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Preface

This handbook is written for chemical engineers and chemists who are involved in selecting or
improving an existing process. It has been my goal to supply information based on the open literature
that you can use to quickly gain background on a particular process or catalyst. For each reaction
that is presented, the following topics are discussed.

* Product uses

¢ Chemistry

¢ Mechanism

» Catalyst type

 Catalyst suppliers and licensors
 Catalyst deactivation

¢ Catalyst regeneration

* Process units (description)

* Process kinetics

With such information, you can be prepared to begin rational analysis of an existing or planned
reaction system and logically discuss catalyst characteristics and operations with technical repre-
sentatives of catalyst manufacturers as well as your own colleagues.

The original definition of a handbook, a conveniently carried and concise reference book, has
only partially survived as more important and valuable information becomes available. I have,
however, been determined to make this handbook concise and easy to use as a means for quickly
finding information on 150 major industrial processes using heterogeneous catalysts. This goal has
been accomplished by using the same outline for each process, by including hundreds of tables
and figures that serve to consolidate important concepts, by listing catalyst suppliers and licensors
for each process, by using a single writing style and organization made possible by being the sole
author, and by providing copious references for further study.

Despite the major developments in understanding, many of the phenomena that occur on a
catalytic surface, and much of successful catalyst development and use, continues to be part science
and part art. In fact, detailed understanding of a new catalyst often follows its initial invention.
Hence, another goal for this handbook has been to facilitate the effective combination of significant
studies by the research and development community with practical knowledge or art. Much of the
latter is proprietary for each process, but valuable general insights have been published and included
in this book when considered appropriate and useful. Excellent literature, including use recommen-
dations, is also available from catalyst suppliers.

In contrast to the study of semiconductors used in the electronics industry, where the model
system for laboratory study is the same as the real system, most catalysts are polycrystalline and
not amenable to many advanced surface-science techniques which require single crystals (catalytic
converter catalyst used in auto exhaust systems is an exception). Studies on single crystals, however,
when combined with other insights, can yield valuable postulates about the mechanism of com-
mercial catalysts. As always, there are various possible interpretations. But a postulated mechanism
or reaction scheme based on rational concepts, even not totally verified, can provide a framework
for developing useful explanations for observed catalyst behavior in industrial reactors and lead to
improved operation and/or even improved catalyst formulations.

Finally, in addition to practical experience within one’s own organization, technical represen-
tatives of catalyst suppliers and licensors are valuable fountains of knowledge on catalysts produced



by their companies. Their help in catalyst selection as well as catalyst development should be
sought in the early stages of a project as well as in ongoing efforts directed at process improvement.

Howard F. Rase
Austin, Texas
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How to Use This Handbook

Index

To find information on heterogeneous catalytic processes, use either the index of products or index
of reactants. These indices provide a quick access to page numbers at which sections related to a
given product or reactant can be found.

Table of Contents

Each chapter covers a specific reaction type along with separate coverage of a number of commer-
cially significant examples. Each of these examples is subdivided in the chapters and in the table
of contents in most cases as follows: product uses, reaction chemistry and thermodynamics, reaction
mechanism, catalyst type (including suppliers and licensors), process-unit descriptions, and process
kinetics. The table of contents provides, therefore, a convenient means for quickly locating specific
information in each of the above categories for 150 commercial heterogeneous catalytic processes
organized into 19 major reaction types designated as chapters.






A Word about Kinetics, Mechanisms,
and Thermodynamics

Kinetic equations have been included for each reaction considered when sufficient experimental
data warrants the usefulness of the proposed form. Simplicity is preferred, which is often possible
over the narrow range of optimum operating conditions used in practice.

A logical mechanism or reaction scheme is also included when available, since it is a
valuable tool in reasoning about catalyst performance and improvement. Unfortunately, the devel-
opment of a reasonable mechanism is difficult and requires sophisticated and tedious observations.
In earlier decades, the development of a kinetic expression that fit experimental data was often
referred to as confirming a mechanism. Such so-called mechanisms were based on a general
conceptual framework such as Langmuir—Hinshelwood or Rideal-Eley kinetics. In many cases,
these kinetic forms have proved useful in process modeling, but they do not constitute proof of a
mechanism. In fact, Power-Law kinetics has, in many cases, been useful in process modeling as
well, and generally no mechanistic meaning is assigned.

Unless otherwise noted, thermodynamic data for reactions reported herein as heats of reaction
and equilibrium constants were calculated from the tabulations by Stull, Westrum, and Sinke* of
enthalpies and equilibrium constants of formation of the reactants and products in the ideal gaseous
state from 298 to 1000 Kelvins. Accurate design calculations must correct for non-idealities for
systems deviating from the ideal gaseous state. Modern design programs provide rigorous and
readily usable routines for obtaining accurate thermodynamic data over a wide range of conditions.

* Stull, D. R.; Westrum, E. F,, jr. and Sinke, G. C., The Thermodynamic Properties of Organic Compounds.
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1 Acetoxylation

Acetoxylation involves the replacement of hydrogen by an acetate group in an oxygen containing
atmosphere and the formation of water. The reaction occurs with vinyl, allyl, benzyl, and aryl
hydrogens.!

1.1 ETHYLENE + ACETIC ACID — VINYL ACETATE

Vinyl acetate consumes the largest fraction of acetic acid manufactured. The major uses of vinyl
acetate include homopolymerization to polyvinyl acetate (PVA) used in the production of adhesives,
paints, and binders, and it is an important ingredient of water-based paints. The glass transition of
PVA is below room temperature, and the painted coating forms a film after the water base evaporates.
Copolymers of vinyl acetate and vinyl chloride are used in flooring, and a small amount in PVC
pipe.2 A significant portion of polyvinyl acetate is converted by saponification to polyvinyl alcohol,
which is used to produce fibers (Japan) as well as textile sizing, adhesives, emulsifiers, and paper
coatings.? Polyvinylbutyral is made by reacting butyral aldehyde with the hydroxyl groups in PVA
and is used for the inner shatter prevention layer of safety glass.?

CHEemiSTRY (VAPOR PHASE)

o
. Il
CHj = CHy + CH3 COOH +—, O3—= CH, = CHOCCHj + H,0

ethylene acetic acid vinyl acetate

130-180°C @ 5-12 bar
Catalyst: Pd on activated carbon or on silica, or AL,O, plus promoters (see “Catalyst Types”).

MECHANISM

Although some studies suggest palladium (II) acetate, Pd,(CH,CO,),, as the catalytically active
species,’ it appears that the reaction occurs between dissociatively adsorbed acidic acid and disso-
ciatively adsorbed ethylene on palladium.® See Figure 1.1.

Detailed proofs of the various steps have not been forthcoming, but the investigators did
definitely confirm that Pd,(CH;CO,), was not an active species. In fact, catalytic activity is main-
tained only in those conditions where Pd(IT) acetate does not exist.” Such conditions are low partial
pressures of acetic acid and oxygen, higher temperatures, and addition of potassium acetate solution
to the feed.” Apparently, Pd(I) acetate is associated with aggregation of palladium and ultimate
deactivation.
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Main reaction Side reaction
CGH, +2Ppd —
CH,—CH—Pd + PdH (1)

CH.—CH—Pd + Pd—0 —
Pd—CO: 0. + Pd—H:0.4. (9)

0, +2Pd (followed by (8))
2Pd—0 (2)

Pd—002ld. —
CH,;COOH + Pd Pd 4+ CO: (10)

Pd— CH,COOH... (3
: F @ L4 0COCH, + Pd—0 pem—

Pd—CH;COOH,q. + PdO Pd—CO:ai. + Pd—H:0.a. (11
Pd—OCOCH, + Pd—OH (4) (followed by (10), and then by (8))

Pd—OCOCH; + CH:.CH—Pd —
Pd—CH.CHOCOCHjs.4. + Pd  (5)

Pd—CH,-CHOCOCH; .a. T/
Pd + vinyl acetate (6)

Pd—OH + PdH —
Pd—H:0.4. + Pd ()

Pd—H:0,4. T

Pd +H:0 (8)

FIGURE 1.1 Proposed Mechanism for Vapor-Phase Catalyzed Synthesis of Vinyl Acetate from Ethylene.
Reprinted by permission: Nakamura, S., and Yasui, T., Journal of Catalysis 17, 366 (1970), Academic Press,
Inc.

CATALYST TYPES AND LICENSORS

The two major processes in use (Bayer/Hoechst and Quantum) differ primarily in the preparation
of the proprietary catalysts. Both employ palladium along with alkali metal acetates on silica
alumina or on activated charcoal. The Bayer/Hoechst catalyst is prepared by depositing a Pd salt
on the carrier followed by reduction to the metal, whereas the Quantum catalyst is prepared by
depositing palladium acetate on the carrier.>* In addition to alkali acetates, both catalysts contain
promoters variously reported as cadmium, platinum, rhodium, and gold.>* The catalyst is produced
in the form of tablets or extrudates depending on the nature of the carrier. A fluidized catalyst was
introduced by BP Chemicals (London) in late 1998. See “Process Units.”

CATALYST DEACTIVATION

Traces of acetylene in the ethylene feed is a strongly adsorbed poison, but the catalyst can be
reactivated by oxygen treatment.®

The alkali acetates incorporated in the catalyst, which promote activity and selectivity, migrate
in the direction of flow and must be renewed over an operational cycle to reach run times of 2-1/2
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to 3+ years.>* Renewal is accomplished by addition of these salts in solution via the gaseous feed
to the reactor.

Process UNITS

These processes were introduced in the late sixties and many improvements have been made by
various operators. Such actions are not in the public domain, but the general operating procedure
has been described®*°.

The exothermic reaction, like so many partial oxidations, is carried out in a fixed bed multitu-
bular reactor. Boiler feed water is used as the shell-side fluid. Operating conditions are reported to
be in the range 140—180°C, and pressure is in the range of 5 to 12 bar. Although the reaction rate
increases with pressure, higher pressures force the flammability limit to lower oxygen content and
thus lower conversion to vinyl acetate. Hence, an optimum pressure is constrained by the catalyst
characteristics and the flammability of the feed mixture.

Feed to the reactor is composed of fresh feed plus recycle. A typical reported total feed in mole
percent is 10-20% acetic acid, 10-30% CO,, and 50% ethylene.* The remainder is oxygen, which
is fed at 1.5% below the flammability limit, which varies with operating conditions for a particular
unit. Operating temperature also affects efficient energy recovery. A low temperature may only
provide preheat for boiler feed water, while a higher temperature can produce a a more useful
saturated steam.

Ethylene that is fed in excess reaches conversions of only 8—-10%, while oxygen conversion is
in the range of 90%.* Acetic acid conversion is up to 30%. The total yield, which accounts for
recycled acetic acid, is reported as high as 99%.

Product gas is cooled and the condensate consisting of vinyl acetate and water product is readily
separated in a two-phase separator drum. The crude vinyl acetate is then piped to a distillation
section for purification. The remaining vapor phase is washed, and then CO, is removed in a potash
solution, followed by recovery and recycling of a portion of the CO,, which is valuable for
temperature and reaction control.

In late 1998, BP Chemicals (London) introduced a fluid-catalyst process (LEAP) using a similar
chemistry but having the usual fluidized-bed advantage of precise temperature control and ease of
catalyst regeneration. Lower investment costs and longer sustained catalyst activity are claimed.
Operating conditions are 150—-200°C at 8—10 bar, and yield is 99% on acetic acid and 92-94%
on ethylene.!?

Process KINETICS

Based on the mechanism shown in Figure 1.1, kinetic data were fit using a rate determining step
of the combination of dissociately adsorbed ethylene and acetic acid.®
The rate of vinyl acetate formation is

0.5 0.5
ksK K, KK pc,u,po,Pcu,coon

RVAC -

) 2
[l +Kpcn, + (KQPOZ)US +Kspeu,coonl

where  p = atm

Ry =g/l hr
This complex multiconstant equation should be amenable to simplification for the commercial
operating range.
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1.2 BUTADIENE + ACETIC ACID — 1,4-DIACETOXY-2-BUTENE —
1,4-BUTANEDIOL — TETRAHYDROFURAN

The production of 1,4-butanediol is possible by several different routes. In the U.S.A. and Europe,
the Reppe acetylene process continues to dominate because of the use of C, hydrocarbons for other
profitable products. In Japan, however, acetoxylation of butadiene is the preferred process step to
1,4-butanediol and tetrahydrofuran. The major uses of 1,4-butanediol include the production of
tetrahydrofuran and polyesters. Tetrahydrofuran is an excellent solvent for a wide variety of
polymers and is also used in the manufacture of polytetramethylene glycol, which is an important
reactant in forming certain polyurethanes and stretch fibers.

The polyester, polybutene-terephthalate, is formed by the polymerization of 1,4-butanediol with
terephthalic acid. It is more flexible than polyethylene terephthalate and is used for injection molding
applications.

CHEmISTRY (LIQUID PHASE)

Unlike the Reppe process, which primarily produces 1,4-butanediol, a portion of which can be
converted to tetrahydrofuran, the acetoxylation process unit can be operated to produce both 1,4-
butanediol and tetrahydrofuran (THF) from the same intermediate (1,4-acetoxyhydroxybutane).
The relative amounts of each can be adjusted by changes in operating temperature and residence
time.>

The acetoxylation intermediate is hydrogenated and then hydrolyzed to produce the desired
products®!%11.12 a5 depicted in Figure 1.2.

CATALYST TYPE

The proprietary acetoxylation catalyst is palladium on activated charcoal promoted by tellurium.
It is reported to be in the form of granules, probably 4 x 8 mesh. The hydrogenation step employs
a standard hydrogenation catalyst, either supported nickel or palladium. In the case of nickel, zinc
or some other additive may be added to moderate activity. The hydrolysis reactions are catalyzed
by specially prepared cation and anion-exchange resins.!> Diacetocyclization is catalyzed by a
cation-exchange resin. Other acetoxylation catalysts have been described, including Pd-Sb-V-CsCI-
KOAC.

Licensor

The licensor is Mitsubishi-Kasei Corporation.

CATALYST DEACTIVATION

Catalyst life for the acetoxylation catalyst is one year, but the catalyst can be regenerated after
removal by treatment with oxidation and reducing agents.'” Although some polymerization of
butadiene could be expected, it is minimized by the liquid feed acting as a useful wash of polymer
as it is formed. The high activity of the catalyst was made possible the use of moderate temperatures
that avoided excessive coking and assured the best selectivity. The catalyst promoted with CsCl
and KOAC exhibits movement of these components after long use, which reduces the resistance
to coke formation that these components provide.'*

Activated charcoal proved to be the best catalyst carrier. It was not adversely affected by acetic
acid and did not produce significant amounts of high boilers.!°



Acetoxylation 5

(Butadiene) (Acetic acid)
CH,=CH-CH=CH, + 2CH,COOH + 20,
A Lati (1.4-diacetoxybutene-2)
cetoxylation CHyCOO-CH,-CH = CH-CH,-OO0CCH;
+ Hzo

(1,4-diacetoxybutene-2)
CH3CO0-CH;-CH = CH-CH,;-O0CCHj; + H,

) (1,4-diacetoxybutane)
Hydrogenation CH3COO-CH,-CH-CH-CH,-OOCCH;

(1,4-diacetoxybutane)
CH3COO0-CH,-CH2-CH2-CH,-O0OCH; + H,0
(1,4-acetoxyhydroxybutane)
Hydrolysis _ CH,COO-CH,-CH,-CH,-CH,-OH

. + CH;COOH
(1,4-acetoxyhydroxybutane)
CHgCOO‘CHz‘CHz'CHz'CHz‘OOCHg + H0
, (14BG)
Hydrolysis _ O-CH,-CH,-CH,-CHZ-OH
H H
(1,4-acetoxyhydroxybutane) + CH,COO
CH;3COO0-CH2-CH;-CH,-CH,-OH (THF)
Deaceto-cyclization Hz?-?Hz + CH,COOH
H,C CH;
N/
(o}

FIGURE 1.2 Reaction Scheme for the Production of 1,4-Butanediol and Tetrahydrofuran via Acetoxylation.
Basis: Mitsubishi Chemical Ind. 14 BG/THF process. Reprinted by permission: Tansabe, Y., Hydrocarbon
Processing, p. 189, Sept. 1981.

Process UNiTs?-12

The acetoxylation reactor is a fixed-bed reactor that operates at 70°C and 70 bar. Butadiene, acetic
acid, and air are mixed and fed together. The air feed rate is adjusted to maintain a safe non-
flammable mixture. Recycled acetic acid removed from the product stream provides an additional
heat sink for temperature control. Acetic acid is removed from the 1,4-diacetoxybutene-2 product
by distillation, and the 1,4-diacetoxybutene-2 is hydrogenated in a trickled-bed. The 1,4-diacetoxy-
butane is then hydrolyzed over the ion-exchange resins to 1,4-acetoxy-hydroxybutane (a monoac-
etate) and 1,4-butanediol at 60°C and 50 bar. The ratio of these two products can be changed by
adjusting operating conditions.

After removing the excess water and acetic acid by distillation, a second stage of hydrolysis
is practiced to improve yields by reacting the remaining diacetate. Excess water is again removed
by distillation, followed by a distillation that separates the monoacetate from the 1,4-butanediol.
The butanediol is purified and the monoacetate sent to the diaceto-cyclization step to produce
tetrahydrofuran. The combined yields of 1,4-butanediol and THF based on diacetoxybutane fed is
99%. The yield of 1,4-diacetoxybutene-2 is 90% based on butadiene fed and the yield of diacet-
oxybutane is 98% based on diacetoxybutene fed.!?

Process KINETICS

Extensive studies in the vapor phase on Pd catalyst with various promoters have revealed that
minimal adsorption of butadiene favored the desired reaction because coke formation was thereby
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inhibited.'* In such cases, the rate of reaction in the vapor-phase process tends to be proportional
to the acetic acid and oxygen partial pressures. The reduction in coke formation is further advanced
in the liquid-phase process because of the washing effect of the liquid reactants, particularly
butadiene. It is reasonable to assume that the rate for the liquid-phase process will also be propor-
tional to acetic acid concentration and oxygen partial pressure.

1.3 PROPYLENE + ACETIC ACID — ALLYL ACETATE — ALLYL
ALCOHOL

Acetoxylation is one of several reaction paths for the manufacture of allyl alcohol. The once-
dominant process, alkaline hydrolysis of allyl chloride, is disappearing because of its corrosive
environment and the large amount of by-product, NaCl, that must be disposed of or recovered for
chlorine. The acetoxylation process, by contrast, produces the same amount of acetic acid as is
used in the reaction.

Allyl alcohol major uses have been as the feedstock in the production of glycerol, and diethylene
glycol bis(allyl carbonate) for optical lenses.>!3 Also, allyl alcohol esters are used in polymers, and
allyl alcohol is used to produce epichlorohydrin and in an alternate route to 1,4-butanediol >3

CHEeMISTRY (VAPOR PHASE)

The acetoxylation reaction to the acetates is analogous to the vinyl-acetate process, except propylene
is used rather than ethylene.

o]
1 Il
L. CH, = CH, + CHz COOH +—, O,—= CH, = CHOCCHj + H,0
ethylene acetic acid vinyl acetate
150-250°C @ 5-10 bar
Catalyst: Pd on activated charcoal
AH = -45 kcal/mole
Liquid phase hydration
60-80°C
Catalyst: acidic ion-exchange resin
0
f
2. CH, = CHCH, + OCCHjy + H,0 === CH, = CHCH, OH + CH,COOH
allyl acetate allyl alcohol acetic acid

Liquid phase hydration
60-80°C
Catalyst: acidic ion-exchange resin

MECHANISM

See section on “Vinyl Acetate” process.
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CATALYST TYPE

The catalyst is similar to that used for vinyl acetate production. It is palladium along with an alkali
metal acetate deposited on activated charcoal. Promoters are reported to be iron or bismuth com-
pounds.?

Licensors

Licensors are Showa Denka, Daicel Chemical Industries, Hoechst, and Bayer.

CATALYST DEACTIVATION

Propylene feed stocks often come from steam cracking units and can contain small amounts of
acetylene due to upsets in the selective hydrogenation of acetylene impurities at the cracking unit.
Acetylene is a strongly adsorbed poison, but the catalyst can be reactivated by oxygen treatment.

Process UNIT

The acetoxylation is accomplished in the vapor phase in a fixed-bed reactor, probably a multitubular
reactor with cooling by boiler feed water, since the operating temperature is such that valuable
steam can be produced. Operating conditions are variously reported as 150—-250°C, depending on
the process.>!* See the description of the vinyl acetate process for more analogous detail.

The hydrolysis to allyl alcohol is done using the cooled liquid phase separated from the allyl
acetate reactor effluent. The reactor is an adiabatic fixed-bed unit packed with the acidic ion
exchange resin in the form of granules.

Process KINETICS

It is reasonable to suggest that a similar kinetic expression as used for vinyl acetate might apply.

REFERENCES (ACETOXYLATION)

1. Rylander, R. W., in Catalysis, Vol. 4, J. R. Anderson and M. Boudart, eds., p. 2, Springer-Verlag, New
York, 1988.

2. Chenier, P. J. Survey of Industrial Chemistry, 2nd ed., New York, 1992.

Weissermel, K., and Arpe, H. L., Industrial Organic Chemistry, 3rd ed., VCH, New York, 1997.

4. Roscher, G., in Ullmann’s Encyclopedia of Industrial Chemistry, 5th ed., Vol. A27, p. 413, VCH, New
York, 1996.

5. Samanos, B.; Boutry, P., and Montarsal, R., 66th Intr. Symp. of Catalytic Oxidation, London, July,
1970.

6. Nakamura S. and Yasui, T., J. Catal. 17, 366 (1970).

7. Nakamura, S. and Yasui, T., J. Catal. 23 315 (1971).

8. Bedell, K. R. and Rainbird, H. A., Hydrocarbon Proc., p. 141, Nov. 1972.

9. Brownstein, A. M., Chemtech, August, 1991, p. 506.

10. Mitsubishi Kasel Corp., Chemtech, Dec. 1988, p. 759.

11. Brownstein, A. M., and List, H. L., Hydrocarbon Proc., Sept. 1977, p. 159.

12. Tanabe, Y., Hydrocarbon Proc., Sept. 1981, p. 187.

13. Nagato, N., in Kirk-Othmer Encyclopedia of Chemical Technology, 4th ed., Vol. 2, p. 144, Wiley, New
York, 1992.

14. Shinohara, H., Applied Catal., 50 (2), 199 (1989); 24 (1-2), 17 (1986); 14 (1-3), 145 (1985); 10 (1),
27 (1984).

15. Chementator Section: Chemical Engineering, p. 17, December, 1998.

bl






2 Alkylation

2.1 INTRODUCTION

The term alkylation refers to the replacement of a hydrogen atom bonded to a carbon atom of a
paraffin or aromatic ring by an alkyl group.! Most alkylations are acid catalyzed either by a
homogeneous liquid strong-acid catalyst (H,SO,, H,PO,, HF, AICl,) or a solid strong-acid, which
has been used where feasible and economical (zeolites, supported acids, acidic ion-exchange resins).
Developments with heterogeneous catalysts were driven, in part, by efforts to minimize waste
disposal problems associated with spent acids. Not all alkylation processes, however, have been
amenable to the use of a heterogeneous acid catalyst which, in some reaction systems, produces
coke at a rapid rate. Thus, the production of alkylate gasoline from isobutane and olefins continues
to employ either liquid sulfuric or hydrofluoric acid. Major improvements in handling and reducing
acid consumption, and thus waste acid quantities, have proved successful in such processes.'

2.1.1 Sorip AciD-CATALYST MECHANISM

The mechanistic concepts for solid-acid catalysts derive largely by analogies from the many studies
on homogeneous acid catalysis which present a more readily verifiable system for detailed study.
In recent years various studies on solid catalysts using, for example, deuterium exchanged reactants
have confirmed many of the earlier analogies. The steps shown in Figure 2.1 present a reasonable
mechanism for benzene alkylation by ethylene that is applicable to other similar alkylations.? The
first step shows the formation of the carbenium ion by chemisorption of ethylene on an active
Bronsted site. This step rapidly reaches an equilibrium concentration of surface carbenium ions.
The second step is the reaction of the benzene ring with the surface carbenium ion, and this is the
rate controlling step. The third step involves the desorption of the product alkylated benzene and
the regeneration of the Bronsted acid site. This third step is also rapid and at equilibrium.?

Figure 18.26 (Chapter 18) illustrates qualitatively the relative strengths of acid sites for the
several carbenium ion reactions.? Alkylation and cracking require the same level of high acid
strength, which is not surprising, since alkylation is the reverse reaction of cracking. Cracking is
endothermic and requires high temperatures, whereas alkylation is exothermic and requires low
temperatures (below 400°C). Thus, alkylation can be made exclusive by low-temperature operation.
However, low temperature favors polymerization and catalytic coke formation, which can be
suppressed by catalysts with low coke forming tendencies.

Alkylation of benzene by higher olefins such as propylene are more easily accomplished because
the secondary carbenium ion is more reactive. Hence, lower-temperature operation is possible.

2.1.2 CatALYsT TyPes AND USES

The various solid catalysts that are used or that have been used are summarized in Table 2.1.
Additional details will be found under the several process descriptions following this section.
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k

® C)
CH, = CH, + W®S _ 508 | surface—]"’._cn-qs - CH, - O - Surface
ko
® 0O Ky © H
+CH,-CH -0 — —_ -0---
@ CH3 CH — O — Surface Surface -0 CHZ-CH3
H
CH, -CH k CH_—-CH
€] 273 _3 §Os® 2 773
Surface = 0 — — — — 4+ - Surface —0—H +
k-3

FIGURE 2.1 Mechanism for Ethylbenzene from Ethylene and Benzene by Solid Alkylation Catalysts.
Equations reproduced from Wojciechowski, B. W. and Corma, A., Catalytic Cracking: Catalysts, Chemistry,
and Kinetics, Marcel Dekker, New York, 1986, by courtesy of Marcel Dekker, Inc.

2.1.3 THE ROLE OF ZEOLITES IN ALKYLATION

Traditional acid-catalyzed alkylations involve liquid acids or solid supports impregnated with acids
such as phosphoric acid. These processes, although efficient, can cause corrosion and create major
disposal problems. By contrast zeolites create no environmental problems and, in fact, 34 naturally
occurring zeolites make up a major portion of the Earth’s crust. This environmentally neutral
character of zeolites certainly made them a potentially valuable catalyst in the acid form. But the
discovery of shape selectivity of zeolites gave catalyst development chemists another tool for
optimizing catalyst characteristics.

The literature on zeolites is massive, and no attempt will be made here to summarize the
fascinating detail of the science and engineering of zeolite catalysis. The following major issues,
however, deserve the reader’s attention.

Shape Selectivity

Shape selectivity can be attained by a variety of procedures. See Figure 2.2.78

* Molecular exclusion (reactant selectivity). Select a zeolite with pore size and structure
such that some of the molecules in the reactor feed can enter the pores and react, and
others cannot.

* Molecular exclusion (product selectivity). Select a zeolite with opening pore size and
inner pore size such that one or more of the products is too bulky to diffuse out of the
cavity. The other products readily diffuse out. Those remaining behind may crack to
smaller molecules or form coke that deactivates the catalytic surface.

 Transition-state selectivity. Select a zeolite with an inner space of a size that is inadequate
for a particular transition state but adequate for another, thereby favoring one product
over another.
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FIGURE 2.2 Mechanism of Shape-Selective Catalysis. Reprinted by permission: Sugi, B. Y. and Kubota,
Y., Catalysis: Specialized Periodical Reports, Vol. 13, p. 56, The Royal Society of Chemistry, Cambridge,
England, 1997.

* Configurational diffusion controlled selectivity. Select a zeolite of such structure that a
large difference exits between rapidly diffusing reactant and product molecules and other
molecules present that diffuse much more slowly. The slower diffusing molecules can
thus become only minor players in the reaction process.

Many other shape-selective attributes have been postulated and have been reviewed.?

Modification of Zeolites?®

In the production of synthetic zeolites, the catalyst developer has several tools for modifying
characteristics of a zeolite to fit the needs of a desired catalyst system. More detailed discussions
are available, but the following provides a brief review.

* Si0,/Al,0; ratio
The ratio can be modified by chemical dealumination or by steaming, which removes
framework aluminum. The steaming process when properly applied can develop meso-
pores that facilitate the diffusion of larger molecules.
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 Crystallite Size
Crystals can be made smaller by various techniques, including lower temperature in the
presence of saccharides or by thermal shock. Large crystallites are favored by low-speed
agitation and longer crystallization time. Lower crystallite size increases rate of diffusion.

* Substitution of other Atoms in the Framework
Other atoms (B, Cr, Ga, Ge, Fe, P, and Ti) have been substituted for either Al or Si atoms
during synthesis or post synthesis modification. A variety of different properties can be
attained.

* Cation-Ion Exchange
Synthetic zeolites are mostly produced with Na or K cations occupying the cation
positions. Acid catalysis requires that these cations be replaced by hydrogen protons. In
the manufacturing process, this ion exchange is accomplished following spray drying
using a 5—10% ammonium chloride or nitrate solution. This step is followed by drying
and calcining in an inert gas during which NH; is released, leaving behind acid sites
(H+) referred to as the hydrogen form (e.g., ZSM-5 — HZSM-5). If organic compounds
are used in preparation of the initial zeolite, they must be removed by calcining prior to
ammonium exchanges.

* Binders
Both zeolite catalysts and adsorbents are combined with a binder, usually a clay such as
halloisite, montmorillonite, or attapulgite. The clay in gel form is mixed with 10-20%
of zeolite as a paste and then spray dried. The porosity of the binder is greater than the
zeolite and does not, in most cases, limit the net rate of diffusion to the active sites on
the zeolite.

* Pore Size
Pore size can be manipulated by post-synthesis procedures such as depositing organo-
silicones in the pore structure to alter the diffusivity differences between isomers such
as the xylenes so that one isomer (p-xylene) will have a much greater diffusivity than
the larger o-xylene or m-xylene. Treatment with phosphorus, which attaches to the zeolite
active acid site via the framework oxygen, has been used to reduce the effective pore
size of the channels and pore openings of ZSM-5 and thus produces a p-xylene selective
catalyst.8

2.2 ALKYLATION OF BENZENE AND TOLUENE
2.2.1 BENZENE + ETHYLENE — ETHYLBENZENE

All but about 1% of ethylbenzene is used for dehydrogenation to styrene. The remaining small
amount is primarily used as a solvent for some types of paint. Essentially, all ethylbenzene is
produced by alkylation of benzene with ethylene. A small amount is also produced from mixed
xylenes by superfractionation, which is highly energy intensive.

Chemistry

Main Reaction

benzene ethylene ethylbenzene
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Temp., K AH, kcal K,

500 -24.97 24.668 x 103

600 —24.83 33.729 x 102

700 —24.66 17.378

800 —24.48 1.914
Operating Conditions!~>!112

Process Catalyst Temperature  Pressure

Alkar (vapor phase), UOP LLC, (process no longer offered) BF;/alumina 100-150°C  25-35 bar
Lummus-UOP (liquid phase) USY zeolite extrudate =270°C 38 bar
Mobil-Badger* (vapor phase) ZSM-5 zeolite extrudates ~ 400-450°C  15-30 bar
EB-MAX (liquid phase), Mobil/Raytheon MCM-22 extrudates not reported
Catalytic Distillation, ABB Lummus, Global packaged zeolite not reported

*Depending on plant economics, temperatures as low as 350°C and pressure as low as 8 bar may be used.

Side Reactions
The following side reactions are possible:

* Polyethylbenzenes. A portion of the ethylbenzene formed is further alkylated to di-, tri-,
tetra-, etc. benzenes.

C¢HsCH,CH; + C;H, & CH;CH,C¢H4CH,CH;,
ethylenbenze ethylene diethylbenzene

AH = -23.46 kcal @ 600°K

K, = 19.543 @ 600°K
 Transalkylation. Polyethylbenzenes are converted to ethylbenzene and benzene.
CH;CH,C4H,CH,CH; + C¢Hs & 2C¢HsCH,CH,
diethylbenzene benzene ethylbenzene

AH

1.38 kcal @ 600°K

K

, = 17.022 @ 600°K

By using an excess of benzene, transalkylation is favored.

* Oligomerization. This polymerization-type reaction is the most unwanted reaction, since
the oligomers are precursors to other by-products, the most deleterious of which is coke
formation.

2C,H, — C,H,
AH = -17.49 kcal @ 600°K

K, = 1445 @ 600°K
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The oligomers can also alkylate benzene, producing higher alkylbenzenes. Coke formation by
oligomer reactions constitutes a reaction pathway that can lead to catalyst deactivation. Other
possible side reactions include cracking of oligomers, dehydrogenation, and isomerization.’ Process
improvements have focused strongly on minimizing such undesired reactions.

Other side reactions that occur to some degree are isomerization (EB — xylenes), dehydro-
genation, and other alkylations. Many of the products of these reactions occur only in very small
amounts. Benzene feed often contains small amounts of toluene (seldom over 1000 ppm). It, of
course, is alkylated and becomes dealkylated in the transalkylation reactor. Toluene then becomes
part of the ethylbenzene product, but it causes no problem in the subsequent styrene-producing
process. Xylene impurities in the product ethylbenzene are much lower than produced in the AICl,
process.

Mechanism

See Figure 2.1.

Catalyst Suppliers and Licensors

See Table 2.1. The catalysts are proprietary and the processes are licensed. Limited information on
catalysts details exists in the open literature.

Yield and Purity

The overall yield for most of these processes is in the range of 98.5-99.5, and product purity is
reported as high as 99.9%.

Catalyst Deactivation

The major deactivating agent is coke. Coke formation is inhibited by the relatively narrow pores
of zeolites used in alkylation reactions. The limited space in the channels provides less space for
the formation of large coke precursor molecules. Of course, coke formation is catalyzed by acid
sites, and some attempt to optimize acid strength is a possible procedure for reducing coke-forming
reactions.!?

Organic nitrogen compounds, being strong bases, will poison zeolite and other acid catalysts.

Catalyst Regeneration

When necessary, coke may be removed by carefully burning it in an air-nitrogen mixture. Great
care must be exercised, especially if water vapor as steam is present, since there is danger in it
destroying some of the zeolite crystallinity.!> Licensors’ recommendations must be carefully fol-
lowed.

Process Units!' 611,12

Until about 1980, most ethylbenzene plants were based on the homogeneous catalysis of aluminum
chloride. The process was successful but had the disadvantage of a highly corrosive liquid system
requiring expensive lined or Hasteloy reactors. Spent catalyst had to be washed and neutralized
and then disposed, which action is becoming increasingly costly and has fueled the efforts to
develop noncorrosive catalyst systems involving solid catalysts. Few new AlCl;-based plants have
been built since 1980, and none since 1990, but 40% of EB plants continued to use their AICl,
catalyzed alkylation.
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Vapor-phase processes with solid catalysts can use dilute ethylene streams and have adequate
ethylene concentration at the catalyst surfaces. Essentially pure ethylene, of course, can be used,
and most vapor-phase plants use polymer-grade ethylene.

Alkar Process (Vapor Phase)

The first such process using a solid catalyst was developed as early as 1958. It employed a catalyst
composed of alumina with boron trifluoride adsorbed on its surfaces in relatively small amounts.
This system is not corrosive, but even small amounts of water in the feed will not only tend to
remove BF; from the catalyst but will also create a corrosive mixture over time. The catalyst is
susceptible to poisoning by CO, sulfur compounds, oxygenates, and water, all of which can be
present in dilute refinery ethylene streams and must be removed prior to use. The process proved
advantageous for the use of dilute refinery streams (8—10% ethylene) attaining 100% ethylene
conversion and 99%-+ yields.

A multitubular reactor was used with shell-side cooling. Benzene feed was dehydrated and
combined with the ethylene containing steam along with make-up BF; to replace that lost contin-
uously from the catalyst. The recovery section removed carry-over BF; from the reactor product,
separated benzene for recycle to the reactor and as feed to the transalkylation reactor for conversion
of polyethylbenzenes, (separated from the reactor product), to ethylbenzene. Yields were in the
99%+ range and product purity was typically 99.95 ethylbenzene.

The last plant was built in 1979, and some have been revamped using other processes. The
process was unique and highly successful, but waste disposal became an increasingly expensive
problem. As the grandfather of solid-catalyst alkylation, it started a major new trend in the industry.

Mobil/Badger ZSM-5 Process (Vapor Phase)

The original ZSM-5 process was the first zeolite process for alkylation of aromatics (first plant in
1981). It, in many ways, revealed the value of shape selectivity made possible by synthetic zeolites.
The medium pore-size zeolite (ZSM-5) proved ideal for avoiding or minimizing undesired reactions
such as oligomerization and also exhibited only a minor effect on product yield and quality when
nonaromatics are present in the feed to the reactor.

Initially, two reactors were provided so that coke could be removed by burning in a used bed
while flow is switched to the second bed. Over time, changes in operating procedures, and probably
zeolite synthesis, along with zeolite post-synthesis modifications, have culminated in the third-
generation process that uses only one alkylation reactor, since time between regenerations is now
two years rather than only several months.

Briefly, the vapor-phase process consists of a main multibed adiabatic reactor with cold-shot
cooling between beds. Fresh benzene and recycle benzene are combined and preheated in a furnace.
This heated stream then flows to the reactor inlet where it is joined by a portion of the ethylene
that has not been heated. The remainder of the ethylene is introduced between the beds to control
the bed temperature. At higher temperatures, the reverse reaction of dealkylation becomes favorable
(e.g., above 600°C), as do other undesired reactions.

Excess benzene is used in a ratio of 5:1 benzene-to-ethylene (values up to 20 have been reported)
to reduce the tendency to form additional amounts of polyethylbenzenes. Excess benzene also
favors transalkylation.

Reactor effluent flows to the purification system where excess benzene is separated overhead
in the first column and recycled to the main reactor. The bottoms flows to an ethylbenzene column
where ethylbenzene is separated overhead, and the bottoms flows to a polyethylbenzene (PEB)
column where PEB is separated overhead and sent to a smaller reactor for transalkylation to
ethylbenzene from which water and light materials are stripped prior to recycling to the first
column.



Alkylation 17

The original design provided for direct recycle of polyethylbenzene to the main reactor where
transalkylation can also be accomplished. The third-generation design provided a separate transalky-
lation reactor. Although the same catalyst is effective for both alkylation and transalkylation, separate
operating conditions for transalkylation improve the reaction efficiency. Generally, a higher operating
temperature for transalkylation is indicated for operating conditions for the main reactor. Higher
alkylbenzenes such as Cg and C,, if formed, reach equilibrium and are simply recycled with the
PEB stream. The catalyst is active in decomposing nonaromatics to light gases, which are easily
purged. Also, branched-chain alkylbenzenes such as cumene are easily dealkylated, thereby recov-
ering the benzene. Bottoms from the PEB column is small in quantity and is generally used as fuel.

Since the vapor-phase process must operate at a higher temperature, benzene reactor feed must
be preheated in a furnace. Vapor-phase operation, however, allows for the use of less costly refinery
stream with 10—15% ethylene, which would require high pressures for liquid-phase operation. The
only purification required of such streams is the removal of higher olefins that will alkylate and
reduce EB yield. Most plants use high-purity ethylene with ethane no higher than 2000 ppm as the
impurity. Fortunately, ethane causes no problem in the process and remains inert and is removed
with the off gases.

Mobil/Raytheon E&C, EB Process, EBMAX (Liquid Phase)

Dilute ethylene streams cannot be used for liquid-phase processes, because complete dissolution
of ethylene is not possible at economical operating conditions with low gas-phase ethylene partial
pressures.

This is a new process, with the first plant commissioned in 1995 by Raytheon Engineers and
Constructors (the former Badger component of Raytheon) using a new Mobil catalyst named by
Mobil MCM-22. Because the process is operated in the liquid phase, lower temperatures are used,
and a preheating furnace is not required. This unique catalyst has a high alkylation activity but
does not catalyze oligomerization or cracking. These characteristics make it possible to operate at
a lower benzene-to-ethylene ratio with obvious savings in energy costs and lower equipment sizes
for both reactors and distillation towers. The layout of the plant is similar to that described above
for the Mobil/Badger third-generation process with a multibed adiabatic reactor and a transalkyla-
tion reactor for converting recycled polyethylene benzenes to ethylbenzene.

Since oligomerization does not occur, aliphatic impurities are negligible in the product. Amounts
of C; and other heavier impurities are very low.

Lummus/UOP EB Process (Liquid Phase)

This process was developed by Unocal in the 1980s and was the first zeolite-based liquid-phase
process. An ultraselective USY-type zeolite is used. It is now licensed by ABB Lummus Crest and
UOP, and the first plant was built in 1990.

The recovery section is similar to that described for previously described EB processes based
on zeolites. Two dual-bed reactors are operated in series with ethylene cold-shot cooling between
beds and an intercooler between reactors. The operating temperature (270°C) is close to the critical
temperature to take advantage of the higher catalyst activity. Water, however, is added to the feed
stream to reduce the tendency to form oligomers.

The product EB is low in xylenes but, as is the case in all these processes, higher aromatics
must be removed as residue, which lowers yield, depending on the quantity formed. Careful
operation, however, in accordance with licensor recommendations can reduce the net residue
production.

CD Tech/ABB Lummus Global and Chemical Research & Licensing (Two-Phase

Process)

This process involves catalytic distillation, which has proved to be the preferred process for the
manufacture of MTBE (methyl tert-butyl ether, the gasoline additive). Catalyst is loaded into fiber-



18 Handbook of Commercial Catalysts

glass cylindrical containers or bales and placed in a pattern in a column so that liquid flows down
through the bales and ethylene vapor moves upward. Since oligomerization is a higher-order reaction
for ethylene than alkylation, the distillation action causes a lower concentration of ethylene in the
liquid. In so doing, oligomerization is retarded, and large excesses of benzene, which accomplishes
the same result in other processes, can be avoided. The lower ethylene concentration, however, also
retards the main reaction to ethylbenzene and requires more catalyst loading and a standard fixed-
bed finishing reactor to complete the alkylation. The first commercial plant began operation in 1994.

Fina/United Catalysts
This is a new process with an improved catalyst.

Process Kinetics

As is the case with other zeolite catalyst processes, product selectivity is significantly influenced
by the macroporous structure of the zeolite used. As an example, ZSM-5, (medium pore size) favors
the primary alkylation reactions, whereas beta-zeolite (large pore size) favors secondary alkylation
reactions.’” For the medium-pore zeolite, the rate expression of choice is based on a
Langmuir—Hinshellwood mechanism.?’

k CAKACpKy

Iy = 5
(1+C,K, +CgKp)

where k, = surface reaction rate constant, mol g cat~' s!
C, = concentration of ethylene, moles, L-!
C; = concentration of benzene, moles, L-!
K, = adsorption constant of ethylene, mol-'L

Ky = adsorption constant of benzene, mol-'L
r, = rate of alkylation, moles g cat~'s~!

At a high ratio of ethylene-to-benzene in the feed, the equation was found to simplify to the
following:*’

A Cy

Ty = —_—
(A, +CgKy)

where A, and A, are constants.
Actual practice employs a significant excess of benzene, for which case the following equation
might apply:

A/C,

A= ="
(A +K,Ch)

A further simplification using stoichiometric rate equations has been proposed and may be
helpful in any effort to model both the main reaction and side reactions.?®

r; = k(PgPg — Pgp/K,)
1, = Ky (PegPg — Ppgp/Ky)

r; = k3Pg
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where P = partial pressure
B, E, EB, DEB = benzene, ethylene, ethylbenzene, and diethylbenzene
r,, I3, ry = rate of formation of EB, DEB, and side reaction of ethylene,
respectively

It is important to consider mass transfer in the commercial scale reaction system, especially for
liquid phase operation. This issue is most easily accounted for by an effectiveness factor and a
liquid-solid mass-transfer coefficient.

2.2.2 BeNzene + ProOPYLENE — CUMENE (ISOPROPYLBENZENE)

Cumene is used almost exclusively for production of phenol by the Hock process, which was
discovered in 1944 and commercialized in 1953.* Cumene is oxidized to cumene hydroperoxide
which is then converted under acidic conditions to one mole each of cumene and acetone. As with
other alkylations, acid-catalyzed processes are used to produce the cumene.

Chemistry

CHs

/

+CH3'CH=CH2_—> CH
\CH3

benzene propylene isopropylbenzene (cumene)
Temp., K AH, kcal K,
400 23.58 19.364 x 10*
500 23.14 5.297 x 10?

Operating Conditions (see also Table 2.1)

Process Catalyst Temperature Pressure
SPA, UOP LLC (vapor phase) 65-70% H;PO, on silica  200-260°C 30-40 bar
Q-MAX, UOP LLC beta zeolite not reported
MCM-22, Raytheon E&C/Mobil (liquid phase)  mesoporous zeolite not reported

Side Reactions

Depending on the process, side reactions occur in varying degrees. Side products such as dipropyl-
benzene, oligomers, and heavier alkylbenzenes can be separated and used for high-octane stock,
although they reduce yield.

Mechanism

Refer to Figure 2.1, the mechanism for ethylbenzene. In the case of cumene from propylene and
benzene, a secondary cation (CH;CHCH,;) is formed by attack at the double bond, which is
chemisorbed at the active site. Reaction with the 7 cloud of benzene occurs, and deprotonation
follows, yielding the desorbed cumene product and the restored active surface."
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Catalyst Suppliers and Licensors

See Table 2.1.

Process Units

The catalysts are proprietary, and the processes are licensed. Limited information exists on catalyst
details in the open literature.

UOP SPA Process (Solid Phosphoric Acid)

This process actually was originated in the early 1930s by UOP as a means for oligomerizing
olefins to product in the gasoline range (polymer gasoline). The process was called the catalytic
condensation process. It was discovered that, when phosphoric acid and silica were mixed and
heated, a solid catalytic material was produced?® and proved to be effective. During World War 11,
the need for high-octane components for aviation fuel was critical, and it was known that cumene
was a valuable high-octane constituent for aviation gasoline units. Many existing polymer gasoline
catalytic-condensation plants were easily converted to the manufacture of cumene by alkylation of
benzene with propylene using the same catalyst. Later, when a new demand for cumene developed
because of the successful Hock phenol process, many of these plants continued to be used to
produce cumene, and others were constructed. The process continues to be the dominant route to
cumene. In the early 1990s, 99% of cumene producers used this process. This dominance is slowly
declining, as new zeolite catalyst processes have been introduced.

Catalyst Deactivation (SPA Process) The phosphoric acid is no doubt in the form of a crystalline
hydrate. With use of the usual operating temperature, water is removed, and the catalyst begins to
disintegrate. Thus, an important aspect of the operation is a continuous controlled addition of water.
If this operation is done carefully, catalyst life of 612 months is realized.'¢ Ultimately, the catalyst
disintegrates as noted by an increase in pressure drop.

Coke also can form on the catalyst, but catalyst replacement often is necessary before coking
becomes a problem.

Propylene feed must be free of ethylene and other olefins so as to avoid troublesome product
impurities when alkylated. Nitrogen compounds poison the catalyst and must be removed by
washing.'* Thiophene can be present in benzene and is alkylated to isopropylthiophene, which has
a boiling point close to cumene. Its presence in cumene feed to the phenol process is detrimental,
and it must be removed by mineral-acid washing if present in quantities greater than 0.15%.'*

Reactors and Separation Section (SPA Process) The reactor consists of four adiabatic beds with
means for introducing water between beds for both cold-shot cooling and for rehydrating the
catalyst.'* A supplementary inert-liquid quenching stream can also be used.

Early in the operation of the Hock process for phenol from cumene, it was discovered that
oligomer impurities in the cumene suppressed the rate of cumene oxidation. As in other benzene
alkylation processes, excess benzene was used to deter the side reactions. However, other means
were needed to reduce oligomer formation. In the early 1950s, the reactors were designed for
upflow with the addition of an inert dispersant in the propylene-benzene feed.!* Since the exothermic
reaction results in temperature increase in the direction of flow, upflow reduces backmixing and
reduces the rate of oligomerization.

The feed propylene may contain propane and some other lighter saturated hydrocarbons, but
other olefins must not be present, since they will alkylate benzene and produce unwanted alkyl-
benzenes. The separation section following the reactor consists of a flash and rectifying system
that removes propane and other light ends. The propane is of good quality for commercial fuel use.
A significant amount of excess benzene for recycle is separated via the flash system. The enriched
cumene is fed to the benzene column, where the remainder of the benzene is recovered. The cumene
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from the bottoms is clay treated to remove unwanted heavy hydrocarbons. The clay-treated effluent
is then fractionated in a rerun column to separate additional impurities which are close boilers to
cumene, and an energy intensive separation is required.'® The heavies removed can be used as fuel.

The SAP catalyst does not catalyze transalkylation, but a yield of 94-96 wt% is achieved.
Many of these plants have a separate transalkylator, which enables a yield of 97-98%.! The
transalkylator uses a mixed metallic oxide catalyst on silica!* to convert the ~3% of diisopropyl-
benzene to cumene.

UOP Q-MAX Process®?

The Q-MAX process is a relatively new liquid-phase process (1992), with the first plant operational
in 1996. A new proprietary zeolite catalyst is used, which is thought to be a beta zeolite. The same
catalyst is used for the transalkylation step. Two down-flow reactors in series are used each with
two adiabatic beds in series. Propylene is introduced at the inlet of each reactor and between beds.
Benzene is fed in modest excess at the inlet of the first reactor.

The separation section is similar to that described for the SAP process, except clay treatment
is not required. It consists of a depropanizer, a benzene separation column, and a cumene column,
which produces cumene overhead and polysiopropylbenzene (PIB) and heavier aromatics in the
bottoms. A final column removes the PIBs (mostly diisopropylbenzenes) overhead and a heavy
aromatic fraction, about 1% or less of the overall yield. The overhead is sent to the transalkylator
to convert back to cumene. Yields of cumene as high as 99.6 wt% are reported, and cumene purities
of 99.97+ wt%.

The catalyst can be regenerated and then only every 18 months. Catalyst life is greater than
five years.

Raytheon MCM-22 Process®?

This liquid-phase process uses a modified Mobil catalyst called MCM-22, similar to that used in
the ethylbenzene process. It, as in the companion ethylbenzene process, does not catalyze many
of the unwanted side reactions such as oligomerization; excess benzene requirements are modest.
The separation section is similar to that described for the Q-MAX process. A product of 99.96%
purity is claimed.

Dow/Kellogg 3-DDM Process®>'7

This liquid-phase process, like the above previous two, permits low excess benzene feed and exhibits
low coking tendencies and high yields with small amounts of heavies. The separation section is
similar to that described above for the Q-MAX process. Cumene purity of 99.94 wt% minimum
is reported.

Interestingly, some information on the catalyst has been reported.!> The 3-DDM catalyst is said
to be a dealuminated mordenite accomplished in a manner to convert the two-dimensional tubular
pores to a controlled three-dimensional structure. The resulting shape selectivity favors cumene.
Side reactions mainly form p-diisopropylbenzene and a small amount of m-diisopropylbenzene,
both of which are transalkylated to form additional cumene.!? Only a small heavies purge is
produced, as is the case with the other zeolite-type processes.

CD Tech Process
This two-phase process is similar to that described for ethylbenzene.

Process Kinetics

Liquid-phase processes involving proprietary zeolite catalysts have become the most common route
to cumene. The alkylation of benzene with isopropylbenzene is a much faster reaction than ethylene
alkylation. Mass transfer effects are significant, and the following rate equation combines both
mass transfer and reaction, using a simple first-order form for the latter.?



