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Preface 

In 1943, Professor Richard Courant (1888-1972) published in the Bulletin of the American 
Mathematical Society, vol. 49, p. 1-23, the paper, Variational Methods for Problems of 
Equilibrium and Vibrations, which was a crucial contribution in the development of the finite 
element method. To commemorate this event, we decided to organize the international 
conference, The Finite Element Methods: Fifty Years of the Courant Element. The original 
Courant paper is reprinted in these proceedings with the kind permission of the American 

Mathematical Society. 
The conference was held at the University of JyvaskyUi, Finland. There were 90 

specialists in finite element techniques from Europe, America and Asia. As can be seen from 
these proceedings, the talks delivered at the conference covered most aspects of the field. 
Several talks were given on the early history of the method. Some state-of-the-art surveys were 
presented as well. The majority of the talks were, however, on contemporary research showing 

that the field is in a state of rapid development. These contributions focus on both fundamental 
questions in numerical analysis and special problems occurring in applications of the method in 
various fields of science and engineering. 

We would like to thank Ms. Marja-Leena Rantalainen for her invaluable help in the 
editing of this book. The financial support of the European Science Foundation, Programme 
Mathematical Treatment of Free Boundary Problem, the Academy of Finland Council of 
Technology and the University of Jyvaskyla is gratefully acknowledged. 
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M. KtiZek 
P. N eittaanmaki 

R. Stenberg 
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Variational Methods for the Solution of 
Problems of Equilibrium and Vibrations 

R. COURANT 

As Henri Poincare once remarked, "solution of a mathematical 
problem" is a phrase of indefinite meaning .  Pure mathematicians 
sometimes are satisfied with showing that the  non-existence of a solu­
tion i mpl ies a logical contradiction, while engineers might consider a 
numerical resul t  as the only reasonable  goal . Such one sided views 
seem to reflect human l imitations rather than objective values . I n  
i tself mathematics i s  an indivisible organism uniting theoretical 
contemplation and active appl ication . 

This address wi l l  deal with a topic in  which such a synthesis of 
theoretical and appl ied mathematics has become particularly con­
vincing .  Since Gauss and W. Thompson , the equivalence between 
boundary value problems of partial differential equations on the  
one hand and problems of  the calculus of variations on the  other  
hand has  been a central point  in  analysis .  At  fi rst ,  the  theoretical i n­
terest i n  existence proofs dominated and onl y  much later were prac­
t ical appl ications envisaged by two physicists, Lord Rayleigh and 
Walther Ritz; they independently conceived the idea of utilizing th i s  
equivalence for  numerical calculation of  the  solutions ,  by substitut ing 
for the  variational problems simpler approximating extremum prob­
lems in  which but a finite number of parameters need be determined . 
Rayleigh , in  h is  classical work-Theory of sound-and in other pub­
l ications , was the first to use such a procedure . But only the spectacu­
lar success of Walther Ritz and its tragic circumstances caught the  
general interest . In  two publ ications of 1 908 and  1 909 [39], Ritz ,  
conscious of h is  imminent death from c::msumption , gave a masterly 
account of the theory, and at the same t ime applied h i s  method to  
the  calculation of the  nodal l ines of  vibrating plates , a problem of  
classical physics that previously had not  been  satisfactorily t reated. 

Thus methods emerged which cou ld  not fai l  to attract engineers 
and physicists; after all ,  the minimum principles of mechanics are 
more suggestive than the differential equ at ions. Great successes i n  
applications were soon followed b y  further  progress i n  the under­
standing of the  theoretical background , and such progress i n  turn 
must resu lt  in  advantages for the applicati ons .  

An address delivered before the meeting of the Society in Washington, D. C., on May 3, 

1941, by invitation of the Program Committee; received by the editors June 16, 1942. 
(Reprinted, by permission, from the Bulletin of the American Mathematical Society, Vol. 49, 
pp. 1-23.) 
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2 Courant 

The following address will  try to convey an idea of this interplay 
between practical and theoretical points of view. Completeness can­
not be attempted; rather some selected topics with which the 
speaker h as been personally concerned will be discussed . 

Usually the solution of  a d ifficult problem in analysis proceeds 
according to a general scheme: The given problem P with the solution 
S is replaced by a related problem P,. so simple that its solution Sn 
can be  found with comparative ease . Then by improving the ap­
proximation Pn to P we may expect,  or we may assume,  or we may 
prove, that S,. tends to the desired solution S of  P. The essential 
point in  an individual case is to choose the sequence Pn in a suitab l e  
manner. 

H ere we shal l  deal mainly with problems of equi l ibrium and vibra­
tions (boundary value  and eigenvalu e  problems ,! respectively) . They 
lead to l inear self-adjoint differential e quations for an unknown 
function u (x, y): 

( 1 )  L(u) = /. 
or 

(2) L(u) + AU = 0 ,  

in  a two-dimensional domain of  t h e  x, y-plane ,  o r  rather t o  equivalent 
variational problems for the kinetic and potential energies of the 
system. 

I .  THE VARIATIONAL PROBLEMS 
We assume our domain B bounded by a piecewise smooth curve 

C, and we denote the arc length measured along C by s, and differ­
entiation in the d irection of the inward normal by a/an or by a sub­
script n. 

1 .  Quadratic functionals. Our variational problems refer to quad­
ratic functionals 

Q(v) = Q(v,  v) 

defined by symmetric b il inear expressions such as 

(3) D(v, w) = f fa (vzwz + vllw,,)dxdy, 

(4) M(v, w) = f In [AvAw + a(vzzwlIl/ + V""WZZ - 2vzl/wz,,) ]dxdy, 

1 Problems of critical loads (buckling) are likewise mathematically formulated as 
eigenvalue problems. 



Problems of Equilibrium and Vibrations 

which occur in the study of membranes and plates , respectively. In  
(4) the symbol A. denotes the  Laplacian operator , and  a a constant.  
Furthermore , we shall have to use other quadratic integrals defined 
by bilinear expressions such as 

(5) 

(6) 

(7) 

H(v, w) = I In vwdxd)" 

K(v ,  w) = I/WdS , 

R(v ,  w)  = ILvuWudX, 
where L is a l ine y = const . in B and C is the boundary of B. We then 
consider functionals such as 

Q(v , w) = aD(v, w) + hM(v, w) + cK(v, w) + dR(v ,  w) , 

where a ,  h ,  c ,  d are constants. Always the "admissible " functions u ,  v ,  
w,  . . . are restricted by the  condit ion that  a l l  the  occurring inte­
grands be at least piecewise continuous .  

The stable equilibrium of a p late or membrane u nder an external 
pressure f is characterized by a variational problem of the type 

(8) Q(v) + 2 H(v, j) = minimum , 

for the deflection v ,  whereas vibrations of p lates and membranes cor­
respond to the problem of finding stationary values , v2 = A, of 

(9) Q(v) /H(v) . 

The values v thus defined are the natural frequencies of the system .  
Q(v) corresponds t o  the potential  energy o f  the system i n  the case of 
equi l ibri um , whi le for vibrations Q (v) and H(v) are the "reduced"  
potential and  kinetic energies , respectively .2 Terms o f  the  form K 
and R appearing in the expression Q represen t additional energies 
concentrated along the boundary C of B or along a line L in B .  For ex­
ample ,  in the case of reinforced plates we would h ave Q = M +dR i f 
the reinforcement consists of a bar along the l ine  L .  

, By "reduced " energies w e  mean the following : I f  w e  assume the free system vi­
brating with a frequency ", (not n ecessarily a natural  frequency) ,  then the deflection 
u may be represented in the form u = v cos ",t, where v is a function of position only. 
The potential energy V may then be written in the form Q(v) cos2",t and the kinetic 
energy T in the form w'H(v) sin'",t ; the quantities Q and H are termed the reduced 
energies. 

3 



4 Courant 

2 . Rigid and natural boundary conditions .  (See [ 1 , 2 ,  9 ] . ) The 
Euler d ifferential equations ( 1 )  or (2 ) of our variational problems 
m ust be supplemented by appropriate boundary conditions .  I f  we 
focus our attention on the d ifferential equations as such , it  is not at  
a l l  obvious what boundary conditions belong to a particular problem 
of mechanics . H owever ,  from the point  of v iew of  the calculus of  
variations a complete clarification of this  del icate question is almost  
automatical ly obtained i f  the mathematical reasoning fol lows our 
mechanical intuit ion . In  the first  place we observe that in a varia­
tional problem (not so in a problem of d ifferen tial equations) we 
need not in  advance impose boundary conditions in order to single 
out  a specific sol ution . I f  the functions admissib le  in the competition 
are not subjected to restrictions at the boundary, we speak of a 
"free problem . "  In  these problems the first variation of the functional 
will contain terms referring to the boundary ,  and the vanishing of 
the first variation will imply not only Euler's differential equation 
for the  domain B but also condit ions on the boundary C, which we 
cal l "na'tural boundary conditions . "  Now the dominant fact is : appro­
priate boundary conditions for differential equations are obtained as 
natural boundary conditions of corresponding variational problems . I n  
the latter they may , b u t  they need not b e  prescribed i n  advance.  

There is on ly the exceptional case , often termed the "s implest case 
of a variational problem" of fixed boundary values of u or derivatives 
of  u or other expressions in u .  Here the s i tuation seems somewhat ob­
scured . (The c lamped membrane with the boundary condit ion u = 0 
and the clamped plate with the boundary conditions u = u ", = u" = 0 
belong in this category . )  Such fixed or rigid or artificial boundary con­
ditions must be expl icit ly stipulated for the variational problem not 
only for the d ifferential equation . However ,  we shall recogn ize them 
as l imiting cases or  degenerations of  natural conditions .  

Physical ly ,  rigid conditions correspond to rigid constraints of the  
system at the boundary C whi le  natural conditions express equi l ib­
rium of the system of C i f  along C partial or ful l  freedom of motion 
is  permitted . 

To understand the significance of natural boundary conditions the 
fol lowing observation is  essential : The Euler differential equations 
depend only on the domain integrals or the energies spread over B .  
B u t  the  natural boundary conditions are essentially affected b y  the  
boundary integrals representing those contributions to the energies 
which are concentrated along the boundary C. These terms lead to  a 
great variety of possible natural boundary conditions for the same 
different ia l  equation . In  a somewhat different way we may formulate 
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the fact : Natural boundary condit ions ,  b u t  not Euler 's  equations , are 
affected by divergence  expressions in the  domain integrals .  

2a .  Examples. Plates, plane torsion for multiply-connecte d do­

mains. As an example we consider a membrane with a free boundary . 
A pressure f of average value  zero may act on the membrane .  I n  this  
case we have a variational problem for D (v) + 2H(v , f) ; i f  r denotes an 
arbitrary variation o f  v ,  the  variational condition is  

D(v ,  r)  + H(r,  f) = o.  

Transforming D (v ,  n by Green 's formu la  into a domain integral 
plus a boundary integral , we find the natural boundary condition 

OV 
- = 0 , 
on 

expressing the fact that no  force acts on the  boundary C. For a plate , 
free at the  boundary , Q (v)  = M(v) , and the  natural boundary condi­
tions appear as the classical Kirchhoff conditions : 

2 2 
( 1 + a)Av = a(vux;. + 2v %t/xnYn + Vt/t/Yn) , 

a 
- Av = a (v uXnX. + V %t/ (x"Y. + X.Yn ] + Vt/t/YnY.) , 
on 

where x,, , y" and x" y. are , respective ly ,  d irection cosines of the inner 
normal and tangent vector along C. 

In  M(v) the term a(v%%vt/t/ - V;t/) = aa (v%vt/t/)/ax - o:B (v%v%t/)/ay i s  a 
divergence expression , very essential  for Kirchhoff's natural boundary 
condit ions but  i rrelevant for Euler 's  d ifferential equation Mv = 0 
and without  consequence for the clamped plate .  

Similar remarks apply to  natural "discontinuity conditions " that 
arise i f  energy i s  concentrated along l ines L interior to B ,  such as in 
the case of reinforced plates . For example ,  for a rectangular p late 
clamped at the boundary but  rein forced by a bar a long the l ine Y = 0 , 
the variational problem becomes 

Q(V) + 2H(v , j) + kR(v) = f i [(Av) 2 + 2a(v uv�t/ - v :t/) ] dxdy 

+ k f/! %dX + 2 f itjdXdY = min. 

with the condition that v = v% = Vt/ = 0 on C and v ,  V% ,  VII are continuous 
in  B while the second derivatives of v are at l east piecewise continu-

5 
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ous in B. If r is an arbitrary variation of v satisfying these conditions ,  
we  obtain as  above not  only the Euler equation Mv +f = O, but  also 
the natural discontinuity condition 

+ a4  
[ CAv + av u) ] = - vex ,  0) , - ax4 

where the symbol [g ] �  means the amount  of discont inu ity su ffered 
by a function g in crossing the l ine y = 0 from positive to negative 
values of  y. Another example of a somewhat d ifferent character is the  
the problem of  torsion of long columns with multiply connected cross sec­
tions. The contour C of the cross section may include a domain B 
in the x, y-plane from which are removed holes Bl,  B2,  B3 ,  • " with 
contours Clo C2 , C3, • • •  and areas A I, A 2, A 3, • • • • The mu l tip ly­
connected domain between C and CI, C2, Ca , • • •  may be cal led B*. 

o 
FIG. 1 

Then the adequate variational formulation of the  torsion problem in  
proper units is : To find a function ¢ = u continuous  in B + C, h aving 
piecewise continuous first derivatives in  B,  h aving the boundary 
values zero on C and constant ,  but not prescribed values Ci in  the  
h oles Bi•  such  that for the  whole  domain B 

attains its least value d for ¢ = u .  The function u then wil l  give the  
stresses in the cross section by  differentiation . 
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Note that this  problem requires not only to determine u in  B* as 
a solut ion of Euler 's equation 

tlu = 1 

with the boundary conditions u = 0 on C and u = const . = Ci on Ci , 
but  also to find the constants co.  The freedom for these parameters 
in the functions ¢ admissible  in the variational problem must l ead 
to natural conditions from which the c. are to be characterized . 

Indeed , from the variational condi tion D (u ,  n X J  Jrdxdy = 0 val id 
for arb itrary r that vanishes on C and has constant values in each B :  
we can only obtain Euler 's  equat ion , but  l ikewise immediately the 
natural  boundary conditions f dU 

- ds + ciA . = 0 
C i dn 

which connect the unknown boundary constants with the known 
areas A • .  

Incidental ly ,  for the special choice r = u we obtain (in line with 
more general results)  that the solution , represen ting a state of equ i­
l ibrium , satisfies the relation 

s = D( u) = - f f udxdy. 

The quantity S represents  the "total stiffness " of the col umn with 
respect to torsion . 

In  the appendix we shal l see how this proble m ,  which as an ordi­
nary boundary value  problem of a partial differential equation wou ld  
be rather formidable ,  can  be attacked nu merical ly  with success from 
the point  of  view developed here . 

2 b .  Rigid constraints a s  limiting case s .  I f  we have addit ional en­
ergy concentrated at the boundary and expressed , for  example ,  by the  
term K(v) = Jcv2ds , then not the Euler  equation bu t  the natural 
boundary conditions wil l  be influenced by these terms . Th us ,  for the 
free membrane with 

Q(v) = D (v) + -yK(v) 

we obtain the natural boundary condition 

( 1 0) 
dV 
- - ')'v = O. dn 

We observe {hat as the parameter -y increases indefin i te ly ,  that is ,  as 

7 
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the elastic restoring forces at the  boundary approach a rigid con­
straint ,  the condit ion ( 1 0) tends to the boundary condit ion v = 0 of 
the clamped membrane .  Th is is  i n  harmony with the fact that for 
large positive 'Y the boundary values o f  v2 though free ,  must in the 
average be smal l  in order to keep the energy Q (v) in  bounds.  

Quite general ly r igid boundary cond itions should be regarded as 
l imit ing cases of natural conditions in wh ich a parameter tends to 
infinity .  This corresponds to the physical fact that rigid constraints 
are only idealized limiting cases of very large restoring forces .3 I t  may 
be mentioned that th is  interpretation of  fixed boundary conditions is 
the key to a more penetrating analysis of  the question what we may 
and what we may not prescribe at the  boundary (see [ 1 ] ) .  

3 .  General conclusions.  The mere formulation o f  our  problem in 
terms of maxima and minima leads to  further important applica­
t ions . As an example  we mention a famous principle fi rst formulated 
by Lord Rayleigh [38 ] : If a vibrating system whose energies are ex­
pressed by quadratic  integrals is changed into another system by an 
increase of masses or by a decrease of e last ic  forces , then all the 
natural frequencies of the system can only change toward lower 
values . This fact was recogn ized by the speaker (see [9 ] )  as a conse­
quence of the fol lowing theorem ,  wh ich is eas i ly  proved : The nth 
natural frequency of any of our vibration problems is the highest 
value of the lowest frequency of all systems obtained from the given 
system by i mposing n - 1  constraints ; or the nth eigenvalue A" is 
the largest value attained by the m in imum d (wl , . . .  , W,,_l) of the 
quotient Q(v)/H(v) i f  v is  subje.cted to n - 1  l inear condit ions of the 
form 

H (v ,  W i) = 0,  i = 1 ,  . . .  , n - 1 ,  

the Wi being arb itrari ly chosen functions .  Here " min imum" refers to 
a fixed set of n - 1  functions W i .  

This principle can render useful servic e  for appraising the change 
in  the natural frequencies result ing from changes in the given vibrat­
ing system .  We recognize immediately that  a st iffening of the system 
by the introduction of  new elastic forces (wh ich lead to an increase in 
potential energy) must produce h igher natural  frequencies through ­
out .  Likewise , imposing new rigid constraints wi l l  h ave the same 
effect . Even quantitative results can be obtained by a s imple applica-

3 I t  might be mentioned t h a t  A. Weinste i n ' s  method (see §3)  is  a somewhat differ­

ent way of presenting rigid boundaries as l imit ing cases of problems with fewer re­

strictions. 
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tion of this principle .  The asymptotic behavior of the natural fre­
quencies JllI = A!'2 for large n was found by A. Sommerfeld , H .  Weyl , 
and the speaker .  For example , the nth eigenvalue of Llv +Xv = O  for a 
free or clamped boundary and domain of area A behaves asymp­
totically l ike 4'11"n/ A .  (See [9 ] . ) 

Recently Alexander Weinstein has m ade an interesting applica­
tion of this maxi mu m-min imum principle to clamped plates [4 ] .  The 
eigenvalue probl em for a "supported"  plate (with a = 0) refers to the 
quadratic energy expressions Q(v) = jjB(Llv) 2dxdy , H(v) = jjBv2dxdy. 
I t  is then required to make the quotient Q/H stationary on ly under 
the boundary condition v = O .  From th is variational prob lem , we 
·obtain the  Euler e quation Mv - Xv = 0 and one natural boundary 
condition , Llv = 0 ;  the solutions for this problem are in  this case 
identical with those of the clamped membrane .  Now Weinstein , by 
imposing successively a denumerable number of boundary condi ­
tions of the form jc(av/an)ep;ds = O, i = l , 2 ,  3 " " ,  where the epi 
form a complete system of functions on the boundary C,  obtains the 
problem of the clamped plate as a l imiting case . The approximating 
problems stipulate conditions less restrictive than the l imiting prob­
lem of a clamped plate , consequently they lead to smaller values of 
the minima and hence of the maxi-minima,  and therefore provide 
lower bounds for the natural frequencies of the c lamped plate . I t  is 
remarkable that the approximating problems cou l d  be solved ex­
pl icitly in terms of solutions of the membrane problem [20 , 2 1 ,  2 2 ] .  

I I .  RAYLEIGH -RITZ METHOD 

We now discuss the question of attacking a variational problem 
n umerical ly. I n  principle , there are many ways in  which such a 
variational problem may suggest approximations by simpler prob­
lems. The Rayleigh-Ritz method is only one of the m .  

1 .  The principle and theoretical aspects. Suppose we seek the min i ­
mum d of an integral expression or any other  variational expression 
J (ep)  (for example ,  our quadratic functionals of the preceding sec­
tion ) .  We then start with a minimizing sequence 

( 1 1 )  CPh  CP2 , CPa , . . .  , CPn , . . . , 

that is , a sequence of  functions , admissible in our variational prob­
lem,  for which 

( 1 2) 
" .... 00 

9 
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d being the lower bound of the functional J(cp) . The existence of the 
lower bound d is obvious or  may be easily proved in all  relevant 
problems and the existence of  the minimizing sequence ( 1 1 )  is then a 
logical consequence . 

H owever ,  the problem in applications is one , not of the existence , 
but of  the practical construction of  such a minimizing sequence . Ritz ' s  
method is  nothing but a recipe for such a construction .  A min imizing 
sequence i mmediately furnishes an  approximation to d (sometimes 
th is  i s  all we wish to kno w ,  for exampl e , if we are interested in the 
natural frequencies of  a vibrating system) . Moreover ,  i t  may be 
assumed and in many cases i t  can be  proved that the minimizing 
sequence itself  wil l  furnish a good approximation for the function u 
which actual ly solves the problem . 

Ritz 's  construction proceeds as fol lows : We start with an arbitrarily 
chosen system of "coordinate functions" 

( 1 3) 
which should satisfy the two conditions : 

(a) Any l inear combination 

( 1 4) q,,. = C lW l + C2W2 + . . .  + c,.w,. 

of them is admissible in the variational problem .  
(b) They should form a complete system o f  functions i n  t h e  sen se 

that any admissible function cp and its relevant derivatives may be 
approximated with any degree of  accuracy by a linear combination 
of coordinate functions and of their corresponding derivatives , re­
spectively .  

I f  we begin with such a system of coordinate functions, i t  is  c lear 
that for n sufficiently large and for a suitable choice of the coefficients 
Cl , C2 , • • •  , c,. of ( 1 4) we can find admissible functions CPn for wh ich 
J(cp,.) differs arbitrarily l itt le from d. In other words ,  i t  is possib le  to 
find a minimizing sequence CPl , CP2 , '  • •  , cP,., • . .  as a sequence of 
l inear combinations of the coordinate functions .  In order to obta

'
in 

such a minimizing sequence we choose the Ci in the fol lowing manner .  
We consider any function cP,. defined by ( 1 4) and substitute i t  in our  
variational problem . J(cp,.) then becomes a function F(Cl , . . .  , cn ) 
of the n parameters Ci which we may now determine from the ordinary 
minimum problem of the calculus 

( 1 5) 
In the problems considered here , J(cp) i s  a quadratic or bil inear func­
tional , and ( 1 5 )  leads to a system of n l inear equations for the 
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parameters ," a system which may be solved by estab lished methods. 
Thus the  minimizing sequence ,  q'>,. (n = 1 , 2 ,  . . . ) i s  found . Recal l ing 
our general scheme we may identify the construction of the q'>1\ with 
the problem P,.. 

11 

At this point one important remark may be made [ 1 ] .  While the 
convergence of 1(q'>1\) to d i s  assured , i t  is by no means general ly true 
that q'>,. tends to u , the solution of the original min imum problem , or ,  
even less so ,  that the derivatives of 4>,. tend to the  corresponding 
derivatives of u .  However ,  a comparative investigation of d ifferent 
types of variational problems reveals that ,  general ly speaking , the 
convergence of a min imizing sequence q'>1o q'> 2 , • • •  , q'>,. , • • •  and the 
sequences of the derivatives of the q'>,. is  improved if the order of the 
occurring derivatives becomes higher. On the other hand , there is a 
tendency toward worse convergence as the number of independent 
variables increases . For example ,  i n  the one-dimensional problem of an 
elastic string (Q (v) = J�v'2dx) , the convergence of the  q'>,. to u i s  as­
sured , the derivatives q'>': I however , need not converge to u ' . But for 
the corresponding problem of the bar (Q(v) = J�v"2dx) , not only does 
q'>1\ converge to u but  also q'>': to u f • On the other hand ,  in  the me m­
brane problem even the q'>,. need not converge to u ,  whi le  in  the 
case of the plate the convergence of q'>,. to u i s  assured . The first 
success attained by Ritz depended largely on his good fortune in 
attacking the seemingly more d ifficult  problem of the plate rather 
than that of the membrane .  

These facts which are int imately related to more profound ques­
tions in the general theory of the variational  calculus have sug­
gested the following method of obtaining better convergence in the 
Rayleigh-Ritz method . Instead of considering the simple variational 
problem for the corresponding boundary value problem , we modify 
the former problem without changing the solution of the  latter . This 
is  accomplished by adding to the original variational expression 
terms of  h igher order which vanish for the actual solut ion u .  For 

• This  suggests t h e  following interpretation and generalization of the  proced u re 

whereby reference to a minimum problem need no longer be mad e : we replace o ur 

d ifferential equation L (u) = 0  by t h e  condition that L(u) should be orthogonal t o  n 
functions of a previously selected complete system of functions.  I f, then , n tends to  

infinity, the totality o f  al 1  these relations wi l l  be substituted for t h e  differential  equa­

tion , and for  any fixed n , u may be chosen , for  example, as  a l inear combination ( 1 4) :  

u = tPn. I n  this general pattern that goes back to  Galerki n ,  there i s  more freedom left 
for the  choice of  the  approximations to  the solu tion u.  H owever, in  the Rayleigh-Ritz 
method proper,  generally speaking t h e  q uestion of  convergence is  more easily in­
vestigated. (The generalized view interpretation i s  implicitly mentioned i n  Ritz'  
papers and was later developed by several authors. See for example [18, 19 ] . )  
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example ,  we may formulate the  equil ibrium problem for a mem­
brane under the  external pressure f as fol lows : 

l ev) = I IB (v� + v: + vj)dxdy + I IB k (tlv - j)
2
dxdy = min . ,  

where k is an arbitrary positive constant or  function . Such additional  
terms make lev) more sensitive to variations of v without changing 
the  solution . In  other words ,  minimizing sequences attached to such 
a "sensitized " functional wi l l  by force behave better as regards con­
vergence  [7 ] .  

The practical  value of the method of sensitizing the integral by  
the  addit ion of terms o f  h igher order h as not yet been sufficient ly 
explored . Certainly the sensitizing terms wi l l  l ead to a more compl i ­
cated system of equations for the c • .  This means that a compromise 
must be made for a su itable  choice of  the arbitrary positive funct ion 
k so that good convergence is assured while the  necessary labor is 
kept within bounds .  

2 .  Practical viewpoints .  Theoretical ly the  Rayleigh -Ritz  method 
consists merely in the construction of  the minimizing sequence .  How­
ever ,  the difficulty that chal lenges the inventive skil l  of  the appl ied 
mathematician is  to find suitable  coordinate functions and to esti­
mate the accuracy of the resu l t .  From a practical point of view a l ­
most any  success depends on the  selection o f  coordinate functions .  
I f  these functions are chosen without proper regard for the  ind i ­
viduality of the  problem the task of computation w i l l  become hope­
less . A choice should be made so that the system of l inear equations 
for the Ci  obtained from ( 1 5 ) wi l l  have a preponderance of terms along 
the diagonal of their  matrix , and that the n umber of terms to be taken 
into account be  kept smal l .  Since only a few of the coordinate func­
t ions wi l l  enter into the calculation , the theoretical completeness of  
the CPn is  irrelevant .  I t  is important that  the  in itial function be  a l ­
ready a fair approximat ion , and furthermore that  the functions CPl ,  
CP2 , • • • should be sufficiently d ifferent5 so that increas ing the number 
of  terms wi l l  lead to an actual improvement of the approximation . 
I mportance should also be attached to the need for  making the 
n umerical eva luation of the coefficien ts of our  l inear equations 
practicab le .  

I n  many cases the  use  of polynomials for coordinate functions i s  
most  advantageous .  Si  Luan Wei has shown in h is thesis that resu lts  

& Such a "difference " can b e  measured. See Courant-H ilbert , MetJwden der matke­
mateschen Physik, vol . I ,  p. 52.  
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for p lates can be obtained by polynomials  more readi ly and more 
accurately than by the coordinate functions original ly used by Ritz 
[40 ] .  

Recently physicists h ave chosen coordinate functions according to 
the fol l owing pattern . One starts with a choice of  the function Wl, 
which is  expected to be a fair approximation to  the actual sol ut ion . 
Then W2  is defined by W2  = L (Wl) . Fina l ly  one chooses W3 = L (W2) 
= LL (Wl) , w, = L (wa) = LLL (Wl) , and so on . Th is choice makes the 
calculation of the matrix e lements of  our l inear equations for the C i  
comparatively simple.  S ince the operator L introduces h igher deriva­
tives which may lead to cumbersome compl ications at boundaries , 
i t  is  understandable that such a choice o f  the  Wn seems feasibl e  pri­
marily for infinite domains where no boundary is  given and where the 
natural boundary conditions are equivalent  to the finiteness of the 
variational integrals .  

3.  Boundary conditions. For rigid boundary conditions the ap­
proximation by the Rayleigh- Ritz method is  comparatively good . 
Few admissible  coordinate functions would in  most cases suffice to 
yield a result  near the desired solution . This p leasant feature ,  h ow­
ever , i s  offset by the restriction imposed by the r igid boundary condi­
t ions which in general precludes the choice of s imple coordinate 
functions .  

For  free boundaries and natural  boundary conditions the  choice o f  
coordinate functions i s  eased considerabl y  s ince  no  boundary condi­
t ions  need be stipu lated in  advance .  As a general ru l e  we might wel l  
use , for the  ¢n ,  polynomials with undetermined coefficients .  For  this 
great advantage , h owever ,  we must  pay a price , namely ,  the necessity 
for using many more terms to secure reasonable  accuracy . Therefore 
i t  i s  sometimes preferable  i f  we can satisfy in  advance ,  at  l east ap­
proximately ,  the natural boundary condit ions ,  by a proper choice of 
functions .  Sti l l ,  the advantage gained b y  making the  ¢n  polynomials 
might be decisive. 

In  this connection it seems to be of  i mportance that rigid boundaries 
can be considered as a limiting case of free boundaries , as indicated pre­
viously in § I ,  2 . As an example  we may consider the fol lowing problem 
for a membrane : 

D(v) + 2H(v,  j) + 'YK(v) = f i (v � + v� + 2vj)dxdy 

+ 'Y fa v2ds = min. 
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If 'Y is very large , then the free boundary problem relating to this  
expression is  a lmost identical to the corresponding problem for a 
clamped membrane . By letting 'Y tend to infi_n i ty we "freeze" the  
boundary . This  suggests an attempt to solve the equ i l ibr ium prob ­
lem of  the clamped plate by choosing a large n umerical value  for 'Y 
and then treating the problem as one for a free membrane .  H owever ,  
to obtain reasonable  accuracy for the  free problem , the  larger the  
q uantity 'Y the  more terms w i l l  be necessary . Hence the  practical 
appl ication of  the method again requires a compromise-"( m ust be 
chosen large enough to approximate rigid i ty but small enough to 
keep the necessary l abor with in reasonab le  bounds . From a theoretical 
as wel l  as from a practical point of view i t  would seem worth whi le  
to study the preferable  choices of these artificial parameters . 

4 .  Estimates. A weak point in  the Rayleigh-Ritz procedure is that  
i t  does  not  contain a principle for  estimating the accuracy of the  
approximation . This is  not  the  place to give an  account  of  t h e  
n umerous efforts made to fi l l  th is gap a t  least theoretica l ly .  For prob­
lems of  equi l ibrium,  estimates for the minimum d can b e  obtained by  
a method suggested by Castigl iano's  principle in the  theory of  elas­
ticity . The mathematical idea is to represent the min imum value d 
of  the given problem as a maximum val ue of  anothe r  variational 
problem (see [28 ] ) .  The margins obtained are quite narrow. But the 
practical value of  this accuracy does not appear great s ince the  value  
of  d i n  problems of equi l ibrium is of  l i tt le  interest,6 whereas we are 
concerned with the deflection u and its derivatives . In the case of 
vibrations ,  where the m inimum values ,  as squares of the frequencies , 
are o f  considerable  importance , methods for the estimation of ac­
curacy are in general less satisfactory [29 ] .  

5 .  Objections to the Rayleigh-Ritz method. The vagueness as to  
the  accuracy of the approximation obtained is only one of  the  obj ec­
t ions to the Rayleigh-Ritz method that m ay be raised . More annoy­
ing is that a suitable  selection of the coordinate functions is  often 
very difficult  and that laborious computations are sometimes neces­
sary . For these reasons ,  alternative methods must be studied.  

I I I .  M ETHOD OF FINITE DIFFERENCE S .  GENERAL RANDOM 
STATISTICAL METH ODS 

As far as practical experience goes the most important  o f  these 

6 See, however, E. Trefftz, Math. Ann. vol . 108 ( 1 933) , p. 595 where the deflect ion 

at a point Xo, Yo is represented as such a minimum d of a modified functional .  
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methods is that of finite differences . In th is  wel l  known procedure we 
replace d ifferential  quotients by d ifference quotients and integral 
expressions by finite sums defined over a set of  net-points in  the 
plane , for example ,  a quadratic net  in  the domain B formed by the in­
tersection of the l ines x = ,"(h , y =p.h (-y = 1 ,  2 ,  . . .  , N ;  J.L = 1 ,  2 ,  . . .  , M) . 
The simplified problem Pn of d ifference equations can very often be 
solved with relative ease . Then if  we permit the mesh , h = l in ,  of the 
net to tend to zero with increasing n ,  not only does P n tend to P, but  
the solutions  Sn of the d ifference equations approach the  solu tion S of  
the  original  problem exceeding ly  wel l .  Furthermore , we h ave the 
remarkable  fact that all re levant  d ifference quotients of first and 
h igher order converge to the corresponding derivatives pertain ing to 
the original problem . 

On these grounds the method of  finite d ifference as a general pro­
cedure is often preferable  to  the Rayleigh-Ritz method. The l atter 
might lend itself more readily  to the solution of  specific problems 
where suitab le  analytic expressions are availab le  for coordinate func­
tions .  However ,  in other cases experience points to the superiority 
of the method of finite differences . One of  the  u nderlying reason s  is 
that finite d ifferences are attached d irectly to the values of  the func­
tion itse l f  without  an interceding medium such as the more or  l ess 
arbitrary coordinate functions .  

I f  the  variational problems contain derivatives not  h igher than  the 
first order the method of finite difference can be  subordinated to the 
Rayleigh-Ritz method by considering in  the competition only func­
tions ¢ which are l inear in  the meshes of a sub-division of our net  
into triangles formed by diagonals  of  the squares of the net .  For such 
polyhedral functions the integra ls  become sums expressed by the 
finite number of values of ¢ i n  the  n et-points and the minimum condi­
t ions become our difference equations .  Such an interpretation sug­
gests a wide generalization which p rovides great flexibi l ity and seems 
to have considerable  practical  value .  Instead o f  starting with a 
quadratic or  rectangular net  we may consider from the outset any 
polyhedral surfaces with edges over  an arbitrarily chosen (preferably 
triangular) net. Our integrals  again become fin ite sums ,  and the mini­
mum condition wi l l  be equations  for the  values of  ¢ in  the net-points .  
While these equations seem less simple than the original difference 
equations , we gain the enormous advantage of  better adaptabi l i ty to 
the data of the problem and thus  we can often obtain good resu l ts 
with very l itt le  n umerical ca lculation . (See appendix . )  

This procedure of finite d ifferences was analyzed from a mathemat­
ical point of  view-and in  particular the convergence for the quad-
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ratic mesh width h-+O was proved-first by Phil ipps in unpubl ished 
papers , then by Phi l ipps and Wiener [ 1 4 ] ,  and at the same t ime by 
Lustern ik  and by Courant [5 ] , and later by Courant ,  Friedrichs ,  and 
Lewy [S ] .  

As was already observed by Ph i l ipps and Wiener ,  equations o f  
finite d ifferences can  be interpreted by processes of  probabi l i ty-the 
so-ca lled random walk. This connection has led Courant , R. Luene­
burg [ 16 ] , and Petrovsky [ 1 7 ]  to a more general a ttack upon our  
problems,  a s  fol l ows : I nstead o f  s imply replacing our  in  tegral expres­
sions by finite su ms defined over a net , we may replace them in  vari­
ous ways by other simple functionals and th us obtain a greater variety 
of  possible  approximate problems Pn• Consider,  for example ,  the  non­
negative function K(x,  y ;  � ,  17 )  which is assumed to be  symmetric ,  
to be defined and piecewise continuous in  the entire p lane and to 
satisfy J J�:K(�, y;  � ,  17 )  d�d17 = 1 .  We then focus our  attent ion on  
integrals of  the fol lowing form 

( 16) T(w) = f f f f��(X' y ; � ,  TJ) [w(x , y) - w(� ,  TJ) ] 2dxdyd�dTJ 

taken over the entire plane ,  and investigate the prob lem P A , 

( 16a) T(w) = min. , 

for which the admissible functions are prescribed in  the domain B, 
complementary to B, that i s ,  in  the portion of the plane outside of B .  

For example ,  i f  K =f(r) , where r 2 = (X _ �) 2 + (Y - TJ) 2 and fer) � O, 
while fer) = 0 for r > h, i t  i s  easi l y  verified that ,  as the para meter h 
tends to zero , we  have T(w) -+D (w) so that Pn tends to the boundary 
value problem for �u = O. It can be shown genera l ly  that the n ucleus  
K may be  chosen dependent on a parameter  h so that T(w) tends to  a 
given quadratic functional which yields as Euler  equat ion any pre­
scribed homogeneous e l l iptic d ifferential  equation . 

Now the variational condit ion for the prob lem ( 1 6a )  is no  longe r  
a d ifferential equat ion b u t  a Fredholm integral equat ion , wh ich i s  
more easi ly treated : 

( 1 7) u(x, y) = f fB K(x, y ; � ,  TJ)u(� ,  TJ) d�dTJ + g(x, y) , 

where 

g( x, y) = f Is K(x, y ; � ,  TJ)u(�, TJ)d�dTJ 
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is known because u is  prescribed in B. The solution U n  of ( 1 7 ) for 
K = Kn converges to the  solution u of the  problem P. Moreover, and 
this is the important point for practical  appl ications , i t  can be proved 
that the integral equation ( 1 7 ) is solvab l e  by the Neumann method of 
iteration under very wide conditions for the  nucleus K. Th us we may 
develop a new method for attacking boundary value  problems which , 
however ,  so far h as not been tested in  practical appl icat ions .  

I t  may be remarked that ,  general ly  speaking ,  the i teration process 
wil l  converge more slowly if the approximation of P n to P becomes 
better .  Hence again a compromise for practical purposes i s  indicated . 

17 

In  passing ,  we mention the int imate connection of th is  m ethod with 
statistics . Let us suppose a substance to be distributed with a density 
u (x , y )  over the  p lane .  We now i magine that the substance is redis­
tributed in  distinct steps in  such a m anner that a unit mass concen­
trated at  the  point  P (x,  y)  w il l  be  spread over the  p lane  with a 
density K(x, y ;  � ,  11 )  at the point Q (� ,  11 ) . The integral equation ( 1 7 )  
then characterizes a state of  statist ical  equi l ibrium ,  i f  the  density 
u (x, y) i s  prescribed in the complementary domain B of B. Of course , 
i f  we interpret the in tegrals as St ie ltj es '  integrals ,  we may include in 
our formulat ion even problems of  finite d ifferences and random wal k  
problems o f  t h e  classical type . F o r  us  here ,  the main obj ect ive i s  to 
poin t out a method that enables  us in  principle to find approximately 
sol utions of  boundary value  prob l ems .  

I V .  M ETHOD OF GRADIENTS 
Sti l l  another alternative to the Rayle igh - Ritz  proced ure should be 

mentioned . Th is  is  the method of  gradients ,  wh ich goes back to a 
paper published by H adamard in  1 90 7  [ 1 2 ] .  H igh ly suggest ive as is 
Hadamard 's attempt , d ifficult ies of  convergence were encountered . 
However ,  recent developments in  the  theory of con formal mapping 
and in Plateau 's  prob lem th row new l igh t on Hadamard ' s  idea , so 
that i t  seems j ust ified now to expect from i t  not on l y  pure ly mathe­
matical existence  proofs but a lso a basis for nu merical  t reatment in 
su itab le  cases [ 1 3 ,  1 0 ,  1 1 ] . 

The principle of the  method m ay be  understood from the  elemen ­
tary geometric concept of a vector gradien t .  Let u = f(xl ,  . . .  0 '  Xn ) 
be a non-negative function of the  n variables Xi ,  or as we might say 
of the position vector X = (Xl, . . .  , xn ) ,  and let  us seek to determine 
a vector X = X{) for wh ich u i s  a t  l east stationary . We then proceed 
as fol l ows : on the surface u = f(x) we move a point (Xl • . . .  , Xn , u )  
so that  Xi (t) and u (t) become funct ions  of  a t ime-parameter t .  Then 
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the velocity of ascent or descent along the l ine X = X (t) , u = u (t) on 
the surface i s  

du 
- = U =  
dt 

n 
L xd Z ;  = X · grad f· 
i= l 

We now choose the l ine along the l ine  along which the motion pro­
ceeds so that the descent i s  as steep as possible  (lines of steepest 
descent) . This means to make u negative and as large "as possib le " in 
abso lute value , for example ,  by choosing 

( 1 8) x = - grad f, 
so that 

U = - (grad f) 2 . 

Hence the position vector X m oves according to the system of  ord i ­
nary d ifferential equations ( 1 8 )  a long  the l ines of  steepest descent 
with respect to the function /.  Under very general assumptions ,  i t  i s  
clear that X, starting from an arbitrary init ia l  position , wi l l , for t� 00 , 
approach a position for which grad / = 0 ,  and therefore for which / i s  
stationary and  possibly a min imum.  H owever ,  instead of using the  
continuous procedure given by  the d ifferential  equation ( 1 8 ) ,  we 
may proceed stepwise , correcting a set  o f  approximations x to the 
solutions of  the equations grad / = 0 by corrections proportional to 
the respective components of - grad /. 

This elementary idea can b e  generalized to variational problems . 
I f

'
we wish to determine a function u (x ,  y )  defined in  B and having 

prescribed boundary values such that u is the  solution of  a variational 
problem 

( 1 9) l(v) = f 1: F(x, y, V ,  lI z , lI,Jdxdy = min . ,  

then we interpret the  desired  function u as the l imit  for t� 00 of  a 
function v ex ,  y,  t ) , whose values may be  chosen arb itrarily for t = 0 
and for a l l  t thereafter are determined in  such a way that the  expres­
sion 1('0) , considered as a function let) of  t ,  decreases as rap idly as 
possible  toward its minimal value .  Of course the boundary values of  
v ex ,  y,  t) are the same as those  for u (x ,  y) , so that  v ,  m ust vanish at  
the  boundary .  I f  we  choose '0 = v ex ,  y ,  t) , we find  

( 20) i(t) = - f fB 'OJ:.(v)dxdy, 
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where L (v) i s  the Euler expression corresponding to ( 20 ) . To con­
sider a concrete exampl e ,  we suppose that  

( 2 1 )  l ev) = f L (v� + v:) dxdy, 
so that our  minimum problem amounts to determining the equi­
l ibrium of  a membrane with given boundary deflections g (s) . Then 
L (v) = - 2Llv . Incidental ly (20)  displays an analogy between the Euler 
expression and the gradient of a function f(xl ,  . . .  , Xn) of  n inde­
pendent variables .  The variation or "velocity" of l(v) is  expressed as 
an " inner product" of  the velocity of the " independent function " v 
with the Euler expression L (v) , the gradient of a functional in func­
tion space. 

We now assure ourselves of a steady descent or decrease of  let )  
by choosing V t  in  accordance with the differential equation 

(22 )  V ,  = - kL(v) , 

where k i s  a posi tive arbitrary function of  x ,  y .  ( 2 1 )  then becomes 

and again we can infer that ,  for  t� 00 ,  v ex ,  y ,  t )  wil l  tend to the sol u ­
tion u (x ,  y )  of the corresponding boundary va lue  problem L (u )  = o .  

For  the case of  the  membrane the d ifferential equation ( 2 2 )  be ­
comes 

(23) Vt = ilv, 

the equation of heat transfer . In bur interpretation this equat ion de­
scribes a rapid approach to a stationary state a long the " l ines  of 
steepest descen t . "  Wh i le  for the  equations ( 2 3 )  or  (2 2 )  the con­
vergence of  v for t� 00 can be  proved , serious difficulty arises i f  we 
want to replace our continuous process by a process of stepwise cor­
rections as would be required for numerical appl ications .  Each step 
means a correction proportional to Llv, thus introducing h igher  and 
h igher derivatives of the  in itial function v .  Another great difficulty 
is presented by rigid boundary values .7 

Yet there do exist classes of problems where such d ifficu l t ies  can 
be overcome if  the method is extended properly.  First of all we may 

7 I ncidentally,  if we apply this procedure to a problem for a finite net ,  it  converges 
very well  and is, as a matter of fact , nothing but a natura l  method of solving a system 
of l inear equations by a method of i teration .  

19 
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observe that it is not  necessary to select the steepest descen t a long the 
gradient ;  i t  suffices to secure a safe descent at a su itably fast rate . 
Furthermore , i f  we consider problems for wh ich the boundary value 
problem of the  d ifferential equation presents no  difficul t ies for the 
domain B ,  but for wh ich a degree of  freedom in  the boundary values 
is  left , then the  problem reduces to one for finding these boundary 
values , and now a l l  our  d ifficult ies disappear . A typical example i s  
the  problem of the  conformal mapping o f  a circle B onto a s imply­
connected domain G, and i t  may be  that the method of gradien ts 
opens a path for the attack of  the  problem of conformal mapping for 
mult iply-connected domains and other problems as wel l .  

Th is  address has emphasized more theoretical aspects . However ,  
some of the general principles described may be  he lpful  in enlarging 
our equ ipment for practical purposes .  

Ap P E ND I X8 

NUMERICAL T R EATMENT OF T H E  P LA N E  T O R S I O N  P ROBLEM 
F O R  M ULTI PLY- C O N N ECTED DOMAI N S  

The computation of the  st iffness S defined in § I ,  2a furnishes an 
example of  independent interest wh ich permits to compare the prac­
tical merits o f  some of the  methods described in th is  address . N umer­
ical calculations were carried out for  the cross sections of  the fo l low­
ing d iagrams , a square from wh ich a smal ler square is  cut  out ; and 
a square , from which four  squares are cut out .  I n  the fi rst case our  
quadrat ic  frame was supposed to be bounded by  the l ines x = ± 1 ,  
y =  ± 1  and x =  ± 3/4 , y =  ± 3 /4 . To apply the Rayleigh -Ritz method 
for the domain as a whole wou ld  a lready be cumbersome because of 
the boundary conditions for admissible functions ¢ .  However ,  th is  
d ifficulty d isappears i f  we explo it  the  symmetry of  the domain and 
the  resul t ing symmetry of the  so lution ; th us we may confine  our­
selves to considering only one-eighth of the domain B * ,  namely the 
quadrangle A B eD .  For th is  polygon any funct ion of the type 

<p = a( 1 - x) [ 1  + ( x - 3/4) P ] 

where P (x ,  y) i s  a polynomial ,  i s  admissible , and i ts substitution in 
the integral leads to simple l inear equations for the cofficients . Th us 
for the  s implest attempt 

<p = aC1 - x) 

which leaves on ly one constant a to be  determined , we find with a 

8 Addition not contained in the original address. 
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negligible amount of numerical labor 5 = . 3 39  and c = - . 1 1 .  A re­
fined attempt with the  function 

¢ = a( 1  - x) [ 1  + a(x - 3/4) y ]  

yielded 5 = .340 and c = - . 1 09 with l it t le  more l abor .  
These results were checked with those  obtained by our  genera l i zed  

method o f  finite d ifferences where arbitrary triangular nets are 
permitted . The diagrams are self-explanatory . Unknown are the 
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I , \ , 
It, 'ill 0 , , ' , I , \ 

l+-__ , l_---'A-"+ _ _ _  B A '(ai B 
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FIG. 2 

D D  
D D  

FIG .  3 

net-point-values u"  (c = uo) . In the net-triangles our  functions were 
chosen as l inear ,  so  that the variationa l  problem results in l inear 
equations for the u, .  The results ,  easi ly  obtainable , were : case (a)  
wi th two unknowns : 5 = . 344, u o = - . 1 1 ; case (b) with three u n ­
knowns : 5 = . 3 5 2 ,  u o = - . l 1 ; case (c) w i t h  fi ve un knowns 5 = . 3 5 3 ,  
Uo  = - . 1 1 ;  case (d)  with n ine unknowns ,  correspond ing to the ordi­
nary difference method 5 = .353 , Uo  = - . 1 1 .  

These results show in themselves and by comparison that the  
general ized method of triangular nets seems to have  advantages . I t  
was applied with s imilar success t o  the case of a square with four 
holes , and i t  i s  obviously adaptab le to any type o f  domain , m u ch 
more so than the Rayleigh-Ritz procedure in  wh ;ch the construc­
tion of admissibl e  functions would usual ly offer dE .;is ive obstacle s .  

In a separate publ ication it  w i l l  be shown h ow the method can b e  
extended also t o  problems o f  plates and to other  problems involv ing 
h igher derivatives . 

Of course ,  one must not expect good local resu l ts from a method 

21 
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using so few e lements . However ,  it m ight be expected that a smooth 
interpolation o f  the net  functions obtained wil l  yield functions which 
themse lves with  their derivatives are fairly good approximations to 
the actual  quant ities .  
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Coupling Mortar Finite Element and 
Boundary Element Methods for 
2D Navier-Stokes Equations 
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Palaiseau Cedex, France 

O. PIRONNEAU Universite Paris 6 and INRIA , INRIA , 78153 Le Chesnay Cedex, 
France 

Abstract . A multi-step method is used to solve the Navier-Stokes equations,  formu­
lated with vorticity and stream function. Each time step is decomposed into three 
stages : a convection step by using the Characteristic G alerkin method,  a diffusion 
step decomposed into a shift to remove the right hand side and a linear homogeneous 

generalized Stokes problem solved by a boundary element method. 
A domain decomposition method is implemented with nonconforming mortar el­

ements .  In each sub domain we use a Finite Element Method with isoparametric or 
overparametric quadrilateral elements .  The quadrangulations for w and for 1j; are not 
necessarily the same. The boundary element method computes w at the boundary. 

We present numerical tests for flows around cylinders.  
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