used through the rest of the book, and subsequent chapters are 
written assuming that you are acquainted with these symbols and their meanings. The problems at 
the end of this chapter have been listed under four similar headings. Problems given under subse-
quent headings generally also require an understanding of the principles involved in the previous 
headings.

1.9 � Physical Properties of Fluids and Their Effects 
on Open-Channel Flows

In solid mechanics, since the object being dealt with generally stays together its mass or weight 
is used when dealing with the effects it has on its environment. With fluids, however, total 
mass or total weight, generally, have no significance since these totals are directly related to 
the length of time the flow has been occurring. Rather, mass per unit volume or weight per 
unit volume are used. These quantities are the density ρ and the specific weight γ, or the fluid 
respectively. In the SI (International System of Units) the density ρ is given in kilograms per 
cubic meter, e.g., ρ (kg/m3). In ES units (English System of Units) the density is in slugs per 
cubic foot, ρ (Slug/ft3).

Specific weight γ is related to density through Newton’s second law of motion,

	 Force Mass Acceleration= × .

Weight is a force due to resisting gravity, and therefore γ = ρg in which g is the acceleration of 
gravity and equals 32.2 fps2 in ES units or equals 9.81 m/s2 when using SI units. (With more digits 
of precision g = 32.174049 fps2 in ES units, and g = 9.80685 m/s2 in SI units.) In SI units the specific 
weight is generally given as kilonewtons per cubic meter, e.g., γ (kN/m3) and in ES units γ is given 
in pounds per cubic foot, e.g., γ (lb/ft3). The density and specific weight for water vary moderately 
with its temperature as shown in Table 1.1.

The weight of a fluid causes pressure to increase with depth. If z is taken as the vertical coordi-
nate, positive upward against gravity, from a selected datum and there is no motion in the fluid, then 
the pressure varies according to the hydrostatic law,

	
dp
dz

g= − = −γ ρ 	 (1.4)

and if the fluid is incompressible (which is another way of indicating that γ and ρ are constant 
values), then this equation integrates to

	 p p z z g z z2 1 2 1 2 1− = − = −γ ρ( ) ( ) 	 (1.4a)

When the fluid is a liquid with a free surface it is convenient to use a coordinate h (e.g., independent 
variable) that has its origin on this surface and is positive downward. h is related to z by dh = −dz, 
and, therefore, Equations 1.4 and 1.4a become as following with p considered a function of h:
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dp
dh

g= =γ ρ 	 (1.4b)

and

	 p h gh= =γ ρ 	 (1.4c)

In the last equation, the pressure p assumes that atmospheric pressure is the reference base pres-
sure, and therefore p is gage pressure. Atmospheric pressure must be added to gage pressure to get 
absolute pressure.

A few example problems follow that illustrate the use of Equations 1.4; however, it is worthwhile 
to examine how the pressure varies with depth in a channel with a steep bottom slope that contains 
a flow, before leaving the subject of pressure within a fluid caused by gravity. If the angle that 
the channel bottom makes with the horizontal is denoted by θ (note that the tan θ = So the slope 
of the channel bottom), then the normal depth Yn is related to the vertical depth Yv by the cosine of 
this angle, or Yn = Yvcosθ, as shown in the sketch below.

Since gravity acts on fluid elements in the vertical direction, the height water would rise in a 
piezometer with its opening pointing downward, and located at any position will equal γhncosθ = 
gρhncosθ = γhvcos2θ, where hn is the normal distance from the water surface down to the point being 
considered, and hv is the vertical distance from the water surface to the point as shown on the sketch. 
Thus, the pressure at the bottom of the channel equals γYncosθ = γYvcos2θ.

θ

tan(θ) =So

Yv

Yn

1

ggn

p= γYncosθ

hv
hn

An alternative, to the above method for determining the pressure distribution, is to note that the 
acceleration of gravity g acts in the vertical direction on any fluid element. The component of the 
acceleration in the normal direction is gn = gcosθ, and therefore p = ρgnhn = ρghncosθ = γhvcos2θ.

Should the bottom of the channel be curved instead of having a constant bottom slope, then the 
normal acceleration in the fluid due to the curvature of the channel bottom will affect the pressure 
distribution as illustrated in the sketches below. The fluid at the very bottom of the channel will 
have a normal acceleration equal to v2/r and will add to the gravitational acceleration when the 
curvature is concave upward and subtract from g when the curvature is concave downward. Note 
that since the fluid is not free falling under gravity’s acceleration, upward accelerations add to g 
and downward accelerations subtract from g. The component of acceleration on a fluid particle in 
the direction of the radius of curvature equals g cosθ + v2/r, where θ now is the angle between the 
vertical and the radius of curvature, and therefore at any point in the fluid dp/dr = ρ(g cosθ + v2/r). 
Since the radii of curvature of streamlines other than the bottom streamline will not, in general, 
equal the radius of curvature of the channel, it is not possible to determine the pressure distribution 
without making assumptions related to the radius of curvature between the channel bottom and the 
free surface.
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Concave upward

Concave downward

The bulk modulus Ev–
 is a similar quantity in dealing with fluids, as is the modulus of elasticity when 

dealing with solids. It has the same units as pressure and is the reciprocal of the compressibility. The 
bulk modulus equals the change in pressure needed to cause a decrease in volume divided by that 
decreased volume divided by the volume of fluid involved, or

	 E
p

V V
dp

dv/v
dp

d /
v = −

/
= − =∆

∆ ρ ρ
	 (1.5)

The second and third parts of Equation 1.5 are obtained by taking one unit mass of a fluid so V 
becomes the specific volume (volume/unit mass) v which is the reciprocal of the density ρ, and 
therefore dv/v = −dρ/ρ. The bulk modulus of pure water equals 320,000 psi.

A small amount of free air entrained in the water can significantly reduce the bulk modulus of 
the mixture. If x is taken as the fraction of free air (not dissolved) mixed in water, then the density 
of the air–water mixture is given by ρm = xρa + (1 − x)ρw in which ρa and ρw are the densities of air 
and water, respectively. To obtain the bulk modulus of this mixture note from Equation 1.5 that 
ΔV = −V Δp/Ev–

. The change in volume of the mixture ΔVm will be the sum of the changes in volume 
of the air and the water or, ΔVm = ΔVa + ΔVw. By taking an original volume of a unit amount (V = 1), 
this last expression for the change in volume becomes the following upon substituting for the ΔV’s:

	
− = − = − − =

− +
∆ ∆ ∆p
E

x p
E

x p
E

or E
E E

(1 x)E xEm a w
m

a w

a w

( )1

where
Ea is the bulk modulus of air
Ew denotes the bulk modulus of water

Since the air mass in a water–air mixture generally is an extremely small fraction of the water mass, 
the air’s temperature will remain constant when it is compressed. The compression of a gas at con-
stant temperature is referred to as an isothermal process. The bulk modulus of a gas undergoing an 
isothermal process equals its absolute pressure, or Ea = pabs. Therefore, the bulk modulus for a small 
fraction x of air entrained in water becomes

	 E
p E

(1 x)P xE
m

abs v

abs v

=
− +

	 (1.6)

where the symbol Ev has been used for the bulk modulus of water again instead of Ew. The table 
below indicates how the bulk modulus is affected by a small fraction of air. Note that a small 
amount of air entrainment reduces the density of the mixture very modestly, but reduces the bulk 
modulus by orders of magnitude. These values assume air at atmospheric pressure of 14.7 psia, and 
at a temperature of 60°F, so its density equals 0.00237 slugs/ft3.
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Fraction of air x 0.0000 0.0001   0.0005 0.001 0.005 0.01 0.10

Density of mixture ρm 1.940 1.940   1.939 1.938 1.930 1.921 1.746

Bulk modulus of mixture Em × 10−2 (psi) 3,200 1,007 26.927 7.115 2.913 1.463 0.147

Example Problem 1.1
A sensitive pressure transducer is used to record the pressure at the bottom of a river that carries 
a sediment load that causes the density to increase linearly from 1.945 slug/ft3 on the surface at 
a rate of 0.012 slug/ft3/ft of depth. Develop the equation that gives the depth of flow from this 
pressure reading. What is the error if the sediment load is ignored, and the density taken equal to 
1.94 and a pressure of 3.5 psi is recorded?

Solution
The problem is solved by defining ρ = 1.945 + 0.012h, substituting this into Equation 1.4b, sepa-
rating variables, and integrating. The result is

	 p g(1.945h 0.006h ),2= +

where
p is in pound per square foot
h is in feet

Applying the quadratic formula gives the depth h as a function of the pressure reading as

	 h 162.083 83.333 3.783 0.024
p
g= − + +







1 2/

.

Substituting p = 3.5 × 144 into the above equation gives h = 7.856 ft. If ρ = 1.94 (constant), then 
p = 62.4h, or h = 8.077 ft, or an error of +0.221 ft.

Example Problem 1.2
Water is being drawn from a well whose water level is 1500 ft below the ground surface. 
Determine the significance of the compressibility of water in determining the head the pumps 
must supply if the friction loss in the well pipe is 25 ft, and the pump must supply 80 psi of pres-
sure at the ground surface. Assume the bulk modulus for water remains constant and equal to 
320,000 psi.

Solution
First, it is necessary to determine the relationship between density and pressure since the effects 
of increasing density of the fluid are to be taken into account. The definition of a fluid’s bulk 
modulus Ev–

 provides this relationship since Ev–
 = −Δp/(ΔV–/V–) = ρdp/dρ, in which V– is fluid vol-

ume and ΔV– is the change in this volume due to the pressure increase Δp. Separating variables 
in this equation and integrating the density from ρo (the density at atmospheric pressure, which 
will be taken as 1.94 slugs/ft3) to ρ and integrating the pressure from 0 (atmospheric) to p gives

	

ρ
ρo v

xp
p=







Ε

Ε

(An alternative to integrating between the two limits is to just integrate and add a constant to 
the resulting equation. This constant can then be determined from a known condition. In this 
case the known condition is that the density equals ρo = 1.94 slugs/ft3 when the pressure, p = 0.)

Substituting this expression into the hydrostatic Equation 1.4b gives

	

dp
dh

g g xp
p

o
v

= =






ρ ρ Ε

Ε
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Again separating variables and integrating gives

	
p E Ln 1

g h
v

o

v

= − −






ρ
Ε

The value of h to use in this equation is the sum 1500 ft, the pressure head needed at the surface, 
80 × 144/(32.2 × 1.94) = 184.41 ft, and the frictional loss of 25 ft, or h = 1709.41 ft. Substituting 
this value for h in the above equation gives a pressure of 742.41 psi at the pump in the well. If the 
compressibility of the water is ignored, the pressure is obtained from p = gρh/144 = 741.55 psi. 
This small difference of about 1 psi points out that the compressibility of water is not very sig-
nificant for most engineering applications.

An exception is whenever the speed of pressure waves are concerned, because for such appli-
cations a small amount of free air in water can dramatically change the speed of this wave as 
noted above.

Example Problem 1.3
Water is flowing at a rate of 800 cfs in a 6 ft wide rectangular channel at a constant depth of 4 ft. 
The bottom of the channel changes slope by means of a circular arc of radius 50 ft. The depth 
of flow through this arc remains constant at 4 ft. Assuming that the streamlines of this flow are 
concentric circles (have the same center of curvature), determine the pressure along a radial line 
at the beginning of the arc where it connects to the straight upstream channel that has a bottom 
slope So = 0.15, and also determine the pressure distribution along a vertical radial line.

Solution
Using the upstream bottom slope θ = arctan(0.15) = 8.531°. The velocity in the channel equals 
33.333 fps and therefore,

	

dp
dr

g cos(8.531 )
(33.333)

r

2

= ° +








ρ

or after integrating p from 0 to p as r is integrated between 46 and r, this results in

	
p 31.844r 1111.11 Ln

r
46

1464.81= + 





−








ρ

to give the pressure distribution as a function of r. On the bottom r = 50, and the pressure here is 
p = 426.75 psf = 2.964 psi, at the channel bottom, where r = 50 ft. Ignoring the added pressure due 
to the radius of curvature, the pressure at the bottom of the channel is p = 4γ/144 = 1.73 psi. This 
latter amount is 1.234 psi too small.

r

Flip-bucket spillways cause high-velocity water to have a considerable normal component of 
acceleration, as illustrated in this example. To find the added forces on such structures caused 
by changing the direction of the fluid can be handled easier through the use of the momentum 
principle that will be discussed in detail in Chapter 3.

Example Problem 1.4
A circular tank with a 3 m diameter (or radius ro = 1.5 m) initially containing water to a depth of 
ho = 4 m is rotated at an angular velocity ω = 5 rad/sec for a long time until the water is brought 
into solid body rotation. Determine the shape of the water surface in the tank, and its depth at the 
center and outside walls of the tank.
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Solution
In this problem the fluid (water) is being accelerated. The equation for fluid statics ∂p/∂z = − ρg 
(with ∂p/∂x = 0 and ∂p/∂y = 0) which accounts only for gravitational acceleration in the z-direc-
tion (vertical) can be generalized to the following: ∂p/∂z = −ρ(g + az), ∂p/∂x = −ρax, ∂p/∂y = −ρay. 
When applied to the rotating tank, with z as the vertical coordinate, and r the radial coordinate, 
these equations become ∂p/∂z = −ρg and ∂p/∂r = −ρar = ρrω2. From the definition of a differ-
ential dp = (∂p/∂r)dr + (∂p/∂z)dz. Along any constant pressure surface, such as the free surface, 
dp = 0, and therefore the slope of the water surface at any radial position r is dz/dr = − ar/(g + az) = 
rω2/g. Separating variables and integrating gives the following parabolic relationship between 
z and r for the water surface:

	
z

r
2g

C
2 2

= +ω

The constant C can be evaluated by noting that the same amount of water exists in the tank after 
rotation as before, or

	

2 rzdr r
r
g

C dr
r
g

r
C

r r

o o

o o

π π ω π ω π
0

2 2

0

2 4 2

2
2

2
8 2∫ ∫= +







= +






= hh ro o
2

or solving for C

	
C h

r
4g

4
1.5 5

4(9.81)
4 1.433 2.567m.o

o
2 2 2

= − = −
×( ) = − =ω

At the center axis of the tank the water depth will be zin = C = 2.567 m, and at the outside zmax = 
C + (ro × ω)2/(2g) = 2.567 + 2.867 = 5.433 m. As a check on the computations, etc., we might 
note that if the volume of the cylinder formed by zmax as its height has the volume of the parabo-
loid subtracted from it, then the original volume of the cylinder with a height ho should occur. 
The volume of a paraboloid equals 1/2 the area of the base time the height. Therefore, Aho = 
A{zmax − 0.5(zmax − C)} = A(zmax + C)/2, or ho = (zmax + C)/2 = (5.433 + 2.567) = 4 m.

Before leaving this problem, it is worth noting that the Bernoulli equation cannot be applied 
across the streamlines in this rotation tank, e.g., from the inside radius to the outside. If this were 
done then the total head on the free surface would be the sum of the elevation and velocity heads 
(since p = 0) or

	
z

V
2g

z
(r )

2g
H

2 2

+ = + =ω
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or

	
z H

r
2g

,
2 2

= − ω

but this equation has a constant minus the velocity head whereas the above equation indicated 
that z was equal to a constant plus the velocity head. The reason is that the Bernoulli equation is 
based on irrotational flow, whereas this is rotational flow. A free vortex represents irrotational 
flow, but its equation indicates that the transverse component of velocity vt = Constant/r. The 
forced rotation in the tank gives vt = rω = r × Constant.

Example Problem 1.5
Water is flowing in a natural channel, and the flow rate Q is to be determined by measuring the 
velocity on the surface and the depth of flow at various positions x across the channel. These 
measurements have produced the values in the table below.

Position, x (m) 0.0 4 8 12 16 20 24 28 32 36

Depth, Y (m) 0.0 4.7 8.3 11.2 12.7 13.3 13.4 12.8 12.0 11.8

Velocity, Vs (m/s) 0.0 0.35 0.45 0.47 0.49 0.50 0.49 0.50 0.48 0.48

40 44 48 52 56 60 64 68 72 75

11.5 11.7 12.3 13.3 14.5 15.0 14.8 12.7 8.0 0.0

0.48 0.48 0.48 0.49 0.50 0.50 0.45 0.35 0.20 0.0

It has also been determined that the velocity varies according to the same dimensionless pro-
file from the bottom of the channel at any position x according to the data given in the table 
below. (In this table y′ = y/Y is the dimensionless depth, with y beginning at the bottom at this 
position x, and likewise v′ = v/Vs is the dimensionless velocity, in which Vs is the velocity on the 
surface at this position x.)

Dimensionless 
depth y′

0.0 0.04 0.08 0.12 0.20 0.28 0.40 0.52 0.64 0.72 0.80 0.90 1.0

Dimensionless 
velocity v′

0.0 0.22 0.375 0.500 0.675 0.815 0.955 1.040 1.070 1.068 1.06 1.03 1.0

Solution
There are a number of methods that could be used to solve this problem, including plotting the 
data from the above tables and determining area under the curves. However, since in this book 
we wish to emphasize the use of the computer to do numerical computations, the problem will 
be solved by writing a computer program. First, however, let us note that a dimensionless flow 
rate per unit width q′ can be obtained by integrating the dimensionless velocity profile given 
in the second table, or q′ = ∫v′dy′, with limit from 0 to 1. The flow rate per unit width q equals 
the dimensionless q′ multiplied by the depth Y and the surface velocity at any position, or q = 
∫v dy = VsY∫v′dy′ = VsYq′. Thus, the flow rate Q, which is the integral of the unit flow rate q times 
dx, or Q = ∫qdx, can be determined from Q = q′∫VxY dx, with the limits of this integration from 
0 to the total width of the section, or 75 m. These integrations will be accomplished by using 
the subroutine SIMPR, which is described in Appendix B, and implements Simpson’s rule to 
numerically evaluate integrals. To provide the integrand as a continuous function of the variable 
being integrated, a cubic spline function will be used, i.e., subroutine SPLINESU, also described 
in Appendix B is utilized. The program EXPRB1_5 (both in FORTRAN and C) is given below 
to provide the solution. The following are the key components of this program: (1) The first two 
READS store the data from the above two tables in arrays, with arrays YP and VP storing the 
dimensionless velocity profile data in the second table, and arrays X, Y, and VS storing the data 



14	 Open Channel Flow: Numerical Methods and Computer Applications

in the first table. (2) The cubic spline function SPLINESU is called three times to provide (a) the 
second derivatives d2v′/dy′ 2, (b) the second derivatives d2Y/dx2, and (c) the second derivatives 
d2Vs/dx2 corresponding to the points in the tables. (3) The subroutine SIMPR is called next to 
integrate the dimensionless velocity profile. It calls on function subprogram VPROF to provide 
v′ corresponding to any dimensionless depth y′, and accomplishes this by using the d2v′/dy′2 
supplied by the first call to SPLINESU. (4) The subroutine SIMPR is called again to provide the 
integral ∫(VsY)dx, and subprogram Dq provides the arguments for this integration. (5) Finally by 
multiplying q′ (the result from the first integration) by the result from the second integration the 
flow rate Q is printed out. (Note that the C program contains the function that supplies what is 
integrated as argument 1, as mentioned in Appendix B if the name is not equat used; thus allow-
ing the two different arguments vprof (for v′) and qp (for Y*Vs).)

Listing of program EXPRB1_5.FOR
      EXTERNAL VPROF,Dq
      REAL DUM(30)
      COMMON YP(20),VP(20),X(30),Y(30),VS(30),
     &D2VP(20),D2VS(30),D2Y(30),I1,I2,NP,NX
      I1=1
      I2=2
      READ(2,*) NP,(YP(I),VP(I),I=1,NP)
      READ(2,*) NX,(X(I),Y(I),VS(I),I=1,NX)
      CALL SPLINESU(NP,YP,VP,D2VP,DUM,0)
      CALL SPLINESU(NX,X,Y,D2Y,DUM,0)
      CALL SPLINESU(NX,X,VS,D2VS,DUM,0)
      CALL SIMPR(VPROF,0.,1.,qPRIM,1.E-6,20)
      WRITE(*,*)' Integral of dimensionless'/
     &' velocity profile=',qPRIM
      I1=1
      I2=2
      CALL SIMPR(Dq,0.,X(NX),Q,1.E-4,20)
      WRITE(*,*)' Flowrate, Q =',Q*qPRIM
      END
      FUNCTION Dq(XX)
      COMMON YP(20),VP(20),X(30),Y(30),VS(30),
     &D2VP(20),D2VS(30),D2Y(30),I1,I2,NP,NX
1     IF(XX.LT.X(I2) .OR. I2.EQ.NX) GO TO 2
      I1=I2
      I2=I2+1
      GO TO 1
2     IF(XX.GE.X(I1) .OR. I1.EQ.1) GO TO 3
      I2=I1
      I1=I1-1
      GO TO 2
      END
      FUNCTION VPROF(YY)
      COMMON YP(20),VP(20),X(30),Y(30),VS(30),
     &D2VP(20),D2VS(30),D2Y(30),I1,I2,NP,NX
1     IF(YY.LT.YP(I2) .OR. I2.EQ.NP) GO TO 2
      I1=I2
      I2=I2+1
      GO TO 1
2     IF(YY.GE.YP(I1) .OR. I1.EQ.1) GO TO 3
      I2=I1
      I1=I1-1
      GO TO 2
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3     DYP=YP(I2)-YP(I1)
      A=(YP(I2)-YY)/DYP
      B=1.-A
      VPROF=A*VP(I1)+B*VP(I2)+((A*A-1.)*A*D2VP(I1)+
     &(B*B-1.)*B*D2VP(I2))*DYP**2/6.
      RETURN
3     DX=X(I2)-X(I1)
      A=(X(I2)-XX)/DX
      B=1.-A
      AA=A*(A*A-1.)*DX*DX/6.
      BB=B*(B*B-1.)*DX*DX/6.
      DEPTH=A*Y(I1)+B*Y(I2)+AA*D2Y(I1)+BB*D2Y(I2)
      VSURF=A*VS(I1)+B*VS(I2)+AA*D2VS(I1)+BB*
     &D2VS(I2)
      Dq=DEPTH*VSURF
      RETURN
      END

Listing of program EXPRB1_5.C
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
float yp[20],vp[20],x[30],y[30],vs[30],d2vp[20],d2y[30],d2vs[30];
int i1,i2,np,nx;
extern float simpr(function equat,float xb,float xe,\ 
float err,int max);

extern void splinesu(int n,float *x,float *y, float *d2y,\ 
float *d,int ity);

float vprof(float yy){float a,b,dyp;
 while((yy>=yp[i2])&&(i2<np−1)){i1=i2;i2++;}
 while((yy<yp[i1])&&(i1>1)){i2=i1;i1−−;} dyp=yp[i2]−yp[i1]; 

a=(yp[i2]−yy);b=1.−a;
 return a*vp[i1]+b*vp[i2]+((a*a−1.)*a*d2vp[i1]+(b*b−1.)*b*d2vp[i2])\ 

*dyp*dyp/6.;
}  // End of vprof
float qp(float xx){float a,b,dx,aa,bb,depth;
 while((xx>=x[i2])&&(i1<nx−1)){i1=i2;i2++;}
 while((xx<x[i1])&&(i1>1)){i2=i1;i1−−;}
 dx=x[i2]−x[i1];a=(x[i2]−xx)/dx;b=1.−a;
 aa=a*(a*a−1.)*dx*dx/6.;bb=b*(b*b−1.)*dx*dx/6.;
 depth=a*y[i1]+b*y[i2]+aa*d2y[i1]+bb*d2y[i2];
 return depth*(a*vs[i1]+b*vs[i2]+aa*d2vs[i1]+bb*d2vs[i2]);
}  // End of qp
void main(void){FILE *fili; char filnam[20];int i; 
float dum[30];qprim,q;

 i1=1;i2=2; printf("Give input file name\n");
 scanf("%s",filnam);
 if((fili=fopen(filnam,"r"))==NULL){ 

printf("Cannot open file\n");exit(0);}
 fscanf(fili,"%d",&np);
 for(i=0;i<np;i++)fscanf(fili,"%f %f",&yp[i],&vp[i]);
 fscanf(fili,"%d",&nx);
 for(i=0;i<nx;i++)fscanf(fili,"%f %f %f",&x[i],&y[i],&vs[i]);
 splinesu(np,yp,vp,d2vp,dum,0);splinesu(nx,x,y,d2y,dum,0);
 splinesu(nx,x,vs,d2vs,dum,0);
 qprim=simpr(vprof,0.,1.,1.e−6,20); i1=1;i2=2;
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 printf("Integral of dimensionless velocity profile =%f\n",qprim);
 printf("Flowrate, Q =%f\n",qprim*simpr(qp,0.,x[nx−1],1.e−4,20));
}

The following is the input file needed to solve the problem (EXPRB1_5.DAT):

13 0. 0. .04 .22 .08 .375 .12 .5 .2 .675 .28 .815 .4 .955 .52 
1.04 .64 1.07 .72 1.068 .8 1.06 .9 1.03 1 1

20 0 0 0 4 4.7 .25 8 8.3 .45 12 11.2 .47 16 12.7 .49 20 13.3 .5 
24 13.4 .49 28 12.8 .48 32 12. .48 36 11.8 .48 40 11.5 .48 44 
11.7 .48 48 12.3 .48 52 13.3 .49 56 14.5 .5 60 15. .5 64 14.8 
.45 68 12.7 .35 72 8. .2 75 0. 0.

The solution produced is

Integral of dimensionless velocity profile 8.726063e 01= −

Flowrate, Q 342.505700=

Viscosity is the fluid property that defines its resistance to motion. By definition, the absolute vis-
cosity μ of a fluid is defined as the coefficient that relates the internal shearing stress τ within the 
fluid to the velocity gradient at this point in the flowing fluid, or

	 τ µ= − ∂
∂







v
n

	 (1.7)

where n is a direction normal to velocity v. Fluids, such as water, whose absolute viscosities are not 
dependent upon the rate of shear, ∂v/∂n, are referred to as Newtonian fluids. The viscosity of water 
does depend upon its temperature, as shown in Table 1.1. If the viscosity of a fluid does change with 
the rate of shear (μ is a function of ∂v/∂s or τ, i.e., μ(∂v/∂s) or μ(τ)) then the fluid is referred to as a 
non-Newtonian fluid. Silly putty is a non-Newtonian fluid that behaves similar to an elastic solid 
if sheared rapidly (i.e., bounces as a rubber ball), but flows as a very viscous fluid if given sufficient 
time to do this. Mud and debris flows, which are open-channel flows, of a fluid that is a mixture of 
water and soil (and possibly debris from the channel) that have mobilized are other examples involv-
ing non-Newtonian fluids.

The kinematic viscosity v equals the absolute viscosity divided by the fluid density, or

	 v = µ
ρ 	 (1.8)

Effects that viscosity has on fluid motion can be examined by considering a small section of uni-
form, steady flow in a channel in which an element of fluid with a differential length dx, and a height 
dy is taken as shown in the sketch below.

Y

So

τo

dY

dx
γdx dy

τ

(τ + dτ)dx
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The channel has a bottom slope equal to So and is wide enough that only the shearing stress on the 
bottom is important (the side shears can be neglected). Since the flow is steady and uniform, the 
summation of forces on the differential fluid element in the x-direction must equal zero. This sum-
mation produces the following:

	 − + + + =τ τ τ γdx ( d )dx S dx dy 0o

In this equation the slope of the channel bottom is small so that the sin θ = tan θ = So. Simplifying 
gives dτ = −Soγ dy, which can be integrated between the bottom of the channel to any depth y, or

	
d S dyo

Y

o

τ γ
τ

τ

= −∫ ∫
0

which gives

	 τ τ γ= −o oS y

An examination of the section of this flow from the bottom to the top with a length dx shows that 
τo = γYSo. For any arbitrary section in which the shear stress on the side is considered, it can be 
shown that

	 τ γ γo
o

h o
AS
P

R S= = 	 (1.9)

where
A is the cross-sectional area
P is wetted perimeter
Rh is the hydraulic radius, A/P

which reduces to the above for the wide section being considered here. Substituting for τo gives the 
following equation that defines the shearing stress as a function of the position from the bottom y:

	 τ γ= −S Y yo( ) 	 (1.10)

which shows the shearing stress varies linearly from γSoY at the bottom to zero at the top of the 
channel flow. Substituting Equation 1.10 into Equation 1.7 allows for the velocity distribution from 
the bottom to the top of the channel to be determined. Making this substitution gives

	 dv
S

(Y y)dyo=






−γ
µ

which integrates to give the parabolic relationship,

	 v
S

Yy y
o=

−
γ

µ( / )2 2
	 (1.11)

It turns out that Equation 1.11 is correct only for laminar flows in which the viscous forces domi-
nate over the inertia forces. For a turbulent flow the fluid near the walls has its velocity increased, 
whereas the velocity near the top of the flow away from the solid boundaries has its velocity 
decreased from the velocity given by Equation 1.11 by mixing of the flows. In other words, the 
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large velocity portion of the flow is continually being mixed with the small velocity portion of the 
flow tending to make the velocity distribution more nearly the same throughout the flow than that 
described by Equation 1.11. This mixing is referred to as momentum transfer within the flow, and 
results in the need to modify Equation 1.7 for turbulent flows. This momentum transfer causes the 
inertial forces to play a more important role in determining the distribution of the velocity with 
depth. For turbulent flows it is necessary to multiply the velocity gradient in Equation 1.7 by an 
additional eddy viscosity term ε to get the shearing stress, or μ is replaced by (μ + ε). This eddy 
viscosity varies with y in a manner that cannot be defined easily for different flow situations, and 
therefore has limited practical value.

Even though Equations 1.7 and 1.11 hold only for laminar flows, Equation 1.10 is valid for tur-
bulent flows as well.

Example Problem 1.6
A trapezoidal channel with a bottom width b = 3 m, and a side slope m = 2 has a bottom slope 
So = 0.0008 and is 5000 m long. This channel contains a uniform flow of Q = 20 m3/s at a depth 
Y = 1.6 m. Determine the total shear force on the sides of this channel caused by the flowing water.

Solution
The shear stresses on the boundaries of this channel are given by Equation 1.9. Computing the 
area and wetted perimeter gives A = (b + mY), Y = 9.920 m2, P = 10.155 m. Substituting into 
Equation 1.9 gives

	 τo N m= 



 ( ) =9800

9 920
10 115

0 0008 7 658 2.
.

. . / .

The area over which this shear stress acts equals the perimeter times the length of channel or 
10.155 × 5000 = 50,775 m2. Therefore, the total shear force equals

50,775 × 7.658 = 388,848 N.

Alternatively, this shear force equals the component of the weight in the channel in the direc-
tion of the flow, or weight XSo. This computation gives 9800(9.92 × 5000)(0.0008) = 388,848 N. 
It should be noted in this problem that the shear force does not involve using the flow rate. In 
actuality, it is the flow rate and the channel roughness that determines the depth of flow.

Example Problem 1.7
Water at a rate of Q = 25 m3/s flows around a circular bend in a rectangular channel with a width 
of 4 m. The inside radius of this bend is 4 m. If the depth upstream from the bend is Yo = 3 m, 
determine the velocity distribution through a radial line through this bend under the following 
assumptions: (1) an average velocity through the depth of flow can be used so that the velocity 
can be considered only a function of r (distance from the center of the bend); (2) the shear stress 
is proportional to the velocity gradient dv/dr; and (3) the shear stress is zero along the circle mid-
way between the two channel walls and varies linearly to τo at the two walls.

Solution
The solution starts by noting from the problem’s description that |τ| = a(dv(r)/dr) = τo(r − 6)/2, in 
which a is a constant. Integrating this equation and evaluating the constant of integration gives 
the following equation for the velocity distribution:

	 v C
r r= −





−












6
2

16
2

 (Note that v = 0 when r = 4 and r = 8)

To evaluate the constant C, the integral of vYdr is equated to the flow rate Q, or

	 Q vYdr 25= =∫
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If the depth is assumed constant at Y = 3 m across the circular portion of the channel then

	
25 3

2
16

2 6
16 3

4

8

= − −








 = − −









 =C 6r

r
dr 3C

6r r
r C[5.33], or C

2 2 3

==∫ 1.563

The assumption of constant depth is not good since the centrifugal forces of the flow around 
the bend will cause the depth at its outside to be larger than at the inside. The slope of the water 
surface will be normal to the total acceleration vector, or dY/dr = v2/(gr). Substituting for v and 
integrating gives

	

Y
C
g

r
16

2r 26r 192r 256 Ln(r) C
2 4

3 2
1=







− + − +








+

Since the depth is assumed to equal 3 m when r = 6 m (the mid-radius of the bend), C1 can be 
evaluated as

	

C
C
g

1

2

3 108 31= +






( ). .

The above expressions for Y and v are again substituted in 25 = ∫ vYdr and this integrated from 
4 to 8 with the result,

	 25 16C 0.015982C3= −

The three roots of this equation are 1.5663, −32.395, and 30.828. The first root is the desired one, 
i.e., C = 1.5663. The depths and velocities through the bend are given in the table below.

r 4 4.5 5 5.5 6 6.5 7 7.5 8

Y 2.800 2.808 2.847 2.917 3.000 3.077 3.131 5.157 3.162

V 0.000 1.371 2.350 2.937 3.133 2.937 2.350 1.371 0.000

1.10 C onservation of Mass, or Continuity Equations

A basic principle of the mechanics is that mass is conserved. When this principle is applied under 
steady-state flow conditions to one-dimensional fluid flows it is generally expressed that the 
mass flow rate or flux past a second section equals the mass flow rate past the first section plus 
the mass flow rate entering between the two sections, or

	 ( ) ( ) ( ) ( )ρ ρ ρ ρ ρ ρVA VA VA VA vY dx q dx2 1 1 2 1= + = + =



− ∫ ∫ 	 (1.12)

where
the Vs represent the average velocities at the designated positions
the As represent the corresponding cross-sectional areas normal to these velocities

When dealing with an incompressible fluid the density ρ is constant and can be divided out of 
Equation 1.12 to give a volumetric flow equation. The volumetric flow rate with dimensions of L3/t 
will be given the symbol Q, so Equation 1.12 can be written in either of the following two forms:

	 Q Q q x dx2 1= + ∫ ( )
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or

	 (VA) VA q x dx2 = + ∫( ) ( )1 	 (1.13)

where q(x) is the lateral inflow (negative for outflow) in units of flow rate per unit length (L2/t) being 
equal to viY, and the integrations are over the length between the two sections 1 to 2. If the lateral 
inflow is constant, then the last term in Equation 1.13 can be simplified to qL1–2 where L1–2 is the 
distance between section 1 and 2.

The average velocity V in Equations 1.12 and 1.13 represents the point velocity integrated over 
the cross-sectional area of the flow divided by this area, or

	 V
vdA

A
= ∫

	 (1.14)

When dealing with two- or three-dimensional flows, or an unsteady one-dimensional flow, the 
continuity equation becomes a partial differential equation rather than one of the above algebraic 
equations. The general equation that applies for three-dimensional unsteady flow of a compressible 
fluid is

	
∂

∂
+ ∂

∂
+ ∂

∂
= − ∂

∂
( ) ( ) ( ) ( )ρ ρ ρ ρu

x
v

y
w
z t

	 (1.15)

where u, v, and w are the velocity components in the x, y, and z coordinate directions, respectively. 
For either steady flow, or the flow of an incompressible fluid the right-hand side of this equation 
becomes zero. For an incompressible fluid the continuity equation reduces to

	
∂
∂

+ ∂
∂

+ ∂
∂

=u
x

v
y

w
z

0 	 (1.16)

The continuity equation for an unsteady one-dimensional flow in an open channel needs to apply 
for the entire cross section of the channel rather than at a point as is the case with Equations 1.15 
and 1.16. To develop this equation consider a differential length of a channel flow as shown in the 
sketch below whose depth, etc. changes with time, as well as the position x along the channel. The 
principle of conservation of mass requires that the following, in relationship to this control volume, 
CV, be true:

	 (Vol. in CV in time t) (Vol. leaving CV in time t) Vol. change in t,∆ ∆ ∆− =

q(x,t)

Q Y

x

Q

T

Ydx∂Q
∂x

+

dx

(∂Y/∂t)dt dx
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or substituting the appropriate quantities into this equation gives

	
Q Q

Q
x

dx q(x,t)dx dt T
Y
t

dt dx− + ∂
∂









+








 = ∂

∂






Simplifying and dividing by dxdt gives

	
∂
∂

− + ∂
∂

=Q
x

q x,t T
Y
t

( ) 0 	 (1.17)

This equation, coupled with a second partial differential equation of motion, will be the basis 
for solving unsteady channel flows in Chapter 6. It is worthwhile noting that if ∂Q/∂x is of the 
same positive magnitude as the magnitude of lateral inflow q(x,t) at all points x and at all times, 
then ∂Y/∂t = 0, i.e., the flow is steady state, which means at any position x the depth and velocity 
are constant. However, it is important to note that q and ∂Q/∂x represent two different quanti-
ties. q(x,t) is the lateral inflow that can in general vary along the channel as well as vary with 
time. It is generally known and not part of what is solved for. Should lateral outflow occur, then 
q(x,t) is a negative quantity. The term ∂Q/∂x represents the change in flow rate in the channel 
direction x for a given instant in time, and in general varies from instant to instant. Sometimes 
an additional subscript is applied to partial derivatives to denote what is being held constant. 
In Equation 1.17 the two independent variables are x and t. Therefore, it is understood that t is 
constant when dealing with partial derivatives with respect to x and x is held constant when the 
partial derivative is with respect to t. Q is unknown and therefore its variation with x and t is a 
part of the solution.

Since the volumetric flow rate Q equals the average velocity V times the cross-sectional area A, 
the first term in Equation 1.17 can be expanded to give the following alternative continuity equation 
for one-dimensional unsteady flow in a channel:

	 A
V
x

V
A
x

q x,t T
Y
t

∂
∂

+ ∂
∂

− + ∂
∂

=( ) 0 	 (1.17a)

Equation 1.17 generally cannot be solved by itself because it involves two unknowns, or depen-
dent variables, Q and Y. The principle that as many independent equations must exist as there 
are unknowns, dictates that another equation must be obtained. This second equation comes from 
Newton’s second law of motion, and will be given later in Chapter 6. Equation 1.17 and this second 
equation are often referred to as the St-Vernant equations that govern one-dimensional unsteady 
open-channel hydraulic problems.

Example Problem 1.8
A 10 m wide rectangular channel has a 10 m long section of side weir that discharges a volumetric 
flow rate per unit length as given by the equation q gH3/2= 0 5 2. /  in which H is the depth of water in 
the channel above the weir crest. The weir crest is 2 m above the channel bottom, and the depth 
in the channel at the beginning of the side weir is 2.5 m, and the flow rate here equals 50 m3/s. 
If the depth of flow through the side weir is such that V2/2g + Y = constant, determine the flow 
rate in the channel over the length of the side weir.

2.5 m
50 m3/s 2 m
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Solution
Letting Qo and Yo be the flow rate and depth, respectively, at the beginning of the side weir the 
constant referred to can be determined from constant = Q /(2gA ) Yo o o

2 2 +  = (50/25)2/19.62 + 2.5 = 
2.704. Thus, the following implicit equation provides the depth Y:

	
Y 2.704

Q
19.62(10Y)

2

2= −

This equation will converge with Q given if the Y computed on the left of the equal sign is itera-
tively used for the Y on the right of the equal sign. After determining Y the lateral outflow can 
be determined by

	 q 2.215(Y 2)3/2= −

and the flow rate determined from Equation 1.13, or

	
Q 50 qdx= − ∫

Since this integration cannot be completed in closed form, it must be carried out using numerical 
techniques. The small FORTRAN program listed below does this under the assumption that if 
small enough steps are used for dx then the Q at the current position x can be used to compute 
the depth, etc.

Techniques designed to solve ordinary differential equations (ODEs) provide a better alterna-
tive for solving this problem than the crude numerical integration used in the above program. The 
ODE for this problem is dQ/dx 2g Y  = −0 5 2 3 2. / ( ) / . Numerical methods for solving ODEs will be 
described in Chapter 4 and are extensively utilized in solving gradually varied flow problems.

Listing of FORTRAN program that numerically integrates the above equation in the 
solution for Example Problem 1.8

	 Q=50.
	 Y=2.5
	 WRITE(6,100) Q,Y
100	 FORMAT(' x',7X, 'Q',7X, 'Y',/,19('_'),
	 &/,' 0',2F8.3)
	 DO 30 I=1,1000
10	 Y1=2.704−(Q/Y)**2/1962.
	 IF(ABS(Y1−Y).LT. .000001) GO TO 20
	 Y=Y1
	 GO TO 10
20	 Q=Q−.02215*(Y1−2.)**1.5
	 IF(MOD(I,100).EQ.0) WRITE(6,110) I/100,Q,Y1
110	 FORMAT(I3,2F8.3)
30	 CONTINUE
	 END

1.11  Energy Principle

The equations of motion are of extreme importance to all mechanics, whether dealing with fluids or 
solids. The equations of motion are based on Newton’s second law, that states that force = mass × 
acceleration. In this section the scalar application of this fundamental law of mechanics is discussed, 
as it applies to fluids in motion. The section is entitled “Energy Principle” because this scalar applica-
tion gives equations similar to the energy equation in Thermodynamics. In the next section, the vec-
tor application of Newton’s second law to fluid motion is discussed under the heading “Momentum 
Principle.” The application of Newton’s second law to a general three-dimensional unsteady fluid 

Solution from Progaram

X Q (cfs) Y (ft)

0 50.000 2.500
1 49.208 2.500
2 48.397 2.515
3 47.569 2.523
4 46.723 2.530
5 45.859 2.537
6 44.977 2.545
7 44.078 2.552
8 43.161 2.559
9 42.227 2.556
10 41.275 2.573
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flow results in the Navier Stokes equations, whose development can be found in books dealing with 
fluid mechanics. Applying the same law to an ideal fluid that is inviscid (viscous shear stresses are 
ignored) produces the Euler equations of motion. Neither of these equations is presented herein. 
Rather simplified versions of these equations are given for one-dimensional and special flows, and 
these are most useful in handling problems of one-dimensional open-channel hydraulics.

It will be necessary to define acceleration in fluid motion, first. Acceleration is a vector that 
represents the time rate of change of the velocity vector, or a = dV/dt. Since velocity in a fluid is a 
function of the position as well as time in general, the full derivative dV/dt is obtained by the chain 
rule in calculus, or using Cartesian coordinates,

	

dV
dt

DV
dt

V
x

x
t

V
y

= = ∂
∂

∂
∂

+ ∂
∂

The quantity dV/dt is called the substantial derivative and is often denoted by DV/Dt to make it clear 
that the partial derivative with respect to time is not intended. Since dx/dt, dy/dt, and dz/dt equal 
the velocity components u, v, and w in the x-, y-, and z-directions, respectively, the above equation 
becomes
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The terms u∂V/∂x, v∂V/∂y, and w∂V/∂z are called the convective accelerations and can be visual-
ized as the acceleration that occurs as streamlines within a flow converge together. The term ∂V/∂t 
is the local acceleration, and represents the variation in velocity that occurs at a point in the fluid 
with time. Also note that the above equations are vector equations since every term contains the 
velocity vector V.

If the flow is one dimensional, then the magnitude of the velocity is only a function of the 
coordinate in that direction and time, if the flow is unsteady, or V(s,t). s will be used for the space 
coordinate rather than x, because the one-dimensional flow will be allowed in the curved direction 
along a streamline, and not restricted to just the direction of the channel. For such one-dimensional 
flows the magnitude of the acceleration is given by
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Consider an element of fluid of length ds and cross-sectional area dA along a streamline in the 
direction s, as shown in the sketch below. Applying Newton’s second law F mas s=∑  to this 
element results in (note that only magnitudes are used since only one direction s is involved)
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where P is the perimeter of the element. Noting that sinθ = ∂z/∂s, dividing by (−ρ dA ds) and sim-
plifying results in
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It is helpful in understanding equations to follow their dimensions. In the equation immediately 
above, the dimensions are force divided by mass, since every term started out as a force which was 
divided by the ρdAds, or the mass of the differential element.

If flow is steady then ∂V/∂t = 0, and the variables are only a function of s and, therefore, the above 
equation can be integrated along a streamline to give
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Now the dimensions of the equation are force times length divided by mass. The product of force 
and length is work or energy. Thus, upon integrating along the streamline each term in the equation 
represents a form of fluid energy per unit mass. Dividing by g results in the Bernoulli Equation, that 
has units of energy per unit weight of fluid, or
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The integral in Equation 1.18 cannot be evaluated in general since τ is not a known function of s, 
and therefore its value over the distance between a couple of points in the flow is designated as the 
headloss hL1–2 and Equation 1.18 is commonly applied between the two points in the following form:
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Each term in Equation 1.18 is considered a head because they all have the dimensions of length. 
In ES units this length is given in feet, and in SI units this length is in meters. It is important to 
note that terms are actually energy per unit weight of fluid. That is, when using ES units each term 
represents some form of energy in ft-lbs that each pound of fluid contains, and when using SI units 
each term is this energy in N-m that each Newton weight of fluid contains. p/γ is referred to as the 
pressure head, and represents the potential energy due to pressure per unit weight. z is the elevation 
head and is the potential energy due to the vertical position of the fluid per unit weight, and V2/2g is 
the kinetic energy per unit weight. The sum of p/γ and z is called the piezometric head.

To visualize these energies first consider the elevation head z. If a unit weight of fluid were a 
distance z above a datum then it would be capable of doing z times its weight of work in dropping 
under gravity to the datum. Since energy is the ability to do work, the potential energy that this 
unit weight of fluid has equals z. To visualize the potential energy due to the pressure of a fluid 
consider an infinitely large reservoir of liquid. At the bottom of this reservoir there is a cylinder 
that can extract work from the fluid due to its constant pressure here. This pressure acts over the 
area of the piston within the cylinder, and if the piston is permitted to move through a distance 
L, the amount of work done on it by the fluid equals pAL. The weight of fluid involved in doing 
this work equals γAL. Therefore, the energy per unit weight of this fluid is pAL/(γAL) = p/γ. Note 
from the hydrostatic equations that p/γ = h the height of the liquid above the cylinder. Thus, at 
the top of the reservoir the fluid contains elevation head, z = h, and at the bottom the liquid con-
tains pressure head and at neither position does the liquid possess any velocity head since it is 
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not moving, but these sum to a constant value. To understand that the velocity head V2/2g is the 
kinetic energy per unit weight, note that kinetic energy equals 1/2 the mass times the velocity 
squared, or ρ(Vol)V2/2. Dividing this by the weight of this mass of fluid gives K.E./(unit weight) = 
{ρ(Vol)V2/2}/{gρ(Vol)} = V2/2g.
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Some applications in open-channel flow call for looking at what happens across streamlines. Flow 
over the crest of a dam is one such application. Therefore, consider applying Newton’s second law 
normal to the streamlines, as shown in the sketch. If forces on this element due to viscous shear are 
ignored then the summation of forces in the direction of an outward normal equated to the mass 
times outward normal acceleration results in
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The cosθ = ∂z/∂n and the last quantity within parenthesis is the acceleration in the normal direction. 
To see the latter, note that Vn = f(s,t), and therefore by the chain rule,
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From the small vector diagram in the sketch above it can be seen from similar triangles that
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dividing the above force equation by ρdAndn, and simplifying gives

	

1
0

2

ρ
∂
∂

+ ∂
∂

+ + ∂
∂

=p
n

g
z
n

V
r

V
t
n

Special cases are worth examining. If the flow is steady and streamlines are straight then the last 
two terms in the last equation are zero and upon integrating in the n-direction, the following is 
obtained:

	

p
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which indicates that the pressure distribution in the normal direction is hydrostatic in a moving flow 
provided the streamlines are straight. Since this is the assumption made to classify flows as one 
dimensional, pressure distributions are generally considered hydrostatic unless the channel is steep 
as discussed previously.

Before the above equation can be integrated with curved streamlines, it is necessary to have a 
relationship between V and r. Two special cases will be considered; irrotational flow, and solid body, 
or forced vortex, rotational flow. Real flows are between these two cases. Fluid viscosity must be 
absent for a flow to be irrotational, whereas the rotation of a forced vortex follows the solid body 
rotation law that the velocity increases with the radius of rotation, V = rω.

In general, a flow is irrotational if the vorticity or cross-product of the differential del operator 
and the velocity vector equal zero, or ξ = ∉XV = 0 where (using the Cartesian coordinate system)
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and i, j, and k are unit vectors in the x-, y-, and z-directions respectively.
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and i, j, and k are unit vectors in the x, y, and z.
The component of vorticity for the plane of the curved flow above in the natural coordinate sys-

tem is ∂Vn/∂s − ∂V/∂n and if this flow is irrotational then this quantity equals zero. Since ∂Vn/∂s = 
V/r, the term V2/r in the above equation can be written as V∂V/∂n, permitting the equation to be 
integrated in the normal direction, giving
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or identically the same as Equation 1.18, without the viscous loss term; but since viscous forces 
were not included one would expect this. Therefore, if the flow is irrotational the Bernoulli equa-
tion applies across, as well as, along streamlines. The usual concept is that the Bernoulli equation is 
applied for the entire section of a one-dimensional flow. If the radius of curvature of the streamline 
is constant, it can be shown that for an irrotational flow the velocity times the radius is constant, or 
Vr = constant; thus, as r becomes zero V must become infinite.

For a forced vortex, the vorticity equals twice the actual rotation about an axis, or
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Therefore, ∂V/∂n = −V/r and integration of the above equation in the normal direction gives
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(Note the minus sign in front of the velocity head.)
A centrifugal pump causes the flow within the housing of the pump to nearly follow this forced 

vortex law. The exception is that there must be a radial component of velocity for the fluid to pass 
onto and leave the pump impeller. This radial component will be governed by the usual Bernoulli 
equation and, therefore, the head produced by a pump will be approximated by (with zi = zo)
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where subscripts i and o denote inlet and outlet, respectively, and subscripts r and t denote radial and 
tangential directions, respectively.

1.11.1  Kinetic Energy Correction Coefficient, α
The Bernoulli equation developed above is generally applied for an entire section of an open-
channel flow, and the average velocity for the cross section is used to compute the velocity head, or 
kinetic energy per unit weight. Since the velocity is not constant throughout the entire section, the 
actual or exact kinetic energy per unit weight, K.E./Wt, can be defined by multiplying the velocity 
head by a correction coefficient α, or
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The evaluation of α involves determining the exact kinetic energy and dividing this by the velocity 
head. The exact, or correct, kinetic energy K.E., passing a cross section is the integral over the area 
of the kinetic energy through a differential area dA, or
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Dividing K.E. by gρQ = gρVA gives K.E./Wt and, therefore,
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For a natural channel, or when it is not possible to define v and A as functions of the depth, the 
integral sign is replaced by a summation, and Equation 1.19 becomes
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The value of α is only slightly larger than unity for typical turbulent open-channel flows. Furthermore, 
when the flow is subcritical, as it always is in natural rivers and streams, the velocity head will be 
smaller than the other terms in the Bernoulli equation, and therefore it is common practice to take 
α as 1.

Example Problem 1.9
Water flows over the crest of a small dam that is 4 m high at a rate of 48.2 m3/s. The depth of 
water over the dam’s crest is 6 m, and the channel is rectangular and 10 m wide. Determine the 
depth and velocity in the channel downstream from the dam. Ignore any frictional losses. Solve 
the problem twice; first, under the assumption that at both sections the kinetic energy correction 
coefficient is unity, and second, the αs are not unity, and that the following dimensionless veloc-
ity profiles are known.
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Over the Dam’s Crest

y/Y 0.00 0.07143 0.2143 0.3571 0.5357 0.7143 0.8571 1.0000

v/V 0.00 0.3529 0.8235 1.0353 1.1764 1.2823 1.2235 1.0823

In the Channel at the Dam’s Toe

y/Y 0.00 0.0357 0.0714 0.1429 0.3571 0.7143 1.0000

v/V 0.00 0.5743 0.8614 0.9763 1.0452 1.0567 1.0452

Solution
For the first part with the α’s = 1, the upstream velocity is determined from V1 = Q/A1 = 48.2/60 = 
0.8033 m/s. Apply the Bernoulli equation,
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This is a cubic equation that must be solved by trial, or an iterative technique such as the 
Newton Method described in Appendix B. The solution is Y2 = 0.461 m. Another solution to 
this cubic equation is 6 m, but this is obviously not the wanted root since it is the upstream 
depth. The corresponding velocity is V2 = 48.2/4.61 = 10.46 m/s. For the second part of the 
problem q = 4.82 = ∫v dy, or 4.82V = ∫(v/V)dy, in which the limits of integration are 0–6. If dy 
is replaced by the dimensionless depth y/Y, then the upper limit changes to 1. There are many 
methods that can be used to evaluate this integral including plotting the profile and determin-
ing the area by counting squares. We will use a cubic spline as described in Appendix B to 
interpolate between the given values and Simpson’s rule (described in Appendix C) to obtain 
a numerical integral. A FORTRAN program EPRB1_9.FOR listing to accomplish this task is 
given below.

	 EXTERNAL EQUAT
	 COMMON /TRA/Y(8),V(8),DQV(8),I1,IP,N
	 I1=1
	 IP=2
	 WRITE(*,*)' Give no. and then this may pairs'
	 READ(*,*) N,(Y(I),V(I),I=1,N)
	 CALL SPLINESU(N,Y,V,DQV,D,0)
	 CALL SIMPR(EQUAT,0.,Y(N),FLOW,1.E−5,30)
	 WRITE(*,*) FLOW
	 END
	 FUNCTION EQUAT(YY)
	 COMMON /TRA/Y(8),V(8),DQV(8),I1,IP,N
1	 IF(YY.LT.Y(IP).OR.IP.EQ.N) GO TO 2
	 I1=IP
	 IP=IP+1
	 GO TO 1
2	 IF(YY.GT.Y(I1).OR.I1.EQ.1) GO TO 3
	 IP=I1
	 I1=I1−1
	 GO TO 2
3	 DY=Y(IP)−Y(I1)
	 AY=(Y(IP)−YY)/DY
	 BY=1.−AY
	 EQUAT=AY*V(I1)+BY*V(IP)+((AY*AY−1.)*AY*DQV(I1)+(BY*BY−1.)*
	 &BY*DQV(IP))*DY*DY/6.
	 RETURN
	 END
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In the program, the subroutine SPLINESU is called to provide the values of the second deriva-
tives at the points. The common block passes the arrays of dimensionless depths y/Y and cor-
responding dimensionless velocities, v/V, i.e., the values in the above table over the crest of the 
weir. The result of this numerical integration is 1.000 and (meaning that the above data truly 
give a proper dimensionless velocity profile), therefore, the average velocity V1 is the same as 
above or V1 = 0.8033 m/s. Next, the last two lines of the function subprogram EQUAT can be 
changed to the following:

      EQUAT=(AY*V(I1)+BY*V(IP)+((AY*AY−1.)*AY*DQV(I1)+(BY*BY−1.)*
     &BY*DQV(IP))*DY*DY/6.)**3

Giving both the above tables of dimensionless values provides the solution for the kinetic energy 
correction coefficients: α1 = 1.2557, and α2 = 1.0555. Now the implicit equation that must be 
solved is
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The solution is Y2 = 0.472 m. The average velocity V2 = 4.82/0.472 = 10.21 m/s.

Example Problem 1.10
A pump increases the pressure from its inlet to its outlet pipe by 52 psi. The inlet and outlet pipes 
are 10 and 12 in. in diameter, respectively, and the flow rate is Q = 6 cfs. Determine the amount 
of energy per unit weight that the pump supplies to the water. If the pump has an efficiency of 
85%, determine the horsepower required to drive the pump.

Solution
In applying the energy equation to this problem the head of the pump needs to be added to the 
left side of the Bernoulli equation, or
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Upon substituting the known values into this equation gives hp = 120.97 ft. To get energy from 
the head given by Bernoulli’s equation multiply by the weight flow rate γQ, and therefore the 
horsepower is

	
HP

Qh

e
hp (550 is the conversion for hp from enep= =

γ
550

96 88. rrgy in ft-lb/s.)

Example Problem 1.11
Assume that the water at the surface of a river flowing around a bend follows the free vortex law. 
The radius of the inside of the bend is 30 m, and at the outside of the bend the radius is 45 m. 
If the velocity at the inside of the bend is measured as 0.8 m/s, what is the velocity on the surface 
at the outside of the bend?

Solution
The free vortex law indicates that Vr = constant. This constant equals 0.8(30) and, therefore, the 
velocity at the outside of the bend is Vo = (0.8)(30)/45 = 0.533 m/s. Since at the bottom of the river 
the velocity will be smaller than at the surface, there is a net flow outward on the surface and an 
inflow at the bottom. This movement creates a secondary motion in a river that moves sediment 
toward the downstream inside of the bend. A pumping station here would bring in river sedi-
ments; therefore, such a pumping station is best located on the outside of the bend.
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Example Problem 1.12
The velocity distribution in a wide open channel can be defined by the following logarithmic 
function between the channel bottom and a position y = 0.1 ft above the bottom: v = C/Ln(y), and 
a second-degree polynomial for the rest of the depth. When the depth of flow is 2.6 ft, velocities 
are measured at three positions with the following results:

Depth, ft 0.1 2.1 2.6

Velocity, fps 2.3 2.45 2.35

Determine the kinetic energy correction coefficient, α.

Solution
To obtain the equation for the velocity distribution over the bottom 0.1 ft substitute 2.3 in for 
v, and 0.1 for y in the given equation and solve for C. This gives C = 2.3 Ln(0.1) = −5.296. The 
equation for the rest of the profile is obtained by evaluating a,b, and c in v = a + by + cy2 by 
Lagrange’s interpolation equation described in Appendix B, or solving a, b, and c from the three 
equations obtained by substituting the y and v from above into this polynomial equation to give

	 v 2.2694 0.317y 0.110y2= + −

The flow rate q per unit width of channel is found first from Q = ∫v dA with the integration car-
ried out in two parts, or
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The first integral was evaluated numerically because of the complexity of a closed-form integra-
tion. Next, evaluate ∫v3dA as shown below.
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To evaluate α substitute into α = ∫v3dA/(qV2) = 36.937/[6.2705(2.4117)2] = 1.013.

1.12 M omentum Principle in Fluid Flow

An equally important skill for solving a fluid-flow problem to that associated with the use of the 
energy principle is the application of the momentum principle. The momentum principle must gen-
erally be utilized to solve problems dealing with external forces acting on the fluid. Its use occurs 
when dealing with the overall flow picture rather than a detailed examination of individual fluid 
particles, and their associated internal processes. The momentum principle produces vectors, and 
therefore is the natural choice when external forces are involved. It can be applied to one-, two- or 
three-dimensional flows, but when dealing with open-channel hydraulics the common use of the 
momentum principle will be for one- and two-dimensional flows.

The momentum principle in fluid mechanics is based on Newton’s second law of motion, F = ma, 
where the force F and the acceleration a are vector quantities. Remember, to define a vector it is nec-
essary that its direction as well as its magnitude are given, and that a change in direction (with the 
magnitude constant) is equally important to a magnitude change (with the direction remaining con-
stant). Since acceleration is the time rate of change of velocity, Newton’s second law can be written as
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In writing the term after the last equal sign in the above equation the concept is that rather than 
dealing with a derivative we are dealing with a differential change in the velocity vector dV within 
the differential time dt. In solid mechanics dt is moved to the other side of the equal sign, associated 
with vector F and the product FΔt is called the linear impulse, and this is equated to the change in 
linear momentum that is defined as Δ(mV). In fluid mechanics, however, we deal with flow rates, 
and dm/dt will be denoted as m, the mass flow rate, which equals ρQ. The interpretation of m/dt 
is the change in mass per time or a mass flow rate ρQ. Therefore, for fluid applications the above 
equation can be written as

	 r = ρQ V∆

where R is the resultant force on the CV. When applied to a control volume, CV, of fluid between 
the two sections 1 and 2, as shown in the sketch below, it is written as

	 r = −ρQ V V( )2 1 	 (1.20)

The forces on the CV include the body forces, i.e., the weight of the CV, as well as external forces 
that may be applied by adjacent fluid and structures, etc., that act against the CV of fluid.
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If the flow divides so that it leaves through sections 2 and 3 as shown below in the sketch, then the 
momentum equation would need to be written as
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The quantity (ρQV) is called the momentum flux. A more generalized expression of the momen-
tum principle states that the resultant external force acting on a CV of fluid equals the difference 
between the momentum flux vectors leaving the CV minus the momentum flux vectors entering the 
CV. Expressed as an equation the momentum principle becomes

	 r = −∑ ∑( (ρ ρQV) QV)leaving entering 	 (1.21)
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Since Equation 1.21 is a vector equation, for two- and three-dimensional problems it can be written 
as two or three scalar equations, respectively, in coordinate directions of that space. For a one-
dimensional problem the coordinate direction will coincide with the directions of the vectors on 
both sides of the equal sign in Equation 1.21 and the vectors become effectively scalar quantities. 
For a two-dimensional problem in Cartesian coordinates Equation 1.21 can be written as the two 
scalar equations,

	 F QV QV )x x2 x1∑ = −(ρ ρ 	 (1.21a)

and

	 F QV QV )y y2 y1= −∑ (ρ ρ 	 (1.21b)

where
the subscripts x and y represent the x and y coordinate directions, respectively
the 1 and 2 subscripts represent entering and leaving the control volume, respectively

The summation of forces in the x- and y-directions include all external and body forces acting on 
this CV.

The application of the momentum principle to most problems includes the following five steps:

	 1.	Construct a control volume of the fluid. The upstream section(s) of this CV is (are) 
upstream from the occurrence of interest to a section of the flow where the velocity and 
other variables of the problem can be defined. Likewise, the downstream section(s) is (are) 
taken where fluid variables can be defined. Adjacent fluid and structures are removed from 
this CV.

	 2.	Replace all removed fluid and structural components by the equivalent forces that they 
apply to the fluid in the CV.

	 3.	Apply Equations 1.21a and 1.21b. In applying these equations it is vital to watch signs. 
Should the component of force or velocity be in the direction opposite to the positive direc-
tion taken for either x or y, then it is negative in these equations. Likewise, any vector not 
in either the x- or y-direction must be multiplied by the cos or sin of the appropriate angle 
to get the component in the coordinate direction.

	 4.	Solve for the unknowns. Since Equations 1.21a and 1.21b are two equations, two unknowns 
can be obtained. For a one-dimensional problem only one unknown may exist, and for a 
three-dimensional problem three unknowns may exist. These unknowns may be the com-
ponents of one unknown vector, such as the force.

	 5.	 If the unknown(s) solved for in step 4 consists of a vector, note that its sense will be oppo-
site on the structure than on the fluid. The value obtained by the above procedure is the 
force on the CV of fluid.

In implementing step 2 above, the fluid adjacent to the CV of fluid is replaced by an equivalent force. 
In applying this to open-channel flows, this adjacent fluid will often have a hydrostatic pressure dis-
tribution, and the force will be a hydrostatic force. A hydrostatic, Fs, force equals the cross-sectional 
area times the pressure at the centroid of this area, or

	 F p A h A Ahs c c c= = =γ γ 	 (1.22)



Dimensions, Terminology, and Review of Basic Fluid Mechanics	 33

where hc is the distance from the free surface to the centroid of the area. The last form given in 
Equation 1.22 contains the term Ahc which is the first moment of area about the free surface. For 
rectangular and trapezoidal cross sections, this first moment of area is easily obtained. For a rect-
angle it equals the area times the distance from the surface to the center or bY2/2. For a trapezoid it 
can be obtained by the method of composite areas, e.g., the rectangle and the two triangles and is 
Ahc = bY2/2 + mY3/3. For other cross sections such as an arc of a circle, this first momentum of area 
must be obtained by integration. See Appendix A and Table A.1 for this first moment of area for a 
circular cross section.

Example Problem 1.13
A trapezoidal channel with a bottom width b1 = 14 ft and a side slope m1 = 1.5 divides into a 
rectangular channel with b2 = 8 ft whose direction is 30° from the direction of the upstream 
channel, and a pipe with a 4 ft diameter whose direction is 45° from the direction of the 
upstream channel. The top of the pipe is below the water surface so it flows full. The depth in the 
downstream channel is 5.2 ft. The pipe drops in elevation by 110 ft over its length of 1500 ft, and 
delivers water at a pressure of 40 psi. The wall roughness for the pipe is e = 0.02 ft. Determine 
the resultant force on this structure for the design flow rate of Q1 = 450 cfs.

Solution
First applying the Bernoulli equation between sections 1 and 2 and then sections 1 and 3 
(or 2 and 3) along with the continuity equation and equations for pipe flow give the following 
five simultaneous equations to solve for the five unknowns Q2, Q3, f, Y1, and pt (pressure on top 
of pipe):

	 H
Q
gA

Y
Q
gA

Q= + = +1
2

1
2 1

2
2

2
2

2
2

22 2 64 4 38 4
5 2

. ( . )
. 	 (1)

	 H
Q
gA

pt= + +3
2

3
22

4 0
γ

. 	 (2)

	 Q Q32 450+ = 	 (3)

	 h
f L/D Q

gA
H the Darcy Weisbach equatif = ( ) = − ( ) +3

2

3
22

110
40 144

γ
( − oon from pipe flow) 	 (4)

and

	
1

1 14 2
9 35

f

e
D f

the ColeBrook White equation = − +






. log
.

Re
( − ffrom pipe flow) 	 (5)

The solution gives Q2 = 322.40 cfs, Q3 = 127.60 cfs, f = 0.03036, Y1 = 5.965 ft and pt = 33.17 psf. 
(To solve these five equations you need to use the techniques described in Appendix B as 
the Newton method, or Mathcad or MATLAB on your PC.) From these the forces on the CV 
become
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Applying the momentum equation in the x- and y-directions, respectively, gives the following 
two equations:

x-direction

	

22,162 6,749.18 cos 30 1,985.1 cos 45 R 1.94[(322.4)7.75 x− − − = ccos 30

+ (127.6)10.15 cos 45 450(3.288)] 3,105.1− =

	 and solving R  = 11,808 lbsx

y-direction

	

− =6,749.2 sin 30 + 1,985.1 sin 45 + R 1.94[(322.40)7.75 siy nn 30

(127.6)10.154 sin 45] 646.3− =

	 and solving R = 2,617 lbsy

which results in R = 12,095 lbs at an angle of 12.5° from the horizontal with its direction down-
ward to the right on the structure.

1.12.1  Momentum Flux Correction Coefficient, β
When the momentum principle is applied as if a three-dimensional problem is a two-dimensional 
problem, as in Example Problem 1.13, or as if a two-dimensional problem is a one-dimensional 
problem, i.e., when an average velocity is used for a section of flow, then ρQV does not represent 
the exact momentum flux, EMF, passing the section. The EMF can be obtained by multiplying by 
a correction coefficient, β in a manner similar to the use of α as a correction for the velocity head. 
By definition this coefficient, β, is

	 β
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ρ
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For a natural channel the integral is replaced by a summation and Equation 1.23 becomes
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and Equation 1.20 becomes

	 r = −( QV) ( QV)2 1ρ ρβ β 	 (1.20)

Example Problem 1.14
The velocity distribution with depth in a wide rectangular channel is given by v = Ln(1 + 10y) 
where y is the distance from the channel bottom to the position where the velocity v is given. 
If the depth of flow Y = 5 ft, determine the momentum correction coefficient β.

Solution
Per unit width β = ∫v2dy/(qV) in which q is the volumetric flow rate per unit width and equal 
the depth time the average velocity V. To solve for β it is necessary to first solve q = ∫vdy = 
∫Ln(1 + 10y)dy with limits of 0 to 5. This can be integrated by letting x = 1 + 10y, and dy = dx/10; 
thus q = ∫Ln(x)dx/10 with limits from 1 to 51, or q = [x Ln(x) − x]/10 evaluated between 51 
and 1; giving q = 15.0523107. You will find it instructive to have your HP48 calculator obtain 
this answer by numerically integrating the above equation, and also have it carry out the sym-
bolic integration. Since you will be using computer programs throughout this course, how about 
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gaining some experience with this problem, but utilizing the Simpson’s numerical integration 
described in Appendix B? The main program that calls SIMPR is listed below; the first col-
umn obtains q and also prints out the average velocity, and the second column integrates ∫v2/dy 
between 0 and 5, and also prints out β.

EXTERNAL EQUAT	 EXTERNAL EQUAT
CALL SIMPR(EQUAT,0.,5.,VALUE)	 CALL SIMPR(EQUAT,0.,5.,VALUE)
WRITE(*,*) VALUE,VALUE/5.	 WRITE(*,*) VALUE,VALUE/45.312708
END	 END
FUNCTION EQUAT(Y)	 FUNCTION EQUAT(Y)
EQUAT=ALOG(1.+10.*Y)	 EQUAT=ALOG(1.+10.*Y)**2
RETURN	 RETURN
END	 END

The results are q = 15.05205 cfs/ft, V = 3.0104 fps from the first integration, and ∫v2dy = 48.73822 
and β = 1.0756.

Example Problem 1.15
Determine α and β for the natural channel in Example Problem 1.5.

Solution
The numerator in Equation 1.19 can be viewed as a double integral since the differential area 
dA = dy dx, or this numerator is
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Note that the quantity within { } after the last equal sign is constant, since the dimensional 
velocity profile does not change from position to position and, therefore, it needs to be evaluated 
only once. Thus, the argument of numerical integration with respect to x (across the channel) 
involves the surface velocity Vs cubed, multiplied by the depth Y at this section, i.e., Vs3Y, and 
both Vs and Y can be evaluated using the cubic spline interpolation of the data in the first table 
in Example Problem 1.5. The same applies for the numerator in Equation 1.23 to evaluate β; with 
the surface velocity squared rather than cubed. The program EXPR1_15 (in both FORTRAN 
and C) is given below to provide the numerator for both Equations 1.19 and 1.23. It also provides 
the area of the cross section, which can be done by evaluating the last integral in the above equa-
tion with the exponent of the velocity equal to zero, since Vs

0
 = 1. Note that this program contains 

the additional variable NE that is used as the exponent of the surface velocity. When NE = 0, the 
area of the cross section is evaluated; when NE = 2, the numerator for β is evaluated, and when 
NE = 3, the numerator for α is evaluated.

Listing for Program EPR1_15.FOR
	 EXTERNAL VPROF,Dq
	 REAL DUM(30)
	 COMMON YP(20),VP(20),X(30),Y(30),VS(30),
	 &D2VP(20),D2VS(30),D2Y(30),I1,I2,NP,NX,NE
	 READ(2,*) NP,(YP(I),VP(I),I=1,NP)
	 READ(2,*) NX,(X(I),Y(I),VS(I),I=1,NX)
	 CALL SPLINESU(NP,YP,VP,D2VP,DUM,0)
	 CALL SPLINESU(NX,X,Y,D2Y,DUM,0)
	 CALL SPLINESU(NX,X,VS,D2VS,DUM,0)
	 NE=0
	 CALL SIMPR(Dq,0.,X(NX),AREA,1.E-6,20)
	 WRITE(*,*)' Area=',AREA
	 NE=2
5	 I1=1
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	 I2=2
	 CALL SIMPR(VPROF,0.,1.,qPRIM,1.E-6,20)
	 WRITE(*,*)' Integral of dimensionless',
	 &velocity**',NE,' profile=',qPRIM
	 I1=1
	 I2=2
	 CALL SIMPR(Dq,0.,X(NX),Q,1.E-4,20)
	 WRITE(*,*)' Integral with respect to x='
	 &,Q*qPRIM
	 NE=NE+1
	 IF(NE.LT.4) GO TO 5
	 END
	 FUNCTION VPROF(YY)
	 COMMON YP(20),VP(20),X(30),Y(30),VS(30),
	 &D2VP(20),D2VS(30),D2Y(30),I1,I2,NP,NX,NE
1	 IF(YY.LT.YP(I2) .OR. I2.EQ.NP) GO TO 2
	 I1=I2
	 I2=I2+1
	 GO TO 1
2	 IF(YY.GE.YP(I1) .OR. I1.EQ.1) GO TO 3
	 I2=I1
	 I1=I1–1
	 GO TO 2
3	 DYP=YP(I2)-YP(I1)
	 A=(YP(I2)-YY)/DYP
	 B=1.-A
	 VPROF=(A*VP(I1)+B*VP(I2)+((A*A-1.)*A*
	 &D2VP(I1)+(B*B-1.)*B*D2VP(I2))*DYP**2/6.)**NE
	 RETURN
	 END
	 FUNCTION Dq(XX)
	 COMMON YP(20),VP(20),X(30),Y(30),VS(30),
	 &D2VP(20),D2VS(30),D2Y(30),I1,I2,NP,NX,NE
1	 IF(XX.LT.X(I2) .OR. I2.EQ.NX) GO TO 2
	 I1=I2
	 I2=I2+1
	 GO TO 1
2	 IF(XX.GE.X(I1) .OR. I1.EQ.1) GO TO 3
	 I2=I1
	 I1=I1−1
	 GO TO 2
3	 DX=X(I2)-X(I1)
	 A=(X(I2)-XX)/DX
	 B=1.-A
	 AA=A*(A*A-1.)*DX**2/6.
	 BB=B*(B*B-1.)*DX**2/6.
	 DEPTH=A*Y(I1)+B*Y(I2)+AA*D2Y(I1)+BB*D2Y(I2)
	 VSURF=A*VS(I1)+B*VS(I2)+AA*D2VS(I1)+
	 &BB*D2VS(I2)
	 Dq=DEPTH*VSURF**NE
	 RETURN
	 END

Listing for Program EXPR1_15.C
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
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float yp[20],vp[20],x[30],y[30],vs[30],d2vp[20],d2y[30],d2vs[30];
int i1,i2,np,nx,ne;
extern float simpr(float (*equat)(float xx),float xb,float xe,\
float err,int max);

extern void splinesu(int n,float *x,float *y, float *d2y,float *d,\ 
int ity);

float vprof(float yy){float a,b,dyp;
 while((yy>=yp[i2])&&(i2<np-1)){i1=i2;i2++;}
 while((yy<yp[i1])&&(i1>0)){i2=i1;i1–;} dyp=yp[i2]-yp[i1];
 a=(yp[i2]-yy)/dyp;b=1.-a;
 return pow(a*vp[i1]+b*vp[i2]+((a*a-1.)*a*d2vp[i1]+(b*b-1.)\ 

*b*d2vp[i2])*dyp*dyp/6.,ne);
} // End of vprof
float qp(float xx){float a,b,dx,aa,bb,depth;
 while((xx>=x[i2])&&(i1<nx-1)){i1=i2;i2++;}
 while((xx<x[i1])&&(i1>0)){i2=i1;i1––;}
 dx=x[i2]-x[i1];a=(x[i2]-xx)/dx;b=1.-a;
 aa=a*(a*a-1.)*dx*dx/6.;bb=b*(b*b-1.)*dx*dx/6.;
 depth=a*y[i1]+b*y[i2]+aa*d2y[i1]+bb*d2y[i2];
 return depth*pow(a*vs[i1]+b*vs[i2]+aa*d2vs[i1]+bb*d2vs[i2],ne);
} // End of qp
void main(void){FILE *fili; char filnam[20];int i;
 float dum[30],qprim,q;
 printf("Give input file name\n"); scanf("%s",filnam);
 if((fili=fopen(filnam, "r"))==NULL){printf("Cannot open file\n"); 

exit(0);}
 fscanf(fili, "%d",&np);
 for(i=0;i<np;i++)fscanf(fili, "%f %f",&yp[i],&vp[i]);
 fscanf(fili, "%d",&nx);for(i=0;i<nx;i++)fscanf(fili, "%f %f %f",\ 

&x[i],&y[i],&vs[i]);
 splinesu(np,yp,vp,d2vp,dum,0);splinesu(nx,x,y,d2y,dum,0);
 splinesu(nx,x,vs,d2vs,dum,0);
ne=0;printf("Area=%f\n",simpr(qp,0.,x[nx-1],1.e-6,20));ne=2;
L5:i1=0;i2=1; qprim=simpr(vprof,0.,1.,1.e-6,20); i1=0;i2=1;
printf("Integral of dimensionless velocity**%d\ 
profile =%f\n",ne,qprim);

printf("Integral with respective to x =%f\n",\ 
qprim*simpr(qp,0.,x[nx-1],1.e-4,20));

ne++; if(ne<4) goto L5;
}

Using as input the data in file EXPRB1_5.DAT, used in Example Problem 1.5, program 
EXPR1_15 produces the following as the solution (the units have been added):

AREA = 857.0909 m2

Average velocity V = Q/A = 342.5057/857.0909 = 0.3991689 m/s
Integral of dimensionless velocity**2 profile = 0.8307201
Integral with respect to x = 153.15
Integral of dimensionless velocity**3 profile = 0.8180358
Integral with respect to x = 71.6953

From which V = Q/A = 342.5057/857.0909 = 0.399169 m/s

α = Iv3dA/(AV3) = 71.6953/(857.0909x.39916893) = 1.3108
β = Iv2dA/(AV2) = 153.15/(857.0909x.39916892) = 1.1189
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Problems

Terminology

	 1.1	 Define the flows in the following situations according to (1) steady or unsteady; (2) uniform 
or nonuniform and if nonuniform, whether rapidly or gradually varied; (3) subcritical or 
supercritical; and (4) turbulent or laminar. If insufficient information is provided for a clas-
sification, indicate what other information is needed.

	 (a)	 A flow in a river that produces a storm hydrograph at the site of observation.
	 (b)	 The flow downstream from a gate supplying water to a prismatic channel from a con-

stant water surface elevation reservoir.
	 (c)	 The same for as in (b) except the gate is slowly being closed.
	 (d)	 A constant flow rate entering a trapezoidal canal of constant cross section that supplies 

water to three turnouts (consider: (1) the flow upstream from the first turnout, (2) the 
flow between the turnouts, and (3) the section downstream from the last turnout). A 
depth of water is required for the canal to supply the last turnout.

	 (e)	 Water flow into a canal from a large lake with the control gate fully open. The canal has 
a constant cross section and a small bottom slope.

	 1.2	 Water at a temperature of 55°F is flowing at a rate Q = 550 cfs in a trapezoidal channel with a 
bottom width of b = 12 ft, and a side slope m = 1.5. If the depth of flow is 4.5 ft, compute (a) 
the Froude number, (b) the Reynolds number, and (c) the speed of a small amplitude gravity 
wave in this flow. Classify the flow in this channel.

	 1.3	 A cross section of a natural channel has the following transect data:

x (ft) 0 2 4 5 6 8 10 12 14 15 17

y (ft) 0 0.6 1.5 2.5 4.5 5.0 4.3 2.8 1.2 0.3 0

		  For a flow rate of Q = 280 cfs at a depth of 4.6 ft compute (a) the cross-sectional area, (b) the 
Froude number, and (c) the Reynolds number if the water temperature is T = 50°F.

	 1.4	 The sketch below shows a long canal system whose bottom slope changes at several points, 
and is controlled by gates. Indicate the reaches where the flow is subcritical (downstream 
controlled) and where it is supercritical (under upstream control). Under uniform flow a steep 
channel will sustain a supercritical flow whereas a mild channel will sustain a subcritical flow.

	 1.5	 Starting with the perfect gas law ρ = p/(RT) and the definition of bulk modulus, prove that 
a gas undergoing an isothermal compression or expansion has a bulk modulus equal to its 
absolute pressure.

	 1.6	 The speed of sound propagates through a fluid with a velocity given by c E /v= ρ. Compare 
the speed of sound in pure water to that of water that contains 1% free air by volume.

	 1.7	 Compute the pressure variation in the ocean to a depth of 4000 m if the compressibility is 
not ignored, and then compute it on the basis of an incompressible fluid. In this computation 
assume both g and Ev are constant. Take the density of ocean water as ρ = 1020 kg/m3.

	 1.8	 Water is flowing down a steep spillway with slope So = 0.30 at a depth of 0.8 m. Determine 
the pressure at the bottom of this channel.

	 1.9	 A pressure transducer records 4.00 psi of pressure on the bottom of a steep channel with a 
bottom slope of two to one (horizontal-to-vertical distances). What are the normal and verti-
cal depths of this flow? The bottom slope is constant.

	 1.10	 At the base of a dam spillway the bottom of the channel suddenly changes from having a 
constant slope of So = 0.40 to a circular arc with a radius of 30 m. The normal depth of flow at 
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this point of change is 0.75 m and the velocity V = 10 m/s. Assume the radius of curvature of 
the streamlines changes linearly from 30 to 20 m through this depth, and compute the pres-
sure distribution through the depth of flow where the radius is 20 m, and also the pressure 
distribution along the bottom of the channel through the length where the radius of curvature 
varies. What is the force against a section of fluid per unit width of flow at the section where 
the circular arc first begins?

	 1.11	 Water is being rotated in a cylindrical drum of 2 m radius and height 5 m at a rotational speed 
of (a) ω = 1200 rpm and (b) ω = 40 rpm. The axis of rotation is vertical. Compute the pressure 
distribution in the vertical direction at the following three radii: r1 = 0, r2 = 1 m, and r3 = 2 m. 
When rotated, water is to the top of the tank.

	 1.12	 Determine the average velocity, V, for a laminar flow that has a velocity profile given by 
Equation 1.11. How is the average velocity related to the velocity on the surface? How does 
this result relate to the area under a parabola?

	 1.13	 Solve illustrative Example Problem 1.7 if the flow rate is Q = 20 m3/s and Y still equals 3 m 
in the upstream channel.

Continuity

	 1.14	 Prove whether the following two-dimensional flow fields are (1) continuous (satisfy the con-
tinuity equation), and (2) are rotational or irrotational.

	 (a)	 u = U (constant) and v = 0
	 (b)	 u = 10x/(x2 + y2) and v = 10y/(x2 + y2). For this flow determine the tangential and radial 

components of velocity.
	 (c)	 u = sin(x)cosh(y) and v = cos(2x)sinh(y)
	 (d)	 u = 3x2 − 2y2 and v = 6xy
	 (e)	 u = sinh(y)cos(x) and v = cosh(y)sin(x)
	 (f)	 u = 5(x2 − y2) and v = 10xy
	 1.15	 The velocity and depth of water flowing in a 2 m diameter pipe are 3 m/s and 1.4 m at 

one section. At another section the depth equals 0.6 m. What is the velocity at this second 
section?

	 1.16	 The flow from a trapezoidal channel with b = 10 m and m = 2 goes through a transition sec-
tion and enters a circular culvert with an 8 m diameter. If the flow rate is 350 m3/s and the 
depths in these two channels equal 4 m and 6.4 m respectively, what are the average veloci-
ties at the two sections.

	 1.17	 A river whose cross section is defined by the following x y data from the left bank (y is posi-
tive downward from the top of the left bank) has been gaged by a current meter giving the 
velocities shown at the 0.2 and 0.6 depth at five position across the river, when the river stage 
was 2 ft. Under the assumption that the average of these two velocities gives the average 
velocity for this incremental position across the river, determine the flow rate in the river.

		  Cross-section data for the river

x (ft) 0 2.0 4.0 6.0 8.0 10.0 12.0

y (ft) 0 0.8 1.1 2.3 2.1 1.0 0.1

		  Current meter measurements

Position 1 2 3 4 5

x (ft) 1.2 3.6 6.0 8.4 10.8

v0.2 (fps) 1.1 1.3 1.6 1.4 1.2

v0.8 (fps) 1.3 1.5 1.9 1.5 1.3
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	 1.18	 Water in a rectangular channel flows around a 90° bend. The channel is 10 ft wide, the 
inside radius of the bend is ri = 30 ft and the radius of the outside of the bend is ro = 40 ft. A 
flow rate of Q = 400 cfs is in the channel when the depth of water at the inside of the bend 
is measured at Yi = 5 ft. Make the following assumptions: (a) there is no secondary flow; 
(b) the angular momentum is constant, i.e., the flow around the bend follows the free vor-
tex law; (c) the velocity does not change with position between the bottom of the channel 
to the water surface at any give radial distance. Determine the following: (1) The depth at 
the outside of the bend, (2) The velocity at the inside of the bend, Vi, and (3) the velocity at the 
outside of the bend. (To accomplish these tasks you should first develop the equation that 
gives the depth through the bend as a function of the radius r, and the free vortex constant, 
and then evaluate the free vortex constant by making sure that 400 cfs passes through 
the  bend.)

r0 = 40 ft
r1 = 30 ft

b=
10

 ft

	 1.19	 Water comes off a spillway with a velocity of V = 100 fps at its toe. The spillway flip bucket 
at its end consists of a circular arc with a radius R = 20 ft. The depth of flow through the flip 
bucket is 2 ft. Assume that the velocity distribution through the depth of flow is constant. 
Derive the equation that gives the pressure distribution in the water on the spillway bucket 
through a vertical section passing through the center of the circle, i.e., the section vertically 
above point A on the sketch. What is the pressure at the bottom of the flow at this position?

R = 20 ft
V = 100 fps

p = ?
A2 f

t

Energy

	 1.20	 Prove that for an irrotational flow that if the radius of curvature for a particle of fluid remains 
constant that its velocity is given by v = C/r (C = constant). Therefore, as rϖ0, then vϖ∞.

	 1.21	 Obtain the equation y = f(x) that describes the top surface of water flowing over a sharp 
crested weir in a wide channel under the following assumptions: (a) the top surface remains 
horizontal for all x < 0 (where x has its origin at the weir crest), (b) there is no friction 
between this top streamline and the fluid below it, and (c) there is no pressure gradient in 
the normal direction at the top streamline. The average velocity and depth upstream from 
the weir are Vo and Yo, respectively. What will cause the real flow to have a top surface that 
deviates from this mathematical description.
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	 1.22	 A weir at the end of a wide rectangular channel has its crest 1.2 m above the channel 
bottom, and the depth of water above the weir crest is 0.8 m. Under the assumption that 
the flow is inviscid, compute the thickness of the falling water at a point 2.5 m below the 
weir crest.

	 1.23	 An irrotational flow occurs around a 90° circular bend in a rectangular channel. The channel 
is 10 ft wide, and the inside radius of the bend is 60 ft. If velocity at the inside of the bend is 
8 fps, and the velocity does not vary in the vertical direction, determine the flow rate in this 
channel if the depth at the inside of the bend is 4.5 ft. What is the difference between the 
water surface elevation at the inside and outside of the bend under this ideal situation? How 
would the real flow around this bend deviate from this behavior?

	 1.24	 Assume the velocity distribution is parabolic in a shallow depth of flow in a wide channel. 
Determine the value of the kinetic energy correction coefficient, α.

	 1.25	 Lines of constant velocity are shown in cross sections of a flow in three channels. Determine 
the kinetic energy correction coefficient for each.
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	 1.26	 Lateral outflow at a rate of 2 cfs/ft is taking place over a 20 ft long side weir. There is zero 
flow downstream from this weir, and the width of the channel is 5 ft. Develop the equation 
that describes the depth of flow as a function of x across the length of the side weir. How 
would this solution be complicated if the discharge from the side weir depended upon the 
depth of water above its crest to the 3/2 power?

	 1.27	 The velocity distribution in a wide rectangular channel is as given in illustrative Problem 
1.13, v = Ln(1 + 10y). Determine the kinetic energy correction coefficient, α.

	 1.28	 Assume the velocity distribution with depth in a trapezoidal channel with a bottom width 
b = 3 m and a side slope m = 1.2 is given by the equation v = 0.5 Ln(1 + 3y) (m/s). The depth 
of flow Y = 2 m. What is the volumetric flow rate? What is the kinetic energy correction 
coefficient, α? What is the average energy; per unit weight in this channel flow?

Momentum

	 1.29	 Solve Example Problem 1.13 if the pressure delivered at the end of the pipe is 45 psi instead 
of 40 psi.

	 1.30	 Compute the resultant force on a spillway bucket that turns a flow rate of q = 300 cfs/ft from 
its direction down the spillway at a slope of So = 0.4 to the horizontal direction. The depth of 
flow at the beginning of this bucket is 5 ft and at the end of the bucket is 4.6 ft.

	 1.31	 If the spillway bucket of the previous problem turned through a total angle of 33° what would 
the force on the bucket be? How high would the jet of water rise above the bottom of the 
bucket and what would its velocity be at this highest point?

	 1.32	 A structure takes water in the vertical direction from a position 10 ft below the bottom of a 
channel under atmospheric pressure. The area of this outlet is 50 ft2. The upsteam channel is 
of trapezoidal shape with b = 10 ft and m = 1.5, and the depth in this channel just upstream 
from this structure is 4 feet. Compute the flow rate and the resultant force on this structure. 
Ignore frictional losses.
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4 ft

10 ft

b = 10 ft
m = 1. 5

50 ft2

	 1.33	 Determine the momentum flux correction coefficient, β for the velocity v = 0.5 Ln(1 + 3y) 
given for the flow in the trapezoidal channel of Problem 1.28 (b = 3 m, m = 1.2 and Y = 2 m).

	 1.34	 A flip bucket at the toe of a spillway has a central portion consisting of a circle with radius of 
rb = 12 ft. After a short smooth transition from the constant slope spillway face, the circular 
portion of the bucket begins at an angle of 35° to the left of the vertical and it ends at an angle 
of 35° to the right of the vertical as shown in the sketch. After the end of the circular portion 
a constant section 2 ft in length ends the bucket. A flow rate of q = 160 cfs/ft is coming down 
the spillway, and the depth normal to the bottom at the beginning of the circular arc is 2 ft. 
Assume that the velocity distribution can be defined by the following logarithmic function 
of the radius r. v = C ln(13 − r).

Do the following: (1) Determine the constant C (in integral tables you will find 
Iln(x)dx = x ln(x) − x). (2) Write the expression that provides the pressure gradient dp/dr 
through the circular portion of the spillway bucket. How would you obtain the pressure dis-
tribution at the end of the circular portion of the bucket at the plus 35° angle?

35
°

35
°

r b
=1

2 
ft q = 160 cfs/f

t

v = Cln(13-r)

2 ft

r s=
10

 ft

	 1.35	 Repeat Example Problems 1.5 and 1.15, except use the following dimensionless velocity 
profile, rather than the one given in Example Problem 1.5.

Dimensionless 
depth, y′

0.00 0.03 0.05 0.10 0.15 0.20 0.60 0.80 0.90 1.00

Dimensionless 
velocity, V′

0.00 0.30 0.55 0.75 0.95 0.98 0.985 1.00 1.01 1.00

	 1.36	 The program EXPRB1_5 that was written to solve Example Problem 1.5 integrated the dimen-
sionless velocity profile to obtain a dimensionless unit flow rate q′. Modify this program so the 
actual velocity profile at each position x is integrated to get the actual unit flow rate q. (In doing 
this you can evaluate q for each unit of width of channel, and sum these q’s to get the total flow 
rate Q.) What flow rate, channel area, and average velocity do you get with this process?

	 1.37	 Using the approach used in the previous problem, determine the values of the energy cor-
rection coefficient α, and the momentum correction coefficient β for the natural channel in 
Example Problem 1.5.
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2 Energy and Its Dissipation 
in Open Channels

2.1  Introduction

In applying the energy principle to the flow of liquids in open channels, it is necessary at the outset 
to be able to describe the resistance of fluid to motion. This resistance occurs because all real fluids 
have the property called viscosity, which causes internal shearing stresses to exist within the fluid 
as a consequence of a velocity gradient as it passes over a solid boundary. Viscosity is defined in 
Chapter 1. At the solid boundary, the velocity in the fluid must be zero, or agree with the velocity 
of the boundary, and increase therefrom for movement to take place. Thus it takes work, or energy, 
to cause motion of fluids relative to the boundaries that contain the fluids. This resistance and its 
effects are given several names such as “frictional resistance,” “viscous shear,” “friction factors,” 
“friction losses,” “friction energy dissipation,” “frictional head loss,” etc. Often, friction is omitted. 
In the case of liquids, the internal processes associated with fluid friction involve the conversion 
of useful fluid energy, which is originally in the form of a potential or kinetic energy, into a non 
recoverable energy, i.e., increase in temperature of the liquid. It is appropriate, therefore, to consider 
it a head loss, or dissipation of energy per unit weight of fluid. The increase in temperature is very 
small and of minor, if any, significance.

The first part of this chapter deals with how this head loss can be determined practically in com-
puting depths of flow, and velocities that will occur if a given volumetric flow rate is to occur in a 
channel of a given size. These losses will be restricted to uniform flows. Nonuniform flows will be 
dealt with in Chapter 4. After being able to determine this loss, the second part of this chapter deals 
with the application of the energy principle to open channel flows. In this part, concepts associated 
with specific energy in open channel flow will be covered, as well as the differences between sub-
critical and supercritical flows.

2.2  Approaches to Frictional Resistance

The problem of frictional resistance in open channel flows is complex and depends on sound engi-
neering judgment in selecting appropriate coefficients. The subject is made more complex by the 
fact that many channels are unlined, and therefore may have a moveable bed under some, or all 
flow conditions, that exist in that channel. The effects of bed movement are not considered in this 
chapter and are dealt with in articles and volumes dealing with sediment transport, its scour, and 
deposition and flow in alluvial channels. This chapter is restricted to flow resistance in fixed bed 
channels.

The different means for handling the resistance to motion in channels can be roughly classified as 
(1) the more fundamentally sound friction factor approach similar to that used for pipe flows when 
utilizing the Darcy–Weisbach equation and (2) based on tested and widely used empirical equations. 
In engineering practice, the use of empirical equations dominates in computing frictional losses in 
open channels. The reason for this is associated with the complexities involved with the friction 
factor approach. The same occurs in pipe flow computations in which the Hazen–Williams equa-
tion is used more extensively than is the Darcy–Weisbach equation. The use of empirical equations 
should be limited to ranges of situations for which they give good answers. A more fundamentally 
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sound approach generally does not have these restrictions. As computers take over the task of doing 
the arithmetic, there will likely be a trend in engineering practice to switch to the friction factor 
approach. The friction factor approach will be described first and it will be followed by a section 
dealing with the use of Manning’s equation.

Before beginning this discussion of fluid frictional losses in open channel flows, it should be 
pointed out that other complex phenomena may operate in dissipating fluid energy that are not 
covered by this theory, and using the results from this theory for these channel flows may produce 
erroneous answers. Such a flow, for example, exists in a steep mountain stream with very large 
bed elements that extend up to, or above, the water surface in many locations. Data taken from 
such a river/stream that flows through the Rocky Mountain Hydraulics Laboratory (Jarrett, 1991) 
indicate that energy dissipated is proportional to the velocity raised to the 8.3 power, whereas fric-
tional theory for turbulent flows has the energy dissipation proportional to the velocity squared. 
Empirical equations, such as Manning’s equation, are not appropriate for such flows. In fact, neither 
is Manning’s equation appropriate to determine flow depths, etc. on steep spillways with slopes 
0.2 or greater even though they are made of relatively smooth concrete, because it has not been 
developed to describe such large velocity flows that have large-scale turbulence associated with 
them. Neither is Manning’s equation suited for extremely low-velocity flows through tall grass, for 
example.

2.2.1  Friction Factors in Open Channels

In 1768, a French engineer, Antoine Chezy, reasoned that the resistance to flow in an open channel 
would vary with the wetted perimeter and with the square of the velocity and that the force to bal-
ance this resistance would vary with the area of the cross section and with the slope of the channel. 
Therefore, he proposed that
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and would be the same for any similar channel. He used this in designing a canal for the Paris water 
supply. Years later, in 1897 his manuscript was published, and as his method became known and 
adopted by other engineers, the square root of the constant became know as the Chezy coefficient, 
and the equation

	 Q = CA(R S)h
1/2 	 (2.1a)

or

	 V = C(R S)h
1/2 	 (2.1b)

became known as Chezy’s equation. While Chezy took C as a constant for a channel with a fixed 
wall roughness, we now know that C is a function of the Reynolds number (Re = 4VRh/ν = 4Q/(νP); 
also note as above that the hydraulic radius Rh is the area divided by the wetted perimeter, or 
Rh = A/P) of the flow as well as the relative roughness (e/Rh) of the channel wall, or C = f(Re,e/Rh). 
In other words, not only does C depend on the type of channel, but its value also depends on the 
flow conditions in that channel.

The processes associated with fluid resistance in open channel flows are similar to those that 
cause head losses in pipeline flows. Therefore, it is possible to get considerable insight into chan-
nel resistance by utilizing what is known from experimentation and theory, and has been adopted 
into practice in pipe fluid friction. The Darcy–Weisbach equation, hf = f(L/D)(V2/2 g) defines the 
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frictional head loss in a pipe flow, in which f is a friction factor whose magnitude depends upon 
the relative roughness of the pipe wall, e/D, and the Reynolds number of the flow in the pipe. The 
Darcy–Weisbach equation is accepted as the fundamentally sound and best method for computing 
head losses or pressure drops in pipelines due to known flow rates. Therefore, this equation will 
be compared with Chezy’s equation. The Darcy–Weisbach equation indicates that the slope of 
energy line, or the head loss, hf, divided by the length, L, of pipe over which this loss occurs equals 
a friction factor, f, divided by the pipe diameter (which is a representative parameter for the pipe 
size with dimensions of length), multiplied by the velocity head, V2/2 g. If the hydraulic radius Rh 
multiplied by 4 is used in place of the pipe diameter, then the Darcy–Weisbach equation can be 
written as

	 S
h
L

fV
R g

fQ
R gA

= = =f

h h

2 2

24 2 8( ) ( )
	 (2.2)

in which the friction factor, f, is a function of Reynolds number and the relative roughness, e/D, of 
the pipe wall (e is the roughness of the pipe wall and D is the diameter of the pipe). The substitution 
of 4Rh in place of D can be justified by noting that for a pipe, the hydraulic radius that equals the 
area divided by the perimeter is Rh = (πD2/4)/(πD) = D/4.

It is worth noting that if f is dimensionless, then the terms separated by equal signs in Equation 
2.2 are all dimensionless. Thus, Equation 2.2 can be obtained from dimensional analysis, and 
this analysis leads to the conclusion that f does depend on the two dimensionless parameters, 
Re (Reynolds number) and e/D. The friction factor f will have the same value regardless of whether 
ES or SI units are used.

A comparison of Equation 2.1a and b with Equation 2.2 gives the following relationship between 
the Darcy–Weisbach friction factor, f, and Chezy’s coefficient, C:

	 C
g
f

= 8
	 (2.3)

For pipe flow, it is known that the friction factor f can be defined well by a Moody diagram that is a 
plot of f as the ordinate against Reynolds number as the abscissa with different curves for different 
values of relative roughness e/D. This diagram is defined by the following equations for the follow-
ing four different types of flow that occur:

	 1.	Laminar flow

	
f

Re

= 64

	 2.	Hydraulically smooth flow (the wall roughness are well embedded within the laminar sub-
layer, less than 1/5 its size, and consequently have no influence on the magnitude of f)

	

1
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	 3.	Transitional zone (in which both Re and e/D determine f’s magnitude; this is the Colebrook–
White equation)
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	 4.	Wholly rough zone (in which Re no longer effects f’s magnitude)
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Equations that define Chezy’s C might be determined by substituting Equation 2.3 into the above 
four equations. When doing this for laminar flow, the following equation results:

	 C
gR= e

8
	 (2.4)

Equation 2.4 applies for flows in which the Reynolds number is less than about 2100. Experimentation 
has shown that the value of 8 in Equation 2.4 does not hold constant for all channel, but no fully 
accepted range of values has been established. Since laminar flows are rare when dealing with water 
as the fluid, the value of 8 can probably be used, at least for a reasonable first approximation.

Substituting Equation 2.3 into the hydraulically smooth equation gives

	 C
gR

C
= 



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32gLog
0.887

10
e 	 (2.5)

There is some question about whether the value 0.887 should be modified slightly to fit available 
experimental data. However, since very limited quality experimental data are available for hydrauli-
cally smooth flow, the derived value will be used in this book.

For flows that occur in the transitional zone in which both the relative roughness of the chan-
nel wall and the Reynolds number have an influence on the magnitude of the frictional resistance, 
the constants that are obtained from substituting Equation 2.3 into the above transitional equation 
might be modified slightly to give a better fit of some experimental data. (See ASCE Task Force, 
1963.) With these modified coefficients the equation is
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If the original coefficients that come from the Colebrook–White or other experimentally based 
equation are preferred, then Equation 2.6 can be written in the more general form
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in which the a, b, and c can be given slightly different values. For example, when using the 
Colebrook–White equation directly a = 12, b = 0.887, and c = (32 g)1/2.

For the wholly rough zone substitution of Equation 2.3 into the wholly rough equation that 
defines the Moody diagram gives
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These equations are summarized in Table 2.1, and Equations 2.5 through 2.7 are plotted on Figure 
2.1 to give “Chezy C” diagram for turbulent flows. If Equation 2.4 were plotted on a left addition 
to Figure 2.1, it would result in a straight line with a slope of 1/2, since power equations such as 
Equation 2.4 plot as straight lines on log–log graph paper with the exponent in the equation giving 
the slope on this plot.
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The friction factor f in the Darcy–Weisbach equation has a value that is independent of the units 
used. However, since C is not dimensionless, but has the dimensions of the square root of gravity, 
e.g., L1/2/T, its value will be different when using SI units than when using ES units. In Figure 2.1, 
the values for C when using SI units are the left-side ordinate, whereas the right ordinate applies 
when using ES units. An alternative to having different values of C for different units would be to 
modify Chezy’s equation to include g, or define the Chezy equation as

	 V C gR S= 1 h 	 (2.1c)

However, historical developments have not done this, and therefore you must be sure that the appro-
priate value of C is used to the system of units that you are using.

Since many open channel flows do fall within the transitional type of flow, some discussion 
of the characteristics of Equation 2.6 are in order. It should be noted that C occurs on both sides 
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FIGURE 2.1  Diagram for Chezy’s C for use in determining the flow rate, velocity and slope of the energy 
line, or head loss in open channels.

TABLE 2.1
Summary of Equations That Define Chezy’s Coefficient, C

Type of Flow Equation Giving C Equation No. Range of Application
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of Equation 2.6 (the same is true of Equation 2.5). It is not possible to rearrange this equation so 
that C is on one side of the equation all by itself. Equations of this type are referred to as implicit 
equations, since an explicit solution of them is not possible. Use of general iterative techniques, 
such as the Newton method described in Appendix B can be used. However, because of the nature 
of Equations 2.5 and 2.6 they can be solved by a simple feedback iteration, called a Gauss–Seidel 
iteration, in which the C solved for on the left side of the equal sign is used for C on the right side 
of the equal sign for the next iteration. The value produced by the explicit Equation 2.7 can be used 
as the initial starting value for this iterative solution or easier, just start with a reasonable guess. 
The following few lines of FORTRAN and C code illustrate implementation of this iterative solu-
tion for a trapezoidal channel. For other types of cross sections, the two function statements at the 
top of this listing that define the area, A(B,FM,Y) and the wetted perimeter, P(B,FM,Y) need to 
be modified.

Program CHEZYC.FOR
      A(B,FM,Y)=(B+FM*Y)*Y
      P(B,FM,Y)=B+2*Y*SQRT(FM*FM+1.)
5     WRITE(6,*)' Give:B,FM,Y,G,VISC,E,Q'
      READ(5,*,ERR=30) B,FM,Y,G,VISC,E,Q
      AR=A(B,FM,Y)
      V=Q/AR
      G8=.884/SQRT(G)
      SQG=SQRT(32.*G)
      C1=SQG*ALOG10(12.*AR/P(B,FM,Y)/E)
10    RH=AR/P(B,FM,Y)
      RE=4.*V*RH/VISC
      C=-SQG*ALOG10(E/(12.*RH)+G8*C1/RE)
      IF(ABS(C-C1).LT. 1.E-8) GO TO 20
      C1=C
      GO TO 10
20    WRITE(6,*)' CHEZYS COEF=',C
      GO TO 5
30    STOP
      END

Program CHEZYC.C
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
float a(float b,float m,float y){return (b+m*y)*y;}
float p(float b,float m,float y){return b+2.*y*sqrt(m*m+1.);}
void main(void){float b,m,y,g,visc,e,q,ar,v,g8,rh,re,c,c1,sqg;
 printf("Give: b,m,Y,g,Visc,e,Q\n");
 scanf("%f %f %f %f %f %f %f",&b,&m,&y,&g,&visc,&e,&q);
 ar=a(b,m,y); v=q/ar; g8=.884/sqrt(g);sqg=sqrt(32.*g);
 c=sqg*log10(12.*ar/p(b,m,y)/e);
 do {c1=c; rh=ar/p(b,m,y); re=4.*v*rh/visc; 

c=-sqg*log10(e/(12.*rh)+g8*c1/re);}while(fabs(c-c1)<1.e-8);
 printf("CHEZYS COEF =%f\n",c);}

A typical problem involves considerably more than solving one of the equations in Table 2.1 for 
Chezy’s coefficient. The types of problems associated with steady flow can be categorized as follows:
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	 1.	The flow rate, or velocity is unknown, and all other variables are known.
	 2.	The depth is unknown and all other variables are known. This type of problem typically 

asks a question like: With this given channel what will the depth of flow be if the flow rate 
equals Q.

	 3.	One of the variables associated with the channel size is unknown, but the flow rate is known. 
This type of problem can be consider a design problem in which the size of channel needed 
to convey a specified flow rate is wanted. For a trapezoidal channel the unknown may be the 
bottom width, or the side slope, and for a circular section the diameter is the unknown.

	 4.	All variables are known except the wall roughness.
	 5.	The slope of the channel bottom is unknown, and all other variables are known. Of all 

problems this is the easiest, since its solution can be obtained most directly, by (a) solving 
the appropriate equation for Chezy’s coefficient, and (b) solving Chezy’s equation for S. 
(When the slope, S, refers to the channel bottom subscript o will be used and when the 
slope refers to the energy line subscript f will be used e.g., in most subsequent equations So 
or Sf will appear in Chezy’s as well as Mannings equation.)

Problems in any of these categories might be view, as a mathematical problem of solving two 
nonlinear simultaneous equations; Chezy’s equation and the appropriate equation from Table 2.1 
that defines Chezy’s coefficient. Appendix B describes the Newton method for solving systems of 
nonlinear equations. Alternately software packages, such a Mathcad, TK-Solver, or Matlab can 
be used, or math packs for pocket calculators might be used. In addition to the procedure described 
above for case (5) problems under category (1) can be solved by cycling through the following steps: 
(a) solving for C (Equation 2.6), (b) using this C compute Q, or V from Equation 2.1a and b, and (c) 
based on this Q, or V update Reynolds number and repeat steps (a) through (c) until a small enough 
change occurs between consecutive values of Q or V that you are willing to accept the results. 
Convergence of this procedure will be rapid because changes in flow rate have a relatively small 
effect on the value of C. Should the flow be in the wholly rough zone then only one cycle of steps 
(a) and (b) above completes the solution since Chezy’s coefficient is independent of the flow rate.

Typical values for wall roughnesses that are appropriate are given in Table 2.2.

Example Problem 2.1
What is the flow rate in a trapezoidal channel with b = 10 ft, m = 1.5, and a bottom slope of 
So = 0.0005 if the depth of flow is measured equal to 5 ft.

Solution
This problem falls in Category (1) above. The solution might begin by solving for C from Equation 
2.7, which gives C = 127.49. Next the implicit Equation 2.6 is solved by the Gauss–Seidel iteration 
based on an assumed Reynolds number, i.e., 1.0E6 (or if one wishes the above C could be used in 

TABLE 2.2
Value of Wall Roughness, e, for Different 
Channel Materials

Material e (m) e (ft)

PVC 0.0000015 0.000005

Very smooth concrete 0.00030 0.0010

Concrete (smooth forms) 0.00049 0.0016

Ordinary concrete 0.0012 0.0038

Untreated gunite 0.0020 0.0067

Rough concrete 0.0043 0.014

Clean dirt ditch 0.0100 0.03
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Chezy’s equation to compute the Reynolds number). The result is C = 125.15. Now using this C 
the velocity is V = 4.944 fps from Chezy’s equation, and the associated Reynolds number equals 
5,019,874 (assuming v = 1.23E−5). To get the solution the steps of (a) solving C from Equation 
2.6 based on the most recent Reynolds number, (b) solve V from the Chezy equation (Equation 
2.1a and b) and updating Re = 4Rh/v. The results are iteration # 2, C = 126.98, V = 5.017 fps, 
Re = 5,093,390; iteration # 3, C = 126.99, which is close enough giving a flow rate Q = 439.0 cfs.

Example Problem 2.2
A trapezoidal channel with b = 8 ft, m = 1.2, and a bottom slope of 0.0006 is to convey a flow 
rate of Q = 300 cfs. The wall roughness of the channel is e = 0.004 ft. Determine the depth of 
flow in this channel.

Solution
An effective way to solve this problem is to use the Newton method (Appendix B) to solve Chezy 
equation and Equation 2.6 simultaneously for C and Y. For the Newton method these equation 
can be written as
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Using the Newton method the unknown vector, consisting of the two values C and Y, is updated 
by the following iterative equation:
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in which the vector z is the solution to the linear system of equations:
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Instead of actually taking the partial derivatives shown above a numerical approximation can 
be used. This numerical approximation evaluates the function (i.e., equation) twice with the sec-
ond evaluation based on decreasing (or increasing) the variable that the derivative is taken with 
respect to by a small increment and then dividing the two values of the function by this increment.

The following FORTRAN program can be used to obtain this solution. It is designed to 
solve for C as well as any of the following variables: e, b, m, Y, Q, or S in a trapezoidal channel. 
Input to this program as well as the values to solve this problem consist of: 1 the number of the 
unknown variable which is 4 for Y for this problem, the list of known, including a guess for Y, 
in the following order: e = 0.004, b = 8, m = 1.2, Y = 4(guess), Q = 300, S = 0.0006, g = 32.2, 
and kinematic viscosity = 1.23E–5. The solution produced by the program is Y = 4.46 ft. The 
problem can be solved by using Figure 2.1 in connection with Equation 2.1a and b. You should 
at least verify Chezy’s C from Figure 2.1. The value of C from the above procedure is C = 125.

Listing of FORTRAN program to solve problem using the Chezy equation (CH2PR2):
      REAL X(6),D(2,2),F(2)
      EQUIVALENCE (E,X(1)),(B,X(2)),(FM,X(3)),(Y,X(4)),(Q,X(5)),

&(S,X(6))
      A(B,FM,Y)=(B+FM*Y)*Y
      RH(AR,B,FM,Y)=AR/(B+2.*Y*SQRT(FM*FM+1.))
      F1(C,SQG,RH1,RE,G8,E)=C+SQG*ALOG10(E/(12.*RH1)+G8*C/RE)
      F2(Q,C,AR,RH1,S)=Q-C*AR*SQRT(RH1*S)
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1       WRITE(6,*)' Give: No. of UNK,1-e,2-b,3-m,4-Y,5-Q,6-S,g & Vis'
      READ(5,*) IUN,X,G,VISC
      IF(IUN.LT.1 .OR. IUN.GT.6) GO TO 1
      G8=.884/SQRT(G)
      SQG=SQRT(32.*G)
      C=SQG*ALOG10(12.*RH(A(B,FM,Y),B,FM,Y)/E)
20    AR=A(B,FM,Y)
      RH1=RH(AR,B,FM,Y)
      RE=4.*Q*RH1/(VISC*AR)
      F(1)=F1(C,SQG,RH1,RE,G8,E)
      F(2)=F2(Q,C,AR,RH1,S)
      C=.98*C
      D(1,1)=(F(1)-F1(C,SQG,RH1,RE,G8,E))/(.02040816*C)
      D(2,1)=(F(2)-F2(Q,C,AR,RH1,S))/(.02040816*C)
      C=C/.98
      X(IUN)=.95*X(IUN)
      AR=A(B,FM,Y)
      RH1=RH(AR,B,FM,Y)
      RE=4.*Q*RH1/(VISC*AR)
      D(1,2)=(F(1)-F1(C,SQG,RH1,RE,G8,E))/(.05263158*X(IUN))
      D(2,2)=(F(2)-F2(Q,C,AR,RH1,S))/(.05263158*X(IUN))
      X(IUN)=X(IUN)/.95
      FAC=D(2,1)/D(1,1)
      D(2,2)=D(2,2)-FAC*D(1,2)
      F(2)=F(2)-FAC*F(1)
      DIF=F(2)/D(2,2)
      X(IUN)=X(IUN)-DIF
      DIF1=(F(1)-DIF*D(1,2))/D(1,1)
      C=C-DIF1
      IF(ABS(DIF)+ABS(DIF1).GT. .001) GO TO 20
      WRITE(6,100) C,X(IUN),X
100   FORMAT(' C=',F8.2,' Unknown=',F10.3,/,' e=',F10.5,/, 

&' b=',F8.2,/,' m=',F8.2,/,' Y=',F8.3,/,' Q=',F10.2,/, 
&' S=',F8.5)

      WRITE(6,*)' Give 1 to solve another problem; otherwise 0'
      READ(5,*) IUN
      IF(IUN.EQ.1) GO TO 1
      STOP
      END

Example Problem 2.3
Determine the depth of flow in a circular channel with D = 10 ft, if its bottom slope equals 0.0005 
and its wall roughness equals 0.004 ft and it is to convey a flow rate of Q = 150 cfs.

Solution
The above program can be modified by changing the function statement to obtain the area by 
a function subprogram, and function statement for the hydraulic radius to apply for a circular 
channel. These statements could consist of

	 FUNCTION A(D,BETA,Y)
	 BETA=ACOS(1.-2.*Y/D)
	 A=D*D/4.*(BETA-COS(BETA)*SIN(BETA))
	 RETURN
	 END
and
	 RH(AR,D,BETA,Y)=AR/(D*BETA)
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The above listing might be altered with BETA replacing FM, and or the present FORTRAN 
names used with different meaning. The solution gives Y = 4.613 ft, and Chezy’s C = 123.1.

Example Problem 2.4
You are to size a trapezoidal channel that is to carry a flow rate of Q = 50 m3/s. The slope of the 
channel is 0.0012 and it is to be made of formed concrete. For stability of the channel sides their 
slopes are to be 1.5, and the depth is not to exceed 2 m. What should the bottom width be?

Solution
The computer program of Example Problem 2.2 will solve this problem. If this program is 
used the input consists of: 2,.00049,3,1.5,2,50,.0012,9.81,1.14E−6. The solution is b = 4.94 m. 
If Mathcad is available to you it would be a excellent experience to use it, or some other software 
package to get the same solution.

2.3 C ombining the Chezy and the Chezy C Equations

An alternative to solving Chezy’s equation and the Chezy C equation for the transitional zone simul-
taneously for any of the variables is to eliminate C first by solving for it from Chezy’s equation, and 
then substituting this in the equation that applies within the transitional zone where it occurs on both 
sides of the equal sign. By eliminating C between these two equations there is one equation and one 
of the variables can be solved as the unknown. The resulting equation is implicit for all variables 
except e, and so in general must be solved by an iterative technique. The HP48 calculator’s SOLVE 
capability can be used; however, because A and P are functions of the depth and size variables the 
resulting equation becomes long and complex. However, this approach is readily implemented in 
a computer program, in TK-Solver, or Mathcad models where separate statements can be used to 
define A and P.

Solving Chezy’s equation for C gives
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If the first of the two equations above, that contains Q, is used that gives C using Q then the follow-
ing equation results:
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and if the second of the above two equations that gives C using the velocity V then the following 
equation results:
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After solving either of these two equations depending on whether the flow rate Q is given (or the 
unknown) or whether the velocity is given (or the unknown), then Chezy’s equation is solve for 
the coefficient C if this value is desired. The program CHEZYCTC.FOR, which is given below, 
implements such a solution using the Newton method to solve for the selected unknown from 
the variables: m, b, S, Y, e, Q, or V if the channel is trapezoidal, and D, S, Y, e, Q, or V if the 
channel is circular. The technique used to accommodate both trapezoidal and circular channels 
is to not use X(1) (for m) and change V(2) to D (the Character string) if the channel is circular. 
When IC = 1, for a circular channel, then the equation that gives A and P for a circular chan-
nel are used; otherwise those that give these quantities for a trapezoidal channel are used. (See 
Statements starting with label 55.) The approach is very similar to that used in solving the DW 
and CW equations. This program does not contain the logic, however to generate a guess for the 
unknown, that is needed in the Newton method. Rather the user must supply this guess as well 
as the known values.

The variable and rule sheets from TK-Solver are listed below the program listing that handle 
first the equation that assumes that the flow rate Q is the flow variable, which is in the combined 
equation with the other channel property variables, and the second is for the equation that involves 
the V as the flow variable.

Listing of program CHEZYCTC.FOR for solving the Chezy equation for any of the variables for 
both a trapezoidal and a circular channel

      REAL X(7)
      CHARACTER*19 FMT/'(1X,A2,3H = ,F10.4)'/
      CHARACTER*1 V(7)/'m','b','S','Y','e','Q','V'/
1     WRITE(*,*)' Give 1=ES or 2=SI(or 0/=STOP),',
     &'0=trap or 1=cir. & Visc'
      READ(*,*) II,IC,VISC
      IF(II.LT.1) STOP
      G=32.2
      IF(II.GT.1) G=9.81
      VISC2=.221*VISC/SQRT(G)
      G32=SQRT(32.*G)
      IF(IC.GT.1) THEN
      I2=2
      V(2)='D'
      ELSE
      I2=1
      V(2)='b'
      ENDIF
      WRITE(*,100)(I,V(I),I=I2,7)
100   FORMAT(' Give No. of Unknown',/(I2,' - ',A2))
      READ(*,*) IU
      IF(IU.GT.5) GO TO 10
      WRITE(*,*)' Give 1 if Q will be given or 2',= if V is known'
      READ(*,*) IV
      GO TO 12
10    IV=IU-5
12    WRITE(*,*)' Give values to knowns &=,= GUESS for unknown'
      I3=7
      IF(IV.EQ.1) I3=6
      DO 20 I=I2,I3
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      IF(IV.EQ.2 .AND. I.EQ.6) GO TO 20
      WRITE(*,"(A2,' = ',\)") V(I)
      READ(*,*) X(I)
20    CONTINUE
50    M=0
52    XX=X(IU)
      X(IU)=1.005*X(IU)
      DX=X(IU)-XX
55    IF(IC.EQ.1) THEN
      COSB=1.-2.*X(4)/X(2)
      BETA=ACOS(COSB)
      A=.25*X(2)**2*(BETA-COSB*SIN(BETA))
      P=X(2)*BETA
      ELSE
      A=(X(2)+X(1)*X(4))*X(4)
      P=X(2)+2.*X(4)*SQRT(X(1)**2+1.)
      ENDIF
      ADL=G32*ALOG10(X(5)*P/(12.*A)+VISC2*(P/A)**1.5/SQRT(X(3)))
      IF(IV.EQ.1) THEN
      F=X(6)*SQRT(P/(A*X(3)))/A+ADL
      ELSE
      F=X(7)*SQRT(P/(A*X(3)))+ADL
      ENDIF
      M=M+1
      IF(MOD(M,2).EQ.0) GO TO 60
      X(IU)=XX
      F1=F
      GO TO 55
60    DIF=DX*F/(F1-F)
      X(IU)=XX-DIF
      IF(ABS(DIF).GT. .00001 .AND. M.LT.30) GO TO 52
      IF(IV.EQ.1) THEN
      X(7)=X(6)/A
      ELSE
      X(6)=A*X(7)
      ENDIF
      DO 70 I=1,7
      FMT(18:18)='3'
      IF(I.EQ.3 .OR. I.EQ.5) FMT(18:18)='6'
70    WRITE(*,FMT) V(I),X(I)
      WRITE(*,FMT) 'C',X(7)*SQRT(P/(A*X(3)))
      GO TO 1
      END

═══════════ VARIABLE SHEET ════════════
St Input──── Name─── Output─── Unit────
             A       75
   10        b
   1         m
   5         Y
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             P       24.142136
             Q       478.55564
   .001      S
   32.099844 g32
   .01       e
   .0000141  v
   32.2      g
             C       114.47967
═══════════════ RULE SHEET ═════════════════
S Rule──────────────────────────────────────
   A=(b+m*Y)*Y
   P=b+2*Y*sqrt(m^2+1)
   Q*sqrt(P/(A*S))/A+g32*Log(e*P/(12*A)+.221*v/
      sqrt(g*S)*(P/A)^1.5)=0
   C=Q*sqrt(P/(A*S))/A

═══════════ VARIABLE SHEET ════════════
St Input──── Name─── Output─── Unit─────
             A       75
   10        b
   1         m
   5         Y
             P       24.142136
             V       6.3807419
   .001      S
   32.099844 g32
   .01       e
   .0000141  v
   32.2      g
             C       114.47967
══════════════ RULE SHEET ════════════════
S Rule────────────────────────────────────
   A=(b+m*Y)*Y
   P=b+2*Y*sqrt(m^2+1)
   V*sqrt(P/(A*S))+g32*Log(e*P/(12*A)+.221*v/
      sqrt(g*S)*(P/A)^1.5)=0
   C=V*sqrt(P/(A*S))

For laminar flow or water to occur in open channels either the depth or the velocity must be very 
small. For example, assume water at 15.6°C (60°F) so its kinematic viscosity is v = 1.123 × 10−6 m2/s 
(1.217 × 10−5 ft2/s), and that the largest value of Reynolds number, VRh/v allowed for laminar flow 
is 500, and that the channel is very wide so that Rh = Y, then the product of the velocity time the 
depth VY ≤ 500(1.123 × 10−6) = 0.0005615 for SI units or VY ≤ 0.0061 for ES unit. The tables below 
show these limiting values. The Froude number Fr in the third column of these tables is defined by 
F V gYr = . Notice that as the depth becomes very small, in the order of 0.01 ft, or 0.003 m, and 
the velocity consequently larger that the flow may becomes supercritical (Fr greater than 1). To have 
conditions right to allow a flow to be simultaneously laminar and supercritical are not common. 
Furthermore, when the depth becomes small enough for Froude numbers to be larger than unity 
then the surface tension of the water becomes a significant factor. When water flows in very thin 
sheets on steep surfaces, it tends to form thread like streamlets. Also most channel surfaces, such 
as gutter, or road way beds, where very small depths of open channel water flows may be found in 
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practice, are not smooth enough and the water will actually be seen to flow in the lower indenta-
tions. The sheet flow over watershed surfaces that occurs from rainfall, which does not infiltrate 
into the soil, tends to erode the smaller particles and by so doing forms a system of mini channel, 
which will grow in size in time especially if the rainfall is intense. The last columns in these tables 
give the bottom slope of the channel that would be required for the flow to take place as computed 
by the Chezy equation. Note that for super critical flows the bottom slopes must also be very large.

Limiting Depths, Velocities and Froude Numbers for Laminar Flow of Water in Wide Open 
Channels. T = 15.6°C (60°F) v = 1.123 × 10 m2/s (1.217 × 10 ft2/s)

V (ft/s) Y (ft) Fr So V (m/s) Y (m) Fr So

0.020 0.304 0.006 0.000015 0.0060 0.0936 0.0063 0.000008

0.040 0.152 0.018 0.000117 0.0120 0.0468 0.0177 0.000062

0.0625 0.097 0.035 0.000447 0.0200 0.0281 0.0381 0.000288

0.125 0.049 0.100 0.003577 0.0500 0.0112 0.1506 0.004495

0.250 0.024 0.282 0.028619 0.1000 0.0056 0.4261 0.35962

0.500 0.012 0.799 0.228955 0.1500 0.0037 0.7828 0.121372

0.010 0.609 1.072 0.412688 0.0030 0.1872 1.0910 0.235792

0.025 0.243 0.271 0.026412 0.0050 0.1123 0.5071 0.050931

0.050 0.122 0.096 0.003302 0.0100 0.0561 0.1793 0.006366

0.100 0.061 0.034 0.000413 0.0200 0.0281 0.0634 0.000796

0.200 0.030 0.012 0.000052 0.0500 0.0112 0.0160 0.000051

0.300 0.020 0.007 0.000015 0.1000 0.0056 0.0057 0.000006

2.4  Empirical Formula: Use of Manning’s Equation

Before the turn of the twentieth century, systematic research was underway to define better fluid 
resistance in open channel flow. It was recognized then that C in the Chezy equation was not con-
stant under all flow conditions in a given channel. Bazin proposed the following formula that found 
use in the past to better define C:
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in which m takes on a different value depending on the roughness of the channel wall. In 1868, 
Gauckler proposed that for flat slopes in open channel flow, C varies as the sixth root of the hydraulic 
radius. Others came to the same conclusion and the result has now been widely accepted throughout 
the world and is known in the United States as Manning’s formula even though the name Manning 
is a misnomer and it has been proposed that the formula be called Gauckler–Manning’s equation 
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in which Cu equals 1 when using SI units, and Cu = 1.486 (the cube root of the number of feet per 
meter) when using ES units, and n is the roughness coefficient of the channel wall. In this equation 
the following symbols apply: A = the cross section of the flow in ft2 when using ES units and in m2 
when using SI units; P is the wetted perimeter and is the length of contact between the water and 
the channel when viewed in a direction normal to the flow direction, and has units of ft in the ES 
system, and m in the SI system; Rh is the hydraulic radius, which is defined as the area A divided 
by the wetted perimeter P, with units of ft in ES units and m in SI units; and So is the slope of the 
channel bottom, which for uniform flow equal the slope of both the water surface in the channel as 
well as the energy line of the flow. The slope of the energy line equal the head loss divided by the 
length over which this loss occurs. Therefore So might be thought of as hL/L for uniform flow. Since 
three digits of precision cannot be maintained in the selection of n, it is common to use Cu = 1.49 
in ES units. Typical values for use in Manning’s equation for different material that channel are 
constructed from are given in Table 2.3. If n value larger than 0.05, the largest value in Table 2.3, 
is needed to describe a given channels flow, other mechanisms than just fluid friction are likely 
involved and Manning’s equation is probably inappropriate, e.g., a constant value of n will not 
describe depths, etc. over much of a range of flow rates. This condition exists for very small velocity 
flows that may be approaching flow through a porous media, or very large velocity flows.

It is worth noting that Manning’s formula indicates that the head loss is proportional to the 
square of the velocity, or flow rate. On the Chezy C diagram this corresponds to the wholly rough 
zone. When the Reynolds number becomes small with a magnitude of 100,000 or less then accord-
ing to the Chezy equation the head loss is proportional to the velocity to a power less than 2, but 
greater than 1. For laminar flow, Equation 2.4 indicates that the head loss is proportional to the 
velocity to the first power. Thus the use of Manning’s equation will essentially duplicate the results 
obtained from Chezy’s formula for very large Reynolds numbers when the flow lies in the wholly 
rough zone, provided corresponding roughness values are selected. On the other hand, the use of 
Manning’s equation is questionable for low-velocity flows in small smooth channels.

A natural question is: What is the relationship between the values of Manning’s n and the equiva-
lent sand roughness e used in connection with Chezy’s formula? The answer is that there is no direct 

TABLE 2.3
Typical Values for Manning’s n

Channel Material n

Lined channels

Smooth brass, glass, lucite, PVC 0.010

Cement plaster 0.011

Planed lumber, unpainted steel, trowelled concrete 0.012

Unplaned lumber, smooth asphalt, vitrified clay, 
brick in cement mortar, cast iron

0.013

Asphalt (rough), untreated gunite 0.016

Rough concrete 0.020

Corrugated metal 0.023

Natural channels

Clean excavated earth 0.023

Earth (good condition), rock excavation, gravel 
(straight chan.)

0.025

Earth (straight with some grass) 0.026

Earth (winding, no grass), clean natural beds 0.030

Gravel beds (plus large boulders) 0.040

Earth (winding), weedy streams 0.050
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relationship, or simple equation that can give n from e, or e from n. For any given e, the value of n 
is different depending on the channel type and size, and the flow rate, i.e., Reynolds number of this 
flow. To get an n that corresponds to an e for any given situation, one must solve both equations. For 
example, if one wanted to determine what n corresponds to e = 0.004 ft, it is first necessary to decide 
what channel and flow rate this correspondence is to apply for. To illustrate, assume a flow rate of 
400 cfs occurs in a rectangular channel with a bottom width of 10 ft and bottom slope of 0.0005 has 
a known e = 0.004 ft. First the depth is solved from Chezy’s equation. The depth is Y = 8.04 ft. Next 
Manning’s equation is solved for n, giving n = 0.0141. Thus for this channel containing this flow rate 
the corresponding n = 0.0141 for an e = 0.004 ft. For this e, the value of n will be different for each 
different flow rate and each channel.

Table 2.4 illustrates this variation of n with several different variables that can be changed in 
a trapezoidal channel. Since a rectangular channel is a special trapezoidal channel with side slope 
m = 0, this table includes a couple of rectangular channels. All of the values for n given in this table 
correspond to a equivalent sand roughness of e = 0.004 ft in the Chezy equation. The first three 
columns in Table 2.4 are for the rectangular channel used in the above illustration with a bottom 
width of 10 ft and a bottom slope of So = 0.0005. The flow rate was varied from 8 to 400 cfs in this 
channel. The second columns gives the depths that are obtained by solving Chezy’s formula, and 
the third column indicates the value of n that is solved by Manning’s equation for this column 2. 
This third column of n values shows that n increases with Q and Y from 0.0131 to 0.0141, or a 7.6% 
change over this range of conditions.

The next three columns, i.e., columns 4, 5, and 6 in Table 2.4, were obtained similarly except for 
a trapezoidal channel with a side slope of 1.5 (with b = 10 ft and So = 0.0005 as for the rectangular 
channel). With the flow rate changing from 12 to 600 cfs, the variation in Manning’s n is again 7.6%.

The next four groups of three columns each were obtained by holding the flow rate constant, let-
ting the slope of the channel bottom vary, solving Chezy’s equation for the depth, and based on this 
computed depth and other variables solving Manning’s equation for n. The third column of each 
group of 3 shows the variation of n. These variations in n are from 3.9% to 5.1%.

The last three columns in Table 2.4 were obtained for a rectangular channel with a bottom slope 
of So = 0.0005 and the depth held constant at 2 ft. The first column of this group that gives the bot-
tom width b was varied from 0.5 to 25.0 ft, and the flow rate in column 2 was obtained by solving 
Chezy’s formula. The last column represents the solution of Manning’s equation for this flow rate 
and channel. Note again a variation in the n value of 5.4%.

Table 2.5 represents the results from similar calculations to those used to get the values in Table 
2.4 with the exception that they apply to circular cross sections, and the units are SI instead of 
ES. Approximately the same variations in n occur. Both of these tables represent common chan-
nel sizes, and the value of e = 0.004 ft is a typical value for man-made lined channel. The varia-
tion of 3%–8% shown in these tables is within the accuracy of selecting n for a given application. 
Therefore, we might conclude that for most practical problems it is satisfactory to use Manning’s 
equation. Should the Reynolds number of the flow be less than 100,000, then it is probably best to 
use Chezy’s formula even if it does entail a little more arithmetic. The accuracy of predicting flow 
rates and/or other variables in open channels cannot be expected to be better than the percentages 
shown in Tables 2.4 and 2.5.

If one assumes Manning’s equation applies only in the wholly rough zone, then equating Chezy’s 
and Manning’s equations, V = C(RhSo)1/2 = (Cu/n)Rh

2/3So
1/2, with C defined by Equation 2.7 gives
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n

R g
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e
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hLog1 6
1032

12= 
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
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If we take n as dimensionless, then this equation indicates Cu has dimensions of L1/3/t. Making the 
assumption that n is dimensionless allows the same values of n to be used for both ES and SI units. 
This is what has occurred in practice, i.e., Cu = 1 for SI units, and for ES units Cu is the cubic root 
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of the number of feet per meter, or Cu = (1/.3048)1/3 = 1.486. However, it is generally accepted that 
n is not dimensionless. Often when working in one system of units (either ES or SI), the quantity 
on the right of the above equation, which is Chezy’s C, as well as Cu are taken as dimensionless, 
and therefore the literature will often suggest that n has dimensions of L1/6. A log–log plot of the 
above equation is given below. If n is assumed to have dimensions of L1/6 then one would expect 
n to vary as the one-sixth root of the wall roughness size, e, or n = Ke1/6 (where K is a constant). 
Such a relationship is shown on the graph as a dashed line, but any other line parallel to this line 
could be used depending on what n one selects to correspond to e for a given hydraulic radius. 
For the given dashed line Rh is taken equal to 3 ft and C R / n(32g) 2 79u

1 2
h
1 6 0/ /{ } .=  corresponding to 

e/Rh = 0.1 (Figure 2.2). Thus for e = 0.3 ft, n = 0.0267, or n = 0.03268e1/6. This gives n = 0.0182 cor-
responding to e = 0.03 ft, and n = 0.0124 corresponding to e = 0.003 ft. Note from this graph that 
the dashed line would fit the curve closer if its slope were flatter; suggesting that the dimensions 
of n might be closer to L1/7.

Let us now focus attention on solving Manning’s equation, which can be solved directly if the 
flow rate Q, the roughness coefficient n, or the slope of the channel bottom So is the unknown. 
To solve for n, its place is interchanged in Equation 2.8 with Q. In solving for So Manning’s equation 
becomes

	 S
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	 (2.8a)

If one of the variables that goes into defining the cross-sectional area A, the wetted perimeter P, 
i.e., the hydraulic radius Rh is unknown, then Manning’s equation becomes implicit in that vari-
able, and must be solved by an iterative method such as the Newton’s method, or by trial and error. 
Consider a trapezoidal section for example. For a trapezoid, the area and wetted perimeters are 
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defined respectively by A = (b + mY)Y, and P b Y m= + +2 12 , and Manning’s equation written 
as a function of this unknown equal to zero for use in the Newton iterative Equation B.2 becomes

	 F nQ b Y m b mY Y C Su o( ) [( ) ]
/

/ξ = + +



 − + =2 1 02

2 3
5 3 	 (2.8b)

in which variable ξ represent b, Y, or m depending respectively whether the bottom width, the 
depth or the side slope is the unknown. The Newton method for solving implicit equations such as 
Equation 2.8b is discussed in Appendix B, and is illustrated by example problems below.

If the channel is circular, then it is best to introduce the additional angle β = cos−1(1 – 2Y/D) as 
defined in Appendix A. Thus the depth Y is related to this angle (in radians) by Y = D (1 − cos β)/2, 
and Manning’s equation can be written as

	 F nQ D
D

C Su o( ) ( )
( cos sin )/

/

ξ β β β β= − −







 =2 3

2 5 3

4
0 	 (2.8c)

in which variable ξ now represents either β or D depending respectively whether the depth, or the 
diameter is unknown. Should the depth be unknown then β is first obtained by solving for it from 
Equation 2.8c, and thereafter the depth Y is computed by the equation above Equation 2.8c.

Example Problem 2.5
A flow rate of Q = 450 cfs is taking place in a trapezoidal channel with the following properties: 
b = 10 ft, m = 1, and So = 0.0006. Determine the uniform depth of flow in this channel if the 
appropriate value for Manning’s n is, n = 0.013.

Solution
This problem can be solved using Equation 2.8b and the Newton method. The Newton method 
can easily be solved using a programmable pocket calculator using the following steps:

	 1.	 Assign the variables, Y, b, m, Q, So, and n to storage registers, and place the values for 
these variable in the assigned registers (this includes a guess for the unknown Y in this 
case).

	 2.	 Put the calculator in program mode and program Equation 2.8b into it with the value of 
the equation F(ξ) = F(Y) being displayed upon completion of the equation.

	 3.	 Press the operate button on the calculator, and when it is complete store the value dis-
played in an unused register.

	 4.	 Retrieve the value from the register that hold Y, and increase it by a small amount such as 
0.001.

	 5.	 Store this increased value in the same register for Y again.
	 6.	 Press the operate button again.
	 7.	 Recall the last value of the equation, subtract it from the current value and divide this dif-

ference by 0.001.
	 8.	 Recall Y, subtract the result from step 7, and also subtract 0.001 from it and store Y back 

in its register.
	 9.	 Repeat steps 4 through 8 until convergence has occurred. If you want you can also pro-

gram these steps into your pocket calculator.

The implementation of these steps for this problem results in the following: Step 1

Register 1(Y) 2(b) 3(m) 4(Q) 5(So) 6(n)

Value 5 10 1 450 0.0005 0.013
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from step 3 F(Y) = 2.902; from step 6 F(Y) = 2.738, after step 8 register # 1 contains 5.018 
for Y. After iteration # 2 Y = 5.018, which represents no change to three digits beyond the deci-
mal point, and the solution is terminated. If you have a calculator with the capability to solve 
implicit equations with a SOLVE key such as the HP 48xs, then all that is needed is to define the 
equation and give values to the variables.

Example Problem 2.6
A flow rate of Q = 30 cfs is to be carried by a pipe with a bottom slope of So = 0.00028, and a 
Manning’s roughness coefficient of 0.013. If the depth is not to exceed 3/4 of the diameter, what 
size pipe should be used?

Solution
Since the depth is not to exceed 3/4 of the diameter, then cos β = 1 – 3/2 = − 1/2, and the equation 
that must be solved is

	

F D nQ D
D

C Su o( ) sin cos
/

/

= ( ) − −( )







β β β β2 3
2 5 3

4

for the pipe diameter D. Using the Newton method, the solution to this equation is D = 4.49 ft. 
Taking the next standard pipe size would call for using a pipe with a 54 in. diameter.

Example Problem 2.7
A pipe of diameter 2 m and Manning’s n = 0.013 has a bottom slope of So = 0.00112. Generate a 
table that gives the depths of flow that would be expected in this pipe under uniform flow condi-
tions for flow rates of Q = 0.5 m3/s to Q = 4.5 m3/s in increments of 0.5 m3/s.

Solution
The solution for each entry in this table requires that Equation 2.8c be solved by an iterative 
method such as the Newton method. The following BASIC program implements such a solution 
for the nine different flow rates giving the depth shown to the right of the BASIC listing.

BASIC program listing to solve Example Problem 2.7
10 INPUT "Give:n,So,D,Q1,DQ,est. for Y & No ",N,S,D,Q,DQ,Y,NO% 
20 FOR I%=1 TO NO%
30 NCT%=0
40 ARG=1-2*Y/D 
50 TANA=SQR(1-ARG*ARG)/ABS(ARG) 
60 �IF ARG>0 THEN BETA=ATN(TANA) ELSE BETA=3.14159265#-ATN 

(TANA)                                     
70 A=.25*D*D*(BETA-ARG*SIN(BETA))               Q(m3/s)   Y(m)
80 P=BETA*D                                      _______   _____

90 F=Q-A/N*(A/P)^.6666667*SQR(S)                  0.5     0.42
100 IF NCT%>0 THEN GOTO 150                       1.0     0.60
110 F1=F                                          1.5     0.74
120 Y=Y-.001                                      2.0     0.87
130 NCT%=1                                        2.5     0.99
140 GOTO 40                                       3.0     1.10
150 DY=.001*F1/(F1-F)                             3.5     1.22
160 Y=Y-DY+.001                                   4.0     1.33
170 IF ABS(DY) > .00001 THEN GOTO 30              4.5     1.46
180 PRINT Q,Y
190 Q=Q+DQ
200 NEXT I
210 END
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Example Problem 2.8
A natural canal that has a bottom slope of 0.002, and a Manning’s n = 0.018 has the cross section 
defined by the following transect data for a long distance. Determine the depth of flow in this 
canal if the flow rate is Q = 90 cfs.

x (ft) 0 2 4 7 9 11 14 18

y (ft) 0 0.8 1.5 3.0 3.3 2.5 1.2 0.0

Solution
From this data it is possible to interpolate along both sides of the canal to generate the following 
data giving the top width, the area, and perimeter for equal increments of the depth y.

Depth, Y Top Width Area Perimeter

0.17 1.58 0.13 1.62

0.33 3.01 0.51 3.10

0.50 4.30 1.11 4.44

0.66 5.44 1.92 5.63

0.83 6.44 2.90 6.68

0.99 7.29 4.03 7.59

1.16 7.99 5.29 8.37

1.32 8.55 6.65 9.02

1.49 8.96 8.10 9.61

1.65 9.22 9.62 10.22

1.82 9.41 11.18 10.88

1.98 10.21 12.80 11.75

2.15 11.07 14.56 12.66

2.31 12.03 16.46 13.68

2.48 13.05 18.53 14.75

2.64 14.03 20.77 15.78

2.81 15.01 23.16 16.82

2.97 15.99 25.72 17.86

3.14 16.99 28.44 18.91

3.30 18.00 31.33 19.98

The solution might proceed by selecting a depth, and then by interpolation in the above table deter-
mine the corresponding area and perimeter, substitute these into Manning’s equation, and compute 
the flow rate. Based on the difference between the computed flow rate and the wanted value of 
90 cfs, adjust the depth and repeat the process. A more formal procedure would be to implement 
the Newton method in the above table interpolation to obtain a better estimate for the next depth 
to use. The answer is Y = 2.60 ft, with A = 20.21 ft2 and P = 15.56 ft. See Appendix B.5 for details 
related to how areas and wetted perimeters can be defined from x y cross-sectional coordinates, etc.

Solving for the depth, or diameter, in circular sections by the Newton method requires that a 
good guess be supplied to start the iterative solution process, or else the method will fail. For cir-
cular sections, this guess must be much better than for trapezoidal channels. In the small BASIC 
program given under Problem 2.7 above it is left to the user to provide a satisfactory starting value. 
However, requiring the user to supply an initial guess is not always desirable. In most cases, an 
adequate initial guess can be easily generated within a computer program for solving for either the 
depth or diameter in a circular section, the two variables in Manning’s equation for which an explicit 
solution is not possible.

If the area and wetted perimeter for a circular section are replaced in Manning’s equation by 
functions of the auxiliary angle β that define these quantities, and terms rearranged, then Manning’s 
equation can be written as
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It should be noted that Q′ is dimensionless if Cu has units of the cube root of length per time (with n 
taken as dimensionless). A close approximation of the above dependency of Q′ on β is given by the 
following power equation:

	 ′ =Q 0.0313 4.0984β 	 (2.10a)

or the inverse of this equation is,

	 β = 2.3286(Q )0.244′ 	 (2.10b)

Thus if the depth of flow is the unknown it is possible to compute ′ =Q nQ C D Su o/( )/8 3 , and then 
from Equation 2.10b obtain a starting value for β. The reasonableness of this approximation is 
shown by the values in the small table below that gives the approximate β, the actual β and the dif-
ference corresponding to several values of Q′. Note that as the depth approaches the diameter, i.e., 
β approaches π the difference get larger.

Q′ βact βappr Difference

1.00E−06 0.0822 0.0800 0.0022

1.00E−05 0.1400 0.1403 −0.0003

1.00E−04 0.2388 0.2461 −0.0072

1.00E−03 0.4098 0.4316 −0.0218

1.00E−02 0.7160 0.7570 −0.0410

0.100 1.3478 1.3277 0.0201

0.200 1.7364 1.5723 0.1641

0.300 2.1842 1.7359 0.4484

0.330 2.4564 1.7767 0.6797

0.335 2.5955 1.7832 0.8123

Manning’s equation will need to be solved frequently throughout the chapters of this book. It will 
be useful for you to develop a computer program, or program your pocket calculator so that it will be 
possible to readily obtain a solution to any variable that may be unknown in Manning’s equation for 
either a trapezoidal or a circular section. Below is a listing of such a program in TURBO PASCAL, 
which utilizes the clear screen CLRSCR and the GOTOXY capabilities to give the program a little 
“user friendliness.” You should study over the program carefully. The array element X[IU] contains 
the unknown. For a trapezoidal channel the correspondence between the X’s and the variables are: 
X[1] = Q, X[2] = n, X[3] = S, X[4] = Y, X[5] = b, and X[6] = m. For a circular section the variables 
are the same through X[4], but then X[5] = D (the pipe diameter). A good way for you to understand 
how this program solves Manning’s equation completely in either a circular or a trapezoidal section, 
and allows either ES or SI units to be used is for you to translate the program into FORTRAN, C or 
BASIC depending upon what you are most familiar with.

Listing of PASCAL program MANNING.PAS that completely solves Manning’s equation in both 
trapezoidal and circular channels
Program Manning;
Const NX:array[1..7] of char=('Q','n','S','Y','b','m','D');
  VNAM:array[1..4] of string[12]=('flow rate','coefficient', 

'bottom slope','depth');
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  JW:array[1..4] of integer=(2,4,6,3);
Var X:array[1..7] of real; F1,P,Beta,DF,DX,C,AA:real; 
ITY,I,IU,m:integer;

Function Expn(a,b:real):real; 
Begin if a<0 then Writeln('error in power',a,b)

  else Expn:=Exp(b*Ln(a)) End; {raises a to the power b}
Function A:real; Begin {computes area A & AA and perimeter P}
  If ITY=1 then begin P:=X[5]+2*X[4]*sqrt(sqr(X[6])+1); 

AA:=(X[5]+X[6]*X[4])*X[4];
  end else Begin P:=1-2*X[4]/X[5]; if P=0 then Beta:=Pi/2 else begin
  Beta:=sqrt(1-sqr(P))/abs(P); if P>0 then Beta:=arcTan(Beta) else
  Beta:=Pi-arcTan(Beta) end;AA:=sqr(X[5])/4*(Beta-P*sin(Beta)); 

P:=Beta*X[5] End;
  A:=AA End;
Function F:real; Begin {Defines Manning's Equation for Newton Method}
  F:=X[2]*X[1]-C*A*Expn(AA/P,0.666667)*SQRT(X[3]) End;
Var Ch:Char;
Label L1;
BEGIN      {Start of program}
L1:ClrScr; GoToXY(1,10);Writeln('Do you want to use:');
  Writeln('1 - ES units, or'); Writeln('2 - SI units?');
  repeat Readln(Ch); until Ch in ['1','2','E','e','S','s'];
  If Ch in ['1','E','e'] then C:=1.486 else C:=1;
  ClrScr;GoToXY(1,10); Writeln('Is section:');
  Writeln('1 - Trapezoidal, or');Writeln('2 - Circular?');
  repeat Readln(Ch); until Ch in ['1','2','T','t','C','c'];
  if Ch in ['1','t','T'] then ITY:=1 else ITY:=2; ClrScr;
  Writeln('Give no. of unknown');
   For I:=1 to 4 do Writeln(I:2,' - ',NX[I]:1,' (',VNAM[I]);
   if ITY=2 then Writeln(' 5 - D (diameter)') else begin
     Writeln(' 5 - b (bottom width)');
     Writeln(' 6 - m (side slope)') end;
  repeat Readln(IU); until IU in [1..7]; ClrScr;
  Writeln('Give values for knowns');For I:=1 to 4 do if I<>IU then 

begin GoToXY(1,I+1);Write(NX[I]:1,' = '); Readln(X[I]) end;
  If (ITY=2) and (IU<>5) then begin GoToXY(1,6);Write('D = '); 

Readln(X[5]) end;
  If ITY=1 then Begin I:=5; if IU<>5 then begin I:=I+1; 

GoToXY(1,I); Write('b = ');Readln(X[5]) end;  
if IU<>6 then begin I:=I+1; GoToXY(1,I);

    Write('m = ');Readln(X[6]) end; End;
  Case IU of  

{1 thru 3 solve explicit eqs, 4,5 & 6 use Newton Method}
   1:X[1]:=C/X[2]*A*Expn(AA/P,0.6666667)*sqrt(X[3]);
   2:X[2]:=C/X[1]*A*Expn(AA/P,0.6666667)*sqrt(X[3]);
   3:X[3]:=sqr(X[1]*X[2]/(C*A*Expn(AA/P,0.6666667)));
   4,5,6:Begin If ITY=2 Then Begin If IU=4 then begin
     Beta:=2.3286*Expn(X[1]*X[2]/(C*Expn(X[5], 

2.6666667)*sqrt(X[3])),0.244);
      X[4]:=X[5]/2*(1-cos(Beta)) end else X[5]:=2*X[4] End Else
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     case IU of 4:X[4]:=X[5]/2; 5:X[5]:=2*X[4]; 6:X[6]:=1; 
end; m:=0;

     repeat F1:=F; DX:=X[IU]/100; X[IU]:=X[IU]-DX;
      DF:=DX*F1/(F1-F); X[IU]:=X[IU]+DX-DF; m:=m+1;  

until (m>20) or (abs(DF)<0.0001);
     End; End; ClrScr;
  Writeln('Solution to unknown');  

If (ITY=2) and (IU=5) then Write('D = ') else
    Write(NX[IU]:1,' = '); Writeln(X[IU]:11:JW[IU]+1); Writeln;
  Writeln('Variables of Problem:');
   For I:=1 to 4 do Writeln(NX[I]:1,' = ',X[I]:10:JW[I]);
   If ITY=2 then Writeln('D = ',X[5]:10:3) else begin
    Writeln('b = ',X[5]:10:3); Writeln('m = ',X[6]:10:4) end;
  GoToXY(1,24); 

Write('Do You want to solve another problem?(Y or N) ');
   Readln(Ch); If (Ch='Y') or (Ch='y') then GoTo L1;
END.

Listing of FORTRAN program MANNING.FOR designed to solve Manning’s equation in either 
trapzoidal or circular channels
	 LOGICAL REPT
	 REAL X(6),n,m
	 CHARACTER*1 V(6)
	 COMMON X,BETA
	 EQUIVALENCE (Q,X(1)),(n,X(2)),(S,X(3)),(Y,X(4)),
	 &(b,X(5)),(m,X(6))
	 DATA V/'Q','n','S','Y','b','m'/
	 WRITE(6,*)' Give 1.49 for ES units or 1. for SI'
	 &,= units.'
	 READ(5,*) C
	 WRITE(6,*)' Give 1 for trap. sec., or 2 for cir.'
	 &,= sec.'
	 READ(5,*) ITYP
	 IF(ITYP.EQ.1) THEN
	 No=6
	 ELSE
	 No=5
	 V(5)='D'
	 ENDIF
1	 WRITE(6,100) (I,V(I),I=1,No)
100	 FORMAT(' Give No. of unknown:'/6(I2,'-',A1))
	 READ(5,*) IUNK
	 DO 10 I=1,No
	 IF(I.LT.4.AND.I.EQ.IUNK) GO TO 10
	 WRITE(6,101) V(I)
101	 FORMAT(3X,A1,' = ',$)
	 READ(5,*) X(I)
10	 CONTINUE
	 NCT=0
20	 AA=A(ITYP)
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	 GO TO(21,22,23,24,24,24), IUNK
21	 Q=C/n*AA*(AA/P(ITYP))**.6666667*SQRT(S)
	 GO TO 40
22	 N=C/Q*AA*(AA/P(ITYP))**.6666667*SQRT(S)
	 GO TO 40
23	 S=(n*Q/C*(P(ITYP)/AA)**.6666667/AA)**2
	 GO TO 40
24	 REPT=.TRUE.
25	 F=n*Q-C*AA*(AA/P(ITYP))**.6666667*SQRT(S)
	 IF(REPT) THEN
	 REPT=.FALSE.
	 F1=F
	 X(IUNK)=X(IUNK)-.001
	 AA=A(ITYP)
	 GO TO 25
	 ENDIF
	 DIF=.001*F1/(F1-F)
	 X(IUNK)=X(IUNK)+.001-DIF
	 NCT=NCT+1
	 IF(NCT.LT.20 .AND. ABS(DIF).GT..00001)
	 * GO TO 20
	 IF(NCT.EQ.20)WRITE(6,*)' FAILED TO CONVERGE' *,DIF
40	 WRITE(6,105)(V(I),X(I),I=1,No)
105	 FORMAT(' SOLUTION:',6(A2,' =',F12.6))
	 WRITE(6,*)' Give 1 for another prob.; else 0'
	 READ(5,*) NCT
	 IF (NCT.EQ.1) GO TO 1
	 STOP
	 END
	 FUNCTION A(ITYP)
	 COMMON X(6),BETA
	 IF(ITYP.EQ.1) THEN
	 A=(X(5)+X(6)*X(4))*X(4)
	 ELSE
	 BETA=ACOS(1.-2.*X(4)/X(5))
	 A=.25*X(5)*X(5)*(BETA-.5*SIN(2.*BETA))
	 ENDIF
	 RETURN
	 END
	 FUNCTION P(ITYP)
	 COMMON X(6),BETA
	 IF(ITYP.EQ.1) THEN
	 P=X(5)+2.*X(4)*SQRT(X(6)**2+1.)
	 ELSE
	 P=X(5)*BETA
	 ENDIF
	 RETURN
	 END
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Listing of C program designed to solve Manning’s equation in trapezoidal or circular channels
/*  Solves Manning's Equation in Trapezoidal & Circular Channels  */
#include <stdio.h>
#include <math.h>
int type; float beta;
float A(float b,float m,float Y) { 
if (type==1) return((b+m*Y)*Y); else

 {beta=acos(1.-2.*Y/b); return(0.25*b*b*(beta-0.5*sin(2.*beta)));}}
float P(float b,float m,float Y) { 
if(type==1) return(b+2.*Y*sqrt(m*m+1.));
 else return(b*sin(beta));}
main () {
float x[6],cc,AA,F,F1,DIF,dumm; int IUNK,nct,No,II,i; char u,V[7];
  dumm=sqrt(.04); /* drag floating pt lib. into the linker */
  strcpy(V,"QnSYbm\n");
 puts("Give 1.49 for ES units or 1. for SI units."); 

scanf("%f",&cc);
 puts("Give 1 for trapezoidal section, or 2 for circular section.");
   scanf("%d",&type); if (type==1) No=6; else {V[4]='D'; No=5;}
 a2:puts("Give No. of unknown:"); 

for (i=0;printf(" %d - %c,",i,V[i]),i<No-1;i++);
 printf("\n"); scanf("%d",&IUNK);
 puts("Give:\n"); for (i=0;i<No;i++) if ((i!=IUNK) | (i>2)) {
  printf(" %c = ",V[i]); scanf("%f",&x[i]);}
 switch (IUNK) {
  case 0: x[0]=cc/x[1]*pow(A(x[4],x[5],x[3]),1.6666667)/pow(P(x[4],\ 

x[5],x[3]),0.66667)*sqrt(x[2]); break;
  case 1: x[1]=cc/x[0]*pow(A(x[4],x[5],x[3]),1.6666667)/pow(P(x[4],\ 

x[5],x[3]),0.66667)*sqrt(x[2]); break;
  case 2: AA=A(x[4],x[5],x[3]); DIF=x[1]*x[0]/cc*pow(P(x[4],\ 

x[5],x[3])/AA,0.666667)/AA; x[2]=DIF*DIF; break;
  default: nct=0; do {II=0; a1:AA=A(x[4],x[5],x[3]);
    F=x[0]*x[1]-cc*AA*pow(AA/P(x[4],x[5],x[3]),0.66667)*sqrt(x[2]);
    if (II==0) {II=1; F1=F; x[IUNK]=x[IUNK]-0.001; goto a1;}
    DIF=0.001*F1/(F1-F); x[IUNK]=x[IUNK]+0.001-DIF;
    } while (abs(DIF)>0.00001 && ++nct<15);}
  for (i=0;i<No;i++) printf(" %c =%f\n",V[i],x[i]);
  puts(" Give 1 to solve another problem; else 0");
  scanf("%d",&II);
  if (II==1) goto a2;
}

The Newton method can be use to solve a linear equation. When the Newton method is used in 
solving a linear equation the solution will be obtained with the first iteration, even though this will 
generally not be known until the computations are done for the second iteration, and the function of 
the unknown equals zero. The logic of the above computer programs can, therefore, be simplified 
by omitting the separate equations that solve for those variable that can be explicitly obtained from 
Manning’s equation. Below are listing of a FORTRAN program and a C program that only use the 
Newton method; even when solving for Q, n, and S.
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Listing of FORTRAN program that uses the Newton method to solve all variables (MANNTC.
FOR)
      PARAMETER (EX=.6666667,EX1=1.6666667)
      CHARACTER*1 VAR(6)/'Q','n','S','y','b','m'/,UNK
      CHARACTER*33 FMT/"(' Solution for ',A1,' = ',F10.3)"/
      REAL X(6),ns,neq,C/1.486/
C  X(1)=Q, X(2)=n, X(3)=S, X(4)=y, X(5)=b, X(6)=m
      LOGICAL R /.FALSE./
      WRITE(*,*)'Give 0 if ES; 1 if SI units'
      READ(*,*) IUNIT
      IF(IUNIT.EQ.1) C=1.
      WRITE(*,*)'Is the section: 1   trapzoidal, or 2   circular?'
      READ(*,*) ISECT
      IF(ISECT.EQ.2) THEN
      NVAR=5
      VAR(5)='D'
      ELSE
      NVAR=6
      ENDIF
      WRITE(*,*)'Give value to variables'
      DO 10 I=1,NVAR
      WRITE(*,"(2X,A1,' = '\)") VAR(I)
      IF(I.EQ.2 .AND. ISECT.EQ.1) THEN
      WRITE(*,"(' (1st for sides=) ')")
      READ(*,*) ns
      WRITE(*,"(' (now for bottom=) ')")
      ENDIF
10    READ(*,*) X(I)
15    WRITE(*,*)'Give symbol for unknown'
      READ(*,'(A1)') UNK
      IUNK=1
      DO 20 WHILE (VAR(IUNK).NE.UNK.AND.IUNK.LE.NVAR)
20    IUNK=IUNK+1
      IF(IUNK.GT.NVAR) GO TO 15
      DO 30 I=1,20
25    IF(ISECT.EQ.2) THEN
      COSB=1. 2.*X(4)/X(5)
      B=ACOS(COSB)
      A=.25*X(5)*X(5)*(B COSB*SIN(B))
      P=B*X(5)
      F=X(2)*X(1) C*SQRT(X(3))*A*(A/P)**EX
      ELSE
      P=X(5)+2.*X(4)*SQRT(X(6)**2+1.)
      neq=X(5)/P*X(2)+2.*X(4)*SQRT(X(6)**2+1.)/P*ns
      F=neq*X(1)*P**EX C*SQRT(X(3))*((X(5)+X(6)*X(4))*X(4))**EX1
      ENDIF
      IF(R) GO TO 28
      XX=X(IUNK)
      X(IUNK)=1.005*X(IUNK)
      F1=F
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      R=.TRUE.
      GO TO 25
28    DIF=F1*(X(IUNK) XX)/(F F1)
      X(IUNK)=XX DIF
      IF(ABS(DIF).LT. .000001) GO TO 40
30    CONTINUE
40    IF(IUNK.EQ.2)FMT(32:32)='4'
      IF(IUNK.EQ.3)FMT(32:32)='7'
      WRITE(*,FMT) VAR(IUNK),X(IUNK)
      END

Listing of C program that uses the Newton method to solve all variables (MANNTC.C)
#include <stdio.h>
#include <math.h>
#include <stdlib.h>
main() {int units,sect,i,r,iunk,nvar=5,nct=0;
 float c,x[6],f,f1,xx,dif,cosb,a,b,p,ns,neq,ex=.6666667,\ 

ex1=1.6666667;
 char var[7]="QnSybm\0",unk; clrscr();
 printf("Give 0 if ES; 1 if SI units ");scanf("%d",&units);
 if (units) c=1; else c=1.486;
 printf("Is the section: 1 - trapezoidal, or 2 - circular? ");
 scanf("%d",&sect);if(sect==2) {nvar=4;var[4]='D';}
 printf("Give value to variables\n");for(i=0;i<=nvar;i++){
  printf(" %c = ",var[i]); if((i==1)&&(sect==1)){
   printf(" (1st for sides =) ");scanf("%f",&ns);
   printf(" (now for bottom=) ");} scanf("%f",&x[i]);}
 do {printf("Give symbol for unknown ");scanf("%s",&unk);iunk=0;
 while (var[iunk]!=unk && iunk<=nvar) iunk++;} while(iunk>unk);
 do {r=1;
L1:if(nvar==4){cosb=1-2*x[3]/x[4];b=acos(cosb); 
a=.25*x[4]*x[4]*(b-cosb*sin(b)); p=b*x[4];  
f=x[1]*x[0]-c*sqrt(x[2])*a*pow(a/p,ex);} else {
p=x[4]+2.*x[3]*sqrt(x[5]*x[5]+1.); 
neq=x[4]/p*x[1]+2.*x[3]*sqrt(x[5]*x[5]+1.)/p*ns;

f=neq*x[0]*pow(p,ex)-c*sqrt(x[2])*pow((x[4]+x[5]*x[3])*x[3],\
ex1);}

 if(r) {xx=x[iunk];x[iunk]=1.005*x[iunk];f1=f;r=0;goto L1;}
 dif=f1*(x[iunk]-xx)/(f-f1); x[iunk]=xx-dif; nct++;
 } while (nct<20 && fabs(dif)>.000001);
 printf("\nSolution for %c = %f",var[iunk],x[iunk]);}

Example Problem 2.9
Determine the maximum flow rate that can be accommodated in the channel shown below with-
out causing the depth in the upstream channel to rise above its normal depth. The upstream 
channel has a bottom width b1 = 10 ft, a side slope m1 = 2, a Manning’s roughness coefficient, 
n1 = 0.014, and a bottom slope, So1 = 0.0002. The downstream channel is steep, i.e., under uniform 
flow conditions the depth will be less than critical depth and is rectangular in shape with a bottom 
width b2 = 8 ft. Investigate the relationship between the slope of bottom of the upstream channel 
on the flow rates and the depths that are possible in this channel under uniform flow conditions.
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b1 = 10 ft, m1 = 2, n1 = 0 .014, So1 = 0.0002
b2 = 8 ft Steep channelTr
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Solution
Since the downstream channel is steep, critical flow will occur at the end of the transition to 8 ft 
wide rectangular channel, the specific energy here is given by
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These three equations allow for the variables Ec, Y1, and Q to be solved, or if one wishes to 
eliminate the first equation then the latter two equations will solve for Y1 and Q. Their solution is

	 Y = 4.146 ft, Q = 218.42 cfs.

In general, a problem of this nature that is to determine what the maximum flow rate is that 
can occur in a channel with a transition from an upstream mild channel to a downstream steep 
channel requires the simultaneous solution of (1) the critical flow equation in the downstream 
channel; (2) the energy equation, which equates the specific energy in the upstream channel to 
the critical specific energy in the downstream channel; and (3) the uniform flow equation.

To investigate the relationship between the bottom slope of the upstream channel and the 
maximum uniform flow possible requires that the latter two above equations be solved for differ-
ent values of So1. The table below shows the results from several such solutions:

Bottom slope So1 0.002 0.001 0.0009 0.0008 0.0007 0.0006 0.0005 0.0004

Flow rate Q (cfs) 0.457 6.703 9.466 13.59 19.88 29.66 45.37 71.72

Depth Y1 (ft) 0.0616 0.376 0.476 0.610 0.792 1.094 1.406 1.922

0.0003 0.0002 0.00018 0.00014 0.00012 0.0001 0.00008

119.4 218.4 251.4 344.1 412.1 504.7 638.6

2.734 4.146 4.566 5.662 6.404 7.352 8.627

It is interesting to note that the flow rate decreases to extremely small values as the bottom slope 
of the upstream channel becomes larger. Thus it is very easy to “choke” the upstream flow, i.e., 
cause it to be above normal depth by reducing the size of a downstream channel that will have 
critical flow in it.

If you don’t have a computer available, nor a programmable calculator, then it is possible to use 
graphical means for solving Manning’s equation. To develop such a graphical solution let us define 
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a dimensionless depth Y′ = Y/b for trapezoidal channels. (When defining a dimensionless depth 
for the specific energy later we will let Y′ = mY/b because this eliminates m from the resulting 
dimensionless equation.) Then after some algebraic manipulation the following equation can be 
obtained:
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The parameter on the left of the equal sign might be taken as a dimensionless flow rate, denote as 
Q′. (Note that Q′ is dimensionless if n is taken as dimensionless and Cu is assumed to have dimen-
sions of L1/3/t.) This equation shows that the flow rate parameter Q′ is a function of the dimension-
less depth Y′ = Y/b, and the side slope m of the trapezoidal channel, and when m = 0 the channel 
is rectangular. This relationship is given in Figure 2.3 using several different curves for different 
m values. The main graph is a linear plot, and the insert gives the same graph except using log–log 
paper. This graph can be used to solve Manning’s equation for several different unknowns (Figure 
2.3). For example, to find the normal depth Yo, one would first compute the flow rate parameter Q′ 
from the known values; then enter this value on the ordinate of the graph, and read the correspond-
ing dimensionless depth Y′ on the abscissa; and finally compute Yo as the product of Y′ and the 
bottom width b. 

Manning’s equation can also be solved graphically for a circular section. To develop such a 
graphical solution Equation 2.9 can be used to define the relationship between the angle β and 
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FIGURE 2.3  Plot of dimensionless Manning’s equation in trapezoidal channels (including rectangular when 
m = 0).
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the flow rate parameter Q′ = (β − cos β sin β)5/3/(10.0793684β2/3), and the angle β in turn can be 
obtained from the dimensionless depth Y′ = Y/D from β = cos−1(1 − 2Y′). Such a graphical solu-
tion of Manning’s equations for circular channels is given in Figure 2.4. Table D.2 provides greater 
precision than can be obtained from the graph, and the example problems at the end of Table D.2 
illustrate how the table can be used.

2.5 C hannels with Varying Wall Roughness, but Q = Constant

Uniform flow cannot exist in a channel in which the wall roughness varies in the direction of the 
channel unless the bottom slope varies in precisely the correct manner so the velocity and depth 
remain constant with x. This combination of n and So would create uniform flow only for one flow 
rate. However, uniform flow can occur in long channels with constant bottom slopes when the wall 
roughness varies along the position of the channel cross section. It is not uncommon to have a chan-
nel’s sides with a different roughness than its bottom. An example is a laboratory flume whose sides 
are Plexiglas and its bottom is filled with gravel.

A modification to Manning’s equation for channels with varying roughness coefficients in dif-
ferent portions of its cross section might be to compute an equivalent Manning’s n that weights the 
individual n values according to the portion of the perimeter to which they apply. For a trapezoidal 
channel with a different Manning’s n along the bottom, nb, than that for the sides, ns, the equivalent 
roughness coefficient would then be
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The last two program listings are designed to handle a trapezoidal channel that has a different 
roughness coefficient along the bottom than the sides of the channel using an equivalent roughness 
coefficient computed by this equation. The validity of using an equivalent roughness coefficient 
would need to be verified by field or laboratory measurements for a given channel. The need for 
verification is that Manning’s equation is empirical and therefore it is not possible to use theory 
alone to derive an “equivalent” Manning’s equation for channels with varying roughnesses along 
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FIGURE 2.4  Plot of dimensionless Manning’s equation in circular channels.
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the cross section. The above formula will produce an neq that equals nb and ns when these are the 
same, whereas other methods will not. For example, one might be inclined to associate n with P2/3 

for which then n applies. Then nP2/3 would be replaced by n Pi i
2 3/∑ . Using this approach for a 

trapezoidal channel with a different bottom roughness than side roughness would use one of the 
following Manning’s equation:
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The problem with any of these latter formulas is that they will not produce the same results as the 
original Manning’s equation does when n = nb = ns.

2.6 Spe cific Energy, Subcritical and Supercritical Flows

When dealing with open channel flow it is convenient to reference the energy per unit weight from 
the channel bottom. Thus instead of having a horizontal datum from which the energy is referenced, 
a sloping data is used. The result is call the “specific energy,” and it consists of the depth of flow in 
the channel plus the velocity head, or

	 E Y
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	 (2.11)

in which α is the kinetic energy correction coefficient defined in Chapter 1. In Equation 2.11 Y is the 
depth of flow, and if the pressure distribution is hydrostatic, then this depth Y will equal the pressure 
head p/γ on the bottom of the channel. Therefore, regardless of the position within the channel flow 
the sum of the two terms in Equation 2.11 represent the distance between the channel bottom and 
the energy line. For a uniform flow the specific energy will be constant. If the channel is on a steep 
slope then it is necessary to adjust the depth as described in Chapter 1, that is, if Y represents the 
vertical distance through the fluid, then it needs to be multiplied by the cosine squared of the angle 
of the bottom slope. It is common in practice to ignore the kinetic energy correction coefficient 
α (i.e., assume α = 1) and then the specific energy becomes
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For a rectangular channel, it is convenient to deal with the flow rate per unit width of channel, 
q = Q/b. For a rectangular channel the specific energy can be written as follows if α is assumed 
equal to 1, and the bottom slope of the channel is small enough so that the cos θ = 1:
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A plot of the depth Y as the ordinate, and the specific energy E as the abscissa is referred to as a 
specific energy diagram. In Figure 2.5 two sketches of specific energy diagrams are given. The first 
applies for any channel, and the second is specific for a rectangular channel. The following should 
be observed:

	 1.	 If the specific energy is held constant (i.e., a vertical lines is drawn on the specific energy 
diagram) then there are two depths. These depths are called alternative depths. The flow 
associated with the larger of these two depths produces subcritical flow, and the smaller 
depth is associated with supercritical flow.

	 2.	As these two depths merge into a single depth, a minimum value for the specific energy 
occurs that can exist for any given flow rate. This depth is called critical depth, and the 
flow associated with it is called critical flow and will be denoted by Yc. The specific energy 
associated with critical depth will be denoted by Ec.

	 3.	As the flow rate in a given channel increases the specific energy curve is shifted to the right 
and upward, i.e., the critical depth is increased, and both the subcritical and supercritical 
depths are closer to the critical depth. In dealing with a rectangular channel the flow rate 
per unit width q increases (with Q constant) when the bottom width of the channel becomes 
less, i.e., a channel transition reduces the width of the channel.

That there are generally two depths associated with any given value of the specific energy can be 
understood best by examining Equation 2.11b. By multiplying this equation by Y2 one notes that 
Equation 2.11b is a cubic equation. A cubic equation has three roots, generally, and if there are 
imaginary roots they occur in pairs. The third root of Equation 2.11b gives a negative value for Y, 
but since a negative depth is physically not possible, this root is ignored. From a mathematical view 
point, if the specific energy is reduced to a value less than the critical value, Ec, for a given flow 
rate in a given channel, then the alternative depths become imaginary, or complex roots of Equation 
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FIGURE 2.5  Sketches of specific energy diagrams in (a) a general channel and (b) in a rectangular channel 
in which the bottom width changes, but Q = constant.
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2.11b. For a general channel it is not obvious what type of equation (Equation 2.11b) represents, but 
two real positive roots of Y exist for values of E > Ec and these are called alternative depths.

A simple explicit equation exists for computing the alternate depths in a rectangular channel. 
This equation can be used to obtain the depth upstream from a gate if the downstream depth is 
known or the downstream depth if the upstream depth is known, for example. To obtain this equa-
tion, equate E1 to E2 or
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Let the specific energy computed from the known depth be denoted by Ek and the other depth be 
given without a subscript. The Equation 2.11c becomes the following cubic equation:
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Since one depth Yk is known this equation can be reduced to a quadratic equation by synthetic divi-
sion or
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Solving for Y gives
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Since Ek − Yk is the velocity head V g Vk h
2 2/( ) =  associated with the known depth, Yk, Equation 2.11e 

can be written as
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Note that Equations 2.11e and f are valid only for situations in which E1 = E2 and the flow rate per 
unit width in the rectangular channel is the same at the two positions 1 and 2.

To find the minimum value of the specific energy, i.e., Ec and the corresponding critical depth 
that is associated with critical flow, the well known principle of calculus can be employed of set-
ting the first derivative of E with respect to Y equal to zero. This principle will first be applied to 
Equation 2.11b, and later to 2.11a. Differentiation of Equation 2.11b with respect to Y and equating 
dE/dY to zero gives (with q held constant for a given specific energy curve)
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which can be rewritten in several different ways as given by the following equations that define 
critical flow (the subscript c has been added to emphasize that these equations define critical flow 
conditions):

	 q gYc c= 3 	 (2.12)
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	 E  = 1.5Yc c 	 (2.12d)

It needs to be noted that Equations 2.12 apply only for rectangular channels.
Since the energy equation for a rectangular channel is a cubic equation (Equation 2.11d) in terms 

of depth Y, then if the specific energy E, and the flow rate per unit width q are known then the gen-
eral solution of a cubic equation can be used (see CRC standard Math. Tables for methods to solve 
cubic equations), to solve it. This solution procedure consists of first substituting x + E/3 for Y in 
Equation 2.11d to eliminate the squared term. This substitution produces
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Let a = −E2/3 and b = q2/(2g) – 2E3/27. Then the three roots for x are solved for next by the follow-
ing three equations:
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If b2/4 + a3/27 > 0. there will be one real root and two conjugate imaginary roots, i.e., the specific 
energy E < Ec and physically only a meaningless negative solution for Y exists.

If b2/4 + a3/27 = 0, there will be three real roots of which at least two are equal, i.e., critical flow 
occurs in which the two real roots gives the critical depth, and the other real root is a meaningless 
negative solution for Y. If b2/4 + a3/27 > 0 there will be three real and unequal roots, i.e., the two 
positive roots are the alternative depths and the third root is a meaningless negative depth Y.
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After the solution for x values have been obtained the final step is to obtain the depths Y from
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The program ALTDEP, listed below, implements this method for solving for the alternative depths. 
Generally to use the program one would first solve the specific energy equation to get E for the 
known depth, and then select the other depth from the output from the program as the alternative 
depth. However, the program lets us know what portion of the specific energy diagram the problem 
as been specified in. If two of the root are imaginary and the program gives the message “E < Ec 
so negative real root and 2 imaginary roots” we know that physically the energy must be increased 
for the specified flow rate to be possible. An alternative to using the complex arithmetic involved in 
the above procedure for solving a general cubic equation is to use an implicit solution method, such 
as Newton’s method, to solve for the depth desired by providing an appropriate guess, or software 
such as TK-Solver or Mathcad (or an HP calculator or a spreadsheet) that has the capability to solve 
implicit equations.

Listing of program ALTDEP.FOR
      COMPLEX AA,BB,C3,ARG,X1,X2,X3
      C3=.5*CSQRT(CMPLX(-3.,0.))
1     WRITE(*,*)' Give q, E & g or 0/=STOP'
      READ(*,*) Q,E,G
      IF(Q.LT.1.E-8) STOP
      A=-E*E/3.
      B=Q*Q/(2.*G)+2.*A*E/9.
      BH=.5*B
      BS4=B*B/4.
      YC=(Q**2/G)**.33333333
      ARG=CSQRT(CMPLX(BS4,0.)+CMPLX(A,0.)**3/27.)
      WRITE(*,*)' Yc =',YC,' Ec =',1.5*YC
      AARG=BS4+A**3/27.
      IF(AARG.GT.0.) THEN
      WRITE(*,*)' E<Ecsonegative real root and' &,'2',' imaginary  

&roots'
      ELSEIF(AARG.GT.-1.E-5 .AND. ARG.LT.1.E-5) THEN
      WRITE(*,*)' Critical condition'
      ELSE
      WRITE(*,*)'Alternative Depths&negative Y'
      ENDIF
      AA=(ARG-CMPLX(BH,0.))**.33333333
      BB=(-ARG-CMPLX(BH,0.))**.33333333
      X1=AA+BB
      X2=(AA-BB)*C3-.5*X1
      X3=(BB-AA)*C3-.5*X1
      WRITE(*,100) X1+E/3.,X2+E/3.,X3+E/3.
100   FORMAT(3(2F9.3,3X))
      GO TO 1
      END
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Listing of Program ALTDEP.CPP
#include <iostream.h>
#include <stdlib.h>
#include <complex.h>
#include <iomanip.h>
void main(void){float a,b,q,e,g,bh,bs4,yc,aarg;
 complex aa,bb,c3,arg,x1,x2,x3;
 c3=.5*sqrt(3.)*complex(0.,1.);
L1:cout <<"Give q, E & g or 0 0 0 =STOP"<< endl;
 cin >>q>>e>>g; if(q<1.e-5) exit(0);
 a=-e*e/3.; b=q*q/(2.*g)+2.*a*e/9.; bh=.5*b;bs4=b*b/4.;
 yc=pow(q*q/g,.3333333); 
 arg=sqrt(complex(bs4,0.)+pow(complex(a,0.),3.)/27.);
 cout <<"Yc ="<<yc<<" Ec ="<<1.5*yc<<"\n"; aarg=bs4+a*a*a/27.;
 if(aarg>0.)
   cout<<"E<Ec so negative real root and 2 imaginary roots"<<endl;
 else if((aarg>-1.e-5)&&(aarg<1.e-5))\
   cout <<"Critical condition"<< endl;
 else cout <<"Alternative Depths & negative Y"<< endl;
 aa=pow(arg-complex(bh,0.),.3333333); 
   bb=pow(-arg-complex(bh,0.),.3333333);
 x1=aa+bb;x2=(aa-bb)*c3-.5*x1;x3=(bb-aa)*c3-.5*x1; cout.width(9);
 cout<<setprecision(3)<<x1+e/3.<<" "<<x2+e/3.<<" "<<x3+e/3.<< endl;
 goto L1;}

Example use of program
Input: 5 2 32.2
Output:
  Yc =   9.190971E-01  Ec =       1.378646
  Alternative depths and negative Y
    1.891     .000        .511     .000       -.402     .000
Input: 5 1.378646 32.2
Output:
  Yc =   9.190971E-01  Ec =       1.378646
  Critical condition
     .920     .000        .919     .000        -.460     .000
Input: 5 1 32.2
Output:
  Yc =   9.190971E-01  Ec =       1.378646
  E<Ec so negative real root and 2 imaginary roots
     .754     .444        .754    -.444        -.507     .000
Input: 0/

The above procedure can be simplified by using the arc cosine (and subsequently the cosine). To use 
this alternate method, first compute the angle θ from

	

θ =
−( )
















−cos

. /

( )
1

2 3

3

6 75 27

3

q g E

E

/

/



Energy and Its Dissipation in Open Channels	 81

The three roots are then obtained from
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Of course, if E = Ec the two latter depths become equal, or become the critical depth Yc associated 
with the given q. If the given E is less than the critical depth, then Y2 and Y3 are imaginary and the 
above procedure will not work because the argument for the arc cosine is not within the allowable 
range of −1 to +1. Thus if this alternative method is implemented in a computer program, as in 
ROOTSE listed below, the critical specific energy Ec, as described below, should be computed and 
if E < Ec the computation of the roots should not be attempted.

Program ROOTSE.FOR
      PARAMETER (PI=3.14159265)
      REAL X(3)
      PI2=2.*PI
      PI4=4.*PI
1     WRITE(*,*)' Give: q,E,g'
      READ(*,*) q,E,g
      IF(q.LT.1.E-5) STOP
      Yc=(q*q/g)**.33333333
      Ec=1.5*Yc
      IF(E.LT.Ec) THEN
      WRITE(6,110) q,E,g,Yc,Ec
110   FORMAT(' q=',F8.3,' E=',F8.3,' g=',F8.2,/' Only 1 real 

&root(neg.)',' Yc=',F8.3,' Ec=',F8.3)
      GO TO 1
      ENDIF
      E3=E/3.
      THETA=ACOS(((6.75*q*q/g-E**3)/27.)/E3**3)
      X(1)=E3*(1.-2.*COS(THETA/3.))
      X(2)=E3*(1.-2.*COS((THETA+PI2)/3.))
      X(3)=E3*(1.-2.*COS((THETA+PI4)/3.))
      WRITE(6,100) q,E,g,Yc,Ec,X
100   FORMAT(' q=',F8.3,' E=',F8.3,' g=',F8.2,/,' Yc=',F8.3,' 

&Ec=',F8.3,' Roots are:',/,3F9.3)
      GO TO 1
      END
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Program ROOTSE.C
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
void main(void){float pi=3.14159265,q,g,e,yc,ec,theta,e3,y1,y2,y3;
L1:printf("Give: q,E,g\n"); scanf("%f %f %f",&q,&e,&g);
 if(q<1.e-5) exit(0);
 yc=pow(q*q/g,.33333333); ec=1.5*yc;
 if(e<ec) {printf("q=%8.3f E=%8.3f g=%8.2f \nOnly 1 real \

root(beg.)\n Yc=%8.3f Ec=%8.3f\n",q,e,g,yc,ec); goto L1;}
 e3=e/3.; theta=acos(((6.75*q*q/g-pow(e,3.))/27.)/pow(e3,3.));
 y1=e3*(1.-2.*cos(theta/3.)); y2=e3*(1.-2.*cos((theta+2.*pi)/3.));
 y3=e3*(1.-2.*cos((theta+4.*pi)/3.));
 printf("q=%8.3f       E=%8.3f      g=%8.3f\nYc=%8.3f \ 

Ec=%8.3f\nRoots      are:\n%9.3f      %8.3f \ 
%8.3f\n",q,e,g,yc,ec,y1,y2,y3);

 goto L1;}

For any channel Equation 2.11a is differentiated, and dE/dY is set to zero to find the minimum value 
of E. This procedure leads to
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From the accompanying sketch it is clear that dA/dY equals the top width T for all channels and 
therefore the critical flow equation for all channels becomes
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in which Fr is the Froude number which is defined as the ratio of inertia to gravity forces. The speed 
at which a small amplitude gravity wave travel in an open channel is given by
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Proof of this equation is given in Chapter 3. From Equations 2.13 and 2.14, we see that the Froude 
number is also the ratio of the average velocity in the channel to the speed of a small amplitude 
gravity wave. From Equation 2.13, it can be concluded that critical flow occurs when the average 
velocity V of a channel flow exactly equals the speed c of a small amplitude gravity wave. For 
subcritical flows the Froude number Fr will be less than unity, since the denominator of Equation 
2.13 increases with increasing depth, and for supercritical flows the Froude number will be larger 
than unity.

In a subcritical flow, the fact that the velocity in the channel is less than the speed of a small 
amplitude gravity wave allows these waves to move upstream against the flowing fluid. Thus in a 
sense the fluid can receive a signal that things are to change downstream, and it adjust gradually. 
This adjusting to downstream conditions is referred to as downstream control. Subcritical flows are 
always controlled by downstream conditions, i.e., an obstruction to the flow such as a partly closed 
gate will cause the depth upstream from the gate to increase, and the velocity to decrease. On the 
other hand if the flow is supercritical, the velocity in the channel exceeds the speed of a small ampli-
tude gravity wave, and the flow does not receive a signal about downstream conditions. Therefore, 
if the flow is supercritical it will not change its depth or velocity to meet downstream conditions. 
For example, should the channel abruptly end, a supercritical flow would continue to the end of 
the channel at the same depth and velocity as it has upstream there from. Supercritical flows are, 
therefore, said to be upstream controlled. An example of a control that affects both the upstream 
flow as well as the downstream flow conditions is a sluice gate in a channel flow. Since subcritical 
flows are controlled downstream and supercritical flows are controlled by an upstream device we 
can conclude that the flow upstream from the gate must be subcritical, and the flow downstream 
from the gate must be supercritical.
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Above a specific energy diagram and a depth-discharge diagram for a trapezoidal channel are 
given. The separate curves on the depth-discharge diagram show the relationship of the flow rate to 
changes in depth for a constant specific energy. The maximum point on these curves corresponds 
to critical conditions, i.e., the depth is critical and the Qmax is the maximum flow rate that could be 
obtained into this trapezoidal if it were supplied by a reservoir with a water surface elevation equal 
to the E for that curve. This assumes there is no entrance loss. You might note that the minimum 
point on the specific energy diagram corresponds to the maximum point on the depth-discharge 
diagram. For example, the curve for E = 3 ft on the depth–discharge diagram gives a maximum flow 
rate Qmax = 200 cfs, and the minimum specific energy on the specific energy diagram of the curve 
on the for Q = 200 cfs is Ec = 3 ft.
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To further illustrate the meanings of these diagrams assume a reservoir with a head H = 5 ft 
supplies a steep trapezoidal channel with b = 10 ft, and m = 1.25, the flow rate that will enter the 
channel is Q = 494 cfs (the maximum flow rate possible on the depth-discharge diagram of the 
curve for E = 5 ft), and the depth at the entrance will be Yc = 3.62 ft, the ordinate of the maximum 
point of this curve. These values are at the extreme, Qmax position of the curve for E = 5 ft, but 
these values could also be obtained by solving the critical flow equation Q2T/(gA3) = 1 and the 
specific energy equation 5 = Y + (Q/A)2/(2 g) simultaneously. Likewise if the reservoir level were 
4 ft above the channel bottom Qc = Qmax = 331.5 cfs and Yc = 2.87 ft, or if H = 3 ft, Qc = Qmax = 
201.2 cfs and Yc = 2.12 ft. It is not possible for the flow from a reservoir into a steep channel to 
be in the lower (the supercritical) portion of the depth-discharge diagram, because the flow rates 
would be less than the amount Qmax that can be supplied. However, if the channel is not steep, but 
mild, then the flow into the channel will be reduced by downstream conditions, i.e., the fluid fric-
tional resistance. For example, for the trapezoidal channel for which the depth-discharge diagram 
is made if the reservoir supplied a specific energy of 5 ft, and the flow rate were 400 cfs, the depth 
would be 4.5 ft in the channel. If the channel has an n = 0.014, then Manning’s equation could be 
solved to show that it would have to have a bottom slope of So = 0.000701 for this uniform flow 
to occur.

The need to determine critical depth, or critical flow conditions, occurs frequently in open chan-
nels. The illustrative problems, as well as the problems at the end of this chapter, point out a few 
situations where computation of critical depth is needed. Therefore, it is worth discussing how the 
above critical flow Equations 2.12 and 2.13 can be effectively solved. Should the channel be rect-
angular the solution of critical flow conditions is very easy since Equations 2.12 are all explicit. 
However, for a nonrectangular channel Equation 2.13 must be solved for the critical depth Yc, 
and since this equation is implicit, the solution requires an iterative technique such as the Newton 
method. Alternatively graphical solution can be utilized as discussed below to get answers with 
adequate precision for most applications.

To solve Equation 2.13 by the Newton method, it can be rewritten as

	 F Q T gA= − =c c c
2 2 0 	 (2.15)

in which Tc and Ac are functions of the critical depth Yc and the parameters that define the given 
channel.

Example Problem 2.10
Water enters a steep rectangular channel that has a bottom width of 8 ft from a reservoir whose 
water surface is 5 ft above the channel bottom. Determine the flow rate into the channel, and 
the depth of flow at the channel entrance. Neglect the entrance loss coefficient. A long distance 
downstream a gate exists that produces a depth Y2 = 1.5 ft downstream from it. What is the depth 
immediately upstream from the gate?
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Solution
Equations 2.12 apply to this problem because the channel is rectangular. Since the channel is 
steep, and a steep channel will contain a supercritical flow under uniform flow conditions, and 
the water in the reservoir (where V = 0) is subcritical, the flow must pass through critical depth 
at the entrance of the channel. Therefore, Yc = (2/3) E = (2/3)5 = 3.333 ft, and the flow rate per 
unit width q gYc= = =( ) ( . ( . ) ) . // /3 1 2 3 1 232 3 3 333 34 53 cfs ft, or Q = bq = 8(34.53) = 276.3 cfs. The 
second part of the problem requires that the specific energy downstream from the gate be solved, 
or E Y q gY ft2 2

2
2
2 22 1 5 34 53 1 5 64 4 9 729= + = + =/( ) . ( . / . ) / . . . Now the alternative depth to 1.5 is 

sought with E = 9.729 ft. One way is to extract the root 1.5 from the cubic equation, another is to 
solve the cubic equation with the Newton method starting with a “subcritical” guess for Y1, or 
use the program ALTDEP. The solution for the depth upstream from the gate is Y1 = 9.525 ft. 
A hydraulic jump (discussed in Chapter 3) will occur somewhere upstream from the gate chang-
ing the flow from super to subcritical.

Example Problem 2.11
Instead of the rectangular channel a steep pipe of 8 ft diameter is used. What is the flow rate 
and depth of flow at the entrance? A gate downstream causes a depth downstream from it of 
Y2 = 2.8 ft. What is the depth immediately upstream from the gate?

Solution
Since this is a circular channel, the implicit Equation 2.13 applies. Since there are two unknowns, 
Y and Q, a second equation must be obtained. This second equation is the specific energy 
Equation 2.11a. If angle β is used initially as a substitute for Y, the two equations that must be 
solved simultaneously are
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The solution to these equations by the Newton method uses the following iterative equation
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in which the Z values are obtained by solving the following linear system of two equations:
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in which F1 and F2 and its derivatives are evaluated using the current values, i.e., those with an m 
superscript. The solution gives Q = 207.2 cfs, and β = 1.474 rad, and from this angle Yc = D(1 − 
cos β)/2 = 3.615 ft. This solution assumed KL = 0, e.g., ignores entrance losses. If the entrance 
loss coefficient is taken as 0.1, then the solution is Q = 197.2 cfs, and Y = 3.523 ft. To solve part 
two, E2 = Y2 + (Q/A2)2/(2 g) = 5.512 ft. Now the energy equation must be solve using an implicit 
method because extracting a root or using the general solution to a cubic equation is not avail-
able. In fact since the variable β relates Y to A, it also needs to be solved. The solution is β = 
1.787 rad, and Y1 = 4.859 ft.
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Example Problem 2.12
Instead of the rectangular channel (with b = 8 ft) of Example Problem 2.10 having a steep slope 
this problem deals with this channel on a “mild slope” with So = 0.00075. The channel has a 
Manning’s n = 0.014, and is long. What are the depth and the flow rate? The entrance loss coef-
ficient is Ke = 0.1. As a second part solve for the flow rate and the uniform depth if the channel 
is trapezoidal with b = 8 ft, and m = 1.2. (So is still 0.00075, n = 0.014 and H = 5 ft). Also solve 
these problems using Chezy’s, rather than, Manning’s equation, if e = 0.01 ft. As a fourth part of 
this problem assume the bottom width b of the trapezoidal channel is sought that will supply a 
flow rate Q = 400 cfs.

Solution
For these mild channels the two equations that govern are: (1) a uniform flow equation which is 
Manning’s equation for the first part of the problem or
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and (2) the energy equation
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Using the Newton method, the solution to these two equations for the rectangular channel 
is: Q = 177.72 cfs, and Y = 4.602 ft, and for the trapezoidal channel is: Q = 336.03 cfs, and 
Y = 4.451 ft.

The program E_UN listed below is designed to solve Manning’s and energy equations simul-
taneously using the Newton method. You should study either the FORTRAN or C versions of 
these programs to understand how this solution is accomplished. The subroutine FUN (void func-
tion in the C program) supplies the values to the two above equations whenever it is called. The 
main program numerically evaluates the four derivatives in the Jacobian matrix using ∂Fi/∂x = 
{Fi(x + Δx) − Fi(x)}/Δx, in which Δx is obtained by multiplying the current value of the unknown 
x by 1.005 and then subtracting its current value or Δx = 1.005x − x = 0.005x. Carefully study 
the listing starting with the statement 30 SUM=0. to the statement IF(NCT.LT.30 .AND. SUM.
GT.1.E-5) GO TO 30 (the do {} while; in the C-program) to see how the Newton method is imple-
ment in solving a system of simultaneous equation because this approach will be used repeatedly. 
The subroutine SOLVEQ is called on to solve the linear system of equation even though a 2 × 2 
matrix such as occurs in this program could be solved with a few lines of code. Notice that the 
program is designed to solve for any two of the first 7 variables 1 = b, 2 = m, 3 = So, 4 = n, 5 = Q, 
6 = H, 7 = Y, and 8 = K in the array X() and that the array ID() is given a value of 1 to identify 
these two unknown variables and a value of 0 if the variable is known. Also notice that the pro-
gram accommodates either a trapezoidal (which includes a rectangular channel with m = 0) and 
a circular channel by giving ITYPE a 0 or a 1 respectively.

Program E_UN.FOR
C Solves Manning's (uniform flow) and Energy simultaneously
C for any 2 unknowns
C  See E_UN1 to solve Q & Y and method that can be used
C  with calculator
      CHARACTER*17 FMT/'(1X,A1,'' ='',F9.3)'/
      CHARACTER*1 CX(8)/'b','m','S','n','Q','H','Y','K'/
      CHARACTER*5 CH(0:1)/'value','guess'/
      READ(*,*) G,FKE,ITYPE
1     DO 10 I=1,7
      IF(ITYPE.EQ.1 .AND. I.EQ.2) GO TO 10
      WRITE(*,'(I2,2X,A1)') I,CX(I)
10    ID(I)=0
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2     WRITE(*,*)' Give two numbers for 2 unknown variables'
      READ(*,*) I1,I2
      IF(I1.LT.1.OR.I1.GT.7.OR.I2.LT.1.OR.I2.GT.7) GO TO 2
      ID(I1)=1
      ID(I2)=1
      DO 20 I=1,7
      IF(ITYPE.EQ.1 .AND. I.EQ.2) GO TO 20
      WRITE(*,100) CH(ID(I)),CX(I)
100   FORMAT(' Give ',A5,' for ',A1,' = ',\)
      READ(*,*) X(I)
20    CONTINUE
      NCT=0
30    SUM=0.
      CALL FUN(F)
      I1=0
      DO 40 I=1,7
      IF(ID(I).EQ.0) GO TO 40
      XX=X(I)
      I1=I1+1
      X(I)=1.005*X(I)
      CALL FUN(F1)
      DO 35 J=1,2
      IF(ITYPE.EQ.1) THEN
      CX(1)='D'
      CX(2)=' '
      ENDIF
      IF(G.GT.15.) THEN
      Cu=1.486
      ELSE
      Cu=1.
      ENDIF
      X(8)=FKE
      FKE=(1.+FKE)/(2.*G)
      REAL F(2),F1(2),D(2,2)
      INTEGER*2 ID(8),INDX(2)
      COMMON X(8),G,FKE,Cu,ITYPE
      WRITE(*,*)' Give:g,entr. loss C. & 0=TRAP or 1=CIRLCE'
35    D(J,I1)=(F1(J)-F(J))/(X(I)-XX)
      X(I)=XX
40    CONTINUE
      CALL SOLVEQ(2,1,2,D,F,1,DD,INDX)
      I1=0
      DO 50 I=1,7
      IF(ID(I).EQ.0) GO TO 50
      I1=I1+1
      SUM=SUM+ABS(F(I1))
      X(I)=X(I)-F(I1)
50    CONTINUE
      NCT=NCT+1
      WRITE(*,*)' NCT=',NCT,' SUM=',SUM
      IF(NCT.LT.30 .AND. SUM.GT.1.E-5) GO TO 30
      WRITE(*,*)' Solution:'
      DO 60 I=1,8
      IF(ITYPE.EQ.1 .AND. I.EQ.2) GO TO 60
      IF(I.EQ.3) THEN
      FMT(16:16)='6'
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      ELSEIF(I.EQ.4) THEN
      FMT(16:16)='3'
      ELSE
      FMT(16:16)='3'
      ENDIF
      WRITE(*,FMT) CX(I),X(I)
60    CONTINUE
      WRITE(*,*)' Give 1 to solve another prob. (0=STOP)'
      READ(*,*) I2
      IF(I2.EQ.1) GO TO 1
      END
      SUBROUTINE FUN(F)
      REAL F(2)
      COMMON X(8),G,FKE,Cu,ITYPE
      IF(ITYPE.EQ.1) THEN
      BETA=ACOS(1.-2.*X(7)/X(1))
      A=.25*X(1)**2*(BETA-COS(BETA)*SIN(BETA))
      P=X(1)*BETA
      ELSE
      A=(X(1)+X(2)*X(7))*X(7)
      P=X(1)+2.*X(7)*SQRT(X(2)**2+1.)
      ENDIF
      F(1)=X(4)*X(5)*P**.6666667-Cu*A**1.6666667*SQRT(X(3))
      F(2)=X(6)-X(7)-FKE*(X(5)/A)**2
      RETURN
      END

Program E_UN.C
// Solves Manning's (uniform flow) and Energy simultaneously for
// any 2 unknowns
// See E_UN1 to solve Q & Y and method that can be used with
// calculator
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
float x[8],g,fke,cu; int itype;
extern void solveq(int n,float **d,float *f,int itype,float *dd,\ 
int *indx);

void fun(float *f){float beta,a,p;
 if(itype){beta=acos(1.-2.*x[6]/x[0]); 

a=.25*x[0]*x[0]*(beta-cos(beta)*sin(beta));p=x[0]*beta;}
 else {a=(x[0]+x[1]*x[6])*x[6]; 

p=x[0]+2.*x[6]*sqrt(x[1]*x[1]+1.);}
 f[0]=x[3]*x[4]*pow(p,.6666667)-cu*pow(a,1.6666667)*sqrt(x[2]);
 f[1]=x[5]-x[6]-fke*pow(x[4]/a,2.);return;} //End of fun
void main(void){char *fmt=" %c =%9.3f\n",*ch[]={"value","guess"},\ 
*cx="bmSnQHYK";

 float f[2],f1[2],xx,sum,**d,*dd; int id[8],indx[2],i,j,i1,i2,nct;
 d=(float**)malloc(2*sizeof(float*));
 for(i=0;i<2;i++)d[i]=(float*)malloc(2*sizeof(float));
 printf("Give: g,entrance loss C. & 0=TRAP or 1=CIRLCE\n");
 scanf("%f %f %d",&g,&fke,&itype);
 if(itype){stpcpy(cx[0],"D");stpcpy(cx[1]," ");} if(g>15.) cu=1.486; 
 else cu=1.; x[7]=fke;fke=(1.+fke)/(2.*g);
L1: for(i=0;i<7;i++){if((!itype) || ((itype)&&(i != 1)))\
printf("%2d %c\n",i+1,cx[i]);id[i]=0;}
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 do{printf(" Give two numbers for 2 unknown variables\n"); 
scanf("%d %d",&i1,&i2);}while((i1<1)||(i1>7)||(i2<1)||(i2>7));

 id[i1-1]=1;id[i2-1]=1;
 for(i=0;i<7;i++){if((!itype) || ((itype)&&(i != 1)))

{printf("Give %s for %c =",ch[id[i]],cx[i]);
 scanf("%f",&x[i]);}} nct=0;
 do{sum=0.; fun(f); i1=-1;
 for(i=0;i<7;i++){if(id[i]){xx=x[i];i1++;x[i]*=1.005;fun(f1);
   for(j=0;j<2;j++) d[j][i1]=(f1[j]-f[j])/(x[i]-xx); x[i]=xx;}}
 solveq(2,d,f,1,dd,indx); i1=-1;
 for(i=0;i<7;i++){if(id[i]){sum+=fabs(f[++i1]);x[i]-=f[i1];}}
 printf("nct= %d SUM=%f\n",nct,sum);}while((++nct<30)&&(sum>1.e-5));
 printf("Solution:\n");for(i=0;i<8;i++){
   if((!itype) || ((itype)&&(i != 1))){
   if(i==2)stpcpy(fmt[8],"6"); else stpcpy(fmt[8],"3"); 

printf(fmt,cx[i],x[i]);}}
 printf("Give 1 to solve another prob. (0=STOP)\n"); 
 scanf("%d",&i2); if(i2) goto L1;}

The above listing of the program will solve the fourth part of the problem in which a flow rate of 
Q = 400 cfs is given and b is wanted along with Y. The difference is for parts 1 and 2 variables 
5 and 7 (Q and Y) are given as the unknowns and for part 3 variables 1 and 7 (b and Y) are identi-
fied as the unknowns. The solution for part 3 is b = 10.194 ft and Y = 4.416 ft.

If the flow rate Q and depth Y are always the two unknowns, then it is not necessary to solve 
the two equations simultaneously. Rather Manning’s equation is substituted into the energy to 
eliminate the flow rate Q, or F = H − Y − (1 + Ke)(Cu/n)2(A/P)4/3So/(2g) = 0 and solve this equation 
for the depth Y. Thereafter solve for Q from either of the original equations. This is the approach 
you would use to solve parts 1 and 2 with a pocket calculator such as an HP with a SOLVE func-
tion. The program E_UN1, listed below use this latter approach to solve for Q and Y.

Program E_UN1.FOR
C Solves Manning's and Specific Energy for Y & Q by substituting 
Manning's equation

C into Energy and first solving for Y and thereafter Q. (This is 
the procedure

C to use with a pocket calculator) See program E_UN to solve any 
2 variables.

	 COMMON B,FM,D,FN,SO,H,C,ITYPE
	 WRITE(*,*)' Give: g,(0=trap or 1=cir)'
	 READ(*,*) G,ITYPE
	 IF(ITYPE.EQ.0) THEN
	 WRITE(*,*)' Give: b,m,n,So,H,Ke'
	 READ(*,*) B,FM,FN,SO,H,FKE
	 ELSE
	 WRITE(*,*)' Give: D,n,So,H,Ke'
	 READ(*,*) D,FN,SO,H,FKE
	 ENDIF
	 Y=.8*H
	 Cu=1.
	 IF(G.GT.15.) Cu=1.486
	 C=(Cu/FN)**2*SO*(1.+FKE)/(2.*G)
	 NCT=0
10	 F=FUN(Y)
	 DIF=.05*F/(FUN(Y+.05)-F)
	 Y=Y-DIF
	 NCT=NCT+1
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	 WRITE(*,*) NCT,DIF
	 IF(NCT.LT.30 .AND. ABS(DIF).GT. 1.E-5) GO TO 10
	 CALL AREAP(Y,A,P)
	 Q=CU/FN*A*(A/P)**.6666667*SQRT(SO)
	 WRITE(*,100) Y,Q
100	 FORMAT(' Solution: Y =',F8.3,' Q =',F10.2)
	 END
	 SUBROUTINE AREAP(Y,A,P)
	 COMMON B,FM,D,FN,SO,H,C,ITYPE
	 IF(ITYPE.EQ.1) THEN
	 COSB=1.-2.*Y/D
	 BETA=ACOS(COSB)
	 P=D*BETA
	 A=.25*D*D*(BETA-COSB*SIN(BETA))
	 ELSE
	 P=B+2.*Y*SQRT(FM**2+1.)
	 A=(B+FM*Y)*Y
	 ENDIF
	 RETURN
	 END
	 FUNCTION FUN(Y)
	 COMMON B,FM,D,FN,SO,H,C,ITYPE
	 CALL AREAP(Y,A,P)
	 FUN=H-Y-C*(A/P)**1.3333333
	 RETURN
	 END

Program E_UN1.C
/* Solves Manning's and Specific Energy for Y & Q by 
substituting Manning's Eq.into Energy and first solving for Y 
and thereafter Q. (This is the procedure to use with a pocket 
calculator) See program E_UN to solve any 2 variables. */

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
float b,m,d,n,so,h,c; int itype;
void areap(float y,float *a,float *p){float cosb,beta;
 if(itype){cosb=1.-2.*y/d;beta=acos(cosb); 

*p=d*beta;*a=.25*d*d*(beta-cosb*sin(beta));}
 else {*p=b+2.*y*sqrt(m*m+1.); *a=(b+m*y)*y;return;}}
float fun(float y){float *a,*p; areap(y,a,p); 
return(h-y-c*pow((*a)/(*p),1.333333));}

void main(void){float g,dif,ke,y,f,q,cu=1.,*a,*p; int nct=0;
 printf("Give: g(0=trap or 1=cir)\n"); scanf("%f %d",&g,&itype);
 if(itype){printf("Give: D,n,So,H,Ke\n");  

scanf("%f %f %f %f %f",&d,&n,&so,&h,&ke);}
 else {printf("Give: b,m,n,So,H,Ke\n");  

scanf("%f %f %f %f %f %f",&b,&m,&n,&so,&h,&ke);}
 y=.8*h; if(g>15.) cu=1.486; c=pow(cu/n,2.)*so*(1.+ke)/(2.*g);
 do{f=fun(y); dif=.05*f/(fun(y+.05)-f); y-=dif;
 printf("%d %f %f\n",++nct,dif,y);
 }while((nct<30) && (fabs(dif)>1.e-5));
 areap(y,a,p); q=cu/n*(*a)*pow((*a)/(*p),.6666667)*sqrt(so);
 printf("Solution: Y = %8.3f Q = %10.2f\n",y,q);
}
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To solve the third part of the problem that requests that Chezy’s equation be used instead of 
Manning equation, requires that 3 (rather than 2) equations be solved simultaneously for Q, Y, 
and C. These equations are as follows:
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Program UENCHEZ is designed to solve these three equations simultaneously. Notice that now 
the subroutine FUN provides values to 3 F values, and the part of the program that implements 
the Newton method has the DO loops changed from 2 to 3. The program UENCHEZ1 reduces the 
Newton solution to the depth by substituting Chezy’s equation into the energy equation, as has 
been done previous when using Manning’s equation as the uniform flow equation. Now however 
it is necessary to use a Gauss–Seidel type iteration to solve C associated with the current value 
of Q. This technique can be used with a calculator with a SOLVE function.

Program UENCHEZ.FOR
CHARACTER*17 FMT/'(1X,A1,'' ='',F9.3)'/
      CHARACTER*1 CX(9)/'b','m','S','e','Q','H','Y','C','K'/
      CHARACTER*5 CH(0:1)/'value','guess'/
      REAL F(3),F1(3),D(3,3)
      INTEGER*2 ID(9),INDX(3)
      COMMON X(9),G,FKE,G32,CG,ITYPE
      WRITE(*,*)' Give:g,k.vis.,entrance loss C.',
     &' & 0=trap,1=cir'
      READ(*,*) G,VIS,FKE,ITYPE
      IF(ITYPE.EQ.1) THEN
      CX(1)='D'
      CX(2)=' '
      ENDIF
      IF(G.GT.15.) THEN 
      X(8)=100.
      ELSE
      X(8)=60.
      ENDIF
      X(9)=FKE
      FKE=(1.+FKE)/(2.*G)
      G32=SQRT(32.*G)
      CG=.884*VIS/(4.*SQRT(G))
1     DO 10 I=1,7
      IF(ITYPE.EQ.1 .AND. I.EQ.2) GO TO 10
      WRITE(*,'(I2,2X,A1)') I,CX(I)
10    ID(I)=0
2     WRITE(*,*)' Give 2 num. for 2 unknown var.',
      ' in addition to C'
      READ(*,*) I1,I2
      IF(I1.LT.1.OR.I1.GT.8.OR.I2.LT.1.OR.I2.GT.8) GO TO 2
      ID(I1)=1
      ID(I2)=1



92	 Open Channel Flow: Numerical Methods and Computer Applications

      ID(8)=1
      DO 20 I=1,7
      IF(ITYPE.EQ.1 .AND. I.EQ.2) GO TO 20
      WRITE(*,100) CH(ID(I)),CX(I)
100   FORMAT(' Give ',A5,' for ',A1,' = ',\)
      READ(*,*) X(I)
20    CONTINUE
      NCT=0
30    SUM=0.
      CALL FUN(F)
      I1=0
      DO 40 I=1,8
      IF(ID(I).EQ.0) GO TO 40
      XX=X(I)
      I1=I1+1
      X(I)=1.005*X(I)
      CALL FUN(F1)
      DO 35 J=1,3
35    D(J,I1)=(F1(J)-F(J))/(X(I)-XX)
      X(I)=XX
40    CONTINUE
      CALL SOLVEQ(3,1,3,D,F,1,DD,INDX)
      I1=0
      DO 50 I=1,8
      IF(ID(I).EQ.0) GO TO 50
      I1=I1+1
      SUM=SUM+ABS(F(I1))
      X(I)=X(I)-F(I1)
50    CONTINUE
      NCT=NCT+1
      WRITE(*,*)' NCT=',NCT,' SUM=',SUM
      IF(NCT.LT.30 .AND. SUM.GT.1.E-5) GO TO 30
      WRITE(*,*)' Solution:'
      DO 60 I=1,9
      IF(ITYPE.EQ.1 .AND. I.EQ.2) GO TO 60
      IF(I.EQ.3 .OR. I.EQ.4) THEN
      FMT(16:16)='6'
      ELSE
      FMT(16:16)='3'
      ENDIF
      WRITE(*,FMT) CX(I),X(I)
60    CONTINUE
      WRITE(*,*)' Give 1 for another pb. (0=STOP)'
      READ(*,*) I2
      IF(I2.EQ.1) GO TO 1
      END
      SUBROUTINE FUN(F)
      REAL F(3)
      COMMON X(9),G,FKE,G32,CG,ITYPE
      IF(ITYPE.EQ.1) THEN
      BETA=ACOS(1.-2.*X(7)/X(1))
      A=.25*X(1)**2*(BETA-COS(BETA)*SIN(BETA))
      P=X(1)*BETA
      ELSE
      A=(X(1)+X(2)*X(7))*X(7) 
      P=X(1)+2.*X(7)*SQRT(X(2)**2+1.)
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      ENDIF
      Rh=A/P
      F(1)=X(5)-X(8)*A*SQRT(X(3)*RH)
      F(2)=X(8)+G32*ALOG10(X(4)/(12.*Rh)+CG*X(8)*P/X(5))
      F(3)=X(6)-X(7)-FKE*(X(5)/A)**2
      RETURN
      END

Program UENCHEZ.C
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
float x[9],g,fke,g32,cg; int itype;
extern void solveq(int n,float **d,float *f,int itype,\ 
float *dd,int *indx);

void fun(float *f){float beta,a,p,rh;
 if(itype){beta=acos(1.-2.*x[6]/x[0]); 

a=.25*x[0]*x[0]*(beta-cos(beta)*sin(beta));p=x[0]*beta;}
 else {a=(x[0]+x[1]*x[6])*x[6];p=x[0]+2.*x[6]*sqrt(x[1]*x[1]+1.);}  

rh=a/p;
 f[0]=x[4]-x[7]*a*sqrt(x[2]*rh);
 f[1]=x[7]+g32*log10(x[3]/(12.*rh)+cg*x[7]*p/x[4]);
 f[2]=x[5]-x[6]-fke*pow(x[4]/a,2.);return;} //End of fun
void main(void){char *fmt=" %c =%9.3f\n",*ch[]={"value","guess"},\ 
*cx="bmSeQHYCK";

 float f[3],f1[3],xx,sum,**d,*dd,vis;
 int id[9],indx[3],i,j,i1,i2,nct;
 d=(float**)malloc(3*sizeof(float*));
 for(i=0;i<3;i++)d[i]=(float*)malloc(3*sizeof(float));
 printf("Give: g,k.viscosity,entrance loss C. & 0=trap or 1=cir\n");
 scanf("%f %f %f %d",&g,&vis,&fke,&itype);
 if(itype){stpcpy(cx[0],"D");stpcpy(cx[1]," ");}
 if(g<15.) x[7]=100.; else x[7]=60.; x[8]=fke;
 fke=(1.+fke)/(2.*g);g32=sqrt(32.*g);cg=.884*vis/(4.*sqrt(g));
L1: for(i=0;i<7;i++){if((!itype) || ((itype)&&(i != 1)))
printf("%2d %c\n",i+1,cx[i]);id[i]=0;}

 do{printf(" Give two numbers for 2 unknown variables\n"); 
scanf("%d %d",&i1,&i2);

 }while((i1<1)||(i1>7)||(i2<1)||(i2>7)); id[i1-1]=1;id[i2-1]=1;
 for(i=0;i<7;i++){if((!itype) || ((itype)&&(i != 1)))

{printf("Give %s for %c =",ch[id[i]],cx[i]);
   scanf("%f",&x[i]);}} nct=0;
do{sum=0.; fun(f); i1=-1;for(i=0;i<8;i++){if(id[i]){xx=x[i];i1++; 
x[i]*=1.005;fun(f1);

  for(j=0;j<3;j++) d[j][i1]=(f1[j]-f[j])/(x[i]-xx); x[i]=xx;}}
  solveq(3,d,f,1,dd,indx); i1=-1;
  for(i=0;i<8;i++){if(id[i]){sum+=fabs(f[++i1]);x[i]-=f[i1];}}
  printf("nct= %d SUM=%f\n",nct,sum);
  }while((++nct<30)&&(sum>1.e-5));
printf("Solution:\n");
for(i=0;i<9;i++){if((!itype) || ((itype)&&(i != 1))){
if((i==2)||(i==3))stpcpy(fmt[8],"6"); else stpcpy(fmt[8],"3");
printf(fmt,cx[i],x[i]);}}
printf("Give 1 to solve another prob. (0=STOP)\n");
scanf("%d",&i2); if(i2) goto L1;}


