

Embedded Systems
Design

An Introduction to
Processes,Tools, and Techniques

Arnold Berger

CRC Press
C J J C Taylor & Francis Group
^ S Boca Raton London New York

CRC Press is an imprint of the
Taylor & Francis Group, an informa business

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

First issued in hardback 2017.

© 2002 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works

ISBN-13: 978-1-57820-073-3 (pbk)
ISBN-13: 978-1-138-43646-6 (hbk)

This book contains information obtained from authentic and highly regarded sources. Reasonable
efforts have been made to publish reliable data and information, but the author and publisher
cannot assume responsibility for the validity of all materials or the consequences of their use. The
authors and publishers have attempted to trace the copyright holders of all material reproduced in
this publication and apologize to copyright holders if permission to publish in this form has not
been obtained. If any copyright material has not been acknowledged please write and let us know so
we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced,
transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or
hereafter invented, including photocopying, microfilming, and recording, or in any information
storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.
copyright.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc.
(CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization
that provides licenses and registration for a variety of users. For organizations that have been
granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and
are used only for identification and explanation without intent to infringe.

Cover art design: Robert Ward

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com
and the CRC Press Web site at
http://www.crcpress.com

http://www.copyright.com
http://www.copyright.com
http://www.copyright.com/
http://www.taylorandfrancis.com
http://www.crcpress.com

This book is dedicated to
Shirley Berger.

http://taylorandfrancis.com

Table of Contents
Preface..xi

W hat is this book a b o u t? ... xii
Why should you buy this b o o k ? ...xii

If you are one o f my students.. xii
If you are a student elsewhere or a recent graduate..................... xiii
If you are a w orking engineer or developer....................................... xiii
If you are a m anager... xiii

H ow is the book stru c tu re d ? ... xiv
W hat do I expect you to k n o w ?.. xiv
A cknow ledgm ents...xv

In troduction ...xvii
Why Em bedded Systems Are D ifferent... xviii
S u m m ary ... xxvi
W orks C ited .. xxvii

Chapter 1: The Embedded Design Life Cycle...................................... 1
Introduction.. 1
Product Specification ..4
H ardw are/Softw are P artit io n in g ...7
Iteration and Im plem entation.. 10

V

v i Table of Contents

Detailed Hardware and Software Design.. 11
Hardware/Software Integration.. 12
Product Testing and Release.. 15

Who Does the Testing?.. 16
Maintaining and Upgrading Existing Products............................... 17
Summary... 19
Work C ite d ... 19

Chapter 2: The Selection Process..21
Packaging the Silicon... 23

Microprocessor versus Microcontroller.................................... 24
Silicon Economics... 25
Using the Core As the Basis of a Microcontroller.................. 25
System-on-Silicon (SoS).. 26

Adequate Performance... 26
Performance-Measuring Tools... 26
Meaningful Benchmarking.. 28
Running Benchmarks... 31

RTOS Availability.. 32
Language/Microprocessor Support.. 32
Tool Compatibility... 34
Performance.. 35
Device Drivers.. 35
Debugging T ools... 36
Standards Compatibility.. 36
Technical Support .. 36
Source Code vs. Object Code... 37
Services... 37

Tool Chain Availability... 38
Compilers... 39
Hardware and Software Debugging Tools............................... 40

Other Issues in the Selection Process... 41
A Prior Commitment to a Particular Processor Fam ily 42
A Prior Restriction on Language... 42
Time to M arket.. 42

Additional R eading.. 44
Summary... 45
Works Cited... 45

Table of Contents vii

Chapter 3: The Partitioning Decision... 47
Hardware/Software Duality.. 48
Hardware Trends.. 50

“ Coding” Hardware...52
The ASIC Revolution.. 55

ASICs and Revision C o sts .. 58
Managing the R is k ... 60
Co-Verification..61

Additional Reading..66
Summary... 66
Works Cited...67

Chapter 4: The Development Environment...................................69
The Execution Environment.. 70
Memory Organization... 70

System Space.. 71
Code Space.. 71
Data S p ac e .. 71
Unpopulated Memory Space... 72
I/O Space...72

System Startup...73
Interrupt Response Cycle.. 74
Function Calls and Stack Frames...75
Run-Time Environment.. 77
Object Placement... 82

Additional Reading..87
Summary... 87
Works Cited...88

Chapter 5: Special Software Techniques... 89
Manipulating the Hardware.. 89

In-line Assembly... 90
Memory-Mapped Access.. 91
Bitwise Operations...92
Using the Storage Class Modifier Volatile................................... 93
Speed and Code Density..95

Interrupts and Interrupt Service Routines (ISR s)...............................97
From Polling Loop to Interrupt-Driven..97

v iii Table of Contents

Nested Interrupts and Reentrancy... 98
Measuring Execution T im e... 100

Watchdog Timers.. 102
Watchdog Timer: Debugging the Target System.................... 104

Flash M em ory.. 104
Design Methodology... 106
Additional R eading... 109
Summary... 109
Works Cited... 110

Chapter 6: A Basic Toolset... 111
EIost-Based Debugging... 112

Word S iz e .. 112
Byte Order.. 112

Remote Debuggers and Debug Kernels.. 115
ROM Emulator.. 121

Limitations.. 123
Intrusiveness and Real-Time Debugging............................... 124

Logic Analyzer.. 129
Timing Mode.. 129
State M o d e .. 131
Triggers... 132
State Transitions... 136
Limitations.. 138
Physical Connections... 138
Logic Analyzers and C ach es... 139
Compiler Optimizations.. 142
Cost Benefit.. 142
Other Uses.. 142
Statistical Profiling... 142

Summary... 144
Works Cited... 146

Chapter 7: BDM, JTAG, and Nexus..149
Background Debug M o d e .. 150

Joint Test Action Group (JTA G)... 155
N ex u s... 159

Summary... 164

Table of Contents ix

Chapter 8: The ICE — An Integrated Solution.............................165
Bullet-Proof Run Control...166
Real-Time Trace.. 169
Hardware Breakpoints... 173
Overlay Memory.. 174
Timing Constraints..178
Usage Issues... 181
Setting the Trigger..181
Additional Reading..182
Summary... 182
Work C ited ... 183

Chapter 9: Testing...185
Why T est? ... 185

To Find the B ugs... 186
To Reduce R isk ..186
To Reduce C o sts... 187
To Improve Performance..187

When to T est? .. 187
Unit Testing.. 188
Regression Testing... 188

Which Tests?...189
When to Stop?.. 190
Choosing Test C a se s ... 191

Functional Tests... 191
Coverage Tests..192

Testing Embedded Software.. 193
Real-Time Failure M o d e s ..195
Measuring Test Coverage..197

Performance Testing... 201
How to Test Performance... 202

Maintenance and Testing.. 206
Additional Reading... 207
Summary... 207
Works Cited...208

X Table of Contents

Chapter 10: The Future.. 209
Reconfigurable H ardw are.. 209

Some Comments on the Tool Business.................................... 214
Tool/Chip Tension... 220

Summary... 224
Works Cited... 225

Index... 227

Why write a book about designing embedded systems? Because my experi
ences working in the industry and, more recently, working with students
have convinced me that there is a need for such a book.

For example, a few years ago, I was the Development Tools Marketing
M anager for a semiconductor manufacturer. I was speaking with the Soft
ware Development Tools M anager at our major account. My job was to
help convince the customer that they should be using our RISC processor in
their laser printers. Since I owned the tool chain issues, I had to address his
specific issues before we could convince him that we had the appropriate
support for his design team.

Since we didn’t have an In-Circuit Emulator for this processor, we found
it necessary to create an extended support matrix, built around a RO M
emulator, JTAG port, and a logic analyzer. After explaining all this to him,
he just shook his head. I knew I was in trouble. Fie told me that, of course,
he needed all this stuff. However, what he really needed was training. The
R & D Group had no trouble hiring all the freshly minted software engineers
they needed right out of college. Finding a new engineer who knew anything
about software development outside of Wintel or U N IX was quite another
matter. Thus was born the idea that perhaps there is some need for a differ
ent slant on embedded system design.

Recently I’ve been teaching an introductory course at the University of
Washington-Bothell (UWB). For now, I’m teaching an introduction to
embedded systems. Later, there’ll be a lab course. Eventually this course will

x ii Preface

grow into a full track, allowing students to earn a specialty in embedded
systems. Much of this book’s content is an outgrowth of my work at UWB.
Feedback from my students about the course and its content has influenced
the slant of the book. My interactions with these students and with other
faculty have only reinforced my belief that we need such a book.

What is this book about?
This book is not intended to be a text in software design, or even embedded
software design (although it will, of necessity, discuss some code and coding
issues). Most of my students are much better at writing code in C++ and
Java than am I. Thus, my first admission is that I’m not going to attempt to
teach software methodologies. What I will teach is the how of software
development in an embedded environment. I wrote this book to help an
embedded software developer understand the issues that make embedded
software development different from host-based software design. In other
words, what do you do when there is no printf () or mal loc()?

Because this is a book about designing embedded systems, I will discuss
design issues — but I’ll focus on those that aren’t encountered in application
design. One of the most significant of these issues is processor selection. One
of my responsibilities as the Embedded Tools Marketing Manager was to
help convince engineers and their managers to use our processors. What are
the issues that surround the choice of the right processor for any given
application? Since most new engineers usually only have architectural
knowledge of the Pentium-class, or SPARC processors, it would be helpful
for them to broaden their processor horizon. The correct processor choice
can be a “ bet the company” decision. I was there in a few cases where it was
such a decision, and the company lost the bet.

Why should you buy this book?
If you are one of my students.

If you’re in my class at UWB, then you’ll probably buy the book because it
is on your required reading list. Besides, an autographed copy of the book
might be valuable a few years from now (said with a smile). However, the
real reason is that it will simplify note-taking. The content is reasonably
faithful to the 400 or so lectures slides that you’ll have to sit through in
class. Seriously, though, reading this book will help you to get a grasp of the
issues that embedded system designers must deal with on a daily basis.
Knowing something about embedded systems will be a big help when you
become a member of the next group and start looking for a job!

Why should you buy this book? xiii

If you are a student elsewhere or a recent graduate.
Even if you aren’t studying embedded systems at UWB, reading this book
can be important to your future career. Embedded systems is one of the larg
est and fastest growing specialties in the industry, but the number of recent
graduates who have embedded experience is woefully small. Any prior
knowledge of the field will make you stand out from other job applicants.

As a hiring manager, when interviewing job applicants I would often
“ tune out” the candidates who gave the standard, “ I’m flexible, I’ll do any
thing” answer. However, once in while someone would say, “ I used your
stuff in school, and boy, was it ever a kludge. Why did you set up the trace
spec menu that way?” That was the candidate I wanted to hire. If your only
benefit from reading this book is that you learn some jargon that helps you
make a better impression at your next job interview, then reading it was
probably worth your the time invested.

If you are a working engineer or developer.
If you are an experienced software developer this book will help you to see
the big picture. If it’s not in your nature to care about the big picture, you
may be asking: “why do I need to see the big picture? I’m a software
designer. I’m only concerned with technical issues. Let the marketing-types
and managers worry about The big picture.’ I’ll take a good Quick Sort
algorithm anytime.” Well, the reality is that, as a developer, you are at the
bottom of the food chain when it comes to making certain critical decisions,
but you are at the top of the blame list when the project is late. I know from
experience. I spent many long hours in the lab trying to compensate for a
bad decision made by someone else earlier in the project’s lifecycle. I remem
ber many times when I wasn’t at my daughter’s recitals because I was fixing
code. Don’t let someone else stick you with the dog! This book will help you
recognize and explain the critical importance of certain early decisions. It
will equip you to influence the decisions that directly impact your success.
You owe it to yourself.

If you are a manager.
Having just maligned managers and marketers, I’m now going to take that
all back and say that this book is also for them. If you are a manager and
want your project to go smoothly and your product to get to market on
time, then this book can warn you about land mines and roadblocks. Will it
guarantee success? No, but like chicken soup, it can’t hurt.

I’ll also try to share ideas that have worked for me as a manager. For
example, when I was an R& D Project Manager I used a simple “ trick” to

xiv Preface

help to form my project team and focus our efforts. Before we even started
the product definition phase I would get some foam-core poster board and
build a box with it. The box had the approximate shape of the product.
Then I drew a generic front panel and pasted it on the front of the box. The
front panel had the project’s code name, like Gerbil, or some other mildly
humorous name, prominently displayed. Suddenly, we had a tangible proto
type “ image” of the product. We could see it. It got us focused. Next, I held
a pot-luck dinner at my house for the project team and their significant oth
ers.2 These simple devices helped me to bring the team’s focus to the project
that lay ahead. It also helped to form the “extended support team” so that
when the need arose to call for a 60 or 80 hours workweek, the home front
support was there.

(While that extended support is important, managers should not abuse
it. As an R& D Manager I realized that I had a large influence over the engi
neer’s personal lives. I could impact their salaries with large raises and I
could seriously strain a marriage by firing them. Therefore, I took my
responsibility for delivering the right product, on time, very seriously. You
should too.)

Embedded designers and managers shouldn’t have to make the same mis
takes over and over. I hope that this book will expose you to some of the
best practices that I’ve learned over the years. Since embedded system design
seems to lie in the netherworld between Electrical Engineering and Com
puter Science, some of the methods and tools that I’ve learned and devel
oped don’t seem to rise to the surface in books with a homogeneous focus.

How is the book structured?
For the most part, the text will follow the classic embedded processor lifecy
cle model. This model has served the needs of marketing engineers and field
sales engineers for many years. The good news is that this model is a fairly
accurate representation of how embedded systems are developed. While no
simple model truly captures all of the subtleties of the embedded develop
ment process, representing it as a parallel development of hardware and
software, followed by an integration step, seems to capture the essence of
the process.

What do I expect you to know?
Primarily, I assume you are familiar with the vocabulary of application
development. While some familiarity with C, assembly, and basic digital

2. I can’t take credit for this idea. I learned it from Controlling Software Projects, by Tom
DeMarco (Yourdon Press, 1982), and from a videotaped series of his lectures.

Acknowledgments XV

circuits is helpful, it’s not necessary. The few sections that describe specific
C coding techniques aren’t essential to the rest of the book and should be
accessible to almost any programmer. Similarly, you won’t need to be an
expert assembly language programmer to understand the point of the
examples that are presented in Motorola 68000 assembly language. If you
have enough logic background to understand ANDs and ORs, you are pre
pared for the circuit content. In short, anyone who’s had a few college-level
programming courses, or equivalent experience, should be comfortable
with the content.

Acknowledgments
I’d like to thank some people who helped, directly and indirectly, to make
this book a reality. Perry Keller first turned me on to the fun and power of
the in-circuit emulator. I’m forever in his debt. Stan Bowlin was the best
emulator designer that I ever had the privilege to manage. I learned a lot
about how it all works from Stan. Daniel Mann, an AMD Fellow, helped
me to understand how all the pieces fit together.

The manuscript was edited by Robert Ward, Julie McNamee, Rita Sooby,
Michelle O ’Neal, and Catherine Janzen. Justin Fulmer redid many of my
graphics. Rita Sooby and Michelle O ’Neal typeset the final result. Finally,
Robert Ward and my friend and colleague, Sid Maxwell, reviewed the
manuscript for technical accuracy. Thank you all.

Arnold Berger
Sammamish, Washington
September 27, 2001

XVi Preface

Introduction
The arrival of the microprocessor in the 1970s brought about a revolution
of control. For the first time, relatively complex systems could be con
structed using a simple device, the microprocessor, as its primary control
and feedback element. If you were to hunt out an old Teletype ASR33 com
puter terminal in a surplus store and compare its innards to a modern color
inkjet printer, there’s quite a difference.

Automobile emissions have decreased by 90 percent over the last 20
years, primarily due to the use of microprocessors in the engine-manage-
ment system. The open-loop fuel control system, characterized by a carbure
tor, is now a fuel-injected, closed-loop system using multiple sensors to
optimize performance and minimize emissions over a wide range of operat
ing conditions. This type of performance improvement would have been
impossible without the microprocessor as a control element.

M icroprocessors have now taken over the automobile. A new luxury-
class automobile might have more than 70 dedicated microprocessors, con
trolling tasks from the engine spark and transmission shift points to opening
the window slightly when the door is being closed to avoid a pressure burst
in the driver’s ear.

The F-16 is an unstable aircraft that cannot be flown without on-board
computers constantly making control surface adjustments to keep it in the
air. The pilot, through the traditional controls, sends requests to the com
puter to change the plane’s flight profile. The computer attempts to comply
with those requests to the extent that it can and still keep the plane in the
air.

xvii

XViii Introduction

A modem jetliner can have more than 200 on-board, dedicated micro
processors.

The most exciting driver of microprocessor performance is the games
market. Although it can be argued that the game consoles from Nintendo,
Sony, and Sega are not really embedded systems, the technology boosts that
they are driving are absolutely amazing. Jim Turley[l], at the Microproces
sor Forum, described a 200MHz reduced instruction set computer (RISC)
processor that was going into a next-generation game console. This proces
sor could do a four-dimensional matrix multiplication in one clock cycle at
a cost of $25.

Why Embedded Systems Are Different
Well, all of this is impressive, so let’s delve into what makes embedded sys
tems design different — at least different enough that someone has to write
a book about it. A good place to start is to try to enumerate the differences
between your desktop PC and the typical embedded system.

• Embedded systems are dedicated to specific tasks, whereas PCs are
generic computing platforms.

• Embedded systems are supported by a wide array of processors
and processor architectures.

• Embedded systems are usually cost sensitive.
• Embedded systems have real-time constraints.

You’ll have ample opportunity to learn about real time. For now, real
time events are external (to the embedded system) events that must be
dealt with when they occur (in real time).

• If an embedded system is using an operating system at all, it is
most likely using a real-time operating system (RTOS), rather than
Windows 9X, Windows NT, Windows 2000, Unix, Solaris, or HP-
UX.

• The implications of software failure is much more severe in embed
ded systems than in desktop systems.

• Embedded systems often have power constraints.
• Embedded systems often must operate under extreme environmen

tal conditions.
• Embedded systems have far fewer system resources than desktop

systems.
• Embedded systems often store all their object code in ROM.

Why Embedded Systems Are Different xix

• Embedded systems require specialized tools and methods to be effi
ciently designed.

• Embedded microprocessors often have dedicated debugging cir
cuitry.

Embedded systems are dedicated to specific tasks, whereas PCs are
generic computing platforms
Another name for an embedded microprocessor is a dedicated microproces
sor. It is programmed to perform only one, or perhaps, a few, specific tasks.
Changing the task is usually associated with obsolescing the entire system
and redesigning it. The processor that runs a mobile heart monitor/defibril
lator is not expected to run a spreadsheet or word processor.

Conversely, a general-purpose processor, such as the Pentium on which
I’m working at this moment, must be able to support a wide array of appli
cations with widely varying processing requirements. Because your PC must
be able to service the most complex applications with the same performance
as the lightest application, the processing power on your desktop is truly
awesome.

Thus, it wouldn’t make much sense, either economically or from an engi
neering standpoint, to put an AMD-K6, or similar processor, inside the cof-
feemaker on your kitchen counter.

That’s not to say that someone won’t do something similar. For exam
ple, a French company designed a vacuum cleaner with an AMD
29000 processor. The 29000 is a 32-bit RISC CPU that is far more
suited for driving laser-printer engines.

Embedded systems are supported by a wide array of processors and
processor architectures
Most students who take my Computer Architecture or Embedded Systems
class have never programmed on any platform except the X86 (Intel) or the
Sun SPARC family. The students who take the Embedded Systems class are
rudely awakened by their first homework assignment, which has them
researching the available trade literature and proposing the optimal proces
sor for an assigned application.

These students are learning that today more than 140 different micro
processors are available from more than 40 semiconductor vendors[2].
These vendors are in a daily battle with each other to get the design-win (be
the processor of choice) for the next wide-body jet or the next Internet-
based soda machine.

In Chapter 2, you’ll learn more about the processor-selection process.
For now, just appreciate the range of available choices.

XX Introduction

Embedded systems are usually cost sensitive
I say “ usually” because the cost of the embedded processor in the Mars
Rover was probably not on the design team’s top 10 list of constraints.
However, if you save 10 cents on the cost of the Engine Management Com
puter System, you’ll be a hero at most automobile companies. Cost does
matter in most embedded applications.

The cost that you must consider most of the time is system cost. The cost
of the processor is a factor, but, if you can eliminate a printed circuit board
and connectors and get by with a smaller power supply by using a highly
integrated microcontroller instead of a microprocessor and separate periph
eral devices, you have potentially a greater reduction in system costs, even if
the integrated device is significantly more costly than the discrete device.
This issue is covered in more detail in Chapter 3.

Embedded systems have real-time constraints
I was thinking about how to introduce this section when my laptop decided
to back up my work. I started to type but was faced with the hourglass sym
bol because the computer was busy doing other things. Suppose my com
puter wasn’t sitting on my desk but was connected to a radar antenna in the
nose of a commercial jetliner. If the computer’s main function in life is to
provide a collision alert warning, then suspending that task could be disas
trous.

Real-time constraints generally are grouped into two categories: time-
sensitive constraints and time-critical constraints. If a task is time critical, it
must take place within a set window of time, or the function controlled by
that task fails. Controlling the flight-worthiness of an aircraft is a good
example of this. If the feedback loop isn’t fast enough, the control algorithm
becomes unstable, and the aircraft won’t stay in the air.

A time-sensitive task can die gracefully. If the task should take, for exam
ple, 4.5ms but takes, on average, 6.3ms, then perhaps the inkjet printer will
print two pages per minute instead of the design goal of three pages per
minute.

If an embedded system is using an operating system at all, it is most
likely using an RTOS
Like embedded processors, embedded operating systems also come in a
wide variety of flavors and colors. My students must also pick an embedded
operating system as part of their homework project. RTOSs are not demo
cratic. They need not give every task that is ready to execute the time it
needs. RTOSs give the highest priority task that needs to run all the time it
needs. If other tasks fail to get sufficient CPU time, it’s the programmer’s
problem.

Why Embedded Systems Are Different XXi

Another difference between most commercially available operating sys
tems and your desktop operating system is something you won’t get with an
RTOS. You won’t get the dreaded Blue Screen of Death that many Windows
9X users see on a regular basis.

The implications of software failure are much more severe in embedded
systems than in desktop systems
Remember the Y2K hysteria? The people who were really under the gun
were the people responsible for the continued good health of our computer-
based infrastructure. A lot of money was spent searching out and replacing
devices with embedded processors because the #$% % $ thing got the dates
all wrong.

We all know of the tragic consequences of a medical radiation machine
that miscalculates a dosage. How do we know when our code is bug free?
How do you completely test complex software that must function properly
under all conditions?

However, the most important point to take away from this discussion is
that software failure is far less tolerable in an embedded system than in your
average desktop PC. That is not to imply that software never fails in an
embedded system, just that most embedded systems typically contain some
mechanism, such as a watchdog timer, to bring it back to life if the software
loses control. You’ll find out more about software testing in Chapter 9.

Embedded systems have power constraints
For many readers, the only CPU they have ever seen is the Pentium or AMD
K6 inside their desktop PC. The CPU needs a massive heat sink and fan
assembly to keep the processor from baking itself to death. This is not a par
ticularly serious constraint for a desktop system. Most desktop PC’s have
plenty of spare space inside to allow for good airflow. However, consider an
embedded system attached to the collar of a wolf roaming around Wyoming
or Montana. These systems must work reliably and for a long time on a set
of small batteries.

How do you keep your embedded system running on minute amounts of
power? Usually that task is left up to the hardware engineer. However, the
division of responsibility isn’t clearly delineated. The hardware designer
might or might not have some idea of the software architectural constraints.
In general, the processor choice is determined outside the range of hearing
of the software designers. If the overall system design is on a tight power
budget, it is likely that the software design must be built around a system in
which the processor is in “ sleep mode” most of the time and only wakes up
when a timer tick occurs. In other words, the system is completely interrupt
driven.

XX ii Introduction

Power constraints impact every aspect of the system design decisions.
Power constraints affect the processor choice, its speed, and its memory
architecture. The constraints imposed by the system requirements will likely
determine whether the software must be written in assembly language,
rather than C or C++, because the absolute maximum performance must be
achieved within the power budget. Power requirements are dictated by the
CPU clock speed and the number of active electronic components (CPU,
RAM , RO M , I/O devices, and so on).

Thus, from the perspective of the software designer, the power con
straints could become the dominant system constraint, dictating the choice
of software tools, memory size, and performance headroom.

Speed vs. Power

Almost all modern CPUs are fabricated using the Complementary Metal Oxide
Silicon (CMOS) process. The simple gate structure of CMOS devices consists of
two MOS transistors, one N-type and one P-type (hence, the term complemen
tary), stacked like a totem pole with the N-type on top and the P-type on the bot
tom. Both transistors behave like perfect switches. When the output is high, or
logic level 1, the P-type transistor is turned off, and the N-type transistor connects
the output to the supply voltage (5V, 3.3V, and so on), which the gate outputs to
the rest of the circuit.

When the logic level is 0, the situation is reversed, and the P-type transistor con
nects the next stage to ground while the N-type transistor is turned off. This cir
cuit topology has an interesting property that makes it attractive from a power-
use viewpoint. If the circuit is static (not changing state), the power loss is
extremely small. In fact, it would be zero if not for a small amount of leakage cur
rent inherent in these devices at normal room temperature and above.

When the circuit is switching, as in a CPU, things are different. While a gate
switches logic levels, there is a period of time when the N-type and P-type transis
tors are simultaneously on. During this brief window, current can flow from the
supply voltage line to ground through both devices. Current flow means power
dissipation and that means heat. The greater the clock speed, the greater the num
ber of switching cycles taking place per second, and this means more power loss.
Now, consider your 500MHz Pentium or Athlon processor with 10 million or so
transistors, and you can see why these desktop machines are so power hungry. In
fact, it is almost a perfect linear relationship between CPU speed and power dissi
pation in modern processors. Those of you who overclock your CPUs to wring
every last ounce of performance out of it know how important a good heat sink
and fan combination are.

Why Embedded Systems Are Different xxiii

Embedded systems must operate under extreme environmental
conditions
Embedded systems are everywhere. Everywhere means everywhere. Embed
ded systems must run in aircraft, in the polar ice, in outer space, in the trunk
of a black Camaro in Phoenix, Arizona, in August. Although making sure
that the system runs under these conditions is usually the domain of the
hardware designer, there are implications for both the hardware and soft
ware. Harsh environments usually mean more than temperature and humid
ity. Devices that are qualified for military use must meet a long list of
environmental requirements and have the documentation to prove it. If
you’ve wondered why a simple processor, such as the 8086 from Intel,
should cost several thousands of dollars in a missile, think paperwork and
environment. The fact that a device must be qualified for the environment in
which it will be operating, such as deep space, often dictates the selection of
devices that are available.

The environmental concerns often overlap other concerns, such as power
requirements. Sealing a processor under a silicone rubber conformal coating
because it must be environmentally sealed also means that the capability to
dissipate heat is severely reduced, so processor type and speed is also a fac
tor.

Unfortunately, the environmental constraints are often left to the very
end of the project, when the product is in testing and the hardware designer
discovers that the product is exceeding its thermal budget. This often means
slowing the clock, which leads to less time for the software to do its job,
which translates to further refining the software to improve the efficiency of
the code. All the while, the product is still not released.

Embedded systems have far fewer system resources than desktop
systems
Right now, I’m typing this manuscript on my desktop PC. An oldies CD is
playing through the speakers. I’ve got 256MB of RAM, 26GB of disk space,
and assorted ZIP, JAZZ, floppy, and CD-RW devices on a SCSI card. I’m
looking at a beautiful 19-inch CRT monitor. I can enter data through a key
board and a mouse. Just considering the bus signals in the system, I have the
following:

• Processor bus
• AGP bus
• PCI bus
• ISA bus
• SCSI bus
• USB bus

XXiv Introduction

• Parallel bus
• RS-232C bus
An awful lot of system resources are at my disposal to make my comput

ing chores as painless as possible. It is a tribute to the technological and eco
nomic driving forces of the PC industry that so much computing power is at
my fingertips.

Now consider the embedded system controlling your VCR. Obviously, it
has far fewer resources that it must manage than the desktop example. Of
course, this is because it is dedicated to a few well-defined tasks and nothing
else. Being engineered for cost effectiveness (the whole VCR only cost $80
retail), you can’t expect the CPU to be particularly general purpose. This
translates to fewer resources to manage and hence, lower cost and simplic
ity. However, it also means that the software designer is often required to
design standard input and output (I/O) routines repeatedly. The number of
inputs and outputs are usually so limited, the designers are forced to over
load and serialize the functions of one or two input devices. Ever try to set
the time in your super exercise workout wristwatch after you’ve misplaced
the instruction sheet?

Embedded systems store all their object code in ROM
Even your PC has to store some of its code in ROM. ROM is needed in
almost all systems to provide enough code for the system to initialize itself
(boot-up code). However, most embedded systems must have all their code
in ROM. This means severe limitations might be imposed on the size of the
code image that will fit in the ROM space. However, it’s more likely that the
methods used to design the system will need to be changed because the code
is in ROM.

As an example, when the embedded system is powered up, there must be
code that initializes the system so that the rest of the code can run. This
means establishing the run-time environment, such as initializing and plac
ing variables in RAM, testing memory integrity, testing the ROM integrity
with a checksum test, and other initialization tasks.

From the point of view of debugging the system, ROM code has certain
implications. First, your handy debugger is not able to set a breakpoint in
ROM. To set a breakpoint, the debugger must be able to remove the user’s
instruction and replace it with a special instruction, such as a TRAP instruc
tion or software interrupt instruction. The TRAP forces a transfer to a conve
nient entry point in the debugger. In some systems, you can get around this
problem by loading the application software into RAM. Of course, this
assumes sufficient RAM is available to hold of all the applications, to store
variables, and to provide for dynamic memory allocation.

Why Embedded Systems Are Different XXV

Of course, being a capitalistic society, wherever there is a need, someone
will provide a solution. In this case, the specialized suite of tools that have
evolved to support the embedded system development process gives you a
way around this dilemma, which is discussed in the next section.

Embedded systems require specialized tools and methods to be
efficiently designed
Chapters 4 through 8 discuss the types of tools in much greater detail. The
embedded system is so different in so many ways, it’s not surprising that
specialized tools and methods must be used to create and test embedded
software. Take the case of the previous example— the need to set a break
point at an instruction boundary located in ROM .

A ROM Emulator

Several companies manufacture hardware-assist products, such as ROM emula
tors. Figure 1 shows a product called NetROM , from Applied Microsystems Cor
poration. NetROM is an example of a general class of tools called emulators.
From the point of view of the target system, the ROM emulator is designed to
look like a standard ROM device. It has a connector that has the exact mechani
cal dimensions and electrical characteristics of the ROM it is emulating. However,
the connector’s job is to bring the signals from the ROM socket on the target sys
tem to the main circuitry, located at the other end of the cable. This circuitry pro
vides high-speed RAM that can be written to quickly via a separate channel from
a host computer. Thus, the target system sees a ROM device, but the software
developer sees a RAM device that can have its code easily modified and allows
debugger breakpoints to be set.

Figure 1 NetROM.

XXVi Introduction

In the context of this book, the term hardware-assist refers to addi
tional specialized devices that supplement a software-only debugging
solution. A ROM emulator, manufactured by companies such as
Applied Microsystems and Grammar Engine, is an example of a hard-
ware-assist device.

Embedded microprocessors often have dedicated debugging circuitry
Perhaps one of the most dramatic differences between today’s embedded
microprocessors and those of a few years ago is the almost mandatory inclu
sion of dedicated debugging circuitry in silicon on the chip. This is almost
counter-intuitive to all of the previous discussion. After droning on about
the cost sensitivity of embedded systems, it seems almost foolish to think
that every microprocessor in production contains circuitry that is only nec
essary for debugging a product under development. In fact, this was the pre
vailing sentiment for a while. Embedded-chip manufacturers actually built
special versions of their embedded devices that contained the debug cir
cuitry and made them available (or not available) to their tool suppliers. In
the end, most manufacturers found it more cost-effective to produce one
version of the chip for all purposes. This didn’t stop them from restricting
the information about how the debug circuitry worked, but every device
produced did contain the debug “hooks” for the hardware-assist tools.

What is noteworthy is that the manufacturers all realized that the inclu
sion of on-chip debug circuitry was a requirement for acceptance of their
devices in an embedded application. That is, unless their chip had a good
solution for embedded system design and debug, it was not going to be a
serious contender for an embedded application by a product-development
team facing time-to-market pressures.

Summary
Now that you know what is different about embedded systems, it’s time to
see how you actually tame the beast. In the chapters that follow, you’ll
examine the embedded system design process step by step, as it is practiced.

The first few chapters focus on the process itself. I’ll describe the design
life cycle and examine the issues affecting processor selection. The later
chapters focus on techniques and tools used to build, test, and debug a com
plete system.

I’ll close with some comments on the business of embedded systems and
on an emerging technology that might change everything.

Although engineers like to think design is a rational, requirements-driven
process, in the real world, many decisions that have an enormous impact on
the design process are made by non-engineers based on criteria that might
have little to do with the project requirements. For example, in many

