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I dedicate this third edition of Fundamentals of Microfabrication to my family in the US and 

in Belgium and to all MEMS and NEMS colleagues in labs in the US, Canada, India, Korea, 

Mexico, Malaysia, Switzerland, Sweden and Denmark that I have the pleasure to work with. 

The opportunity to carry out international research in MEMS and NEMS and writing a textbook 

about it has been rewarding in terms of research productivity but perhaps even more in cultural 

enrichment. Scientists have always been at the frontier of globalization because science is the 

biggest gift one country can give to another and perhaps the best road to a more peaceful world.



http://taylorandfrancis.com


vii

Contents

Roadmap ix
Author xi
Acknowledgments xiii

INTRODUCTION
 MEMS and NEMS Foundations

Introduction 2

1 Historical Note: The Ascent of Silicon, MEMS, and NEMS 5

2  Crystallography 37

3 Quantum Mechanics and the Band Theory of Solids 75

4 Silicon Single Crystal Is Still King 215

5 Photonics 299

6 Fluidics 435

7 Electrochemical and Optical Analytical Techniques 517

Index 631



http://taylorandfrancis.com


ix

Roadmap

In Solid-State Physics, Fluidics, and Analytical Techniques in Micro- and Nano technology we lay the foundations 
for a qualitative and quantitative theoretical understanding of micro- and nanoelectromechanical systems, 
i.e., MEMS and NEMS. In integrated circuits (ICs), MEMS, and NEMS, silicon (Si) is still the substrate and 
construction material of choice. A historical note about the ascent of silicon, MEMS and NEMS is the topic 
of Chapter 1. The necessary solid-state physics background to understanding the electronic, mechanical, 
and optical properties of solids relied on in ICs, MEMS and NEMS is covered in Chapters 2–5. Many impor-
tant semiconductor devices are based on crystalline materials because of their reproducible and predictable 
electrical properties. We cover crystallography in Chapter 2. The ultimate theory in modern physics today 
to predict physical, mechanical, chemical, and electrical properties of atoms, molecules, and solids is quan-
tum mechanics. Quantum mechanics and the band theory of solids are presented in Chapter 3. The rel-
evance of quantum mechanics in the context of ICs and NEMS cannot be underestimated, and the profound 
implications of quantum physics for nanoelectronics and NEMS are a recurring topic throughout this book. 
Given the importance of single-crystal Si (SCS) for IC, MEMS, and NEMS applications, we analyze silicon 
crystallography and band structure in more detail in Chapter 4. This chapter also elucidates all the single-
crystal Si properties that conspired to make Si so important in electronic, optical, and mechanical devices 
that one might rightly call the second half of the 20th century the Silicon Age. Photonics, treated in Chapter 
5, involves the use of radiant energy and uses photons the same way that electronic applications use electrons. 
We review the distinctive optical properties of bulk 3D metals, insulators, and semiconductors and summa-
rize effects of electron and photon confinement in lower-dimensional structures. We show how evanescent 
fields on metal surfaces enable the guiding of light below the diffraction limit in plasmonics. Plasmonics 
is of growing importance for use in submicron lithography, near-field optical microscopy, enhancement of 
light/matter interaction in sensors, high-density data storage, and highly integrated optic chips. We also 
delve into the fascinating new topic of metamaterials, man-made structures with a negative refractive index, 
and explain how this could make for perfect lenses and could change the photonic field forever. In Chapter 
6 we introduce fluidics, compare various fluidic propulsion mechanisms, and discuss the influence of minia-
turization on fluid behavior. Given the high level of interest, fluidics for miniaturized analytical equipment 
is covered in this chapter as well. Chapter 7 combines a treatise on electrochemical and optical analytical 
processes whose implementation is often attempted in miniaturized components and systems. 

Note to the Reader: Solid-State Physics, Fluidics, and Analytical Techniques in Micro- and Nanotechnology was 
originally composed as part of a larger book that has since been broken up into three separate volumes. 
Solid-State Physics, Fluidics, and Analytical Techniques in Micro- and Nanotechnology represents the first volume in 
this set. The other two volumes include Manufacturing Techniques for Microfabrication and Nanotechnology and 
From MEMS to Bio-NEMS: Manufacturing Techniques and Applications. Cross- references to these books appear 
throughout the text and will be referred to as Volume II and Volume III, respectively. The interested reader is 
encouraged to consult these volumes as necessary.
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INTRODUCTION

MEMS 
and NEMS 

Foundations
Miniaturization science is the science of making very small things. In 
top-down micro- and nanomachining, one builds down from large 
chunks of material; in bottom-up nanochemistry, one builds up from 
smaller building blocks. Both require a profound understanding of the 
intended application, different manufacturing options, materials proper-
ties, and scaling laws. The resulting three-dimensional structures, rang-
ing in size from subcentimeters to subnanometers, include electronics, 
photonics, sensors, actuators, micro- and nanocomponents, and micro- 
and nanosystems.

 (a) (b)

 (a) Copper Fermi surface—FCC sixth band with eight short necks touching the 
eight hexagonal zone faces. (Fermi surface database at http://www.phys.ufl.edu/
fermisurface.) (b) Platinum Fermi surface—FCC fourth, fifth, and sixth bands. 
(Fermi surface database at http://www.phys.ufl.edu/fermisurface.)

http://www.phys.ufl.edu/fermisurface
http://www.phys.ufl.edu/fermisurface
http://www.phys.ufl.edu/fermisurface
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No one behind, no one ahead. The path the ancients 
cleared has closed. And the other path, everyone’s 
path, easy and wide, goes nowhere. I am alone and 
find my way.

Dharmakirti 
(7th century India)

Introduction

Chapter 1  Historical Note: The Ascent of Si, 
MEMS, and NEMS 

Chapter 2 Crystallography
Chapter 3  Quantum Mechanics and the Band 

Theory of Solids
Chapter 4 Silicon Single Crystal Is Still King
Chapter 5 Photonics
Chapter 6 Fluidics
Chapter 7  Electrochemical and Optical Analyti-

cal Techniques

Introduction

In Volume I, we lay the foundations for a qualitative 
and quantitative understanding of micro- and nano-
electromechanical systems, i.e., MEMS and NEMS. 
In integrated circuits (ICs), MEMS, and NEMS, sili-
con (Si) is still the substrate and building material 
of choice. A historical note about the history of the 
ascent of silicon, MEMS, and NEMS is the topic 
of Chapter 1. 

The necessary solid-state physics background of 
electronic, mechanical, and optical properties of 
solids relied on in MEMS and NEMS is covered in 
Chapters 2–5. Solid-state physics is the study of sol-
ids. A major part of solid-state physics is focused on 
crystals because the periodicity of atoms in a crys-
tal facilitates mathematical modeling, but more 
importantly because crystalline materials often 
have electrical, optical, or mechanical properties 
that can be easier exploited for engineering pur-
poses. In Chapter 2, we detail crystalline materi-
als in which atoms are arranged in a pattern that 
repeats periodically in three dimensions. The mate-
rials covered here prepare the reader for Chapter 
3, which explains the band theory of solids based 
on quantum mechanics. The relevance of quantum 

mechanics in the context of ICs and NEMS can-
not be underestimated, and the profound implica-
tions of quantum physics for nanoelectronics and 
NEMS is a recurring topic throughout this book. 
This is followed in Chapter 4 by a description of 
the single-crystal Si band structure, the growth of 
single crystals of Si, its doping, and oxidation. In 
this chapter, we also review the single-crystal Si 
properties that conspired to make Si so important 
in electronic, optical, and mechanical devices so 
that one might rightly call the second half of the 
20th century the Silicon Age. Although the empha-
sis in this book is on nonelectronic applications 
of miniaturized devices, we briefly introduce dif-
ferent types of diodes and two types of transistors 
(bipolar and MOSFET). In Chapter 5, we introduce 
photonics. We compare electron and photon propa-
gation in materials and contrast electron and pho-
tonic confinement structures and the associated 
evanescent wave phenomena. We also delve into 
the fascinating new topic of metamaterials, artifi-
cially engineered materials possessing properties 
(e.g., optical, electrical) that are not encountered in 
naturally occurring ones. An introduction to diode 
lasers, quantum well lasers, and quantum cascade 
lasers concludes the photonics section. 

Fluidics and electrochemical and optical analyti-
cal techniques are important current applications 
of MEMS and NEMS. In Chapter 6 we introduce 
fluidics, compare various fluidic propulsion mech-
anisms, and discuss the influence of miniaturiza-
tion on fluid behavior. Given the current academic 
and industrial interest, fluidics in miniaturized 
 analytical equipment is detailed separately at the 
end of this chapter. Chapter 7 combines a treatise on 

 STM image showing standing waves in a 2D electron gas 
trapped in a “quantum corral” made by positioning Fe 
atoms on a Cu (111) surface.1
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electrochemical and optical analytical techniques. 
Using sensor examples, we introduce some of the 
most important concepts in electrochemistry, i.e., 
the electrical double layer, potentiometry, voltam-
metry, two- and three-electrode systems, Marcus’ 
theory of electron transfer, reaction rate- and diffu-
sion rate-controlled electrochemical reactions, and 
ultramicroelectrodes. Many researchers use MEMS 
and NEMS to miniaturize optical components or 
whole instruments for absorption, luminescence, 
or phosphorescence spectroscopy. Optical spec-
troscopy is concerned with the production, mea-
surement, and interpretation of electromagnetic 

spectra arising from either emission or absorption 
of radiant energy by matter. The sensitivity of these 
optical sensing techniques and the analysis of how 
amenable they are to miniaturization (scaling laws) 
are also compared herein. Chapter 7 ends with a 
comparison of the merits and problems associ-
ated with electrochemical and optical measuring 
techniques.

Reference
 1. Crommie, M. F., C. P. Lutz, and D. M. Eigler. 1993. 

Confinement of electrons to quantum corrals on a metal 
surface. Science 262:218–20.
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Silicon in Integrated Circuits
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1
Historical Note: The 

Ascent of Silicon, 
MEMS, and NEMS

Silicon in Integrated Circuits

In 1879, William Crookes recounted his experiments on passing electric 
discharges through an evacuated glass tube for the Royal Society, thus 
describing the first cathode ray tube (CRT). Four years later, Thomas Alva 
Edison and Francis Upton discovered the “Edison effect.” They intro-
duced a metal plate into an incandescent electric light bulb (invented 
by Edison in 1879) in an attempt to keep the bulb from turning black 
(Figure 1.1). It did not work, but they discovered that there was a current 
between the lighted filament and the separate metal plate when the plate 
was positively charged but not when it was negatively charged. This led 
Edison and Upton to stumble on the basic principle of the operation of 
the vacuum tube (rectification!).

The first diode tube we owe to John Fleming, who, in 1904, filed a pat-
ent for a “valve” vacuum tube, also called a Fleming valve or Fleming diode. 

Silicon Valley is the only place on Earth not trying to figure out how to become 
Silicon Valley (Robert Metcalfe, father of the ethernet). (From PG&E and USGS.)
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Early researchers thought of electricity as a kind of 
fluid, leading to the inherited jargon such as current, 
flow, and valve. Fleming recognized the importance 
of Edison and Upton’s discovery and demonstrated 
it could be used for the rectification of alternating 
currents. Interestingly, Fleming, at first, tried to get 
reliable rectification from single-crystal rectifiers 
used in crystal set radios (Figure 1.2), but could 
never get them to work well enough, so he switched 
to tubes! 

J.J. Thomson, in 1887, convincingly showed that 
an electrical current was really an electron flow, and 
Fleming could explain the rectification in his diode 
tube as electrons boiling of the heated filament and 
flowing to the metal plate (thermionic emission). 
Because the plate was not hot enough to emit elec-
trons, no current could go in the opposite direc-
tion. Thus, the Edison effect always produced direct 

current only. In 1906, an American scientist, Lee De 
Forest (Figure 1.3), invented the vacuum tube ampli-
fier or triode based on the two-element vacuum tube 
invented by Fleming. De Forest, reportedly a tireless 
self-promoter, added an electrode—the grid—to the 
Fleming diode, and inserted it between the anode 
and the cathode. With this grid the diode became an 
active device, i.e., it could be used for the amplifica-
tion of signals (say, for example, in radios) and as a 
switch (for computers). Hence, the amplifying vac-
uum tube, the ancestor of the transistor, was born. 
A gate in a dam controls huge amounts of flowing 
water with relatively small movements. Similarly, a 
small signal applied to the grid controls the much 
larger signal between anode and cathode.

Vacuum tubes—miniature particle accelerators—
dominated the radio and television industries until 
the 1960s, and were the genesis of today’s huge elec-
tronics industry. However, tubes were fragile, large, 
very power hungry, and costly to manufacture. The 
industry needed something better. That today’s 
world is largely electronic—e.g., automobiles, home 
appliances, even books, writing tablets, and tally 
sheets—is because of solid-state electronics,* not 
vacuum tubes. 

It is true, albeit unfortunate, that World War II 
and the subsequent Cold War era is what spurred 
research and development in solid-state electronic 
devices. Human foibles led to faster development of 

* Based on or consisting chiefly or exclusively of semiconducting 
materials, components, and related devices.

FIGURE 1.1 Edison bulb used to demonstrate the “Edison 
effect.”

FIGURE 1.2 Early crystal set radio with a galena (lead 
 sulphide) and the “cat’s whisker” (the small coil of wire) 
that was used to make contact with the crystal.

FIGURE 1.3 Lee De Forest in 1906 with the Audion, the 
first triode.
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RAdio Detecting And Ranging or RADAR, SOund 
Navigation And Ranging or SONAR, and many 
other technological innovations. As we all know, the 
list of innovations made to feed human aggression 
did not abate. Alan Turing led the team in England 
that in 1943 built the Colossus coding and decipher-
ing machine. The Colossus was a special-purpose 
computer used to break the German code ULTRA, 
encrypted using ENIGMA machines. Breaking the 
German code was one of the keys to the success of 
the D-Day invasion. The Harvard Mark I and later II, 
III, and IV were general-purpose electromechanical 
calculators (sponsored by the U.S. Navy) to compute 
artillery and navigation tables—the same purpose 
intended, 100 years earlier, by Babbage for his ana-
lytical engine (Figure 1.4). 

John Mauchly and Presper Eckert started work 
on the first electronic computer, the ENIAC (Elec-
tronic Numerical Integrator and Computer), at the 
University of Pennsylvania in 1943. The ENIAC, 
having been a secret during the war, was unveiled in 
Philadelphia in 1946. This computer featured 17,468 
vacuum tubes used as switches and consumed 174 kW 
of power, enough to light 10 homes! Several tubes 
would fail every day until the engineers decided to 
never turn off the machine. This increased the aver-
age time until a tube would fail to 2 days. ENIAC 
was designed to calculate munition trajectory tables 
for the U.S. Army. It was U-shaped, 25 m long, 2.5 m 
high, 1 m wide, and weighed more than 30 tons 
(see Figure 1.5a). Programming was done by plug-
ging cables and setting switches. By the mid-1970s, 
 identical ENIAC functions could be achieved by a 

1.5- × 1.5-cm silicon die, and the original Pentium 
processor, if fabricated using ENIAC technology, 
would cover more than 10 square miles. 

One of ENIAC’s heirs was a computer called the 
UNIVAC (Universal Automatic Computer), con-
sidered by most historians to be the first commer-
cially successful digital computer (Figure 1.5b). 
First constructed by the Eckert-Mauchly Computer 
Corporation (EMCC), it was taken over by Sperry-
Rand. At 14.5 ft. long, 7.5 ft. high, and 9 ft. wide, 
the UNIVAC, priced at $1 million, was physically 

FIGURE 1.4 Charles Babbage (1791–1871) first conceived 
the idea of an advanced calculating machine to calculate 
and print mathematical tables in 1812. It was a decimal 
digital machine, with the value of a number being repre-
sented by the positions of toothed wheels marked with 
decimal numbers. 

(a) (b)

FIGURE 1.5 Electronic Numerical Integrator and Computer (ENIAC), the world’s first  large-scale, general-purpose electronic 
computer (a), and the UNIVAC, the first commercial computer (b). First-generation computers based on vacuum tubes.
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smaller than ENIAC but more powerful. ENIAC and 
UNIVAC constitute first-generation computers based 
on vacuum tubes.

It was the concept of the stored program, invented 
by John von Neumann in 1945 (Figure 1.6); the 
magnetic core memory, invented by An Wang at 
Harvard and used in grids by J.W. Forrester and col-
leagues at MIT for random access memory (RAM); 
and William Shockley’s transistor, based on transis-
tors for switches instead of tubes, that would make a 
second generation of computers possible, thus start-
ing the computer revolution. 

The year 1940 gave rise to an important milestone 
in solid-state electronics history with the invention 
of a silicon-based solid-state p-n junction diode by 
Russell Ohl at Bell Labs.1 This device, when exposed 
to light, produced a 0.5 V across the junction and 
represented the first Si-based solar cell. Bell Labs, in 
1945, established a group charged with developing 
an alternative to the vacuum tube. Led by Shockley 
(1910–1989) and including John Bardeen (1908–
1991) and Walter Brattain (1902–1987), in 1947 the 
group made an odd-looking device consisting of 
semiconducting germanium (Ge), gold strips, insu-
lators, and wires, which they called a transistor (sub-
ject of U.S. Patent #2,524,035 [1950]2) (Figure 1.7; 
notice the paper clip!). For this invention Shockley, 
Bardeen, and Brattain were awarded the 1956 Nobel 

Prize for Physics (Bardeen went on to claim a second 
Nobel Prize for Physics in 1972 for superconductiv-
ity). Bardeen called Ohl’s junction diode fundamen-
tal to the invention of the transistor. Brattain was the 
unassuming experimentalist, Bardeen the theorist, 
and Shockley* the inventor and leader (Figure 1.8). 

This trio thus succeeded in creating an amplify-
ing circuit using a point-contact bipolar transistor 
that trans-ferred resistance (hence transistor). Two 

* Unfortunately, Shockley became associated with racist ideas and 
briefly pursued a U.S. Senate seat (as a Republican). 

FIGURE 1.6 Von Neumann in his living room. (Photograph 
by Alan Richards hanging in Fuld Hall, Institute for 
Advanced Study, Princeton, NJ. Courtesy of the Archives 
of the Institute for Advanced Study.)

FIGURE 1.7 The first point-contact germanium bipolar 
transistor. Notice the paper clip! Roughly 50 years later, 
electronics accounted for 10% ($4 trillion) of the world’s 
aggregate GDP.

FIGURE 1.8 Shockley (seated), Bardeen, and Brattain.
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wires made contact with the germanium crystal 
near the junction between the p- and n-zones just 
like the “cat whiskers”* in a crystal radio set. A few 
months later, Shockley devised the junction transis-
tor, a true solid-state device that did not need the 
whiskers of the point-contact transistor (see also 
Figure 1.2). Junction transistors were much easier 
to manufacture than point-contact transistors, and 
by the mid-1950s the former had replaced the lat-
ter in telephone systems. G. Teal and J.B. Little, also 
from Bell Labs, were able to grow large single crys-
tals of germanium by 1951, which led to the start 
of commercial production of germanium transistors 
in the same year. Christmas 1954 saw the first tran-
sistor radio (the Regency TR-1) built by Industrial 
Development Engineering Associates, which sold for 
$49.95 (Figure 1.9). This radio featured four germa-
nium transistors from Texas Instruments. Although 
germanium was used in early transistors, by the late 
1960s silicon, because of its many advantages, had 
taken over.

Silicon has a wider bandgap (1.1 eV for Si vs. 
0.66 eV for Ge), allowing for higher operating tem-
peratures (125–175°C vs. 85°C), a higher intrinsic 
resistivity (2.3 × 105 Ω cm vs. 47 Ω cm), and a bet-
ter native oxide (SiO2 vs. GeO2 [water soluble!]). 

* A cat whisker is a piece (often springy) of pointed metal wire. 

The latter results in a higher-quality insulator that 
protects and “passivates” underlying circuitry, helps 
in patterning, and is useful as a mask for dopants. 
Finally, silicon is cheaper and much more abundant 
(sand!) than germanium. Second-generation com-
puters relied on transistors instead of vacuum tubes 
for switches (logic gates). In recent years, germanium 
is making a comeback based mostly on its higher 
carrier mobility (three times higher than silicon-
based ones), of great interest for faster circuitry, and 
because Ge has a lattice constant similar to GaAs, 
making it easier to integrate GaAs optical compo-
nents with Ge-CMOS circuits. 

Transistors perform functions similar to vacuum 
tubes, but they are much smaller, cheaper, less 
power hungry, and more reliable. Michael Riordan 
and Lillian Hoddeson’s Crystal Fire gives, in the 
author’s opinion, one of the best popular accounts 
of the invention of the transistor.3 

The honeymoon with the transistor was quickly 
over; by the second half of the 1950s, new circuits 
on the drawing board were so big and complex that 
it was virtually impossible to wire that many differ-
ent parts together reliably. A circuit with 100,000 
components could easily require 1 million, mostly 
manual, soldering operations that were time con-
suming, expensive, and inherently unreliable. The 
answer was the “monolithic” idea, in which a single 
bloc of semiconductor is used for all the compo-
nents and interconnects, invented by two engineers 
working at competing companies: Jack Kilby at 
Texas Instruments (Figure 1.10) and Robert Noyce 
(Figure 1.11) at Fairchild Semiconductor.

In 1958, Jack Kilby at Texas Instruments formed 
a complete circuit on a piece of germanium, land-
ing U.S. Patent #3,138,743 (1959). His circuit was a 
simple IC oscillator with three types of components: 
transistors, resistors, and capacitors (Figure 1.12). 
Kilby got his well-deserved Nobel Prize for this work 
only in 2000. Technological progress and engineer-
ing feats are not often awarded a Nobel Prize, and if 
awarded at all they are often belated or controversial 
(see Kary Mullis, Nobel Laureate Chemistry 1993 
for the invention of PCR). 

Robert Noyce—Mr. Intel (Integrated Electronics)—
then at Fairchild, introduced, with Jean Horni, pla-
nar technology, wiring individual devices together 

FIGURE 1.9 Movie producer mogul Michael Todd 
( husband of Elizabeth Taylor in the  mid-1950s) placed 
Regency TR-1s in gift books to commemorate his movie 
Around the World in 80 Days. The one pictured was for 
Shirley MacLaine.
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on a silicon wafer surface. Noyce’s “planar” manu-
facturing, in which all the transistors, capacitors, 
and resistors are formed together on a silicon chip 
with the metal wiring embedded on the silicon, 
is still used today. By 1961, Fairchild and Texas 
Instruments had devised methods whereby large 

numbers of transistors were produced on a thin slice 
of Si—and IC production on an industrial scale took 
off. The transistors on ICs were not the bipolar type 
but rather field effect transistor devices. The concept 
of a field effect transistor (FET) was first proposed 
and patented in the 1930s; however, it was the bipo-
lar transistor that made it first to commercial prod-
ucts. Shockley resurrected the idea of the FET in the 
early 1950s, but it took until 1962 before a work-
ing FET was fabricated. These new FETs proved to be 
more compatible with both IC and Si technology. 

Integrated circuits made not only third- generation 
computers possible but also cameras, clocks, PDAs, 
RF-IDs, etc. The National Academy of Sciences 
declared ICs the progenitor of the “Second Industrial 
Revolution,” and Jerry Sanders, founder of Advanced 
Microdevices, Inc., called ICs the crude oil of the 
1980s. A very well-written popular account of the 
invention of the IC is T.R. Reid’s The Chip: How Two 
Americans Invented the Microchip and Launched a 
Revolution.4

Robert Noyce, Gordon Moore, and Andrew Grove 
left Fairchild to start Intel in 1968 with the aim of 
developing random access memory (RAM) chips. 
The question these inventors wanted answered was 
this: since transistors, capacitors, and resistors can be 
put on a chip, would it be possible to put a comput-
er’s central processor unit (CPU) on one? The answer 
came swiftly; by 1969 Ted Hoff had designed the Intel 
4004, the first general-purpose 4-bit microprocessor. 
The Intel 4004 microprocessor was a 3-chip set with 
a 2-kbit read-only memory (ROM) IC, a 320-bit RAM 

FIGURE 1.10 Jack Kilby with notebook. (TI downloadable 
pictures.)

FIGURE 1.11 Robert Noyce in 1990.

FIGURE 1.12 The first integrated circuit (germanium) in 
1958 by Jack S. Kilby at Texas Instruments contained five 
components of three types: transistors, resistors, and 
capacitors.



Historical Note   11

IC, and a 4-bit processor, each housed in a 16-pin 
dual in-line package (DIP). The processor, made in a 
10-μm silicon gate pMOS process, contained 2,250 
transistors and could execute 60,000 operations per 
second on a die size of 13.5 mm2. It came on the 
market in 1971, giving rise to the fourth generation 
of computers based on microprocessors and the first 
personal computer (PC). The era of a computer in 
every home—a favorite topic among science fiction 
writers—had arrived! 

The first desktop-size PC appeared in 1975, offered 
by Micro Instrumentation Telemetry Systems (MITS) 
as a mail-order computer kit. The computer, the Altair 
8800, named after a planet on a Star Trek episode, 
retailed for $397. It had an Intel 8080 microproces-
sor, 256 bytes of memory (not 256K), no keyboard, 
no display, and no auxiliary storage device, but its 
success was phenomenal, and the demand for the 
microcomputer kit was overwhelming (Figure 1.13). 
Scores of small entrepreneurial companies responded 
to this demand by producing computers for the new 
market. In 1976, Bill Gates, Paul Allen, and Monte 
Davidoff wrote their first software program for the 
Altair—a BASIC (Beginners All-purpose Symbolic 

Instruction Code) interpreter (a high-level language 
translator that converts individual high-level com-
puter language program instructions [source code] 
into machine instructions).

The first major electronics firm to manufacture and 
sell personal computers, Tandy Corporation (Radio 
Shack), introduced its computer model (TRS-80) in 
1977. It quickly dominated the field because of the 
combination of two attractive features: a keyboard 
and a cathode ray display terminal. It was also popu-
lar because it could be programmed, and the user 
was able to store information by means of a cassette 
tape. In 1976, Steve Wozniak, who could not afford 
an Altair, built his own computer using a cheaper 
microprocessor and adding several memory chips. 
As a circuit board alone, it could do more than the 
Altair. Wozniak and Steve Jobs called it Apple I, and 
Jobs took on the task of marketing it while Wozniak 
continued with improvements (Figure 1.14). By 
1977, Wozniak had built the Apple II and quit his 
day job. The Apple II had 16–64K RAM and second-
ary memory storage in the shape of a cassette tape or 
a 5.25-in. floppy disk drive and cost $1,300. At that 
time, Wozniak and Jobs formed Apple Computer, 

FIGURE 1.13 (a) The Altair 8800 computer and (b) the Intel 8080 microprocessor. 

FIGURE 1.14 (a) Jobs and Wozniak with the board for Apple I and (b) the Apple II.
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Inc. When it went public in 1980, its stock value was 
$117 million; three years later it was worth $985 
million. 

Vacuum tubes coexisted with their progeny, the 
transistor, and even with ICs for a short while. 
Although solid-state technology overwhelmingly 
dominates today’s world of electronics, vacuum 
tubes are still holding out in some areas. You might, 
for example, still have a CRT (cathode ray tube) 
as your television or computer screen. Tubes also 
remain in two small but vibrant areas for entirely 
different reasons. The first involves microwave tech-
nology, which still relies on vacuum tubes for their 
power-handling capability at high frequencies. The 
other—the creation and reproduction of music—is 
a more complicated story. Tubes distort signals dif-
ferently than transistors when overdriven, and this 
distortion is regarded as being more “pleasant” by 
much of the music community.

Extrapolating back to 1961, Gordon Moore in 1965 
(Figure 1.15), while at Fairchild, predicted that tran-
sistors would continue to shrink, doubling in density 
on an IC every 18–24 months, while the price would 
continue to come down—this prediction we know 
today as Moore’s Law. History has proven Moore 
right as evidenced by past and projected feature sizes 
of ICs in the International Technology Roadmap for 
Semiconductors (ITRS) shown in Appendix 1A and 
on the Internet at http://public.itrs.net (updated in 
2007).5 In this International Technology Roadmap 

for Semiconductors, technology modes have been 
defined. These modes are the feature sizes that have 
to be in volume manufacturing at a fixed date (year of 
production). The feature size is defined as  half-pitch, 
i.e., half of a dense pair of lines and spaces (see fig-
ure in Appendix 1A). 

In Table 1.1 the increasing numbers of devices 
integrated on an IC are tabulated. As we will learn in 
Chapters 1 and 2 on lithography in Volume II, new 
lithography techniques, novel device structures, and 
the use of new materials drive Moore’s Law. 

The state of the art in ICs today is a 2-GB DRAM* 
with 60-nm features (Samsung). Intel introduced 
the Core 2 Quad “Kentsfield” chip in January 2007, 
a chip featuring a 65-nanometer technology mode. 

The 32-nm node should be achieved in 2009. The 
first Moore’s Law is the good news, but there is a sec-
ond Moore’s Law that is a bit problematic; this sec-
ond law states that the cost of building a chip factory 
doubles with every other chip generation, i.e., every 
36 months. Today’s technology involves Si wafers 
with a 12-in. diameter and factories that cost $3–4 
billion to construct. With this type of start-up costs, 
few countries can afford to enter the IC market, 
and the search is on for alternative,  less-expensive 

* Dynamic random access memory. A type of memory component 
used to store information in a computer system. “Dynamic” means 
the DRAMs need a constant “refresh” (pulse of current through all 
the memory cells) to keep the stored information.

TABLE 1.1 Integration Scale and Circuit Density

IC Evolution Acronym
Number of 
Logic Gates

Year of 
Introduction

Zero-scale 
integration

ZSI 1 1950

Small-scale 
integration

SSI 2–30 1965

Medium-scale 
integration

MSI 30–103 1970

Large-scale 
integration

LSI 103–105 1980

Very large-scale 
integration

VLSI 105–107 1985

Ultra-large-scale 
integration

ULSI 107–109 1990

Giga-scale 
integration

GSI 109–1011 2005

Tera-scale 
integration

TSI 1011–1013 2020

FIGURE 1.15 Gordon Moore, cofounder of Intel.

http://www.public.itrs.net
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bottom-up NEMS techniques (below). From 
Appendix 1B, the IC market for 2003 was $166 bil-
lion worldwide, with 2004 projected at $241 billion 
(data by the World Semiconductor Trade Statistics 
[WSTS]; http://www.wsts.org).6 Also from Appendix 
1B we learn that the IC business is feeding a trillion-
dollar electronic equipment business. It is worth 
pointing out that China is expected to control 5% of 
the IC market by 2010. 

MEMS

Single-crystal silicon is not only an excellent 
electronic material but it also exhibits superior 
mechanical properties; the latter gave birth to the 
microelectromechanical systems (MEMS) field on 
the coattails of the IC industry. Originally MEMS 
constituted mostly mechanical types of devices 
based on single-crystal silicon with at least one or 
more of their dimensions in the micrometer range. 
As MEMS applications broadened, in Europe the 
acronym MST for microsystem technology became more 
popular. In Japan one refers to micromachining, and 
microengineering is popular in the United Kingdom. 
Development of single-crystal silicon mechanical 
MEMS involves the fabrication of micromechanical 
parts, e.g., a thin membrane in the case of a pres-
sure sensor or a cantilever beam for an accelerom-
eter. These micromechanical parts are fabricated 
by selectively etching areas of a Si substrate away 
to leave behind the desired geometries. The terms 
MEMS and micromachining came into use in 1982 to 
name these fabrication processes. Around the same 
time references to “bulk” micromachining tech-
niques also appeared. Richard Feynman’s December 
26, 1959 presentation “There’s Plenty of Room at 
the Bottom” is considered by many to be the start-
ing bongo for MEMS (Figure 1.16) (http://www.its.
caltech.edu/~feynman/plenty.html),7 but in a practi-
cal sense, it was the invention of the transistor and 
the processes developed to fabricate transistors, six 
years earlier, that enabled MEMS.

An early milestone for the use of single-crystal sil-
icon in MEMS was the 1956 discovery of porous Si 
by Uhlir.8 His discovery eventually led to all types of 
interesting new, single-crystal Si-based devices, from 
reference electrodes for electrochemical sensors, 

biosensors, quantum structures, and permeable 
membranes to photonic crystals and photolumines-
cent and electroluminescent devices.

The first impetus for the use of single-crystal sili-
con as a micromechanical element in MEMS can be 
traced to the discovery of its large piezoresistance. 
Piezoresistance is the change in the resistivity of 
certain materials as a result of an applied mechani-
cal strain. Charles Smith, of the Case Institute of 
Technology (now part of the Case Western Reserve 
University), during a sabbatical leave at Bell Labs in 
1953, studied the piezoresistivity of semiconduc-
tors and published the first paper on the piezoresis-
tive effect in Si and Ge in 1954.9 The piezoresistive 
coefficients Smith measured demonstrated that the 
gauge factor* of Si and Ge strain gauges (see Figure 
1.17) was 10–20 times larger than the gauge factor 
of metal film strain gauges, and, therefore, semi-
conductor gauges were expected to be much more 
sensitive. 

Motivated by these results, companies such as 
Kulite and Honeywell started developing Si strain 
gauges commercially from 1958 onward. Pfann and 
colleagues, in 1961, proposed a dopant diffusion 
technique for the fabrication of silicon piezoresis-
tive sensors for the measurement of stress, strain, 
and pressure.10 Based on this idea, Kulite integrated 

* A strain gauge is a device used to measure deformation (strain) of an 
object. The gauge factor of a strain gauge relates strain to change in 
electrical resistance.

FIGURE 1.16 Richard Feynman on the bongo drums.

http://www.wsts.org
http://www.its.caltech.edu/~feynman/plenty.html
http://www.its.caltech.edu/~feynman/plenty.html
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Si strain gauges on a thin Si substrate with diffused 
resistors in 1961. As early as 1962, Tufte and cowork-
ers at Honeywell, using a combination of wet iso-
tropic etching, dry etching (using a plasma instead 
of a solution), and oxidation, made the first thin 
Si piezoresistive diaphragms for pressure sensors.11 
Isotropic etching of Si had been developed earlier 
for transistor fabrication. In the mid-1960s, Bell Labs 
started work on single-crystal silicon etchants with 
directional preferences, i.e., anisotropic etchants, 
such as mixtures of, at first, KOH, water, and alco-
hol and later KOH and water.12 Both chemical and 
electrochemical anisotropic etching methods were 
pursued. The aspect ratio (height-to-width ratio) of 
features in MEMS is typically much higher than in 
ICs (Figure 1.18). The first high-aspect-ratio cuts in 

silicon were used in the fabrication of dielectrically 
isolated structures in ICs such as those for beam leads. 
In the mid-1970s, a surge of activity in anisotropic 
etching was associated with the work on V-groove 
and U-groove transistors. Isotropic and anisotropic 
etching profiles are compared in Figure 1.19. Figure 
1.19a shows the isotropic etching of grooves in (100) 
Si, and Figure 1.19b shows the anisotropic etching of 
grooves in (100) Si. In both cases, rectangular mask 
openings are used.

Most single-crystal silicon MEMS devices feature 
bonding of one Si wafer to another or to a differ-
ing substrate, say a glass pedestal, and some MEMS 
involve cavity-sealing techniques, perhaps for a 
vacuum reference or to accommodate a deflecting 
cantilever beam. The most prominent techniques 
developed to achieve these features are field-assisted 
bonding, invented by Wallis and Pomerantz in 
1969,13 and Si fusion bonding (SFB) by Shimbo in 
1986.14 Field-assisted thermal bonding, as shown in 
Figure 1.20, also known as anodic bonding, electro-
static bonding, or the Mallory process, is commonly 
used for joining glass to silicon at high temperatures 
(e.g., 400°C) and high voltages (e.g., 600 V). The 
ability to bond two Si wafers directly, at high tem-
peratures (>800°C) in an oxidizing environment, 
without intermediate layers or applying an electric 
field, simplified the fabrication of many devices in 
silicon fusion bonding (SFB).

1.0 mm

FIGURE 1.17 The Si single-crystal gauge element can be 
seen as the vertical bar centered between the two solder 
pads. The single-crystal silicon strain gauge offers sen-
sitivities 20–50 times greater than metal foil gauges. A 
microphotograph of the LN-100. (BF Goodrich Advanced 
Micro Machines.)

FIGURE 1.19 Isotropic and anisotropic etching profiles in 
single-crystal Si. Isotropic etching of grooves in (100) Si 
(a) and anisotropic etching of grooves in (100) Si (b) using 
rectangular mask openings. Features are in the 100-μm 
range.

0.25-1.0 μm

0.
5–

1 
μm

5–
50

 μ
m

VLSI/ULSI

< 1:1 Aspect ratio

> 1:1 Aspect ratio MEMS(b)(a)

Released
beam

1-10 μm

“CMOS”

“Bulk MEMS motor”

FIGURE 1.18 Aspect ratio (height-to-width ratio) typical 
in (a) fabrication of integrated circuits and (b) microfabri-
cated component.
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The first Si accelerometer was demonstrated in 
1970 at Kulite. In 1972, Sensym became the first 
company to make stand-alone Si sensor products. 
By 1974, National Semiconductor Corporation, in 
California, carried an extensive line of Si pressure 
transducers as part of the first complete silicon pres-
sure transducer catalog.15 Other early commercial 
suppliers of micromachined pressure sensor products 
were Foxboro/ICT, Endevco, Kulite, and Honeywell’s 
Microswitch. To achieve better sensitivity and sta-
bility than possible with piezoresistive pressure sen-
sors, capacitive pressure sensors were first developed 
and demonstrated by Dr. James Angell at Stanford 
University around 1977.16 In Figure 1.21 we show a 
typical piezoresistive single-crystal silicon pressure 
sensor, with the silicon sensor anodically bonded to 
a glass substrate. 

In many cases, it is desirable to stop the etching 
process when a certain cavity depth or a certain 
membrane thickness is reached. High-resolution 
silicon micromachining relies on the availability 
of effective etch-stop layers rather than the use of a 
stopwatch to control the etch depth. It was the dis-
covery/development of impurity-based etch stops 
in silicon that allowed micromachining to become 
a high-yield commercial production process. The 
most widely used etch-stop technique is based on 
the fact that anisotropic etchants do not attack heav-
ily boron-doped (p++) silicon layers. Selective p++ 
doping is typically implemented using gaseous or 
solid boron diffusion sources with a mask (such 
as silicon dioxide). The boron etch-stop effect was 

first noticed by Greenwood in 1969,17 and Bohg 
in 197118 found that an impurity concentration of 
about 7 × 1019/cm3 resulted in the anisotropic etch 
rate of Si decreasing sharply. 

Innovative, micromachined structures, different 
from the now mundane pressure sensors, accelerom-
eters, and strain gauges, began to be explored by the 
mid- to late 1970s. Texas Instruments produced a 
thermal print head in 1977,19 and IBM produced ink-
jet nozzle arrays the same year.20 In 1980, Hewlett 
Packard made thermally isolated diode detectors,21 
and fiberoptic alignment structures were manu-
factured at Western Electric. Chemists worldwide 
took notice when Terry, Jerman, and Angell, from 
Stanford University, integrated a gas chromatograph 
on a Si wafer in 1979 as shown in Figure 1.22.22,23 
This first analytical chemistry application would 
eventually lead to the concept of total analytical sys-
tems on a chip, or μ-TAS. An important milestone in 
the MEMS world was the founding of NovaSensor, 

FIGURE 1.20 During anodic bonding, the negative poten-
tial applied to the borosilicate glass plate, which has been 
heated to 500°C, allows the migration of positive ions 
(mostly Na+) away from the wafer’s interface, creating a 
strong electric field between the glass and the Si wafer. 

FIGURE 1.21 Piezoresistive pressure sensor featur-
ing a Si/glass bond achieved by anodic bonding. The 
Bosch engine control manifold absolute pressure (MAP) 
sensor is used in  automobile fuel injection systems. By 
measuring the manifold pressure, the amount of fuel 
injected into the engine cylinders can be calculated. 
Micromachined silicon piezoresistive  pressure sensors 
are bonded at the wafer level to a glass wafer using 
anodic bonding before dicing. The glass pedestal 
that is created by this process provides stress isolation 
for the  silicon sensor from  package-induced ther-
mal stresses. (Photo courtesy of Robert Bosch GmbH, 
Germany.)
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in 1985, by Kurt Petersen, Janusz Bryzek, and Joe 
Mallon (Figure 1.23). This was the first company 
totally dedicated to the design, manufacture, and 
marketing of MEMS sensors. 

Kurt Petersen developed the first torsional, scan-
ning micromirror in 1980 at IBM.24 A more recent 
version of a movable mirror array is shown in Figure 
1.24. Mirror arrays of this type led to the infamous 
stock market optical MEMS bubble of 2000, one 
of the bigger disappointments befalling the MEMS 
community. 

The first disposable blood pressure transducer 
became available in 1982 from Foxboro/ICT, Honey-
well for $40. Active on-chip signal conditioning also 
came of age around 1982. European and Japanese 
companies followed the U.S. lead more than a 

decade later; for example, Druck Ltd., in the United 
Kingdom, started exploiting Greenwood’s microma-
chined pressure sensor in the mid-1980s. Petersen’s 
1982 paper extolling the excellent mechanical prop-
erties of single-crystalline silicon helped galvanize 
academia’s involvement in Si micromachining in a 
major way.25

In MEMS the need sometimes arises to build 
structures on both sides of a Si wafer; in this case, 
a double-sided alignment system is required. These 
systems started proliferating after the EV Group 
(formally known as Electronic Visions) created the 
world’s first double-side mask aligner with bottom 
side microscope in 1985 (http://www.evgroup.com). 
In the mid-1990s, new high-density plasma etching 
equipment became available, enabling directional 
deep dry reactive ion etching (DRIE) of silicon. Dry 
plasma etching was now as fast as wet anisotro-
pic etching, and as a consequence the MEMS field 
underwent a growth spurt. 

U.S. government agencies started large MEMS pro-
grams beginning in 1993. Older MEMS researchers 
remember the idealistic and inspired leadership of 
Dr. Kaigham (Ken) Gabriel (Figure 1.25) at Defense 
Advanced Research Projects Agency (DARPA). 
Gabriel got many important new MEMS products 
launched.

When the first polysilicon MEMS devices, made in 
a process called surface micromachining pioneered 
at University of California, Berkeley by Muller 

FIGURE 1.22 Gas chromatograph on a Si wafer. (Courtesy 
Hall Jerman.)

FIGURE 1.24 Integrated photonic mirror array from 
Transparent Networks. MEMS-VLSI integration achieved 
through wafer bonding. There are 1200 3D mirrors on 
the chip; each is 1 × 1 mm, with a ±10° tilt in two axes. 
(Courtesy of Janusz Bryzek.)

FIGURE 1.23 NovaSensor founders in 2003 at the Boston 
Transducer Meeting. Left to right: Joe Mallon, Kurt 
Petersen, and Janusz Bryzek.

http://www.evgroup.com
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and Howe, appeared in 1983,26 bulk  single-crystal 
Si micromachining started to get some stiff com-
petition. This was exacerbated when, from the 
mid-1990s onward, MEMS applications became 
biomedical and biotechnology oriented. The latter 
applications may involve inexpensive disposables or 
implants, and Si is not a preferred inexpensive sub-
strate nor is it biocompatible. Glass and polymers 
became very important substrates in microfluidics, 
and many researchers started using a flexible rub-
ber (polydimethylsiloxane or PDMS) as a building 
material in a process called soft lithography. The 
latter manufacturing method, which dramatically 
shortened the time between novel fluidic designs 
and their testing, was invented in the late 1990s by 
Harvard’s Whitesides.27 

In the early years of MEMS, it was often pro-
jected that the overall MEMS market would grow 
larger than that for ICs. This notion was based on 
the expectation of many more applications for the 
former than the latter. This market projection has 
not been fulfilled. Including nonsilicon devices such 
as read-write heads, one can claim a MEMS market 
of about 10% of the total IC market today. From 
Appendix 1B we learn that Si sensors and actuators 
amount to only 4% of IC sales. 

MEMS never really constituted a paradigm shift 
away from the IC concept but rather a broaden-
ing of it: incorporating more diverse materials, 
higher aspect ratio structures, and a wider variety 
of uses in smaller and more fragmented applica-
tions. In almost all respects MEMS remained IC’s 

poor cousin: using second-hand IC equipment, 
with less than 5% of IC sales, and no Nobel laure-
ates to trumpet breakthrough new concepts. Today, 
the Si MEMS market prospects are looking much 
better as MEMS are finally penetrating mass con-
sumer products from projectors, to game control-
lers, to portable computers to cameras, mobile 
phones, and iPods with MEMS digital micromirror 
devices (DMDs), oscillators, accelerometers, gyros, 
etc. Even MEMS foundries are now thriving inside 
and outside the United States. This new generation 
of MEMS products fits high-throughput production 
lines on large Si substrates and is succeeding in the 
marketplace. The IC world has started to absorb the 
Si-MEMS world. 

Over the years, the many MEMS applications did 
lead to a plethora of MEMS acronyms, some of them 
perhaps coined by assistant professors trying to get 
tenure faster. Here are some attempts at 15 minutes 
of fame: 

BioMEMS = MEMS applied to the medical and  ◾
biotechnology field
Optical MEMS = mechanical objects + optical  ◾
sources/detectors
Power-MEMS ◾
C-MEMS (carbon MEMS for this author but  ◾
ceramic MEMS for others)
HI-MEMS = hybrid insect-microelectromech- ◾
anical systems 
RF-MEMS = radiofrequency MEMS ◾
Cif-MEMS = CMOS IC Foundry MEMS ◾
COTS MEMS = commercial off-the-shelf MEMS ◾
MOEMS = microoptical electromechanical  ◾
systems
P-MEMS = polymer MEMS ◾
CEMS = cellular engineering microsystems ◾
HARMEMS = high-aspect-ratio MEMS ◾

We do expect that there are many more MEMS 
applications yet to be realized and that MEMS will 
facilitate the handshake between the macro and 
nano world in nanoelectromechanical systems 
(NEMS).

In Table 1.2 we sketch our attempt at a Si/MEMS 
history line. Many more MEMS milestones than 
listed in the preceding text are captured here.

FIGURE 1.25 Dr. Kaigham Gabriel: Early champion of 
MEMS work at DARPA.



18   Solid-State Physics, Fluidics, and Analytical Techniques in Micro- and Nanotechnology

TABLE 1.2 MEMS History

Year Fact

1824 Berzelius discovers Si
1910 First patent on the MOS transistor concept
1927 Field effect transistor patented (Lilienfield)
1939 First pn junction transistor (J. Bardeen, W.H. Brattain, W. Shockley)
1947 (23 December) Invention of the transistor made from germanium at Bell Telephone 

Laboratories

1954 Evidence of piezoresistive effect in Si and Ge by Smith9

1956 An early milestone for the use of single-crystal silicon in MEMS was the 
discovery of porous Si by Uhlir8

1958

1960s IC
(1st Monolithic BJT IC, 4BJT)

Jack Kilby of Texas Instruments invents the IC, using GE devices. A patent was 
issued to Kilby in 1959. A few months later, Robert Noyce of Fairchild 
Semiconductor announced the development of a planar Si IC

1958 Silicon strain gauges commercially available
1958 First IC (oscillator)
1959 R. Feynman famous talk: “There’s Plenty of Room at the Bottom”7

1961 Fabrication of the first piezoresistive sensor, pressure (Kulite) 
1967 Anisotropic deep silicon etching (H.A. Waggener12)
1967 First surface micromachining process (H. Nathanson28): resonant gate before it 

was called MEMS

1969–1970 Anodic bonding of glass to Si13

1972 National Semiconductor: commercialize a Si MEMS pressure sensor
1975 Gas chromatograph on a Si wafer by S.C. Terry, J.H. Jerman, and J.B. Angell at 

Stanford University23

1977 First capacitive pressure sensor (Stanford)16

1977

Nucleation
Bubble growth

Drop ejection
and refill

IBM–HP: micromachined ink-jet nozzle24

1980 K.E. Petersen, silicon torsional scanning mirror24
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TABLE 1.2 MEMS History (Continued)

Year Fact

1982 Review paper “Silicon as a mechanical material” published by K.E. Petersen25

1982 Disposable blood pressure transducer (Foxboro/ICT, Honeywell, $40)
1982 The use of x-ray lithography in combination with electroplating and molding 

(or LIGA), introduced by Ehrfeld and his colleagues29

1983 Integrated pressure sensor (Honeywell)
1983 “First” polysilicon MEMS device (Howe, Muller UCB26); see also Nathanson in 

196728

1986 Silicon to silicon wafer bonding (M. Shimbo14)
1987 Texas Instrument’s Larry Hornbeck invents the digital micromirror devices 

(DMDs) 
1988 Rotary electrostatic side drive motors (Fan, Tai, Muller30)

Electrostatic micromotor (UC-Berkeley BSAC)
1988 First MEMS conference (first transducers conference held in 1987)
1989 Lateral comb drive (Tang, Nguyen, Howe31)

1990 The concept of miniaturized total chemical analysis system or μ-TAS is 
introduced by Manz et al.32 This may be seen as the beginning of BIOMEMS

1992 Grating light modulator (Solgaard, Sandejas, Bloom)
1992 First MUMPS process (MCNC) (with support of DARPA). Now owned by 

MEMSCAP
1992 First MEMS CAD tools:

MIT, S.D. Senturia, MEMCAD 1.0
Michigan, Selden Crary, CAEMEMS 1.0

1992 Single-crystal reactive etching and metallization (SCREAM) developed at 
Process (Cornell)

1993 Analog devices: commercialize multiaxis accelerometer integrating electronics 
(ADXL50)

1995 Intellisense Inc. introduces MEMS CAD IntelliSuite. MEMCAD 2.0 is launched, 
and ISE introduces SOLIDIS and ICMAT

1996

TI’s VGA (640 × 480), the SVGA (800 × 600), 
and the XGA (1024 × 768)

The first digital mirror device (DMD)–based products (Texas Instruments) 
appear on the market

1996 DRIE (Bosch Process)
1997 Printing meets lithography when George M. Whitesides et al. at Harvard 

discover soft lithography27

1998 First PCR-microchips
1998 Sandia’s ultraplanar multilevel technology SUMMiT-IV and -V technologies. 

Four- and five-level poly-Si processes 

(continued)
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NEMS

The criteria we use in this book for classifying some-
thing as a nanoelectromechanical system (NEMS) 
are not only that the miniaturized structures have at 
least one dimension that is smaller than 100 nano-
meters, but also that they are crafted with a novel 
technique (so beer making is out) or have been 
intentionally designed with a specific nanofeature 
in mind (so medieval church stained glass is out). 
This definition fits well within the one adopted by 
the National Nanotechnology Institute (NNI; http://
www.nano.gov/html/facts/whatisnano.html):

 1. Nanotechnology involves R&D at the 1- to 
100-nm range.

 2. Nanotechnology creates and uses structures 
that have novel size-based properties.

 3. Nanotechnology takes advantage of the ability 
to control or manipulate at the atomic scale.

Paul Davis (http://cosmos.asu.edu), a theoretical 
physicist and well-known science popularizer, said, 
“The nineteenth century was known as the machine 
age, the twentieth century will go down in history 
as the information age and I believe the  twenty-first 
century will be the quantum age.” We believe that 
the current nanotechnology revolution, under-
pinned by quantum mechanics, is already leading 
the way toward that reality. 

The manufacture of devices with dimensions 
between 1 and 100 nanometers is either based on top-
down manufacturing methods (starting from bigger 
building blocks, say a whole Si wafer, and chiseling 
them into smaller and smaller pieces by cutting, etch-
ing, and slicing), or it is based on  bottom-up manu-
facturing methods (in which small particles such as 
atoms, molecules, and atom clusters are added for 
the construction of bigger functional constructs). 
The top-down approach to nanotechnology we call 
nanofabrication or nanomachining, an extension of 

TABLE 1.2 MEMS History (Continued)

Year Fact

1999 DNA microarray techniques

1999 Electrokinetic platforms (Caliper, Aclara, and Agilent)
2000 Nortel buys Xros for $3.25 billion
2002

Lucent 3D optical switch

The telecom recession puts many things on standby

2004 MEMS rebuilds. First application of accelerometer in consumer electronics (CE) 
to hard drive protection in notebooks. IBM puts dual-axis accelerometer in 
the notebook (now Lenovo)

2006 Sony (PS3) and Nintendo (Wii) introduce motion-based game controllers
2007 Apple announces the iPhone with motion-based features

http://www.nano.gov/html/facts/whatisnano.html
http://www.nano.gov/html/facts/whatisnano.html
http://www.cosmos.asu.edu
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the MEMS approach. The bottom-up approach we 
like to refer to as nanochemistry. An example of this 
second approach is the self-assembly of a monolayer 
(SAM) from individual molecules on a gold surface. 
Bottom-up methods are nature’s way of growing 
materials and organisms, and in biomimetics one 
studies how nature, through eons of time, devel-
oped manufacturing methods, materials, structures, 
and intelligence and tries to mimic or replicate what 
nature does in the laboratory to produce MEMS or 
NEMS structures. 

A history-line with the most important NEMS 
milestones on it is difficult to put together as so 
many authors of such charts automatically include 
themselves or their institution on it first (one author 
of an early MEMS/NEMS timeline puts himself on it 
three times and his institution four times!). It some-
times seems that science and engineering are start-
ing to resemble FOX News more by the day. What 
follows are some milestones toward nanotechnol-
ogy that many scientists/engineers might agree to. 

Norio Taniguchi introduced the term nanotech-
nology in 1974, in the context of traditional machin-
ing with tolerances below 1 micron. The 1959 
Feynman lecture “There’s Plenty of Room at the 
Bottom,” which helped launch the MEMS field (see 
above), was geared more toward NEMS than MEMS 
(http://www.its.caltech.edu/~feynman/plenty.html).7 
Feynman proclaimed that he knew of no principles 
of physics that would prevent the direct manipulat-
ing of individual atoms. In his top-down gedanken 
experiment, he envisioned a series of machines each 
an exact duplicate, only smaller and smaller, with the 
smallest in the series being able to manipulate indi-
vidual atoms (see Figure 1.26).

In 1981, Gerd Binning and Heinrich Rohrer of IBM 
Zurich invented the scanning tunneling microscope 
(STM), enabling scientists to see and move individual 
atoms. Such a microscope, shown in Figure 1.27, mea-
sures the amount of electrical current flowing between 
a scanning tip and the conductive surface that is being 
measured. This unexpectedly simple instrument 
allowed for the imaging of micro- and nanostructures, 
catapulted nanotechnology onto the world stage, and 
got its inventors the 1986 Nobel Prize (http://www.
zurich.ibm.com/imagegallery/st/nobelprizes). Just as 
350 years before the microscope changed the way we 

viewed the world, the STM impacts our current view 
of biology, chemistry, and physics.

In fast succession, a series of similar instruments, 
all called scanning proximal probes, followed the 
introduction of the STM. For example, Binnig, Quate 
(Stanford), and Gerber (IBM) developed the atomic 
force microscope (AFM) in 1986. An AFM, in con-
tact mode, measures the repulsive force interaction 
between the electron clouds on the probe tip atoms 
and those on the sample—making it possible to 
image both insulating and conducting surfaces. 
This results in the visualization of the interactions 

FIGURE 1.26 Master and slave hands on a set of Feynman 
machines.
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FIGURE 1.27 Scanning tunneling microscope (STM). 
Operational principle of an STM. (Courtesy Michael 
Schmidt, TU Wien.) 

http://www.its.caltech.edu/~feynman/plenty.html
http://www.zurich.ibm.com/imagegallery/st/nobelprizes
http://www.zurich.ibm.com/imagegallery/st/nobelprizes
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between molecules at the nanoscale, thus increas-
ing our ability to better understand the mechanism 
of molecular and biological processes. Other forms 
of scanning probe microscopes—those that do not 
depend on tunneling or forces between a probe tip 
and a sample surface—have also been demonstrated. 
Examples include the scanning thermal microscope, 
which responds to local thermal properties of sur-
faces, the scanning capacitance microscope for dop-
ant profiling, and the near-field scanning optical 
microscope (NSOM, also known as SNOM). In the 
latter instrument,33 the wavelength limitation of the 
usual far-field optics of a light microscope is avoided 
by mounting the light detector (say an optical fiber) 
on an AFM tip, at a distance from the sample that is 
a fraction of the wavelength used; this way it is pos-
sible to increase the resolution of a light microscope 
considerably. These new tools were an important 
catalyst behind the surge in nanotechnology activi-
ties worldwide, and this illustrates that progress in 
science is inextricably linked to the development of 
new measurement tools. 

The discovery, in the early 1980s at Bell Labs by 
David L. Allara (now at Pennsylvania State Uni-
versity) and Ralph G. Nuzzo (now at University 
of Illinois, Urbana-Champaign) of the self- assembly 
of disulfide and, soon thereafter, of alkanethiol 
monolayers (SAMs) on metal surfaces coincided 
with the maturation of STM technology.34,35 SAMs, 
especially on Au, turned out to be a valuable type of 
sample for STM investigation, showing these films 
to spontaneously assemble into stable and highly 
organized molecular layers, bonding with the sul-
fur atoms onto the gold and resulting in a new 
surface with properties determined by the alkane 
head group. 

Like SAMs, dendrimers, which are branch-
ing polymers sprouting successive generation of 
branches off like a tree, are an important tool for 
bottom-up nanotechnologists. Dendrimers (from 
the word dendron, Greek for tree) were invented, 
named, and patented by Dr. Donald Tomalia (now 
CTO at Dentritic NanoTechnologies, Inc.) in 1980 
while at Dow Chemical.36

In 1970, Arthur Ashkin was the first to report 
on the detection of optical scattering and gradient 
forces on micron-sized particles.37 In 1986, Ashkin 

and colleagues reported the first observation of what 
is now commonly referred to as an optical trap, i.e., 
a tightly focused beam of light capable of holding 
microscopic particles stable in three dimensions.38 
One of the authors of this seminal 1986 paper, Steven 
Chu (Figure 1.28), would go on to make use of opti-
cal tweezing techniques in his work on cooling and 
trapping of atoms. Where Ashkin was able to trap 
larger particles (10 to 10,000 nanometers in diam-
eter), Chu extended these techniques to the trapping 
of individual atoms (0.1 nanometer in diameter). 
This research earned him the 1997 Nobel Prize in 
Physics (with Claude-Cohen Tannoudji and William 
D. Phillips). In another heralded experiment, Steven 
Chu was also the one who demonstrated that by 
attaching polystyrene beads to the ends of DNA one 
can pull on the beads with laser tweezers to stretch 
the DNA molecule (http://www.stanford.edu/group/
chugroup/steve_personal.html).

In 1985, Robert F. Curl Jr., Harold W. Kroto, and 
the late Richard E. Smalley serendipitously (while 
investigating the outer atmosphere of stars) dis-
covered a new form of carbon: buckminsterfuller-
ene, also known as buckyball or C60, shown in 
Figure 1.29.39 They were awarded the Nobel Prize in 
1996.

Perhaps a more important discovery, because of 
its generality and broader applicability, is the one 
by NEC’s Sumio Iijima, who, in 1991, discovered 

FIGURE 1.28 Steven Chu (Stanford University), recipient 
of the 1997 Nobel Prize in Physics for his work on cooling 
and trapping of atoms.

http://www.stanford.edu/group/chugroup/steve_personal.html
http://www.stanford.edu/group/chugroup/steve_personal.html
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carbon nanotubes, with an electrical conductivity 
that is up to six orders of magnitude higher than 
that of copper (http://www.nec.co.jp/rd/Eng/inno-
vative/E1/myself.html). Like buckyballs, cylindrical 
nanotubes each constitute a lattice of carbon atoms, 
and each atom is again covalently bonded to three 
other carbons.

Carbon nanotubes exist as single-walled (SWNT) 
and multiwalled (MWNT); the ones depicted in 
Figure 1.30a are multiwall nanotubes. Unique among 
the elements, carbon can bond to itself to form 
extremely strong two-dimensional sheets, as it does 
in graphite, as well as buckyballs and nanotubes. 

Cees Dekker demonstrated the first carbon nano-
tube transistor in 1998 at the Delft University of 
Technology40 (see Figure 1.30b). In this device, a 
semiconducting carbon nanotube of only about 
1 nm in diameter bridges two closely separated 
metal electrodes (400 nm apart) atop a silicon sur-
face coated with silicon dioxide. Applying an elec-
tric field to the silicon (via a gate electrode) turns 
on and off the flow of current across the nano-
tube by controlling the movement of charge carri-
ers in it. By carefully controlling the formation of 
metal gate electrodes, Dekker’s group (http://www.
ceesdekker.net) was able to create transistors with 
an output signal 10 times stronger than the input. 
At around the same time, the first nanotransistor 
was built at Lucent Technologies (1997). The MOS 
semiconductor transistor was 60 nm wide, including 
the source, drain, and gate; its thickness was only 
1.2 nm. Other companies have since built smaller 
nanotransistors. 

At one point, in the late 1990s, it was—with just 
a bit of exaggeration—hard to find a proposal to 
a government agency that did not involve carbon 
 nanotubes. But perhaps more real progress was 
mapped in the meantime in the area of nanocrystals 
or quantum dots (QD). 

Quantum dots possess atom-like energy states. 
The behavior of such small particles was begin-
ning to be understood with work by the Russians 
Ekimov and Efros from 1980 to 1982.41,42 They rec-
ognized that nanometer-sized particles of CdSe, 
with their very high surface-to-volume ratio, could 

FIGURE 1.29 Buckminsterfullerene C60 or buckyball 
with 60 atoms of carbon; each is bound to three other 
carbons in an alternating arrangement of pentagons and 
hexagons.
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FIGURE 1.30 (a) Multiwall nanotubes with Russian inset doll structure; several inner shells are shown a typical radius of 
the outermost shell >10 nm. (From S. Iijima, Nature 354, 54, 1991.) (b) First nanotube transistor. This three-terminal device 
consists of an individual  semiconducting nanotube on two metal nanoelectrodes with the substrate as a gate electrode.

http://www.nec.co.jp/rd/Eng/innovative/E1/myself.html
http://www.nec.co.jp/rd/Eng/innovative/E1/myself.html
http://www.ceesdekker.net
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trap electrons and that these trapped electrons 
might affect the crystal’s response to electromag-
netic fields, that is, absorption, reflection, refrac-
tion, and emission of light. Louis E. Brus, a physical 
chemist at Bell Laboratories at the time, and now at 
Columbia University, put this to practice when he 
learned to grow CdSe nanocrystals in a controlled 
manner.43,44 Murray, Norris, and Bawendi synthe-
sized the first high-quality quantum dots in 1993.45 
Crystallites from −12 to −115 Å in diameter with con-
sistent crystal structure, surface derivatization, and 
a high degree of monodispersity were prepared in a 
single reaction based on the pyrolysis of organome-
tallic reagents by injection into a hot coordinating 
solvent. The confinement of the wave-functions in 
a nanocrystal or quantum dot lead to a blue energy 
shift, and by varying the particle size one can pro-
duce any color in the visible spectrum, from deep 
(almost infra-) reds to screaming (almost ultra-) 
violet as illustrated in Figure 1.31. Today, quantum 
dots form an important alternative to organic dye 
molecules. Unlike fluorescent dyes, which tend 
to decompose and lose their ability to fluoresce, 
quantum dots maintain their integrity, withstand-
ing many more cycles of excitation and light emis-
sion (they do not bleach as easily!). Combining a 
number of quantum dots in a bead conjugated to a 
biomolecule is used as a spectroscopic signature—
like a barcode on a commercial product—for tag-
ging those biomolecules. 

Carbon nanotubes are only one type of nano-
wire. In terms of investigating and exploiting quan-
tum confinement effects, semiconductor wires, with 

diameters in the 10s of nanometers, often single 
crystalline, represent the smallest dimension for effi-
cient transport of electrons and excitons and are the 
logical interconnects and critical devices for nano-
electronics and nanooptoelectronics of the future. 
Over the past decade, there has been major progress 
in chemical synthesis technologies for growing these 
nanoscale semiconductor wires. As originally pro-
posed by R.S. Wagner and W.C. Ellis from Bell Labs 
for the Au-catalyzed Si whisker growth, a vapor-liq-
uid-solid mechanism is still mostly used.46 But the 
field got a shot in the arm (a rebirth so to speak) with 
efforts by Charles Lieber (Harvard), Peidong Yang 
(http://www.cchem. berkeley.edu/pdygrp/main.html), 
James Heath (http://www.its.caltech.edu/~heathgrp), 
and Hongkun Park (http://www.people.fas.harvard.
edu/~hpark). Lieber’s group at Harvard (http://
cmliris.harvard.edu) reported arranging indium 
phosphide semiconducting nanowires into a simple 
configuration that resembled the lines in a tick-tack-
toe board. The team used electron beam lithography 
to place electrical contacts at the ends of the nano-
wires to show that the array was electronically active. 
The tiny arrangement was not a circuit yet, but it was 
the first step, showing that separate nanowires could 
communicate with one another.

Molecules are 30,000 times smaller than a transis-
tor (180 nm on a side), so obviously it is of some use 
to investigate whether molecules can act as switches. 
Mark Ratner and Ari Aviram had suggested this as 
far back as 1974.47 The suggestion remained a pipe 
dream until the advent of scanning probe micro-
scopes in the 1980s, which gave researchers finally 

FIGURE 1.31 Different-sized quantum dots in response to near-UV light. Also composition of core affects wavelength. 
Red: bigger dots! Blue: smaller dots!

http://www.cchem. berkeley.edu/pdygrp/main.html
http://www.its.caltech.edu/~heathgrp
http://www.people.fas.harvard.edu/~hpark
http://www.people.fas.harvard.edu/~hpark
http://www.cmliris.harvard.edu
http://www.cmliris.harvard.edu
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the tools to probe and move individual molecules 
around. This led to a large number of studies in the 
late 1990s that demonstrated that individual mole-
cules can conduct electricity just like metal wires, and 
turning individual molecules into switches came not 
far behind. In 1997, groups led by Robert Metzger 
(http://bama.ua.edu/~rmmgroup) of the University 
of Alabama, Tuscaloosa, and Mark Reed of Yale 
University (http://www.eng.yale.edu/reedlab) cre-
ated molecular diodes. In July 1999, another group 
headed by James Heath and Fraser Stoddart of the 
University of California, Los Angeles (UCLA) (http://
stoddart.chem.ucla.edu) also created a rudimentary 
molecular switch, a molecular structure that carries 
current but, when hit with the right voltage, alters its 
molecular shape and stops conducting. Heath’s team 
placed molecules called rotaxanes, which function as 
molecular switches, at each junction of a circuit. By 
controlling the input voltages the scientists showed 
that they could make 16-bit memory circuits work. 
The field of moletronics was born.

As shown in Figure 1.32, rotaxanes are “mechani-
cally linked” molecules that consist of a dumbbell-
shaped molecule, with a cyclic molecule linked 
around it between the two ends. The two ends of 
the dumbbell molecule are very big and prevent the 
cyclic molecule from slipping off the end. A number 
of factors (e.g., charge, light, pH) can influence the 
position of the cyclic molecule on the dumbbell. 

The use of x-ray lithography in combination with 
electroplating and molding (or LIGA), introduced by 
Ehrfeld and his colleagues in 1982,29 demonstrated 
to the world that lithography may be merged with 
more traditional manufacturing processes to make 

master molds of unprecedented aspect ratios and 
tolerances to replicate microstructures in ceramics, 
plastics, and metals. The hard x-rays used enable 
nano-sized patterns to be printed.

At around 1997, Whitesides et al. introduced soft 
lithography, including the use of pattern transfer of 
self-assembled monolayers (SAMs) by elastomeric 
stamping.27 This technique formed a bridge between 
top-down and bottom-up machining; a master mold 
is made based on “traditional” lithography, and the 
stamp generated from this master is inked with 
SAMs to print (stamp) substrates with nano-sized 
patterns. 

Imposing boundaries on photons, by making 
them move in a material with a periodic dielectric 
constant in one, two, or three directions, leads to pho-
tonic crystals. Photonic crystals were first studied by 
Lord Rayleigh in 1887, in connection with the pecu-
liar reflective properties of a crystalline mineral with 
periodic “twinning” planes.48 He identified a narrow 
bandgap prohibiting light propagation through the 
planes. This bandgap was angle-dependent because 
of the differing periodicities experienced by light 
propagating at non-normal incidences, producing a 
reflected color that varies sharply with angle. A simi-
lar effect is seen in nature, such as in butterfly wings 
(Figure 1.33) and abalone shells.

A one-dimensional periodic structure, such as 
a multilayer film (a Bragg mirror), is the simplest 
type of photonic crystal, and Lord Rayleigh showed 
that any such one-dimensional system has a band-
gap. The possibility of two- and three-dimension-
ally periodic crystals with corresponding two- and 
three-dimensional bandgaps was suggested 100 

Off

On
(a) (b)

FIGURE 1.32 (a) A diagram of rotaxane. The usefulness of rotaxanes is because there are a number of positions along 
the dumbbell molecule that the cyclic molecule can attach to  temporarily. The dumbbell can be thought of as a train 
track, with the positions on the  dumbbell molecule as stations and the cyclic molecule as the train. (b) Crystal structure 
of rotaxane with a cyclobis(paraquat-p-phenylene) macrocycle.

http://www.bama.ua.edu/~rmmgroup
http://www.eng.yale.edu/reedlab
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years after Rayleigh by Eli Yablonovitch49 (http://
www.ee.ucla.edu/labs/photon/homepage.html) 
and Sajeev John50 (http://www.physics.utoronto.
ca/~john) in 1987. Yablonovitch (in 1991)51 demon-
strated the first microwave photonic bandgap (PBG) 
structure experimentally with 1-mm holes drilled 
in a dielectric material as illustrated in Figure 1.34 
and known today as yablonovite. Since then, several 
research groups verified this prediction, which has 
ignited a worldwide rush to build tiny “chips” that 
control light beams instead of electron streams. In 
photonic crystals the repeat unit in the lattice is 
of the same size as the incoming wavelength, so 
homogeneous (effective) media theory cannot be 

applied. Photonic crystals feature lattice spacings 
ranging from the macroscopic (say 1 mm, for oper-
ating in the microwave domain-like yablonovite) to 
the 100s of nanometer range (to operate in the vis-
ible range). We cover photonic crystals here under 
NEMS, although only photonic crystals for the vis-
ible range qualify as nanotechnology. The potential 
applications of photonics are limitless, not only as 
a tool for controlling quantum optical systems but 
also in more efficient miniature lasers for displays 
and telecommunications, in solar cells, LEDs, opti-
cal fibers, nanoscopic lasers, ultrawhite pigments, 
radiofrequency antennas and reflectors, photonic 
integrated circuits, etc.

In 1967 Victor Veselago, a Russian physicist, 
predicted that composite metamaterials might be 
engineered with negative magnetic permeability 
and negative permittivity.52 Metamaterials are arti-
ficially engineered materials possessing properties 
that are not encountered in nature. Whereas pho-
tonic materials do exist in nature, metamaterials 
do not; moreover, in the case of metamaterials, 
the building blocks are small compared with the 
incoming wavelength so that effective media the-
ory can be applied. In conventional materials the 
plane of the electrical field, the plane of the mag-
netic field, and the direction in which light travels 
are all oriented at right angles to each other and 
obey the right-hand rule. In Veselago’s imaginary 
metamaterial, the above quantities obey a left-hand 
rule (as if they were reflected in a mirror). These 
materials would interact with their environment 
in exactly the opposite way from natural materials 
(see negative refractive index water in Figure 1.35). 
One intriguing prediction was that the left-hand 
rule would allow for a flat superlens to focus light 
to a point and that could image with a resolution 
far beyond the diffraction limit associated with far-
field illumination. Veselago’s prediction that such 
perfect lenses could be made from metamaterials 
lay dormant until 1996–2000, when the remark-
able John Pendry, a physicist at Imperial College 
in London, showed that certain metals could be 
engineered to respond to electric fields as though 
the field parameters were negative.53–58 In 2001, 
researchers at Imperial College and Marconi Caswell 
Ltd. (London) announced a magnetic resonance 

2 cm

FIGURE 1.33 A full-grown Morpho rhetenor but-
terfly, a native to South America. (From University of 
Southhampton. Color by nanostructure instead of dyes.)

FIGURE 1.34 Holes drilled in dielectric: known now as 
yablonovite, after Yablonivitch (http://www.ee.ucla.
edu/~pbmuri). The holes are 1 mm in size, and this 
photonic crystal is meant to operate in the microwave 
range.

http://www.ee.ucla.edu/labs/photon/homepage.html
http://www.ee.ucla.edu/labs/photon/homepage.html
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imaging system using a magnetic metamate-
rial based on Pendry’s design.59 Physicist Richard 
Shelby’s group at the University of California, San 
Diego demonstrated a left-handed composite meta-
material that exhibited a negative index of refrac-
tion for microwaves.60 The simple arrangement 
consisted of a planar pattern of copper split-ring 
resonators (SRRs) and wires on a thin fiberglass 
circuit board. Operating in the microwave range 
these metal patterns are large (5 mm repeat unit) 
but progress toward metamaterials operating in the 
visible was very swift. By 2005, Zhang’s group at 
University of California, Berkeley made a 35-nm 
thick Ag superlens and imaged objects as small as 
40 nm with 365 nm light, clearly breaking the dif-
fraction limit of far-field imaging61 (find Zhang’s 
group at http://xlab.me.berkeley.edu). By 2007, a 
left-handed material operating in the visible range 
(780 nm) was demonstrated62 by Soukoulis (http://
cmpweb.ameslab.gov/personnel/soukoulis) at the 
U.S. Department of Energy’s Ames Laboratory on 
the Iowa State University campus and Wegener’s 
group from the University of Karlsruhe (http://
www.aph.uni-karlsruhe.de/wegener), Germany.

As in the case of photonic crystals, only the meta-
materials operating in the visible qualify as nano-
technology, but for comprehensiveness sake we 
cover all of them together here. 

In 2000, IBM scientists placed a magnetic cobalt 
atom inside an elliptical coral of atoms. They 
observed the Kondo effect, i.e., electrons near the 

atom align with the atom’s magnetic moment, effec-
tively canceling it out. When the atom was placed 
at one focus of the elliptical coral, a second Kondo 
effect was observed at the other focus, even though 
no atom was there (see Figure 1.36). Hence some of 
the properties (info) carried by an atom are trans-
ferred to the other focus (www.research.ibm.com). 
This quantum mirage effect “reflects” information 
using the wave nature of the electrons rather than 
transmission of info using electrons in a wire. It has 
the potential to be able to transfer data within future 
nanoscale electronic circuits where wires would not 
work. This would allow miniaturization of circuits 
well below what is envisioned today. 

FIGURE 1.35 Refraction illustrated (a) empty glass: no refraction; (b) typical refraction with  pencil in water with n = 1.3; 
(c) what would happen if the refractive index were negative with n = –1.3 (see metamaterials). (From Gennady Shvets, 
The University of Texas at Austin; http://www.ph.utexas.edu/~shvetsgr/lens.html.)

FIGURE 1.36 Quantum mirage phenomenon (http://
domino.research.ibm.com/comm/pr.nsf/pages/rsc. 
quantummirage.html).
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In 1999 President Clinton announced the National 
Nanotechnology Initiative (NNI); this first formal 
government program for nanotechnology acceler-
ated the pace of nano research (the program had 
been around unofficially since 1996). In December 
2003, George W. Bush signed the 21st Century 
Nanotechnology Research and Development Act. 
In this government NEMS program, Dr. Mike Roco 
(Figure 1.37) played a similar catalyzing role that 
Dr. Ken Gabriel played earlier in the MEMS field 
(see above). 

Two other important nanotech promoters are 
Ray Kurzweil (http://www.kurzweilai.net/index.
html) and K. Eric Drexel (http://www.foresight.
org). Whereas Feynman continues to receive almost 
universal praise for his inspiring 1959 speculative 
talk, K. Eric Drexel, who in 1981 described mecha-
nochemistry in his speculative paper “Molecular 
Engineering: An Approach to the Development of 
General Capabilities for Molecular Manipulation,” 
continues to receive mostly harsh criticism—
sometimes bordering on derision. In this paper 
and in two books,63,64 Drexel builds nanotech-
nology, bottom-up, atom by atom, rather than 
whittling down materials as Feynman had sug-
gested. Drexel also makes more of the fact that 
nature and molecular biology are proof of concept 
for this type of molecular technology. Drexel’s 

early warnings about “gray goo,” his emphasis on 
assemblers—small machines that would guide 
chemical bonding operations by manipulating 
reactive molecules—and building nanotechnol-
ogy in a dry environment probably explain most 
of the hostility toward his work (even by those 
who do not even make an attempt to understand 
it; see for example Atkinson65 in Nanocosm—we 
might as well listen to Newt Gingrich talk about 
nanotechnology). Drexel, unfortunately, has been 
associated too much with the nano pop culture. 
Nano! by Ed Regisis is an engaging and entertain-
ing book that describes some of the researchers 
involved in nanotechnology; he is uncharacteristi-
cally positive about Drexler.66

Market projections on NEMS are today even wilder 
than the early ones on MEMS. Overall, though, this 
author believes that it is in nanotechnology, espe-
cially when considering bottom-up manufacturing, 
that a paradigm shift away from IC-type manu-
facturing is taking shape, and that it is nanotech-
nology that holds the potential of having a much 
larger impact on society than IC technology ever 
did. Indeed, the nanoscale is unique because at this 
length scale important material properties, such as 
electronic conductivity, hardness, or melting point, 
start depending on the size of the chunk of material 
in a way they do not at any other scale. Moreover, 
in biotechnology, molecular engineering already 
has made major progress, and the confluence of 
miniaturization science and molecular engineering 
is perhaps the most powerful new avenue for prog-
ress of humankind in general. In this regard, NEMS 
must be seen as a support technology to extract 
yet more benefits from the ongoing biotechnology 
revolution. 

In Table 1.3 we show a milestone chart in nan-
otechnology. It can be argued that molecular 
scientists and genetic engineers were practicing 
nanotechnology long before the name became 
popular with electrical and mechanical engineers. 
Molecular biology or “wet nanotechnology” has 
been called “nanotechnology that works.” But add-
ing breakthroughs pertaining to molecular biol-
ogy to this table would make it much too long. For 
the same reason we also did not list any IC-related 
milestones.

FIGURE 1.37  NSF’s Dr. Mike Roco, a photo (a) and 
a  nanograph (b). The  nanograph of Dr. M. Roco was 
recorded at Oak Ridge National Laboratory using 
 piezoresponse force  microscopy, one of the mem-
bers of the family of techniques known as scanning 
probe  microscopy, which can image and manipulate 
materials on the nanoscale. Each  picture  element is 
approximately 50 nanometers in diameter; the distance 
from chin to  eyebrow is  approximately 2.5 microns. 
(Courtesy Dr. Roco.)

http://www.kurzweilai.net/index.html
http://www.kurzweilai.net/index.html
http://www.foresight.org
http://www.foresight.org
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TABLE 1.3 A Milestone Chart in Nanotechnology

3.5 billion years ago The first living cells emerge. Cells house nanoscale biomachines that perform such tasks as 
manipulating genetic material and supplying energy

400 BC Democritus coins the word “atom,” which means “not cleavable” in Greek
1857 Michael Faraday introduces “colloidal gold” to the Royal Society
1887 Photonic crystals are studied by Lord Rayleigh, in connection with the peculiar reflective 

properties of a crystalline mineral with periodic “twinning” planes48

1905 Albert Einstein publishes a paper that estimates the diameter of a sugar molecule as 1 nm. 
Jean-Baptist Perrin confirmed these results experimentally and was awarded the 1926 
Nobel Prize for this work

1931 Max Knoll and Ernst Ruska develop the electron microscope, which enables nanometer imaging
1932 Langmuir establishes the existence of monolayers (Nobel Prize in 1932)
1959 Richard Feynman gives his famed talk “There’s Plenty of Room at the Bottom,” on the 

prospects for miniaturization7

1967

Victor Veselago

Victor Veselago, a Russian physicist, predicted that composite metamaterials might be 
engineered with negative magnetic permeability and negative permittivity52

1968 Alfred Y. Cho and John Arthur of Bell Laboratories and their colleagues invent molecular-
beam epitaxy, a technique that can deposit single atomic layers on a surface

Early 1970s Groups at Bell Laboratories and IBM fabricate the first two-dimensional quantum wells
1974 Norio Taniguchi conceives the word nanotechnology to signify machining with tolerances 

of less than a micron
1974 Mark Ratner and Ari Aviram suggest using molecules as switches47

1980 The behavior of quantum dots began to be understood with work by the Russians 
Ekimov and Efros in 1980–1982.41,42 Louis E. Brus learned to grow CdSe nanocrystals in a 
controlled manner43,44

1980 Dendrimers (from the word dendron, Greek for tree) were invented, named, and patented 
by Dr. Donald Tomalia36

1981
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Gerd Binnig and Heinrich Rohrer create the scanning tunneling microscope, which can 
image individual atoms

Early 1980s The discovery, in the early 1980s, by David L. Allara and Ralph G. Nuzzo of the self-assembly 
of disulfide and, soon thereafter, of alkanethiol monolayers (SAMs) on metal surfaces

1982 The use of x-ray lithography in combination with electroplating and molding (or LIGA) is 
introduced by Ehrfeld and his colleagues29

1984 Pohl develops near-field scanning optical microscope (NSOM, also known as SNOM)33 
1985 Robert F. Curl, Jr., Harold W. Kroto, and Richard E. Smalley discover buckminsterfullerenes, 

also known as buckyballs, which measure about a nanometer in diameter39

(continued)
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TABLE 1.3 A Milestone Chart in Nanotechnology (Continued)
1986 Ashkin and colleagues reported the first observation of what is now commonly referred to 

as an optical trap, i.e., a tightly focused beam of light capable of holding microscopic 
particles stable in three dimensions38

1986 K. Eric Drexel publishes Engines of Creation, a futuristic book that popularizes 
nanotechnology

1987 The possibility of two- and three-dimensionally periodic crystals with corresponding two- 
and three-dimensional bandgaps was suggested 100 years after Rayleigh, by Eli 
Yablonovitch49 and Sajeev John50

1989 Donald M. Eigler of IBM writes the letters of his company’s name using 35 individual 
xenon atoms on a nickel surface (in high vacuum and at liquid helium temperatures)

1991 Yablonovitch52 demonstrates the first microwave photonic bandgap (PBG) structure 
experimentally (holes drilled in dielectric), known now as yablonovite

1991 Sumio Iijima of NEC in Tsukuba, Japan, discovers carbon nanotubes. The first single-walled 
nanotubes (SWNT) were produced in 1993

1993 The first high-quality quantum dots are synthesized by Murray, Norris, and Bawendi45,67

1993 Warren Robinett of the University of North Carolina and R. Stanley Williams of UCLA devise 
a virtual reality system connected to an STM that lets users see and touch atoms

1997 The first complete metal oxide semiconductor transistor (60 nm wide) is invented by 
Lucent Technologies. The key breakthrough was the 1.2-nm-thick gate oxide

1997 Whitesides et al.27 introduced soft lithography, including the use of pattern transfer of 
self-assembled monolayers (SAMs) by elastomeric stamping

1998 Cees Dekker’s group at the Delft University of Technology in the Netherlands creates a 
transistor from a carbon nanotube40

1999

OFF

ON

James Heath and Fraser Stoddart of UCLA (http://stoddart.chem.ucla.edu/) create 
rudimentary molecular switches, with molecules called rotaxanes, which function as 
molecular switches

1999 James M. Tour, now at Rice University, and Mark A. Reed of Yale University demonstrate 
that single molecules can act as molecular switches68

1999 The Clinton administration announces the National Nanotechnology Initiative, which 
provides a big boost in funding and gives the field greater visibility

1999 Thermomechanical memory device, unofficially known as “Millipede,” first demonstrated at 
IBM Zurich

2000 Eigler and other IBM scientists devise a quantum mirage—placing a magnetic atom at the 
focus of an elliptical ring of atoms creates a mirage atom at the other focus—transmitting 
info without wires

2000 John Pendry, a physicist at Imperial College in London, showed that certain metals could 
be engineered to respond to electric fields as though the field parameters were 
negative55

2001 Researchers at Imperial College and Marconi Caswell (London) announced a magnetic 
resonance imaging system using a magnetic metamaterial based on Pendry’s design59

2004 Physicists at the University of Manchester make graphene sheets69

2005 Zhang et al. demonstrate the near-field superlens—imaging objects in the tens of 
nanometer range with 365 nm light61

2007 The first left-handed material in the visible range62

http://www.stoddart.chem.ucla.edu/
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Appendix 1A: International Technology 
Roadmap for Semiconductors (ITRS)

The complete 2003 ITRS and past editions of the 
ITRS editions are available for viewing and print-
ing as an electronic document at http://public.itrs.
net. The International Technology Roadmap for 
Semiconductors (ITRS) predicts the main trends 
in the semiconductor industry spanning across 15 
years into the future. The participation of experts 
from Europe, Japan, Korea, and Taiwan as well as 
the United States ensures that the ITRS is a valid 
source of guidance for the semiconductor industry 
as it strives to extend the historical advancement of 
semiconductor technology and the worldwide inte-
grated circuit (IC) market. The 2003 ITRS edition, 
used as the source for the tables below, extends 
to the year 2018. The 2003 ITRS does not predict 
a further acceleration in the timing of introduc-
tion of new technologies as the industry struggles 
through the worst recession of its history during 
the past couple of years. As projected, though, the 
half-pitch of 90 nm (hp90 nm) for DRAMs was 
introduced in 2004 (Intel’s Prescott Pentium IV). 
Traditionally, the ITRS has focused on the con-
tinued scaling of CMOS (complementary metal-
 oxide-silicon) technology. By 2001, the horizon of 
the Roadmap started challenging the most opti-
mistic projections for continued scaling of CMOS 
(e.g., MOSFET channel lengths below 9 nm). By 
that time it also became difficult for most people 
in the semiconductor industry to imagine how 

one could continue to afford the historic trends of 
increase in process equipment and factory costs for 
another 15 years! Thus, the ITRS started address-
ing post-CMOS devices. The Roadmap became 
necessarily more diverse for these devices, rang-
ing from more familiar nonplanar CMOS devices 
to exotic new devices such as spintronics. Whether 
extensions of CMOS or radical new approaches, 
post-CMOS technologies must further reduce the 
cost per function and increase the performance of 
integrated circuits. Thus, new technologies may 
involve not only new devices but also new manu-
facturing paradigms.

The ITRS technology nodes in the table below 
are defined as the minimum metal pitch used on 
any product, for example, either DRAM half-pitch 
or Metal 1 (M1) half-pitch in Logic/MPU (see also 
figure below the tables). In 2003, DRAMs con-
tinue to have the smallest metal half-pitch; thus, 
it continues to represent the technology node. 
Commercially used numbers for the technology 
generations typically differ from the ITRS tech-
nology node numbers. However, the most reliable 
technology standard in the semiconductor industry 
is provided by the above definition, which is quite 
clear in that the patterning and processing (e.g., 
etching) capabilities of the technology are repre-
sented as the pitch of the minimum metal lines. 
The above definition is maintained not only for 
the 2003 version but also as a continuation from 
previous ITRS editions. Therefore, the official 2003 
ITRS metal hpXX node indicator has been added 
to differentiate the ITRS definition from com-
mercial technology generation numbers. Interim 
shrink-level node trend numbers are calculated 
and included for convenience of monitoring the 
internode progress of the industry.

Near-Term Years

Year of Production 2003 2004 2005 2006 2007 2008 2009

Technology node hp90 hp65
DRAM half-pitch (nm) 100 90 80 70 65 57 50
MPU/ASIC MI half-pitch (nm) 120 107 95 85 75 67 60
MPU/ASIC Poly Si half-pitch (nm) 107 90 80 70 65 57 50
MPU printed gate length (nm) 65 53 45 40 35 32 28
MPU physical gate length (nm) 45 37 32 28 25 22 20

http://www.public.itrs.net
http://www.public.itrs.net
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Appendix 1B: Worldwide IC and Electronic Equipment Sales

Long-Term Years

Year of Production 2010 2012 2013 2015 2016 2018

Technology node hp45 hp32 hp22
DRAM half-pitch (nm) 45 35 32 25 22 18
MPU/ASIC MI half-pitch (nm) 54 42 38 30 27 21
MPU/ASIC Poly Si half-pitch (nm) 45 35 32 25 22 18
MPU printed gate length (nm) 25 20 18 14 13 10
MPU physical gate length (nm) 18 14 13 10 9 7

DRAM ½ pitch
= DRAM metal pitch/2

Metal
pitch

Typical DRAM
metal bit line

MPU/ASIC poly silicon ½ pitch
= MPU/ASIC poly pitch/2

Poly
pitch

Typical MPU/ASIC
uncontacted poly

MPU/ASIC M1 ½ pitch
= MPU/ASIC M1 pitch/2

Metal 1
(M1)
pitch

Typical MPU/ASIC
contacted Metal 1

Amounts in US $M Year on Year Growth in %

2003 2004 2005 2006 2003 2004 2005 2006

Americas 32,330.7 39,514.2 41,734.6 40,089.1 3.4 22.2 5.6 −3.9
Europe 32,310.0 40,537.5 43,693.5 43,082.1 16.3 22.5 7.8 −1.4
Japan 38,942.2 47,822.9 51,066.8 50,306.9 27.7 22.8 6.8 −1.5
Asia Pacific 62,842.6 85,756.0 95,253.0 96,546.2 22.8 36.5 11.1 1.4
Total world* 166,425.5 213,630.6 231,748.0 230,024.4 18.3 28.4 8.5 −0.7
Discrete 
semiconductors

13,347.0 16,043.4 17,036.5 16,689.1 8.1 20.2 6.2 −2.0

Optoelectronics 9,544.7 13,100.8 14,851.7 15,281.2 40.6 37.3 13.4 2.9
Sensors and actuators 3,569.2 4,827.6 5,739.0 6,262.1 † 35.3 18.9 9.1
Integrated circuits 139,964.7 179,658.8 194,120.8 191,792.0 16.1 28.4 8.0 −1.2

Bipolar 216.8 239.7 200.8 150.6 −4.2 10.6 −16.3 −25.0
Analog 26,793.9 33,652.2 36,971.8 36,952.4 12.0 25.6 9.9 −0.1
Micro 43,526.1 52,412.0 57,218.6 57,564.8 14.3 20.4 9.2 0.6
Logic 36,921.9 46,421.3 50,631.8 49,571.9 18.1 25.7 9.1 −2.1
Memory 32,506.0 46,933.6 49,097.9 47,552.3 20.2 44.4 4.6 −3.1

Total products* 166,425.5 213,630.6 231,748.0 230,024.4 18.3 28.4 8.5 −0.7

* All numbers are displayed as rounded to one decimal place, but totals are calculated to three decimal places precision.
† WSTS included actuators in this category from 2003. Before only sensors were reported. Therefore, a growth rate is not meaningful 

to show.
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Questions

 1.1:  Why is silicon so important to MEMS and 
NEMS? 

 1.2:  Compare the pros and cons of transistors and 
vacuum tubes.

 1.3:  Why was the Si-MEMS market at one point in 
time expected to be much larger than the IC 
market?

 1.4:  Can you list some of the current technologi-
cal and economic barriers that restrict the 
wider commercialization of Si-MEMS?

 1.5:  (a) State Moore’s first law (we are talking 
about Moore, Intel’s cofounder). (b) What is 
Moore’s second law?

 1.6:  Why did surface micromachining catch on so 
fast with the IC industry?

 1.7:  Why are MEMS market forecasts so difficult 
to prepare? How would you go about making 
a better MEMS market forecast?

 1.8:  How does radar work? How is it useful?
 1.9:  What is the biggest advantage Ge has over Si 

IC circuits?
 1.10:  What is a strain gauge and what is its gauge 

factor?
 1.11: What is the definition of nanotechnology?

 1.12:  List at least five commercial products that 
incorporate nanotechnology.

 1.13:  What year was the word “nanotechnology” 
first used?

 1.14:  What was Feynman’s role in catalyzing the 
genesis of MEMS and NEMS? 

 1.15:  Why was the honeymoon with the transistor 
over so quickly? What technology took over 
very fast?

 1.16:  What does ITRS stand for? What does it 
mean?

 1.17:  List a number of nanostructures that have been 
fabricated with bottom-up methodologies.

 1.18:  What is a photonic crystal?
 1.19: What is a metamaterial?
 1.20:  What are the important differences between 

typical devices made in the IC industry and 
MEMS?
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Crystallography

Introduction

Crystallography is the science of analyzing the crystalline structure of 
materials. The spatial arrangement of atoms within a material plays a 
most important role in determining the precise properties of that mate-
rial. Based on the degree of order, materials are classified as amorphous, 
with no recognizable long-range order; polycrystalline, with randomly 
ordered domains (10 Å to a few μm); and single crystalline, where the 
entire solid is made up of repeating units in an orderly array. This clas-
sification is illustrated in Figure 2.1. Amorphous solids (e.g., glasses and 
plastics) are homogeneous and isotropic because there is no long-range 
order or periodicity in the internal arrangement. 

Many engineering materials are aggregates of small crystals of varying 
sizes and shapes. The size of the single-crystal grains may be as small as 
a few nanometers but could also be large enough to be seen by the naked 
eye. Regions between grains are called grain boundaries. These poly-
crystalline materials have properties determined by both the chemical 
nature of the individual crystals and their aggregate properties, such as 
size and shape distribution, and in the orientation relationships between 
them. In the case of thin polycrystalline films, material properties might 
deviate significantly from bulk crystalline behavior, as we discover in 

The designer Tokujin Yoshioka makes his Venus – Natural Crystal Chair by sub-
merging a block of polyester fibers in the shape of a straight-backed dining 
chair in a vat of water and then adding a mineral to crystallize it. (Courtesy of 
Mr. Tokujin Yoshioka.)
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Volume II, Chapter 7, where we deal with thin film 
properties and surface micromachining. In the case 
of nanoparticles, deviation from expected bulk 
theory is even more pronounced (see Chapter 3 on 
quantum mechanics and the band theory of solids 
in the current volume). The crystal structure of a 
nanoparticle is not necessarily the same as that of the 
bulk material. Nanoparticles of ruthenium (2–3 nm 
in diameter), for example, have body-centered cubic 
(lattice point at each corner plus one at the center; 
see below) and face-centered cubic structures (lattice 
points at each corner as well as in the centers of each 
face; see below) not found in bulk ruthenium. 

Most important, semiconductor devices are based 
on crystalline materials because of their reproduc-
ible and predictable electrical properties. Crystals 
are anisotropic—their properties vary with crystal 
orientation. In this chapter we explain the impor-
tance of the symmetry of point groups and space 
groups in determining, respectively, bulk physical 
properties and microscopic properties of crystal-
line solids, properties relied on for building minia-
turized electronics, sensors, and actuators. We also 
launch the concept of reciprocal space (also called 
Fourier space, k-space, or momentum space), clar-
ify the conditions for x-ray diffraction in terms of 
such a reciprocal space, and offer an introduction 
to Brillouin zones. All these elements are needed 
for our introduction to the band theory of solids in 
Chapter 3. We finish Chapter 2 with a description of 
crystal defects. 

Bravais Lattice, Unit Cells, and the Basis

Under special conditions almost every solid can be 
made into a crystal (helium is the only substance 
that does not form a solid). Atoms organize them-
selves into crystals because energy can be minimized 

that way. Any crystal lattice can be simplified to a 
three-dimensional (3D) array of periodically located 
points in space as shown in Figure 2.2 in the case 
of a two-dimensional (2D) crystal. Such a periodic 
array, specifying how the repeated units of a crys-
tal are arranged, is called a Bravais lattice. Bravais, in 
1848, demonstrated that there are only 14 ways of 
arranging points symmetrically in space that do not 
lead to voids in a crystal (in 2D there are only five 
such lattices). All crystalline materials, including 
nanomaterials, assume one of the 14 Bravais lattices. 
A real crystal can be described in terms of a Bravais 
lattice, with one specific atom (or ion) or a group of 
atoms (a molecule), called a basis, attached to each 
lattice point (Figure 2.2). The basis superposed on 
the Bravais lattice renders the complete crystal struc-
ture. The 3D Bravais lattice can be mathematically 
defined by three noncoplanar basis vectors, a1, a2, 
and a3, which are the three independent shortest 
vectors connecting lattice points. These vectors form 
a parallelepiped called a primitive cell, i.e., a cell that 
can reproduce the entire crystal lattice by translation 
alone. Such a primitive cell is a minimum volume 
cell with a density of only one lattice point per cell—
there are lattice points at each of the eight corners of 
the parallelepiped, but each corner point is shared 
among the eight cells that come together there (1/8 
of a point at each corner). The lattice translational 
vector r is given by: 

 r = n1a1 + n2a2 + n3a3  (2.1)

(a) Crystalline (b) Amorphous (c) Polycrystalline

FIGURE 2.1 Classification of materials as crystalline 
(a), amorphous (b), and polycrystalline (c). (Drawing by 
Mr. Chengwu Deng.) Crystal Lattice:

set of points with
identical environment

Primary building block:
the unit cell

FIGURE 2.2 Any crystal lattice can be simplified to a 
three-dimensional array of periodically located points in 
space. Such a periodic array, specifying how the repeated 
units of a crystal are arranged, is called a Bravais lattice. A 
real crystal is made up of a basis and a lattice. (Drawing by 
Mr. Chengwu Deng.)
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where n1, n2, and n3 are integers. A displacement of 
any lattice point by r will result in a new position in 
the lattice that has the same positional appearance 
as the original position. A lattice translation vector, 
r, as described in Equation 2.1, connects two points 
in the lattice that exhibit identical point symmetry. 

Nonprimitive unit cells or simple unit cells are 
also called conventional unit cells or crystallographic 
unit cells. They are not necessarily unique and need 
not be the smallest cell possible. Primitive cells are 
chosen with the shortest possible vectors, whereas 
unit cells are chosen for the highest symmetry and 
may contain more than one lattice point per cell. 
The unit cell in a lattice, like a primitive cell, is rep-
resentative of the entire lattice. The simplest unit cell 
belongs to a cubic lattice, which is further divided 
into simple cubic (SC), face-centered cubic (FCC), 
and body- centered cubic (BCC) as illustrated in 
Figure 2.3. 

An FCC lattice has the closest atomic packing, 
then BCC, and then SC. For a simple cubic crystal 
(SC) unit cell, as shown in Figure 2.3, a1 = a2 = a3, 
and the axes angles are α = β = γ = 90°. The dimen-
sion a (= a1 = a2 = a3) is known as the lattice constant. 
For SC the conventional unit cell coincides with the 
primitive cell. This is not true for FCC and BCC as 
we shall see in Figure 2.5 below.

The 14 possible Bravais lattices can be subdivided 
into 7 different “crystal classes” based on the choice 
of conventional unit cells. These 7 crystal classes are 
cubic, tetragonal, trigonal, hexagonal, monoclinic, 
orthorhombic, and triclinic. Each of these systems 
is characterized by a set of symmetry elements, and 

the more symmetry elements a crystal exhibits, 
obviously, the higher its symmetry. A cubic crystal 
has the highest possible symmetry and a triclinic 
crystal the lowest. The 14 Bravais lattices catego-
rized according to the 7 crystal systems are shown 
in Figure 2.4. 

A Wigner-Seitz cell is a primitive cell with the full 
symmetry of the Bravais lattice. It is an important 
construct for the understanding of Brillouin zones, 
the boundaries of which satisfy the Laue condi-
tions for diffraction (see below). To appreciate how 
Wigner-Seitz cells are constructed, we illustrate some 
simple examples for the case of two different types 
of 2D lattices in Figure 2.5. Lines are drawn passing 
through the middle points of dotted lines connect-
ing nearest neighbors. In 3D, the Wigner-Seitz cells 

1.  Simple cubic (SC)
a1 = a2 = a3
a1  a2 a3 a3

a2

a1Add one atom at the
center of the cubic

2. Body-centered cubic (BCC) 3. Face-centered cubic (FCC)

Add one atom
at the center of
each face

Conventional cell = primitive cell

Unit cell primitive cell

FIGURE 2.3 The simplest unit cell belongs to a cubic lat-
tice, which is further divided into: simple cubic (SC), face-
centered cubic (FCC), and body-centered cubic (BCC).

FIGURE 2.4 Conventional unit cells for the 14 Bravais lat-
tices arranged according to the 7 crystal systems. P means 
lattice points on corners only, C means lattice points on 
corners as well as centered on faces, F means lattice points 
on corners as well as in the centers of all faces, and lattice 
points on corners as well as in the center of the unit cell 
body are indicated by I.
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are polyhedra constructed about each atom by draw-
ing planes that are the perpendicular bisectors of the 
lines between nearest neighbors. The Wigner-Seitz 
cell about a lattice point is the region of space that 
is closer to that point than any other lattice point. 
Wigner-Seitz cells for FCC and BCC Bravais lattices 
are shown in Figure 2.6. In the same figure we also 

show conventional unit and primitive unit cells for 
these lattices. 

Point Groups and Space Groups

A lattice translation as described by Equation 2.1 is 
a type of symmetry operation where a displacement 
of a crystal parallel to itself carries the crystal struc-
ture into itself (Figure 2.7). 

Rotation and reflection or a combination of rota-
tion and reflection—a so-called compound sym-
metry operation—about various points are other 
symmetry operations that may “carry the crystal 
into itself” (see Figure 2.8). The point around which 
the symmetry operation is carried out may be a lat-
tice point or a special point within the elementary 
parallelepiped. There are five types of rotation axes 
possible, i.e., one- (360°), two- (180°), three- (120°), 
four- (90°), and sixfold (60°) rotation. One sees 
from Figure 2.8 why fivefold rotational symmetry 
does not occur in nature; it just cannot be stacked 
without leaving holes. This explains, for example, 
why we do not see ice crystals with a pentagon shape 
(Figure 2.9). Mirror reflection takes place about a 
plane through a lattice or special point. An inversion 
operation is an example of a compound symmetry 
operation and is achieved by rotation of π, followed 
by a reflection in a plane normal to the rotation axis; 
the effect is also illustrated in Figure 2.8. The col-
lection of point symmetry elements possessed by a 
crystal is called a point group and is defined as the 
collection of symmetry operations which, when 
applied about a point, leave the lattice invariant. 
There are 32 crystallographic point groups in all.

FIGURE 2.5 Wigner-Seitz primitive cells for two types of 
simple 2D lattices.

Body-centered cubic lattice (BCC) Face-centered cubic lattice (FCC)

Conventional cell: 2 atoms/cell Conventional cell: 4 atoms/cell 

Primitive unit cell: 1 atom/cell Primitive unit cell: 1 atom/cell 

Wigner-Seitz primitive
cell: 1 atom/cell 

Wigner-Seitz primitive
cell: 1 atom/cell 

FIGURE 2.6 Conventional unit cells, primitive unit cells, 
and Wigner-Seitz primitive cells for BCC and FCC lattices. 
The BCC Wigner-Seitz unit cell is a truncated octahedron. 
The FCC  Wigner-Seitz primitive unit cell is a rhombic 
dodecahedron. 

FIGURE 2.7 The drawing on the left (a) is crystal-like and 
can be carried into itself by a translation that is not pos-
sible in the figure on the right (b). The latter is missing a 
translation vector and is not crystal-like.
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The importance of the 32 point group symme-
tries and corresponding crystal classes is revealed 
by the important physical properties of crystalline 
solids they control, including electrical conductiv-
ity, thermal expansion, birefringence, piezoresis-
tance, susceptibility, elastic stiffness coefficient, etc. 
Some properties that depend on the direction along 
which they are measured relative to the crystal axes 
are listed in Table 2.1. This orientation dependence 
of physical and chemical properties is called anisot-
ropy. Anisotropy also explains why crystals do not 
grow into spheres but as polyhedra and why certain 
crystal directions etch faster than others. The reason 
for this anisotropy is the regular stacking of atoms 
in a crystal; as one passes along a given direction, 
one encounters atoms or groups of atoms at different 
intervals and from different angles than if one travels 
through the crystal from another direction. Single 
molecules in a liquid or a gas can also be anisotropic, 

but because they are free to move, liquids and gases 
are isotropic. In a crystal the anisotropy of atoms and 
groups of atoms is locked into the crystal structure. 
As a first example we consider a physical quantity 
such as current density J (column 4), and its cause 
the electrical field E (column 5). These quantities are 
linked, to a first approximation, in a linear relation-
ship described by a tensor equation:

 J = σE  (2.2)

One remembers that a tensor field represents a sin-
gle physical quantity that is associated with certain 
places in three-dimensional space and instants of 
time. The crystalline property, in column 1, is a ten-
sor field of the rank listed in column 2. Also recall 
that a scalar (e.g., mass, temperature, charge) is a 
tensor of zeroth rank, and a vector (e.g., position, 
velocity, flow of heat) is a tensor of first rank. Other 
quantities such as stress inside a solid or fluid may be 

Rotatation
2-fold

4-fold

3-fold

5-fold

6-fold

(a)

(b) (c) InversionMirror planes

1 full rotation of 360°
1

2 turns of 180° each
2

3 turns of 120° each
3

4 turns of 90° each
4

6 turns of 60° each
6

ii

1

FIGURE 2.8 Point symmetry operations: (a) rotation, (b) reflection, and (c) a compound symmetry operation: inversion. 
The latter is made up of a rotation of π followed by reflection in a plane normal to the rotation axis. This is also called 
inversion through a point (i). The symbol for the inversion axis is 1. 
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characterized by tensors of order two or higher. The 
physical properties listed in Table 2.1 are exploited 
to build electronics, sensors, and actuators in MEMS 
and NEMS. 

We elaborate a bit further here on the anisotropy 
of the electrical conductivity σ in a single crystal, 

where a causal or forcing term, the electrical field 
E, causes a current density J. Because both are vec-
tors, this case is referred to as a vector-vector effect. In 
general, the current vector may not have the same 
direction as the electric vector. Assuming a linear 
relationship between electrical field (cause) and 

TABLE 2.1 Linear Physical Properties of Solids

Property and Symbol
Rank of 
Tensor

Number of 
Independent 
Components

Dependent Physical 
Quantity Causal or Forcing Term

Pyroelectric coefficient p 1 3 Electric 
polarization dP

Temperature change dT

Conductivity σ 2 6 Current density J Field E
Resistivity ρ 2 6 Field E Current density J
Susceptibility χ 2 6 Electric polarization P Electric field E
Thermal expansion α 2 6 Strain ε Temperature change dT
Piezoelectric coefficient d 3 18 Electric polarization Ps Stress S
Elastic stiffness constants χ 4 21 Stress S Strain ε 
Elastic compliance σ 4 21 Stress ε Stress S
Piezoresistance π 4 21 Resistivity change ρ Stress S

Unfortunately, symbols customarily used for these properties do sometimes overlap.

FIGURE 2.9 Ice crystals. No pentagons are found in ice crystal stacking.
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current (effect), we can describe the components of 
the current relative to an arbitrarily chosen Cartesian 
coordinate system as:

 

J E E E

J E E E

J

x xx x y z

y yx x y z

z

xy xz

yy yz

zx x y zE E Ezy zz  

(2.3)

The quantities σik are components of a 3 × 3 “conduc-
tivity tensor.” The resistivity tensor ρ(= 1/σ) tensor, 
like the conductivity tensor, is a second rank tensor 
described by:

  E = ρJ  (2.4) 

Based on the basic symmetry of the equations of 
motion, Onsager demonstrated that the tensor is 
symmetric, i.e., σik = σki, so that the nine coefficients 
are always found to reduce to six. Taking advantage 
of this symmetry argument and multiplying the 
expressions in Equation 2.3 by Ex, Ey, and Ez, respec-
tively, one obtains on adding: 

 

J E J E J E E E E

E E

x x y y z z xx
2

x
2

y
2

z

x

yy zz

xy2 yy y z zx z xE E E E2 2yz  
(2.5)

To make the mixed terms on the right side of Equation 
2.5 disappear, one chooses a new coordinate system 
with the coordinates along the principal axes of the 
quadratic surface represented by this right-hand side 
(rhs) term, and in this new coordinate system one 
obtains: 

 J E J E ; J Ex 1 x y y z z; 2 3  (2.6)

where σ1, σ2, and σ3 are the principal conductivi-
ties. The current and field vectors only have the 
same direction when the applied field falls along 
any one of the principal axes of the crystal. From 
Equation 2.6, no matter how low the symmetry of 
a crystal, it can always be characterized by three 
conductivities (σ1, σ2, and σ3) or three specific resis-
tivities (ρ1, ρ2, and ρ3). In cubic crystals the three 
quantities are equal, and the specific resistivity 
does not vary with direction. In hexagonal, trigo-
nal, and tetragonal crystals, two of the three prin-
cipal conductivities (or resistivities) are the same. 
In such a case, the resistivity only depends on the 

angle θ between the direction in which ρ is mea-
sured and the hexagonal, trigonal, or tetragonal 
axis. One then finds:

 ρ(ϕ) = ρpersin2ϕ + ρparcos2ϕ (2.7)

where the subscripts stand for perpendicular and 
parallel to the axis. 

Another vector-vector effect example in Table 2.1 
is the one involving thermal conductivity, where a 
thermal current vector is caused by a thermal gra-
dient. Scalar-tensor effects lead to similar relations 
as vector-vector effects. For example, the deforma-
tion tensor of a solid resulting from a temperature 
change (scalar) involves three principal expansion 
coefficients, α1, α2, and α3. The latter will again all 
be equal in the case of a cubic crystal, and the angu-
lar dependence of α for hexagonal, trigonal, and tet-
ragonal crystals is given by an expression analogous 
to Equation 2.7.

A simple example of a scalar-vector effect from 
Table 2.1, illustrating the importance of crystal 
symmetry or lack thereof, involves pyroelectric-
ity (see first row in Table 2.1). Pyroelectricity is the 
ability of a material to spontaneously polarize and 
produce a voltage as a result of changes in tempera-
ture. It must be a change in temperature: incident 
light may heat a pyroelectric crystal, thus changing 
its dipole moment and causing current to flow, but 
because pyroelectrics respond to the rate of change 
of temperature only, the light or heat source must 
be pulsed or modulated! A pyroelectric is a ferroic 
material, i.e., a class of smart multifunctional mate-
rials having both sensing and actuating functions. 
Ferroic materials is a simplified term to represent 
ferroelastic, ferromagnetic, and ferroelectric mate-
rials. In pyroelectricity, the opposite faces of cer-
tain crystals [e.g., tourmaline (Na, Ca)(Li, Mg, Al)
(Al, Fe, Mn)6(BO3)3(Si6O18)(OH)4 the “Ceylon mag-
net,” ZnO, BaTiO3, and PbTiO3] become electrically 
charged as a result of a change in temperature. This 
is illustrated for tetragonal BaTiO3 in Figure 2.10. 
In Table 2.1 we consider the linear relationship 
between the electric polarization P (a vector) and 
a temperature change (a scalar). Electric polariza-
tion of materials is covered from a theoretical point 
of view in Chapter 5. For practical applications of 
pyroelectricity in actuator construction refer to 
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Volume III, Chapter 8. The crystalline property, 
the pyroelectric coefficient p, is a tensor of rank 
1 (a vector in other words). One can predict read-
ily that pyroelectricity only occurs in crystals that 
lack an inversion center or a center of symmetry, 
i.e., in noncentrosymmetric crystals with one or 
more polar axes. Indeed, one could not have a crys-
tal with one face positively charged and one nega-
tively charged—i.e., with a polar axis—as a result 
of a uniform change in temperature if these crystal 
faces were equivalent.

More complicated cases involve vector-tensor 
effects and tensor-tensor effects. Piezoelectricity is 
an example of a vector-tensor effect; an electric field 
(vector) causes a mechanical deformation (tensor). 
Elastic deformation under the influence of a stress 
tensor is an example of a tensor-tensor effect. These 
effects require many more constants than the simple 

examples presented above. In discussing actuators 
in Volume III, Chapter 8, we will find out that an 
increase in symmetry introduces major simplifica-
tions in the coefficient matrices and that to describe 
the tensors correctly the point-group symmetry of 
the crystal must be known.

The combined effects of rotation or reflections 
from the point groups with translation from the 
Bravais lattice results in two additional symmetries: 
screw axes and glide planes. A screw axis combines 
rotation and translation, and a glide plane combines 
reflection with translation (Figure 2.11). Considering 
the various combinations involving the 32 point 
groups, screw axes, and glide planes, as well as the 
different Bravais lattices, a total of 230 different pos-
sible “space groups” results. In protein crystals there 
are only 65 space groups because all natural products 
are chiral so that inversion and mirror symmetry 
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FIGURE 2.10 (A) In the pyroelectric crystal BaTiO3, P changes with temperature only when the material is in its tetrago-
nal state. Pyroelectricity only occurs in a crystal lacking an inversion center. This is clear from (B) (a). In cubic BaTiO3 the 
oxygen ions are at face centers; Ba2+ ions are at cube corners; and Ti4+ is at cube center. (B) (b) In tetragonal BaTiO3, the 
Ti4+ is off-center, and the unit cell has a net polarization. (Drawing by Mr. Chengwu Deng.) 
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operations are not allowed. A space group is a group 
that includes both the point symmetry elements and 
the translations of a crystal. These space groups are 
most important when studying the microscopic prop-
erties of solids. The space groups for most inorganic 
substances are known and can be found in tables 
in the Inorganic Crystal Structure Database (ICSD). 
These tables make it possible to calculate the exact 
distances and angles between different atoms in a 
crystal. The external shape of a crystal is referred to 
as the habit. Not all crystals have well-defined exter-
nal faces. Natural faces always have low indices, i.e., 
their orientation can be described by Miller indices 
that are small integers as introduced next. The faces 
that we see are the lowest energy faces as the surface 
energy is minimized during growth. 

Miller Indices

To identify a plane or a direction in a crystal, a set of 
integers h, k, and l, called the Miller indices, are widely 
used. To determine the Miller indices of a plane, one 
takes the intercept of that plane with the axes and 
expresses these intercepts as multiples of the base 
vectors a1, a2, and a3. The reciprocal of these three 
integers is taken, and, to obtain whole numbers, the 

three reciprocals are multiplied by the smallest com-
mon denominator. The resulting set of numbers is 
written down as (hkl). By taking the reciprocal of the 
intercepts, infinities (∞) are avoided in plane iden-
tification. Parentheses or braces are used to specify 
planes. 

The rules for determining the Miller indices of a 
direction or an orientation in a crystal are as follows: 
translate the orientation to the origin of the unit cell, 
and take the normalized coordinates of its other ver-
tex. For example, the body diagonal in a cubic lattice 
as shown in the right-most panel in Figure 2.12 is 1a, 
1a, and 1a or the [111] direction. The Miller indices 
for a direction are thus established using the same 
procedure for finding the components of a vector. 
Brackets or carets specify directions. 

Directions [100], [010], and [001] are all crystal-
lographically equivalent and are jointly referred to 
as the family, form, or group of <100> directions. A 
form, group, or family of faces that bear like relation-
ships to the crystallographic axes—e.g., the planes 
(001), (100), (010), (001), (100), and (010))—are all 
equivalent, and they are marked as {100} planes 
(see Figure 2.13). A summary of the typical repre-
sentation for Miller indices is shown in Table 2.2. 
The orientation of a plane is defined by the direction 

C/3
C/3

a/2 a/2 a

g

b

2C/3
height

0,C

3-fold axes

120°
120°

C

Mirror
Glide

(a) (b)

FIGURE 2.11 Example of a screw axis and a glide plane. (a) N-fold screw axes C: a  combination of a rotation of 360°/n 
around C and a translation by an integer of C/n. (b) Glide plane: a  translation parallel to the glide plane g by a/2.
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FIGURE 2.12 Miller indices for planes and directions in an SC cubic crystal. Shaded planes are from left to right (100), 
(110), and (111). (Drawing by Mr. Chengwu Deng.)
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of a normal to the plane or the vector product 
(A × B = C). For a cubic crystal (such as silicon or 
gallium arsenide), the plane (hkl) is perpendicular 
to the direction [hkl]. In other words, the indices of a 
plane are the same numbers used to specify the nor-
mal to the plane. Using a simple cubic lattice as an 
example, you can check that crystal planes with the 
smallest Miller indices, such as {100}, {110}, {111}, 
have the largest density of atoms. Usually crystals 
are cleaved along these planes and are grown in 
directions perpendicular to them.

When one comes across more complicated planes 
than the ones considered above, the mathemati-
cal vector algebra approach to calculate the Miller 
indices becomes useful. For examples, consider the 
plane in Figure 2.14, defined by three points P1, P2, 
and P3, where P1: (400), P2: (020), and P3: (003).

Step 1. Define the following vectors: 

 r = xa1 + ya2 + za3 

 r1 = 4a1 + 0a2 + 0a3 

 r2 = 0a1 + 2a2 + 0a3  (2.8) 

 r3 = 0a1 + 0a2 + 3a3 

and find the differences:

 r − r1 = (x − 4) a1 + (y − 0) a2 + (z − 0) a3

 r2 − r1 = (0 − 4) a1 + (2 − 0) a2 + (0 − 0) a3 (2.9)

 r3 − r1 = (0 − 4) a1 + (0 − 0) a2 + (3 − 0) a3

Step 2. Calculate the scalar triple product of these 
three vectors [A ∙ (B × C)], which in this case is a 
plane and its volume is zero because the vectors are 
coplanar [A ∙ (B × C) = 0]:

 (r − r1)∙[(r2 − r1) × (r3 − r1)] = 0 (2.10) 

For vectors A, B, C with coordinates (A1, A2, A3), (B1, 
B2, B3), and (C1, C2, C3), the requirement in Equation 
2.10 is equivalent to:

AA BB CC

A A A

B B B

C C C

A (B C B C )

A (B

1 2 3

1 2 3

1 2 3

1 2 3 3 2

2 33 1 1 3 3 1 2 2 1C B C ) A (B C B C ) (2.11)

For our example this leads to:

 

x 4 y z

4 2 0

4 0 3

x 4)6 12y 8z 0

or 3x 6y 4z

(

112  

Once we have the equation for the plane, we easily 
find the Miller indices.
Step 3. Determine the Miller indices. 

 1. The intercepts with the axes: x = 4 (for y = z = 0), 
y = 2 (for x = z = 0), and z = 3 (for x = y = 0)

 2. The reciprocals 1/4, 1/2, and 1/3, or
 3. The Miller indices for the plane are (364) 

(010) on side face

(001) on bottom face

(100) on back face

(100)

a1
a2

a3

(001)

(010)

FIGURE 2.13 Miller indices for the planes of the {100} 
family of planes.

TABLE 2.2 Miller Indices Symbols

Notation Interpretation

(hkl ) Crystal plane
{hkl } Equivalent planes
[hkl ] Crystal direction
<hkl> Equivalent directions

(364) plane

1 2 3 4 y

x
4

3
2

1

1

2

3
4z

FIGURE 2.14 The (364) plane in a SC cubic lattice.
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Adjacent planes (hkl) in a simple cubic crystal 
are spaced a distance dhkl from each other, with dhkl 
given by:

 
d

a

h k l
hkl

2 2 2
 

(2.12)

 where a is the lattice constant. Equation 2.12 pro-
vides the magnitude of dhkl and follows from simple 
analytic geometry. To generalize this expression, 
notice that for a plane (hkl) with hx + ky + lz = a, the 
distance from any point (x1, y1, z1) to this plane is: 

 

d =
hx k y lz a

h k l
hkl

1 1 1

2 2 2
1
2

 

(2.13)

Hence when that point is at origin (0, 0, 0) we find 
Equation 2.12 back.

Example 2.1: With a  ◾ = 5 Å, we find d = a = 5 Å 

for (100) planes and d = a/ 2 = 3.535 Å for 
(110) planes. 

Because a, b = |a||b| cos θ the angle between plane 
(h1, k1, l1) and plane (h2, k2, l2) can be calculated as: 

 
cos

h h k k l l

h k l h k l
1 2 1 2 1 2

1
2

1
2

1
2

2
2

2
2

2
2

( )

 
(2.14)

Example 2.2: The angle between  ◾ a (100) 
and a (111) plane is cos θ = 1/ 1 3 = 0.58 or 
θ = 54.74°.

X-Ray Analysis

Introduction

X-ray analysis reveals the symmetries of crystals 
(lattice type), distances between atomic planes (lat-
tice parameter), the positions of atoms in crystals, 
the types of atoms from the intensities of diffracted 
x-rays, and the degree of crystallinity (ordering). To 
perform x-ray crystallography, it is necessary to grow 
crystals with edges of around 0.1–0.3 mm. This is 
usually not a problem for inorganic materials, but 
in the case of organic materials, such as proteins (for 
example, see the crystal structure of the GFP protein 

in Figure 7.108) and nucleic acids (see x-ray diffrac-
tion image in Figure 2.17), it often is a challenge: 
imagine trying to crystallize a molecule with 10,000 
atoms! A crystallographer must combine ingenuity 
and patience to trick these molecules into crystal-
lizing. In this section we learn about diffraction and 
the all-important Bragg and Laue x-ray diffraction 
laws and how the latter are used to deduce the 3D 
structure of molecules. 

Fourier Transforms

Diffraction forms the basis for x-ray crystallogra-
phy. The first step toward interpreting diffraction 
patterns was a mathematical trick discovered by 
the French mathematician Joseph Fourier, who in 
1807 introduced Fourier transforms for solving heat 
conduction problems. The result of a Fourier trans-
form is that periodic functions in the time domain, 
e.g., light waves, can be completely characterized 
by information in the frequency domain, i.e., by 
frequencies and amplitudes of sine, cosine func-
tions. Fourier analysis provides us with the tools to 
express most functions as a superposition of sine 
and cosine waves of varying frequency. For periodic 
signals a discrete sum of sines/cosines of different 
frequencies is multiplied by a different weighting 
coefficient in a so-called Fourier series (FS). For 
nonperiodic functions, one needs a continuous 
set of frequencies so the integral of sines/cosines is 
multiplied by a weighting function in a so-called 
Fourier transform (FT) (Figure 2.15). One impor-
tant property of Fourier transforms is that they 
can be inverted. If you apply a Fourier transform 
to some function, you can take the result and run 
it through an inverse Fourier transform to get the 
original function back. The inverse Fourier trans-
form is essentially just another Fourier transform. 
Fourier and inverse Fourier transforms, which take 
the signal back and forth between time and fre-
quency domains, are:

 From time to frequency: xX f t e( ) ( )
1

2
2 iiftdt 

  (2.15)

 From frequency to time: x t
1

X f e i( ) ( )
2

2 fftdf  

  (2.16)
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In Chapter 5 we will see that the formation of an 
image, according to Abbe’s theory, is a two-stage, 
double-diffraction process: an image is the diffrac-
tion pattern of the diffraction pattern of an object. 
In x-ray diffraction there is no lens to focus the 
x-rays, so we have to use a computer to reassemble 
the image: the x-ray diffraction patterns from a crys-
tal are related to the object diffracting the waves 
through a Fourier transform. 

Fourier transforms are actually even more gen-
eral than revealed here: a FT allows for a description 
given in one particular “space” to be transformed 
to a description in the reciprocal of that space, and 
time-frequency transformation is just one example. 
It is interesting to note that strong criticism by peers 
blocked publication of Fourier’s work until 1822 
(Theorie Analytique De La Chaleur). Today, Fourier 
analysis is used in GSM (global system for mobile 
communications)/cellular phones, most DSP (digital 

signal processing)-based applications, music, audio, 
accelerator control, image processing, x-ray spec-
trometry, chemical analysis (FT spectrometry), radar 
design, PET scanners, CAT scans and MRI, speech 
analysis (e.g., voice- activated “devices,” biometry), 
and even stock market analysis.

X-Ray Diffraction

Introduction

Wilhelm Conrad Roentgen discovered x-rays in 1895 
and received the Nobel Prize in Physics in 1901 for 
his discovery. X-rays are scattered by the electrons in 
atoms because electromagnetic radiation (including 
x-rays) interacts with matter through its fluctuating 
electric field, which accelerates charged particles. 
You can think of electrons oscillating in posi-
tion and, through their accelerations, re-emitting 
electromagnetic radiation. The scattered radiation 

Signal

(a)

(b)

Fourier series Spectrum

Signal x(t)

Rectangular pulse

Triangular pulse

A

Fourier transform X(f ) Spectrum

f 3f 5f 7f 9f

f0 3f 5f

f0 3f 5f

f 3f 5f 7f 9f

Square wave (4A/ ) [cos(2 ft) (1/3)cos(2 (3f)t)
+(1/5)cos(2 (5f)t) (1/7)cos(2 (7f)t)
+...]

(8A/ ) [cos(2 ft)+(1/9)cos(2 (3f)t)
+(1/25)cos(2 (5f)t)+...]

A

t0

T

A

Triangular wave

A

t

t

0

0

A

0

/2 /2

t

T

A

A
sin( f )

f

A
sin( f ) 2

f

FIGURE 2.15 (a) For periodic signals a discrete sum of sines/cosines of different frequencies is multiplied by a 
 different weighing coefficient in a so-called Fourier series (FS). (b) For nonperiodic functions, one needs a continu-
ous set of  frequencies so the integral of sines/cosines is multiplied by a weighting function in a so-called Fourier 
transform (FT).
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interferes both constructively and destructively, pro-
ducing a diffraction pattern that can be recorded on 
a photographic plate. For x-rays, electrons, and neu-
trons incident on a single crystal, diffraction occurs 
because of interference between waves scattered 
elastically from the atoms in the crystal. Intensity 
of scattered radiation is proportional to the square 
of the charge/mass ratio, and the proton is about 
2000 times as massive as the electron. Because elec-
trons have a much higher charge-to-mass ratio than 
atomic nuclei or even protons, they are much more 
efficient in this process. With x-rays the interaction 
is with the electron mantle of the atoms. In the 
case of electron beams, say in an electron micro-
scope, scattering is from both the electron mantle 
and the atom nuclei, and neutrons interact with the 
nucleus only.

The final result of a crystallographic experiment 
is not a picture of the atoms, but a map of the distri-
bution of electrons in the molecule, i.e., an electron 
density map (Figure 2.16). Because the electrons are 
mostly tightly localized around the nuclei, the elec-
tron density map gives us a pretty good picture of 
the molecule. As we do not have a lens we do not get 
the electron density map directly; the x-ray diffrac-
tion patterns from a crystal are related to the object 
diffracting the waves through a Fourier transform. 

If one thinks of electron density as a mathemati-
cal function: 

 ρ(x, y, z) (2.17)

with x, y, z indices for real space, then the diffrac-
tion pattern is the Fourier transform of that electron 
density function and given as: 

 F(hkl) = T[ρ(x, y, z)] (2.18)

where F(hkl) is the structure factor (a scattered wave, 
therefore a complex number with amplitude and 
phase) with hkl indices in reciprocal space, and T is 
the forward Fourier transform of ρ(x, y, z). As we saw 
in Equation 2.16, the reverse relationship holds also, 
namely:

 ρ(x, y, z) = T −1 {T[ρ(x, y, z)]} (2.19)

where T −1 is the inverse Fourier transform. This 
expression tells us that the inverse Fourier transform 
of the Fourier transform of an object is the original 
object. The latter is a rewording of Abbe’s treat-
ment of image generation as presented in Chapter 5. 
The intensity in an x-ray diffraction photograph 
is the square of the amplitude of the diffracted 
waves, |F(X)|2, or the recorded diffraction pattern 
of an object is the square of the Fourier transform 
of that object. In a diffraction pattern, each point 
arises from the interference of rays scattered from all 
irradiated portions of the object. To determine the 
image, one must measure or calculate the structure 
factor F(X) at many or all points of the diffraction 
pattern. Each F(X) is described by an amplitude and 
a phase, but in recording the intensity of the dif-
fracted x-rays, the phase information is lost. This is 
referred to as the phase problem. X-ray phases could 
be obtained directly if it were possible to rediffract 
(focus) the scattered rays with an x-ray lens to form 
an image; unfortunately, an x-ray lens does not exist. 
With x-rays we can thus detect diffraction from mol-
ecules, but we have to use a computer to reassemble 
an image as shown in Figure 2.16. The process is 
summarized in Figure 2.17. We will now learn how 
the x-ray diffraction pattern, F(X), comes about and 
how the expected intensities in the diffraction pat-
tern are calculated to solve Equation 2.19, i.e., how 
to reconstitute the image that led to the measured 
x-ray diffraction pattern. 

Bragg’s Law

In 1913 W.H. and W.L. Bragg (a father and son 
team) proposed that the condition for constructive 

FIGURE 2.16 Electron density map of adenosine triphos-
phate (ATP).
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specular reflection of x-rays from a set of crystal 
planes separated by a distance dhkl could be repre-
sented as:

 2dhkl sin θ = nλ (2.20)

This expression basically tells us that construc-
tive interference of waves reflected by successive 
crystal planes occurs whenever the path difference 
(2dhklsin θ) is an integral multiple (n) of the wave-
length λ. Also, for each (hkl) family of planes, x-rays 
will only diffract at one angle θ. The integer n is 
known as the order of the corresponding reflection. 
Because Bragg reflection can only occur for λ ≤ 2d, 
one needs x-rays with wavelengths in the Ångstrom 
range to resolve crystal planes. The Bragg equation 
is easily derived from an inspection of Figure 2.18. 
Bragg’s law is a result of the periodicity of the lattice 
with the atoms in the crystal basis controlling the 
relative intensity of the various orders (n) of diffrac-
tion from a set of parallel (hkl) planes. This basic 
equation is the starting point for understanding 
crystal diffraction of x-rays, electrons, neutrons, and 
any other particles that have a de Broglie wavelength 

(Chapter 3) less than the interatomic spacing. 
Although the reflection from each plane is specular, 
only for certain values of θ will the reflections from 
all planes add up in phase to give a strong reflected 
beam. Each plane reflects only 10−3 to 10−5 of the 
incident radiation, i.e., it is not a perfect reflector. 
Hence, 103 to 105 planes contribute to the formation 
of the Bragg-reflected beam in a perfect crystal.

The composition of the basis determines the rela-
tive intensity of the various orders of diffraction.

Laue Equations 

In 1912 von Laue predicted that diffraction patterns 
of x-rays on crystals would be entirely analogous 
to the diffraction of light by an optical grating.* In 
the von Laue approach there is no ad hoc assump-
tion of specular reflection, as in the case of Bragg’s 
law. Instead, this more general approach considers a 
crystal as composed of sets of ions or atoms at the 
sites of a Bravais lattice that reradiate the incoming 
x-rays. For both optical gratings and crystals only 
the repeat distances of the periodic structure and 
the wavelength of the radiation determine the dif-
fraction angles. 

Let us inquire first into the interference condi-
tions for waves originating from different but iden-
tical atoms in a single row—the one-dimensional 
diffraction case. The scattering atoms in a line form 
secondary, coherent x-ray sources (scattering from 
two atoms is shown in Figure 2.19). 

* We will encounter the diffraction of light by an optical grating again 
in Volume II, Chapter 1 on photolithography, where we discuss pat-
terning of a photoresist with UV light, using a mask with a grating 
structure on it.

FIGURE 2.17 With x-rays, we can detect diffraction from molecules, but we have to use a  computer to reassemble the 
electron density/molecular structure image.

Incident
beam

Reflected
beam

Lower plane

Upper plane

d sin 

d

FIGURE 2.18 Schematic used to derive the Bragg equation.
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Constructive interference will occur in a direction 
such that contributions from each lattice point differ 
in phase by 2π. This is illustrated for the scattering of 
an incident x-ray beam by a row of identical atoms 
with lattice spacing a1 in Figure 2.20. The direction 
of the incident beam is indicated by wave vector 
k0 or the angle α0, and the scattered beam is speci-
fied by the direction of k or the angle α. Because 
we assume elastic scattering, the two wave vectors k0 
and k have the same magnitude, i.e., 2π/λ but with 
differing direction. A plane wave* eik.r is constant in 
a plane perpendicular to k and is periodic parallel to 
it, with a wavelength λ = 2π/k (see Appendix 2A). The 
path difference A1B − A2C in Figure 2.20 must equal 
eλ with e = 0, 1, 2, 3, …. For a fixed incident x-ray 
with wavelength λ and direction k, and an integer 
value of e, there is only one possible scattering angle 
α defining a cone of rays drawn about a line through 

* The complex exponential representation for periodic functions is 
convenient for adding waves, taking derivatives of wave functions, 
and so on. It is equivalent to a linear combination of a sine and cosine 
function, because eiθ = cosθ + i sinθ (Euler) (see also Appendix 2A).

the lattice points (see Figure 2.20). Because crystals 
are periodic in three directions, the Laue equations 
in 3D are then:
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For constructive interference from a three-dimen-
sional lattice to occur, the three equations above must 
all be satisfied simultaneously, i.e., six angles α, β, γ, 
a, α0, β0, and γ0; three lattice lengths a1, a2, and a3; 
and three integers (e, f, and g) are fixed. Multiplying 
both sides of Equation 2.21 with 2π/λ and rewriting 
the expression in vector notation we obtain:
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(2.22)

with a1, a2, and a3 being the primitive vectors of 
the crystal lattice. When two of the conditions in 
Equation 2.22 are met, one entire plane array scat-
ters in phase. This is depicted in Figure 2.21, where 
two cones of allowed diffracted rays are depicted. 
The two conditions are met simultaneously only in 
two directions along which the cones intersect. To 
satisfy all three Laue equations simultaneously, the 
diffracted beam can only have one allowed direc-
tion because three cones can mutually intersect 
along only one line. 

FIGURE 2.19 Two scattering atoms act as coherent 
 secondary sources.

C

k
A1

A2

k0

a1

B

0

FIGURE 2.20 Scattering of an incident x-ray beam 
(incident direction is k0) by a row of identical atoms with 
lattice spacing a1. The scattered beam is specified by the 
direction k. The path difference A1B − A2C must equal eλ, 
with e = 0,1,2,3,.... (Drawing by Mr. Chengwu Deng.)

a

a

k
k

k

FIGURE 2.21 Each Laue condition produces a cone of 
allowed rays. In a plane array the entire plane scatters 
in phase in two directions. These two directions are 
along the intersection of the two cones. (Drawing by 
Mr. Chengwu Deng.)
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If we further define a vector Δk = k − k0, Equation 
2.22 simplifies to:
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e
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g  

(2.23)

Dealing with 12 variables for each reflection 
simultaneously [six angles (α, β, γ, a, α0, β0, and 
γ0), three lattice lengths (a1, a2 and a3), and three 
integers (e, f, and g)] is a handful; this is the main 
reason why the Laue equations are rarely referred 
to directly, and a simpler representation is used 
instead. The reflecting conditions can indeed be 
described more simply by the Bragg equation. 
Historically, von Laue (Figure 2.22) developed 
his equations first; it was one year after his work 
that the father and son team William Henry and 
William Lawrence Bragg (Figure 2.23) introduced 

the simpler Bragg’s law. Max von Laue and the 
Braggs received the Nobel Prize in Physics in 1914 
and 1915, respectively.

Further below we will learn that constructive 
interference of diffracted x-rays will occur provided 
that the change in wave vector, Δk = k − k0, is a vec-
tor of the reciprocal lattice. 

Bragg’s law is equivalent to the Laue equations 
in one dimension as can be appreciated from an 
inspection of Figures 2.24 and 2.25, where we use 
a two-dimensional crystal for simplicity. Suppose 
that vector Δk in Figure 2.24 satisfies the Laue con-
dition; because incident and scattered waves have 
the same magnitude (elastic scattering), it follows 
that incoming (k0) and reflected rays (k) make the 
same angle θ with the plane perpendicular to Δk. 

k

–k0

k = k – k0

Reflecting plane

FIGURE 2.24 In case of mirror-like Bragg reflection, the 
vector ∆k, the summation of the unit vectors representing 
incoming (k0) and reflected rays (k), is normal to the plane 
that intersects the 2θ angle between them. (Drawing by 
Mr. Chengwu Deng.) 

a

a

a a

FIGURE 2.25 Connecting Bragg's law with Laue equations 
and Miller indices. (Drawing by Mr. Chengwu Deng.)

FIGURE 2.23 Father and son Bragg: Sir William Henry and 
William Lawrence Bragg. 

FIGURE 2.22 Max von Laue (1897–1960). 
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The magnitude of vector Δk, from Figure 2.24, is 
then given as:

 k k2 sin  (2.24)

We now derive the relation between the reflecting 
planes to which Δk is normal and the lattice planes 
with a spacing dhkl (see Figure 2.25 and Bragg’s law 
in Equation 2.20). The normal unit vector n̂hk and 
the interplanar spacing dhk in Figure 2.25 character-
ize the crystal planes (hk). From Equation 2.23 we 
deduce that the direction cosines of Δk, with respect 
to the crystallographic axes, are proportional to e/a1, 
f/a2, and g/a3 or:

 e/a1:f/a2:g/a3  (2.25)

From the definition of the Miller indices, an (hkl) 
plane intersects the crystallographic axes at the 
points a1/h, a2/k, and a3/l, and the unit vector n̂hkl, 
normal to the (hkl) plane, has direction cosines pro-
portional to: 

 h/a1, k/a2, and l/a3   (2.26)

Comparing Equations 2.25 and 2.26 we see that Δk 
and the unit normal vector n̂hkl have the same direc-
tions; all that is required is that e = nh, f = nk, and 
g = nl, where n is a constant. The factor n is the larg-
est common factor of the integers e, f, and g and is 
itself an integer. From the above, Laue’s equations 
can also be interpreted as reflection from the h,k,l 
planes. From Figure 2.25 it can be seen that the 
spacing between the (hk) planes, and by extension 
between (hkl) planes, is given as*:

 
dhkl

ˆ ˆ ˆn a n a n ahkl 1 hkl 2 hkl 3

h k l  
(2.27)

Because Δk is in the direction of the normal n̂hkl and 
comes with a magnitude given by Equation 2.24, we 
obtain Bragg’s law from the Laue’s equations as:

 a k a n1 1 hklˆ 2k sin e2  (2.28)

or:

 
hd ehkl

4
2sin

 
(2.29)

* Notice that in the case of a cubic crystal, Equation 2.27 can be simpli-
fied to give the distance between planes as in Equation 2.12.

and with e = nh: 

 2d nhkl sin  (2.30)

In the Bragg equation we treat x-ray diffraction from 
a crystal as a reflection from reciprocal lattice planes 
rather than scattering from atoms. This construction 
has fewer variables than the Laue equations because 
reflections are wholly represented in two dimen-
sions only. 

In Figure 2.26 we reproduce what is possibly the 
most famous x-ray diffraction photograph. It was this 
photograph—photo 51 of DNA taken by Rosalind 
Franklin and R.G. Gosling—that convinced Watson 
and Crick that the DNA molecule was helical. The 
discovery of the double helix followed soon after, as 
well as an enduring controversy that Franklin prob-
ably did not get the credit she deserved in the eluci-
dation of the DNA structure. 

X-Ray Intensity and Structure Factor F(hkl)

So far we have considered only the condition for dif-
fraction from simple lattices for which only corner 
points of the unit cell are occupied. The intensity of 
a beam diffracted from an actual crystal will depend 
on the grouping of atoms in the unit cell and on the 
scattering power of these atoms. In this section we 
discuss the intensity and phase of the diffracted rays 
and the structure factor, F(hkl). If we treat the inci-
dent x-ray waves as plane waves and the atoms as 
ideal point scatterers, the scattered waves are spheri-
cal waves (Figure 2.19) close to the source, i.e., near-
field or Fresnel diffraction patterns form at finite 

FIGURE 2.26 Sodium deoxyribose nucleate from calf thy-
mus. (Structure B, Photo 51, taken by Rosalind E. Franklin 
and R.G. Gosling.) Linus Pauling’s annotations are to the 
right of the photo (May 2, 1952).
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distances from the crystal and Fraunhofer diffrac-
tion patterns at infinity (far-field). In a typical x-ray 
diffraction experiment, a Fraunhofer diffraction 
pattern is registered at about 50 to 150 mm behind 
the specimen. This distance is relatively large com-
pared to the size of the diffracting crystal unit cell 
(~1–50 nm in dimension) and the wavelength of the 
incident radiation (typically 1.54178 Å for Cu Kα 
and 0.71073 Mo Kα). Thus, x-ray diffraction meth-
ods provide a direct way to display the decompo-
sition of x-rays in component waves (frequencies), 
and for this reason x-ray diffraction may be called 
spatial frequency spectrum analysis or harmonic analy-
sis. Near-field and far-field optics are compared in 
more detail in Chapter 5. 

The number of scattered x-ray photons picked up 
by the detector results in an intensity proportional 
to the square of the amplitude (peak height) of the 
diffracted waves. The scattering intensity depends 
on the number and distribution of electrons associ-
ated with the scattering atoms in the basis, i.e., the 
structure factor F(hkl). The phase of the diffracted 
rays is the relative time of arrival of the scattered 
radiation at a particular point in space, say at the 
emulsion of a photographic film. The phase infor-
mation is lost when the x-ray diffraction pattern is 
recorded on the film—one could say that the film 
integrates intensity over time—in other words, we 
cannot measure x-ray phases directly. When using 
a lens such as in a microscope, light first strikes the 
imaged object and is diffracted in various directions. 
The lens then collects the diffracted rays and reas-
sembles them to form an image. The phase problem 
is a major concern in structure analysis as we need 
both intensity and phase to feed into the Fourier 
transform. Today several techniques exist to regen-
erate the lost phase information of x-ray diffraction, 
but the topic falls outside the scope of this book. 
We need to extract the structure factor F(hkl) from 
the intensities and phase of the diffraction spots 
and then do an inverse Fourier transform (T −1) to 
obtain the crystal structure/electron density func-
tion, ρ(x, y, z) (see Figure 2.17). 

We now mathematically derive the intensity pro-
file of x-rays scattered from a crystal. The result, as 
Laue predicted, is the same as for visible light dif-
fracted from an optical grating. When an incident 

x-ray beam travels inside a crystal, we assume that 
the beam is not much influenced by the presence of 
the crystal; in other words, the refractive index for 
x-rays is close to unity, and there is not much loss of 
energy from the beam through scattering, i.e., elas-
tic scattering dominates! 

With reference to Figure 2.27, we assume two 
parallel plane x-ray waves of wavelength λ and fre-
quency v (hence velocity c = λv), scattered elastically 
from two nearby atoms A and B of identical scatter-
ing density. The wave vector for the incoming wave 
is k0 and that of the diffracted beam is k. Because we 
assume elastic scattering: 

 |k0| = |k| = k = 2π/λ (2.31) 

Scattering atom A is at the origin, and scattering 
atom B is at a distance r away from the origin. The 
path difference, or phase factor, between the waves 
can be calculated from Figure 2.27 as:

  p + q = r·(k − k0) = r·Δk (2.32)

The equations for the wave amplitudes are (for those 
readers less familiar with wave equations, consult 
Appendix 2A for more details):
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where A is the amplitude and f is the atomic scatter-
ing factor defined as the ratio of the amplitude of an 
electromagnetic wave scattered by atom A and that 

p q
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FIGURE 2.27 Scattering of x-rays from two nearby atoms 
A and B with identical scattering  density. (Drawing by 
Mr. Chengwu Deng.) 
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of a wave scattered by a free electron. The position 
of the detector with respect to atom A is given by lA, 
and the position of the detector relative to atom B is 
lB. The product r ⋅ Δk is the phase factor we calculated 
in Equation 2.32. Generalizing, an x-ray wave scat-
tered from the jth atom in a crystal is:
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j
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where rj is the position of scatterer j relative to scat-
terer A, and lj is the position of the detector with 
respect to scatterer j. The total scattered wave ampli-
tude at the detector is the sum of all the contributing 
atoms:
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(2.36)

For a small sample, the distances lj are all about 
the same (the crystal is small compared to the dis-
tance between it and the detector), so in Equation 
2.36 we can replace lj with L. 

Constructive and destructive interference bet-
ween the scattered waves that reach the detector is 
the result of the sum of all scatterers and the scat-
tering vector, Δk, and determines where the detector 
should be put. The term F(hkl): 
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from the expression 2.36 for the wave amplitude, is 
the geometrical structure factor. It is defined, in anal-
ogy with the atomic scattering factor, as the ratio of 
the amplitude of the wave scattered by all atoms in a 
unit cell and that scattered by a free electron for the 
same incident beam. It incorporates the scattering 
of all atoms of the unit cell and sums up the extent 
to which interference of the waves scattered from 
atoms within the basis diminishes the intensity of 
the diffraction peaks. So even if the Laue condition 
is met, the structure factor may be zero and no dif-
fraction will be observed. In the case that there is 
only one type of atom in the basis, the atomic scat-
tering factor fj disappears (fj = 1)—identical atoms 
have identical scattering factors. 

Assume now a crystal with base vectors a1, a2, and 
a3 and a total number of atoms along each axis of M, 
N, and P, respectively, and also accept that there is 
only a single atom at each lattice point (i.e., fj = 1), 
then the amplitude of the total wave will be propor-
tional to:
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The intensity of the scattered wave is the square of 
the wave amplitude, and taking the value of one of 
the sums in Equation 2.38 for a crystal of dimension 
Ma1 in the direction of a1, we obtain:
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This is the same result as the light intensity profile 
expected from an M-slit diffraction grating (see 
Chapter 5 on photonics). If M is large (~108 for a 
macroscopic crystal), it has very narrow, intense 
peaks. Between the peaks the intensity is essentially 
zero. In Figure 2.28 we have plotted y = sin2Mx/sin2x. 
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This function is virtually zero except at the points 
where x = nπ (n is an integer including zero), where 
it rises to the maximum value of M2. The width of 
the peaks and the prominence of the ripples are 
inversely proportional to M. 

Remember that there are three sums in Equation 
2.38. For simplicity we only evaluated one sum to 
calculate the intensity in Equation 2.39. The total 
intensity equals:
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(2.40)

so that the diffracted intensity will equal zero unless 
all three quotients in Equation 2.40 take on their 
maximum values at the same time. This means that 
the three arguments of the sine terms in the denomi-
nators must be simultaneously equal to integer mul-
tiples of 2π, or the peaks occur only when: 
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These are, of course, the familiar Laue equations. As 
we will see below, to solve for the wave vector Δk 
it is very convenient to introduce the concept of a 

reciprocal lattice so that the set of all wave vectors 
Δk yields plane waves with the periodicity of a given 
Bravais lattice. 

From the above, the intensity of the x-ray diffrac-
tion is:
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So what we measure from the x-ray film is intensity I, 
and the dependence of that intensity on the atomic 
position follows from the Fourier expansion of the 
electron density function in Equation 2.17:
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where F(hkl) is the coefficient to be determined, 
and h, k, and l are integers over which the series 
is summed. Because of the 3D periodicity, a triple 
summation is required: 
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If we knew all the F(hkl) values, we could calculate 
the electron density, and vice versa. Unfortunately, 
as remarked above, Equation 2.42 requires values 
of F(hkl), but the measured intensities only give us 
|F(hkl)|2. The apparent impasse is known as the phase 
problem and arises because we need to know both 
the amplitude and the phase of the diffracted waves 
to compute the inverse Fourier transform. 

Reciprocal Space, Fourier Space, 
k-Space, or Momentum Space

Introduction

The crystal lattice discussed above is a lattice in real 
space. Practice has shown the usefulness of defin-
ing a lattice in reciprocal space for the interpretation 
of diffraction patterns of single crystals, the simple 
reason being that a diffraction pattern reveals the 
reciprocal lattice. We did already consider some 
reciprocal features when we introduced the Miller 
indices, which are derived as the reciprocal of the 
unit cell intercepts. Because the lattice distances 

y

x
x = 0 x = x = 2

FIGURE 2.28 Graphical presentation of y = sin2Mx/sin2x. 
The width of the peaks and the prominence of the ripples 
are inversely proportional to M.
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between planes are proportional to the reciprocal of 
the distances in the real crystal (i.e., they are pro-
portional to 1/dhkl), the array is called a reciprocal 
lattice. We will learn in this section that the condi-
tion for nonzero intensity in scattered x-rays is that 
the scattering vector Δk = k − k0 is a translation vec-
tor, Ghkl, of the reciprocal lattice, i.e., Δk = Ghkl. One 
can describe a reciprocal lattice the same way we 
describe a real one, but one must keep in mind that 
in one case the points are the position of real objects 
(atoms or the base), whereas in the other case they 
mark the positions of abstract points—magnitude 
and direction of momentum. Reciprocal space, also 
called Fourier space, k-space, or momentum space, 
plays a fundamental role in most analytical studies 
of periodic structures. After the introduction of the 
reciprocal lattice we will discuss the conditions for 
x-ray diffraction in terms of such a lattice and end 
with an introduction to Brillouin zones. The con-
cepts introduced here are not only needed to under-
stand x-ray diffraction better, they also are required 
preparation for Chapter 3, where we deal with band 
theory of solids. 

The Reciprocal Lattice

Graphical Presentation of the Reciprocal Lattice

Before introducing a reciprocal lattice mathemati-
cally, let us learn how to draw one as we demonstrate 
in Figure 2.29. In this example we start with the two-
dimensional unit cell of a monoclinic crystal with 
a1 and a2 in the plane of the paper. The figure also 
shows the edges of four (hkl) planes: (100), (110), 
(120), and (010). These planes all are perpendicular 
to the face of the paper. To construct the reciprocal 
lattice we draw from a common origin a normal to 
each plane. Next we place a point on the normal to 
each plane (hkl) at a distance 2π/dhkl from the ori-
gin. Each of the points thus obtained maintains the 
important features of the stack of parallel planes it 
represents. The direction of the point from the origin 
preserves the orientation of the planes, and the dis-
tance of the point from the origin preserves the inter-
planar distance. A doubling of the periodicity in real 
space will produce twice as many diffraction spots in 
reciprocal space. It is convenient to let the reciprocal 
lattice vector, Ghkl, be 2π times the reciprocal of the 

interplanar distance, dhkl. This convention converts 
the units from periods per unit length to radians per 
unit length. This simplifies comparison of different 
periodic phenomena, e.g., a crystal lattice and light 
that interacts with it. For instance, Δk, the wave vec-
tor, has an absolute value of 2π/λ. If we choose this 
scaling factor, we are able to compare the two values 
directly, and all it really does in our drawing is to 
expand the size of the reciprocal lattice. 

Definition of the Reciprocal Lattice

Now that we can draw a reciprocal lattice in 2D, let 
us define what a reciprocal lattice is. Imagine a set 
of points R constituting a Bravais lattice and a plane 
wave, eik·r, interacting with that lattice. For most val-
ues of k, a plane wave will not have the periodicity 
of the Bravais lattice of points R. Only a very special 
set of the wave vectors, GG aa aa aahhkkll 11

**
22
**

33
**h k l , 

of the reciprocal lattice satisfies that condition. 
Mathematically, Ghkl belongs to the reciprocal lattice 
of points R of the Bravais lattice, if the relation:

 e ei ( + )G r R iG rhkl hkl

 (2.44)

holds for any r, and for all R in the Bravais lattice. 
From Equation 2.44 it follows that we can describe 
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FIGURE 2.29 Graphical construction of the reciprocal 
 lattice. (Drawing by Mr. Chengwu Deng.)



58   Solid-State Physics, Fluidics, and Analytical Techniques in Micro- and Nanotechnology

the reciprocal lattice as the set of wave vectors Ghkl 
satisfying:

 eiG Rkh l 1 (2.45)

for all R in the Bravais lattice. Because lattice scatterers 
are displaced from one another by the lattice vectors 
R, the condition that all scattered rays interfere con-
structively is that the Laue equations hold simultane-
ously for all values of Bravais lattice vectors R, or: 

  R · Δk = 2πm (2.46)

with integer m. Because exp[i2π(integer)] = 1, this 
can be written in the equivalent form:

 eiR ⋅ Δk = 1  (2.47)

We see from Equation 2.47 that if Δk is equal to any 
reciprocal lattice vector Ghkl, then the Laue equa-
tions for wave diffraction are satisfied. The diffrac-
tion condition is thus simply: 

 Δk Ghkl (2.48)

or from Equation 2.23 (with e = h, f = k and g = l):
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The expression Δk = Ghkl can be represented in the 
form of a vector triangle as illustrated in Figure 2.30. 
Because k and k0 are of equal length, i.e. 2π/λ, the 
triangle O, O’, O’’ has two equal sides. The angle 
between k and k0 is 2θ, and the hkl plane dissects it. 

In the two-dimensional reciprocal lattice shown 
at the bottom of Figure 2.31, the Ghkl vectors give the 
outline of the unit cell. Vector a*

1 = G100 and a*
3 = G001 

and:
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The angle β* between the reciprocal lattice vectors 
in Figure 2.31 is the complement of β in the Bravais 
lattice.

The components of any vector referred to the 
reciprocal lattice represent the Miller indices of a 
plane whose normal is along that vector, whereas 
the spacing of the plane is given by the inverse of 
the magnitude of that vector multiplied by 2π. For 
example, the reciprocal lattice vector u* = [123] is 
normal to the planes with Miller indices (123) and 
has an interplanar spacing 2π/|u*|.

Explicit Algorithm for Constructing 
the Reciprocal Lattice

We can write out the change in wave vector, Ghkl = 
Δk = k − k0, in the following expression:

 Ghkl = Δk = ea*
1 + fa*

2 + ga*
3 (2.51)

where e, f, and g are the integers from the Laue equa-
tions (Equation 2.23) and a*

1, a*
2 and a*

3 are basis 
vectors of the reciprocal lattice to be determined. 
Equation 2.51 is a solution of the Laue Equation 2.23 
if all of the following relations are satisfied:
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From Equation 2.52, a*
1 is perpendicular to primitive 

lattice vectors a2 and a3 of the direct lattice. A vector 

(hkl) plane O

O´

O˝

k = Ghkl

k0

k0

k

FIGURE 2.30 Vector triangle representation of ∆k = Ghkl. 
(Drawing by Mr. Chengwu Deng.)
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FIGURE 2.31 Reciprocal lattice vectors a1
* = G100 and a3

* = 
G001 in a monoclinic unit cell and their relation to the 
Bravais lattice. (Drawing by Mr. Chengwu Deng.)
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that is perpendicular to a2 and a3 is given by the vec-
tor product a2 × a3. To construct a*

1 of the reciprocal 
lattice completely, we must normalize a2 × a3 to sat-
isfy the expression a*

1 ⋅ a1 = 2π. All the equations in 
2.52 are thus satisfied when choosing: 
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The denominators have been written the same way 
because of the property of the triple scalar product: 
a1 ⋅ a2 × a3 = a2 ⋅ a3 × a1 = a3 ⋅ a1 × a2. The magnitude 
of this triple product is the volume of the primitive 
cell. In Table 2.3 we summarize the properties of a 
Bravais lattice before and after a Fourier transform.

The Ewald Construction

The Ewald construction is a way to visualize the 
Laue condition that the change in wave vector, Δk, 
must be a vector of the reciprocal lattice. We recon-
sider for a moment the vector representation of the 
von Laue condition Δk = Ghkl represented in the 
form of a vector triangle in Figure 2.30. Because k 
and k0 are of equal length (= 2π/λ) the triangle O, O’, 
O’’ has two equal sides, and we can draw a sphere 
with |k| = |k0| = 2π/λ as illustrated in Figure 2.32. 
The angle between k and k0 is 2θ, and the hkl plane 
dissects it. Diffraction of the incoming beam rep-
resented by the vector k0 giving the vector k may 
be thought of as reflection from the dotted line in 
this diagram (as in Bragg’s Law). We will now see 
that with Δk = Ghkl the diffraction vector corre-
sponds to the distance between planes in reciprocal 
space. We thus superimpose an imaginary sphere of 
x-ray radiation on the reciprocal lattice as illustrated 

in Figure 2.32. Somewhat confusingly, one might 
consider two origins: O, which is the center of the 
sphere and may be considered as the position of the 
crystal, is the source of the secondary beam k, and 
O’ is the origin of reciprocal space, the origin of the 
diffraction vector Δk = Ghkl, and the center of the 
reciprocal lattice. As the crystal rotates, the recip-
rocal lattice rotates in exactly the same way. Any 
points in reciprocal space that intersect the surface 
of the sphere reveals where diffraction peaks will be 
observed if the structure factor is nonzero. In other 
words, reflection is only observed if the sphere inter-
sects a point where Δk = Ghkl. The diffraction angle, 
θ, is then half the angle between the incident and 
diffracted wave vectors. 

It is useful to think of the crystal at the center of 
the Ewald sphere (O) being linked to the center (ori-
gin) of the reciprocal lattice (O’) by something like 
a bicycle chain—the two “objects” rotate exactly in 
step with each other. 

The Ewald construction also makes for a good link 
with the Brillouin zones discussed in the next sec-
tion. Notice in Figure 2.32 that both Ghkl and −Ghkl are 
vectors in reciprocal space. It can be seen that a reflect-
ing plane bisects the vector Ghkl at Ghkl/2 and another 
reflecting plane cuts −Ghkl at −Ghkl/2. The incident 
wave vector k0 starting from the Ewald circle’s center 
O must terminate at the −Ghkl/2 reflecting plane for 

TABLE 2.3 Bravais Lattice after Fourier Transform

Real Space Fourier Space

Normals to the planes (vectors) Points
Spacing between planes 2π/distance planes
λ is distance, wavelength 2π/λ is momentum or 

wave number
First Brillouin zone (see below) Wigner-Seitz cell

Reflecting planes

O˝

O´

k0

k

O

Ghkl

–Ghkl

FIGURE 2.32 The reciprocal lattice and the geometry 
of diffraction clarified by the Ewald sphere. The sphere 
with center O intersects the reciprocal lattice center O’. 
(Drawing by Mr. Chengwu Deng.)
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diffraction to occur. This observation gives rise to 
the idea of using the reciprocal lattice to construct 
Brillouin zones, the boundaries of which satisfy the 
Laue conditions for diffraction. Bragg planes bisect 
the lines joining the origin to points of the reciprocal 
lattice, and one can define the first Brillouin zone as 
the set of points that can be reached from the origin 
without crossing any other Bragg planes. Recall that 
this was also the way we learned how to construct 
Wigner-Seitz cells. So the first Brillouin zone is the 
Wigner-Seitz cell of the reciprocal lattice. 

Brillouin Zones

Leon Brillouin (1889–1969) was a French-American 
physicist who was a professor at the Sorbonne, Collège 
de France, Wisconsin, Columbia, and Harvard. He 
also worked briefly at IBM. In the previous section 

we used the Ewald sphere (Figure 2.32) as a way to 
introduce the important concept of Brillouin zones. 
A Brillouin zone is defined as a Wigner-Seitz cell in 
the reciprocal lattice and gives a geometric inter-
pretation of the diffraction condition. The Wigner-
Seitz cell of the reciprocal lattice is the set of points 
laying closer to Δk = 0 than to any other recipro-
cal lattice point. The Brillouin construction exhibits 
all wave vectors k that can be Bragg reflected by the 
crystal. The constructions divide the Fourier space 
into zones, out of which the first Brillouin zone is of 
greatest importance. 

We have just seen that x-ray waves traveling in 
a crystal lattice undergo Bragg reflection at certain 
wave vectors. The first Brillouin zone is the set of 
points in k-space that can be reached from the ori-
gin without crossing any Bragg reflection plane. The 
second Brillouin zone is the set of points that can 
be reached from the first zone by crossing only one 
Bragg plane. The nth Brillouin zone can be defined 
as the set of points that can be reached from the 
origin by crossing n − 1 Bragg planes, but no fewer. 
Each Brillouin zone is a primitive cell of the recipro-
cal lattice. In Figure 2.33 we illustrate the first four 
Brillouin zones in square and triangular two-dimen-
sional Bravais lattices. For examples of 3D Wigner-
Seitz cells, corresponding to Brillouin zones, see 
Figures 2.6 and 2.34. 

Nothing Is Perfect 

Even a crystal having a mass of less than 0.1 g is likely 
to have more than 1023 ions, and it is unrealistic to 
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FIGURE 2.33 The Brillouin zones for (a) a square 2D lattice and (b) a triangular 2D lattice. The solid circles are the lattice 
points, and the dashed lines are the Bragg lines. The first four Brillouin zones are marked with different gray scales.

Lattice real space

BCC Wigner-Seitz cell BCC BZ (FCC lattice in k-space)

FCC Wigner-Seitz cell FCC BZ (BCC lattice in k-space)

Lattice k-space

FIGURE 2.34 The Wigner-Seitz cell of BCC lattice in real 
space transforms to a Brillouin zone in an FCC lattice in 
reciprocal space, whereas the Wigner-Seitz cell of an FCC 
lattice transforms to a Brillouin zone of a BCC lattice in 
reciprocal space.
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expect that the growth of such crystal from solu-
tion can lead to zero impurities or imperfections. 
Successive purification steps may remove impuri-
ties, but even in the purest crystal, thermodynam-
ics predicts the existence of some structural intrinsic 
imperfections. There are at least four types of defects 
one distinguishes: 1) point defects where the irreg-
ularity in structure extends over only a few atoms 
in size (0D), 2) linear defects where the irregularity 
extends across a single row of atoms (1D), 3) pla-
nar defects with an irregularity extending across 
a plane of atoms (2D), and 4) volumetric defects 
with the irregularity taking place over 3D clusters 
of atoms. In addition, defects can be categorized as 
either intrinsic, where defects are induced because 
of physical laws, and extrinsic, where defects are 
present because of the environment and/or process-
ing conditions. 

A physical law imposing the presence of intrinsic 
defects in a crystal is the minimization of the Gibbs 
free energy (G). The Gibbs free energy is higher in a 
crystal without vacancies than one with vacancies 
(G = H − TS = minimum). This is because defects 
are energetically unfavorable but are entropically 
favorable. Formation of vacancies (n) does indeed 
increase the enthalphy H of the crystal because of 
the energy required to break bonds (ΔH = nΔHf), but 
vacancies also increase S of the crystal as a result of 
an increase in configurational entropy. The configu-
rational entropy is given as:

 S = klnW (2.54)

where W is the number of microstates. If the num-
ber of atoms in the crystal is N and the number of 
vacancies is n, then the total number of sites is n + N, 
and the number of all possible microstates W may 
be calculated from:

 
W

(N n)!
n!N!  

(2.55)

and the increase in entropy ΔS is then given by:

 
S klnW kln

(N n)!
n!N!  

(2.56)

and the total free energy change as:

 G n H T Sf  (2.57)

This expression is plotted in Figure 2.35. It can be 
seen that for a crystal in equilibrium, vacancies are 
required to be present at any temperature above 0 K. 
The equilibrium concentration neq is calculated from: 
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n n neq
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(2.58)

or we obtain:
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(2.59)

so the neq should increase with increasing tem-
perature. For Al, ΔHf = 0.70 eV/vacancy and for Ni, 
ΔHf = 1.74 eV/vacancy, leading to the values for neq/N 
at three different temperatures as shown in Table 2.4.

Defects, even in very small concentrations, can 
have a dramatic impact on the properties of a mate-
rial. Actually, without defects solid-state electronic 
devices could not exist, metals would be much 
stronger, ceramics would be much tougher, and 
some crystals would have no color. Vacancies even 
make a small contribution to the thermal expansion 
of a crystal. Some commonly observed defects are 
summarized in Table 2.5; they are categorized here 
as point defects (0D), line defects (1D), and plane 
defects (2D). 

The simplest sorts of defects are those based on 
points (0D). In Figure 2.36 we review point defects, 
including vacancies, interstitial atoms, small and 

G H

G

T S

H = n HfG of a
perfect
crystal

neq n

 = H T S

FIGURE 2.35 Change in Gibbs free energy G of a crystal 
as a result of the number of vacancies n.

TABLE 2.4 neq/N Values for Al and Ni at Three Different 
Temperatures

neq/N 0 K 300 K 900 K

Al 0 1.45 10−12 1.12 10−4

Ni 0 5.59 10−30 1.78 10−10
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large substitutional atoms, and the intrinsic Frenkel 
and Schottky defects. 

A missing atom is a vacancy; a dissimilar atom in a 
nonlattice spot is an interstitial; and a different atom 
in a lattice position is substitutional. Vacancies are 
required in ionic solids, just like they are in metals, 
but the vacancies must be formed in such a way that 
the solid remains charge neutral. The two main ways 

to create point defects in ionic solids without causing 
a charge imbalance are through correlated vacancies 
(Schottky defects, for the German who described 
them in 1930) and through correlated vacancy/
interstitial pairs (Frenkel defects, for the Russian 
who first described them in 1924). Impurities, such 
as dopants in single-crystal Si (see Chapter 4), are 
atom(s) of a type that do not belong in the perfect 
crystal structure. An impurity atom in a pure crys-
tal will generally raise the enthalpy (H) somewhat 
and increase the entropy (S = klnW) a lot. In other 
words, there will always be some impurities pres-
ent for the same reason as vacancies form in a pure 
crystal. When doping a crystal we introduce impuri-
ties on purpose (see Chapter 4), perhaps turning the 
material into an extrinsic semiconductor. Because of 
defects, metal oxides may also act as semiconduc-
tors. Some nonstoichiometric solids are engineered 
to be n-type or p-type semiconductors. Nickel oxide 
(NiO) gains oxygen on heating in air, producing 
Ni3+ sites acting as electron traps, resulting in p-type 
semiconductor behavior. On the other hand, ZnO 
loses oxygen on heating, and the excess Zn metal 
atoms in the sample are ready to donate electrons, 
leading to n-type semiconductor behavior.

Color centers are imperfections in crystals that 
cause color. The simplest color center is found in 
sodium chloride, normally a colorless crystal. When 
sodium chloride is bombarded with high-energy 
radiation, a Cl− can be ejected, creating a vacancy. 
Momentarily the crystal is no longer electrically neu-
tral, and to regain stability, it grabs an available elec-
tron and sticks it in the vacancy previously occupied 
by the ejected Cl−. With the electron replacing the 
ejected Cl−, there are now equal numbers of positive 
and negative charges in the crystal, and the electron 
is held firmly in its site by the surrounding positively 
charged Na+ ions. This process turns the colorless salt 
crystal into an orange/brown. These electrons are 
color centers, often referred to as F-centers, from the 
German word Farben, meaning color. The color cen-
ter can also exist in an excited state, and the energy 
needed to reach that excited state is equal to the 
energy of a visible photon. The color center absorbs 
a “violet” photon, causing a jump to the excited 
state, and the crystal appears with the color orange/
brown (the complement of violet). Analogous color 

TABLE 2.5 Common Defects in Crystals

Type of Imperfection Description

Point defects:

Interstitial Extra atom in an interstitial site

Schottky defect Atom missing from correct site
Frenkel defect Atom displaced to interstitial 

site creating nearby vacancy

Line defects:
Edge dislocations Row of atoms marking edge of a 

crystallographic plane extending 
only part way in crystal

Screw dislocations Row of atoms about which a 
normal crystallographic plane 
appears to be spiral

Plane defects:
Lineage boundary Boundary between two 

adjacent perfect regions in the 
same crystal that are slightly 
tilted with respect to each 
other

Grain boundary Boundary between two crystals 
in a polycrystalline solid

Stacking fault Boundary between two parts of 
a closest packing having 
alternate stacking sequences

(a) (b) (c)

(d) (e) (f )

– – ––
– – –

–
– – –

–

+

+ + +
++

+ + +

+ +

FIGURE 2.36 Point defects: vacancy (a), interstitial atom 
(b), small (c) and large (d) substitutional atom, Frenkel (e), 
and Schottky defect (f).
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centers occur in several minerals. For example, a 
diamond with C vacancies (missing carbon atoms) 
absorbs light, and these centers lead to a green color 
(Figure 2.37). In some cases, impurities are involved 
in forming the color centers. Replacement of Al3+ for 
Si4+ in quartz gives rise to the color of smoky quartz 
(Figure 2.37). An iron impurity is responsible for the 
violet color in amethyst through the creation of a 
color center. The color center, not the iron impurity, 
is responsible for absorbing the “yellow” photon that 
makes amethyst violet (Figure 2.37). 

Line defects are 1D imperfections in a crystal 
structure in which a row of atoms has a local struc-
ture that differs from the surrounding crystal. These 
defects are extrinsic because their presence is not 
required by thermodynamics. They are created by 
material processing conditions and by mechanical 
forces acting on the material. In a typical material, 
about 5 of every 100 million atoms (0.000005%) 
belong to a line defect. Line defects or dislocations 
have a dramatic impact on the mechanical properties 
of metals and some ceramics. Two Hungarians, Egon 
Orowan and Michael Polanyi, and an Englishman, 
G.I. Taylor, discovered dislocations in 1934. As we 
will see, dislocations really govern the mechanical 
properties of solids, and their discovery was a very 
important milestone in the material science field. 
There are two pure types of dislocations, edge dis-
locations and screw dislocations, but sometimes a 
mixed type is displayed. An edge dislocation is the 
simplest type of dislocation and can be viewed as an 
extra half-plane of atoms inserted into the crystal. 
This plane terminates somewhere inside the crystal. 
The boundary of the half-plane is the dislocation, 

shown in Figure 2.38A. A screw dislocation, shown 
in Figure 2.38B, is a dislocation produced by skew-
ing a crystal so that one atomic plane produces a 
spiral ramp about the dislocation. A mixed disloca-
tion is a dislocation that contains some edge com-
ponents and some screws components as illustrated 
in Figure 2.38C. Line dislocations cannot terminate 
inside an otherwise perfect crystal but do end at a 
crystal surface, an internal surface, or interface (e.g., 
a grain boundary) or they form dislocation loops. 
Line defects are mostly caused by the misalignment 
of ions or the presence of vacancies along a line. 
When lines of ions are missing in an otherwise per-
fect array of ions, an edge dislocation appears. 

Dislocations are visible in transmission electron 
microscopy (TEM) where diffraction images of dis-
locations appear as dark lines. When a crystal sur-
face is etched the rate of material removal at the 
location of a dislocation is faster, and this results in 
an etch pit. Symmetrical strain fields of edge dislo-
cations produce a conical pit, whereas for a screw 
dislocation a spiral etch pit results.

A Burgers vector b is a measure of the magni-
tude and direction of a dislocation. Imagine going 
around a dislocation line, and exactly going back 
as many atoms in each direction as you have gone 
forward, you will not come back to the same atom 
where you have started. The Burgers vector points 
from the start atom to the end atom of your jour-
ney. This “journey” is called Burgers circuit in dis-
location theory. A Burgers circuit is thus a clockwise 
trace around the core of a dislocation, going from 
lattice point to lattice point, and it must go an equal 
number of steps left and right and an equal number 

FIGURE 2.37 Color centers in some well-known minerals: (a) the Dresden green diamond, (b) smoky quartz, and 
(c)  amethyst or violet quartz.
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of steps up and down. Referring to Figure 2.38A, the 
extra half-plane of lattice points in the edge disloca-
tion causes the Burgers circuit to be open. The vec-
tor that points from the end of the Burgers circuit to 
its beginning is shown here as the Burgers vector, b. 
The vector always points from one lattice point to 
another; it always has the same length and direction 
for a given dislocation, regardless where the circuit 
starts. For an edge dislocation, b is always perpen-
dicular to the dislocation line. If b is parallel to the 
dislocation line, the dislocation is a screw disloca-
tion. If b is neither perpendicular nor parallel to the 
line, a mixed dislocation is involved. 

Plastic deformation of a material refers to irrevers-
ible deformation or change in shape that remains 

even when the force or stress causing it is removed, 
whereas elastic deformation is deformation that is 
fully recovered when the stress causing it is removed. 
Before the discovery of dislocations, materials sci-
entists faced a big theoretical problem; they calcu-
lated that plastic deformation of a perfect crystal 
should require stresses 100 to 1000 times higher 
than those observed in tensile tests! So the prob-
lem was to explain why metals yielded so easily to 
plastic deformation. How they got these very large 
theoretical numbers can be understood from Figure 
2.39. Planes of atoms in a crystal slip with respect to 
each other, in contrast to flow in a fluid, where the 
solid remains crystalline. The theoretical maximal 
shear stress or yield strength (failure), τmax, needed 
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FIGURE 2.38 (A) Edge dislocation: The perfect crystal in (a) is cut, and an extra plane of atoms is inserted (b). The bot-
tom edge of the extra plane is an edge dislocation (c). A Burgers vector b is required to close a loop of equal atom spac-
ings around the edge dislocation. (B) Screw dislocation: The perfect crystal (a) is cut and sheared over one atom spacing 
(b and c). The line along which shearing occurs is a screw dislocation. (C) A mixed dislocation: The screw dislocation at the 
front face of the crystal gradually changes to an edge dislocation at the side of the crystal.
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to produce slip in an ideal crystal is calculated from 
the type and strength of the bonds involved, the 
spacing of the crystal, d, and the crystal symmetry. 
In yield, atoms slide tangentially from one equilib-
rium position to another. Thus, the shear stress, τ, is 
a periodic function: 

 max sin
2 x

d  
(2.60)

where x is the direction of the shear. With x small 
this may be rewritten as:
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where we have used γ = τ/μ (Hooke’s law) as the 
shear strain, with μ as the shear modulus (see 
Figure 2.40).

Calculated values for μ are in the range of 1–150 
GPa (see also Table 2.6). 

But when the experiment is carried out, perma-
nent deformation takes place by a stress as low as 
0.5 MPa! The reason is that real materials have lots 
of dislocations, from 102/cm2 in the best Ge and 
Si crystals to 1012/cm2 in heavily deformed metals. 
Therefore, the strength of the material depends on 
the force required to make dislocations move, not 
the bonding energy between all atoms in two planes 
as calculated above. Dislocations can move if the 
atoms from surrounding planes break their bonds 
and rebond with the atoms at the terminating edge 
as shown in Figure 2.41. Instead of all the atoms in 
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FIGURE 2.39 Calculation of the theoretical shear stress in 
a crystal. 

TABLE 2.6 Theoretical Yield Strengths (Shear and 
Tensile) of Some Important Materials

Material
Shear Strength 

(GPa)
Tensile 

Strength (GPa)

Metallic Cu 1.2 3.9
NaCl 2.84 0.43
Quartz 4.4 16
Diamond 121 205

x

d

Hooke’s law: =

FIGURE 2.40 Shear stress, τ; shear strain, γ; and shear 
modulus, μ. The shear stress τ produces a displacement Δx 
of the upper plane as indicated; the shear strain, γ, with 
Δx/d = tan α is defined γ = τ/μ.

(a)

(d)

Shear stress
b

(b)

(c)

FIGURE 2.41 Dislocation movement: When a shear 
stress is applied to the dislocation in (a), the atoms are 
 displaced, causing the dislocation to move one Burgers 
vector b in the slip direction (b). Continued movement 
of the  dislocation eventually creates a step (c), and the 
crystal is deformed. (d) The caterpillar does not move its 
complete body at a single time, but it moves one segment 
at a time as it pulls itself forward.
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a plane breaking at the same time, atoms are gliding 
gently in the direction of applied stress normal to 
dislocation lines. Thus, the direction of movement, 
i.e., the deformation, is the same as the Burgers 
vector, b. As a consequence b is also called the slip 
vector. 

The interatomic forces in a crystal offer little resis-
tance to the gliding motion of dislocations. An anal-
ogy is that of moving a carpet across the floor. This is 
difficult because of the friction developed from the 
contact of the whole surface of the carpet with the 
floor. But with a wrinkle in the carpet, as shown in 
Figure 2.42, the carpet can now be moved by push-
ing the wrinkle across the floor. The work involved is 
much less because only the friction between a small 
section of carpet and the floor has to be overcome. 
A similar phenomenon occurs when one plane of 
atoms moves past another by means of a dislocation 
defect. 

Figure 2.43 shows how an applied shear stress, τ, 
exerts a force on a dislocation and is resisted by a 
frictional force, F, per unit length. The work done 
by the shear stress (Wτ) equals the work done by the 
frictional force (WF), or:
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With Wτ = WF, the lattice friction stress for disloca-
tion motion is:

  

F
b  

(2.63)

where F is the force per unit length of the disloca-
tion and b is its Burgers vector or slip vector. Thus, 
the applied stress produces a force per unit length 
everywhere along the dislocation line equal to τb 
and perpendicular to the line element. It can be 
shown that: 
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This lattice friction stress is much less than the the-
oretical shear strength. Dislocation motion, from 
Equation 2.64, is most likely on closed packed 
planes (large a, interplanar spacing) in closed 
packed directions (small b, in-plane atomic spac-
ing). It is thus easiest to create dislocations in the 
closest packed crystals, and they are typically very 
soft and ductile. 

When dislocations move it is said that slip 
occurred, and the lattice planes that slipped are 
called— imaginatively—slip planes as elucidated 
in Figure 2.44 for an edge dislocation and a screw 
dislocation. As mentioned above, the preferred slip 
planes are those with the greatest interplanar dis-
tance, e.g., (111) in FCC crystals, and the slip direc-
tions are those with the lowest resistance, i.e., the 
closest packed direction. Slip lines are the intersec-
tion of a slip plane with a free surface.

The motion of dislocations can be blocked by 
another dislocation, a grain boundary, or a point 

(a) (b)

FIGURE 2.42 Moving a carpet over the floor to illustrate the effect of a line dislocation in a crystal: (a) dislocation; 
(b) work hardening.

F

l2 l1
b

b

FIGURE 2.43 An applied shear stress, τ, exerts a force 
on a dislocation and is resisted by a  frictional force, F, 
per unit length. The slip vector or Burgers vector is b. 
(Drawing by Mr. Chengwu Deng.) 
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defect. Two dislocations may repel or attract each 
other, depending on their directions. Atoms near the 
core of a dislocation have a higher energy because of 
distortion. To minimize this energy, dislocations tend 
to shorten as if the line had a line tension, T, i.e., strain 
energy per unit length. The line tension is given as:
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Dislocations might get pinned by interstitials and 
bow with a radius R when subjected to a shear stress 
like the string shown in Figure 2.45:
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With Equation 2.65 this leads to: 
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Plastic deformation (or yielding) occurs by slid-
ing (or slip) of parallel lattice planes past each other. 
Pure metals have low resistance to dislocation 
motion, thus they exhibit low yield strength. Adding 
impurities in solution strengthening may increase the 
yield strength. A well-known example is alloying Zn 
and Cu to form brass with a strength increase of up 
to 10 times over pure Cu. The bigger Zn atoms make 
the slip plane “rougher,” thus increasing the resis-
tance to motion. In general, impurities diffuse to 
dislocations and form “clouds” that pin dislocations, 
increasing the elastic limit. Small particles, precipi-
tates, can also promote strengthening by impeding 
dislocation motion. Precipitates cause bowing of 
dislocations as illustrated in Figure 2.45. A critical 
condition is reached when the dislocation takes on 

a semicircular configuration between two particles 
separated by a distance L. Beyond this point a dis-
location may loop and escape between the finely 
dispersed particles in the metal. In the semicircular 
situation τbL = 2T or τ = 2T/bL, and with Equation 
2.67 τ = μb/L; thus, making L smaller will disadvan-
tage dislocation looping. Finally, metals can be hard-
ened by work hardening. Dislocations move when 
metals are subjected to “cold work,” and their den-
sity can increase up to 1012 dislocations/cm2 because 
of the formation of new dislocations and dislocation 
multiplication (see below). The consequent increas-
ing overlap between the strain fields of adjacent 
dislocations gradually increases the resistance to 
further dislocation motion. This causes a hardening 
of the metal as the deformation progresses (Figure 
2.42b). This effect is known as strain hardening. The 
effect of strain hardening can be removed by appro-
priate heat treatment (annealing), which promotes 
the recovery and subsequent recrystallization of the 
material. Annealing decreases the dislocation den-
sity to around 106 dislocations/cm2. 

Some dislocations form during the process of 
crystallization, but more are created during plastic 
deformation. Frank and Read elucidated one pos-
sible mechanism by which dislocations multiply; 
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FIGURE 2.44 Schematic of slip line, slip plane, and slip (Burgers) vector for (a) an edge dislocation and (b) for a screw 
dislocation. (Drawing by Mr. Chengwu Deng.) 

bL

/2/2

TT
RR

L

FIGURE 2.45 A pinned dislocation bows under a shear stress.
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they found that a pinned dislocation (as shown in 
Figure 2.45), under an applied stress, produces addi-
tional dislocations. This mechanism is at least partly 
responsible for strain hardening. The Frank-Read dis-
location multiplication mechanism is illustrated in 
Figure 2.46. First, a dislocation is pinned at its ends 
by lattice defects, and as the dislocation continues to 
move, it bows and eventually bends back on itself. 
Then the dislocation loop forms, and a new disloca-
tion is created. Figure 2.46 also shows an electron 
micrograph of a Frank-Read source. 

Schmid’s Law, illustrated in Figure 2.47, gives the 
relationship between shear stress, the applied stress, 
and the orientation of the slip system. Slip on a given 

slip system begins when the shear stress resolved on 
that system reaches a critical value. Consider a cylin-
drical crystal of cross-section A0 under the influence 
of a tensile force F. Let the normal to the active slip 
plane make an angle α with F, and let the angle 
between the slip direction and F be β. The resolved 
shearing force, i.e., the force acting per unit area of 
the slip plane in the slip direction, is then given by: 
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Because the area of the slip plane is A/cosα, the ten-
sile stress per unit area normal to the slip plane is:
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When increasing the force F, the rate of plastic flow 
increases very rapidly when the resolved shear stress 
τ reaches a critical value τc. In general τc decreases 
with increasing temperature and increases as a result 
of alloying or cold working (see above). 

Besides point and line defects there are also sur-
face defects to reckon with in single crystals. Surface 
defects include grain boundaries, phase boundaries, 
and free surfaces. The crystal structure is disturbed 
at grain boundaries, and different crystal orienta-
tions are present in different grains (Figure 2.48). 

Dislocations are blocked by grain boundaries, so 
slip is blocked. The smaller the grain size, the larger 
the surface of the grain boundaries and the larger the 
elastic limit. The latter is expressed in the empirical 
Hall-Petch equation for the maximum elastic yield 
strength (stress at which the material permanently 
deforms) of a polycrystalline material:
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where d is the average diameter of the grains in 
micrometers, with σ0 the frictionless stress (N/m2) 
that opposes dislocation, and K a constant. The 
strength of a material thus depends on grain size. In 
a small grain, a dislocation gets to the boundary and 
stops, i.e., slip stops. In a large grain, the disloca-
tion can travel farther. So small grain size equates to 
more strength. For example, the elastic limit of cop-
per doubles when the grain size falls from 100 μm 

Slip direction

A0

FNormal
to the
slip plane

FIGURE 2.47 Geometry of slip plane, slip direction, and 
tensile force F. (Drawing by Mr. Chengwu Deng.)
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FIGURE 2.46 A Frank-Read source can generate dislo-
cations. (a) A dislocation is pinned at its ends by lattice 
defects. (b) As the dislocation continues to move, the 
dislocation bows, eventually bending back on itself. 
(c) Finally the dislocation loop forms, and (d) a new dislo-
cation is created. (e) Electron micrograph of a Frank-Read 
source (×330,000).
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to 25 μm. Instead of yield strength one might also 
plot the hardness (H) of the material as a function 
of grain size, and a similar relationship is obtained 
(see Volume II, Figure 7.54): smaller grain size corre-
sponds to a harder material. Indentation (hardness) 
testing is very common for bulk materials where the 
direct relationship between bulk hardness and yield 
strength is well known. As we will learn in Volume 
II, Chapter 7, in the section on thin film properties, 
the Hall-Petch relationship has been well estab-
lished for grain sizes in the millimeter through sub-
micrometer regimes but is less well-known in the 
nano regime. Based on Equation 2.70 one expects 
that nano-sized grains would produce materials 
with yet greater mechanical integrity, but in real-
ity this is not the case! There is a reverse Hall-Petch 
effect, i.e., the strength of materials, from a small 
grain size on, starts to decrease with decreasing 
grain size. Plastic deformation occurs at lower and 
lower stresses as the grains shrink. In other words, 

an optimal grain size (dc) exists as suggested by the 
plot in Volume II, Figure 7.54. The classic Hall-Petch 
relationship is based on the idea that grain bound-
aries act as obstacles to dislocation movement, and 
because dislocations are carriers of plastic defor-
mation, this manifests itself macroscopically as an 
increase in material strength. The Hall-Petch behav-
ior breaks down when the smallest dislocation loop 
no longer fits inside a grain. Lattice dislocation can-
not be the way very small-grained materials deform. 
The deformation mechanism for materials with very 
small grains (<20 nm) is indeed different, and it has 
been suggested that plastic deformation in this case 
is no longer dominated by dislocation motion; it 
is believed that individual atoms migrate, diffuse, 
and slide along grain boundaries and through triple 
junctions (Y-shaped grain boundary intersections).1 

In Volume III, Chapter 7, on scaling, we learn 
that the surface-to-volume ratio (S/V) of particles 
scales as 1/r, where r is the characteristic dimen-
sion of the particles. The smaller a particle, the 
more of its atoms find themselves at its surface. 
A bulk solid material will typically have less than 
1% of its atoms on its surface but 10-nm particles 
have about 15% of surface atoms (Figure 2.49). 
The high S/V ratio of nanoparticles makes them 

Grain
boundary

(a)

(b)
100μm

FIGURE 2.48 Crystal structure is disturbed at grain 
boundaries. Schematic representation of grain boundar-
ies (a) and microscope picture (b). (From Askeland D. R., 
and P. P. Phule, The science and engineering of materials, 
Brooks/Cole, Pacific Grove, CA, 2003.) 
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FIGURE 2.49 Nanoparticles, clusters of atoms in shells.
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more reactive as catalysts in chemical reactions 
and lowers their melting temperature, Tm. There 
is an inverse linear relationship between melting 
temperature and the surface-to-volume ratio. This 
makes sense because atoms on a surface are more 
easily accessed and rearranged than atoms in the 
bulk. As a consequence, the melting temperature 
of particles is always lower than the bulk. Grains 
in a solid are analogous to particles, and the melt-
ing temperature of solids decreases with grain size. 
Although the temperature dependence of σ0 and 
K in Equation 2.70 can be neglected for conven-
tional grain sizes, for grains smaller than 20 nm 
this assumption breaks down. In nanomaterials 
the melting temperature decreases because of the 
smaller grain size. 

If we could grow a crystal without dislocations, 
it should approach the theoretical shear stress τ cal-
culated in Equation 2.61. Sometimes fine metallic 
whiskers can be grown virtually free of dislocations, 
and these are very strong indeed. 

In Figure 2.50 we show a picture of a zinc whisker. 
Metal whiskers are a crystalline metallurgical phe-
nomenon whereby metal grows tiny, filiform hairs. 
The effect is primarily seen with elemental metals but 
is also observed with alloys. The mechanism behind 
metal whisker growth is not well understood but 
seems to be encouraged by compressive mechanical 
stresses, including residual stresses caused by elec-
troplating, mechanically induced stresses, stresses 
induced by diffusion of different metals, and ther-
mally induced stresses. Metal whiskers differ from 

metallic dendrites in several respects; dendrites 
are fern-shaped and grow across the surface of the 
metal, whereas metal whiskers are hair-like and 
project at a right angle to the surface. Although 
the precise mechanism for whisker formation 
remains unknown, it is known that whisker for-
mation does not require either dissolution of the 
metal or the presence of an electromagnetic field. 
Whiskers, like carbon nanotubes, approach ideal 
lattices.

As we are moving to smaller and smaller func-
tional devices in MEMS and NEMS, surfaces and 
crystal imperfections contribute more and more 
importantly to overall performance and behavior. 
Many of the observations described here will have to 
be revisited when exploring nanomaterials and nan-
odevices. These effects will be treated in Volume II, 
Chapter 7 on thin films and in Volume III, Chapter 3 
on nanotechnology. 

Acknowledgments

Special thanks to Xavier Casadevall I Solvas, Robin 
Gorkin, Chengwu Deng, Kartikeya Malladi, Leyla 
Esfandiari, Fatima Alim, and Drs. Sean Parkin, Han 
Xu, and Guangyao Jia. 

Appendix 2A: Plane Wave Equations

We define a plane wave,* eik.r, as a wave that is con-
stant in a plane perpendicular to k (in rad/m) and 
is periodically parallel to it, with a wavelength λ = 
2π/k, where k is the wave number (because it mea-
sures the number of wavelengths in a complete 
cycle) with a value of 2π/λ and where ω = 2πv = ck 
(free space) is the period of the wave (see also Table 
2A.1). A bit simpler: a plane wave is a continuous 
wave (CW) whose amplitude and phase are con-
stant in the directions transverse to the propagation 
direction.

* The complex exponential representation for periodic functions is 
convenient for adding waves, taking derivatives of wave functions, 
and so on. It is equivalent to a linear combination of a sine and 
cosine function because eiθ = cosθ + i sinθ. FIGURE 2.50 SEM of a zinc whisker; diameter is 10 μm.
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TABLE 2A.1 Plane Wave Parameters

Parameter Symbol/Value

Amplitude Em,Bm

Phase ϕ = kx − ωt

Velocity k
Wavelength λ
Period T

Wave vector k
2

Angular frequency
2
T

Wave number k
1

Cyclic frequency
1
T

The amplitude of a wave propagating in the x- 
direction is mathematically introduced as
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Calculations are greatly simplified by using com-
plex numbers:

 

0
i(kx t )

ix

ix

Im e

i 1

e

Im (e x

Re

1

) sin

((e x

sinx
e e

2i

cosx
e e

2

ix

ix ix

ix ix

) cos

 

Questions

 2.1: Scientists are considering using nanoparticles 
of magnetic materials such as iron-platinum 
(Fe-Pt) as a medium for ultrahigh density 
data storage. Arrays of such particles poten-
tially can lead to storage of trillions of bits 

of data per square inch—a capacity that is 10 
to 100 times higher than any current storage 
devices such as computer hard disks. If these 
scientists consider iron (Fe) particles that 
are 3 nm in diameter, what is the number of 
atoms in one such particle?

 2.2: Assuming that silica (SiO2) has 100% cova-
lent bonding, describe how oxygen and sili-
con atoms in silica (SiO2) are joined.

 2.3: What is the difference between lattice and basis 
and between unit cell and primitive cell?

 2.4: What are the net numbers of Na+ and Cl− ions 
in the NaCl unit cell represented below? The 
crystal is an example of which type of cubic 
lattice? Identify the atom positions of the Na 
and Cl atoms in the NaCl structure.

            

Cl

Na

 2.5: Consider the plane defined by the three 
points, P1(2,4,−3), P2(−1,2,1), and P3(3,0,−2). 
Calculate the points where this plane inter-
sects with the axes and derive the Miller indi-
ces associated with this plane.

 2.6: Calculate (a) the angle between [111] and the 
direction normal to (111) plane in a simple 
cubic crystal and (b) the angle between the 
[121] direction and the direction normal to 
(113) plane in a simple cubic crystal.

 2.7: A signal x(t) has a Fourier transform X(f). 
Express the Fourier transforms of x1 in terms 
of X(f), the function x1(t) = x(3 − t).

 2.8: In an x-ray set-up with a crystal-to-detector 
distance of 100 mm (D), you find that the 
highest resolution reflection is at x = 20 mm, 
y = 15 mm, relative to the direct beam posi-
tion. The wavelength λ = 1.54 Å. What is the 
Bragg angle of this reflection? What is the 
d-spacing of the crystal? If the detector is 



72   Solid-State Physics, Fluidics, and Analytical Techniques in Micro- and Nanotechnology

circular and has a radius of 100 mm, and you 
would like to collect data so that the highest 
resolution reflection is at the detector edge, 
would you move the detector closer to or fur-
ther away from the crystal?

 2.9: Describe the difference between a reciprocal 
lattice and a real one.

 2.10: Edge dislocations may be used to getter 
impu rities in semiconductors. In an edge dis-
location, there are always two regions, a com-
pressive region, where the layer is inserted, 
and a tensile region (see figure below). Which 
of these two regions will best accommodate 
(via elastic interactions) substitutional atoms 
whose radius is larger than that of the host 
atoms?

            

Compressive region

Tensile region

 2.11: Show that the reciprocal lattice of a face-cen-
tered cubic (FCC) lattice is a body-centered 
cubic (BCC) lattice or, conversely, that the 
reciprocal lattice of a BCC lattice is an FCC 
lattice.

 2.12: An electron moves with speed u = 0.7c. Calcu-
late its total energy and its kinetic energy in eV.

 2.13: Calculate the number of atoms in a 100 μm 
long Ag line (1 μm wide and 1 μm high). If 
using STM we put one atom down per second, 
how long will it take to finish this Ag line?

 2.14: What is the Miller index for the plane shown 
below?

            

y

x

z

21

1

2

3

 2.15: What is the number of nearest neighbors for 
the following crystal lattices:

  (a) simple cubic (SC)
  (b) face-centered cubic (FCC)
  (c) body-centered cubic (BCC)
 2.16: Calculate the angle θ of reflection for an x-ray 

experiment with λ = 1.54 Å, for a cubic crys-
tal with a lattice parameter of a = 5 Å.

 2.17: X-rays with wavelength 1.54 Å are “reflected” 
from the (110) planes of a cubic crystal with 
unit cell a = 6 Å. Calculate the Bragg angle, θ, 
for all orders of reflection, n.

 2.18: What is the closest packed crystal? Simple 
cubic (SC), body-centered cubic (BCC), or 
face-centered cubic (FCC)?

 2.19: Is five-fold symmetry ever found in crystal 
lattices? Why or why not?

 2.20: Calculate the number of atoms in 100 g of 
silver. 

 2.21: The derivation of Bragg’s law results in nλ = 
2dsinθ. What does n represent and why is it 
usually omitted? Can you give an example to 
show why n is not needed?

 2.22: Calculate the packing factor in a FCC lattice.
 2.23: What is the rule for determining the slip direc-

tion in a close-packed material?
 2.24: What causes work hardening?
 2.25: How can we determine the direction cosine 

between two vectors?
 2.26: How can we identify the direction of slip in a 

crystal (Burgers vector)?
 2.27: Why do very thin metal wires/whiskers 

exhibit very high strengths?
 2.28: Why does the strength of glass fibers increase 

as the diameter goes down?
 2.29: Find the angle between the planes 110 and 

100 in a simple cubic crystal.
 2.30: Could you use x-ray diffraction to determine 

the coefficient of thermal expansion (i.e., 
change in length of a material due to change 
in temperature)?

 2.31: Diamond and graphite are examples of which 
type of crystalline solids: molecular, covalent 
network, ionic, or metallic?

 2.32: What value does the atomic scattering factor f 
approach as 2θ approaches 0?

 2.33: How does light affect the color of a crystal?
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O u t l i n e

Introduction

Classical Theory Starts Faltering

Quantum Mechanics to the Rescue

Beyond Schrödinger’s Equation

3
Quantum Mechanics 

and the Band 
Theory of Solids

(a) (b) (c) (d)

(e) (f ) (g) (h)

Some of the actors in this chapter: (a) Fermi, (b) Schrödinger, (c) de Broglie, 
(d) Feynman, (e) Born, (f) Bohr, (g) Rutherford, (h) Dirac; and below is Einstein.

The only reason for time is so that everything doesn’t happen at once.
Albert Einstein

Nothing is real.
John Lennon, 1940–1980
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Introduction

As we came to understand from Chapter 2, when 
atoms are brought together in crystals, their outer-
most electrons are influenced by a periodic poten-
tial. Therefore, the possible electron energies form 
bands of allowed values separated by bands of for-
bidden values. This band structure is of fundamental 
importance in explaining the properties of metals, 
semiconductors, and insulators. The most accepted 
and most accurate theory in modern physics today, 
to predict physical, mechanical, chemical, and elec-
trical properties of atoms, molecules, and solids—
including the band theory of solids—is quantum 
mechanics. 

At the end of the nineteenth century, physicists 
thought they had a good grasp of the physical world 
with mechanics (e.g., Newton, Hamilton, and 
Lagrange), statistical mechanics (mostly Boltzmann 
and Gibbs), hydrodynamics (Stokes), and electro-
dynamics (Maxwell). There had been a growing 
unease, though, about the incapability of classical 
theories to explain a wide variety of experiments, 
such as the magnitude of the electrical and ther-
mal conductivity of metals and the heat capacity of 
metals and insulators. Confidence was further chal-
lenged by a series of new discoveries: radioactivity 
(1896), the electron (1897), the quantum (1900), 
the photoelectric effect (1887), and x-rays (1895). 
The result was the development of a set of new theo-
ries, all explaining extreme aspects of nature better 
than classical theories. Although the classical theo-
ries worked well at everyday velocities and scales, 
at the extremes, new theories were needed. For very 
fast phenomena, special relativity worked better; for 
very small particles, quantum mechanics; and for 
very large phenomena, general relativity was dem-
onstrated to be superior. 

Before introducing quantum mechanics, we start 
out by detailing the areas where classical physics 
started faltering at the end of the nineteenth century. 
We specifically describe the shortfalls of the classical 
theories in explaining electrical and thermal con-
ductivity of metals, heat capacity, the observation 
of a positive Hall effect, the ultraviolet catastrophe, 
and the photoelectric effect. All the above phenom-
ena follow logically from quantum theory. 

The relevance of quantum mechanics in the con-
text of ICs and NEMS cannot be underestimated, 
and the profound implications of quantum phys-
ics for nanoelectronics and NEMS are a recurring 
topic throughout this book. In the IC and NEMS 
world, we are moving fast into the realm of quan-
tum mechanics. Moore’s law might remain valid 
until about 2020, but by then the scale of electronic 
components will be at the molecular/atomic level, 
and hence can no longer be described by classical 
mechanics. Quantum computing and nanotechnol-
ogy, including nanotubes, nanowires, biological 
nanostructures, and quantum dots, all require some 
grounding in quantum mechanics to be understood 
at all. Quantum mechanics must now become a 
familiar tool not only to physicists but also to mate-
rials scientists, biologists, and electrical, mechani-
cal, and bioengineers.

Classical Theory Starts Faltering

Introduction

In this section, we cover examples where micro-
scopic classical models started failing at explaining 
a wide variety of experimental results obtained in 
the late nineteenth century. The examples include 
early models devised to explain electrical conductiv-
ity in metals, heat capacity of metals and insulators, 
the temperature dependence of electrical conduc-
tivity and heat capacity, thermal conductivity, the 
Hall effect, blackbody radiation, and the photo-
electric effect. The failing of each model ultimately 
originated in the mistaken assumption that lattice 
vibrations (phonons), electrons, and photons could 
all take on continuous energy values, an error that 
quantum mechanics corrects.

Electronic Conductivity

DC Electrical Conductivity

Paul Drude (1863–1906) (Figure 3.1) was intrigued 
with the huge resistivity range in materials—from 
1018 Ω·cm for fused quartz to 10–6 Ω∙cm for silver 
(Figure 3.2)—and developed one of the first models 
to explain electrical conductivity in metals.

Modern condensed matter physics really started 
with the discovery of the electron by J.J. Thompson 
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in 1897. In a series of experiments performed before 
the year 1900, Thompson demonstrated that elec-
trons behave as particles of mass m that carry a fixed 
amount of negative electrical charge, e. These par-
ticles move in trajectories governed by the laws of 
electricity, magnetism, and classical mechanics, and 
Thompson determined the ratio e/m directly using 
an instrument as shown in Figure 3.3. Thompson 
received the Nobel Prize for his work on the elec-
tron in 1906. It was in the famous oil-drop experi-
ment of Robert Millikan (1868–1953), carried out in 
1909, that the size of the charge on an electron was 
finally established. Millikan also determined that 
there was a smallest “unit” charge, or that charge is 
“quantized.” 

Drude relied on the newly introduced concept 
of electrons to postulate a theory of metallic con-
ductivity. His work was before the development 

of quantum mechanics, so he relied on classical 
physics models only. He introduced the idea of a 
free electron gas (FEG), in which he assumed that 
an electron gas surrounds the positive ion cores 
of the metal and that electron-ion interactions are 
negligible. Applying the kinetic theory of gases to 
the free electron gas, he had electrons only mov-
ing in straight lines and colliding only with ion 
cores, thus neglecting electron-electron interac-
tions. Drude also envisioned collisions in which 
electrons instantaneously lose all the energy they 
previously gained from an electric field. He approx-
imated the mean free path of the electrons, λ, with 
the interionic core spacing in the solid lattice, a. 
It should be noted that in reality electron densi-
ties (1022–1023 cm–3) are thousands of times greater 
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Insulator Semiconductor Conductor

Bismuth

Platinum

Aluminum

Copper

SilverGermanium (Ge)

Silicon (Si)

Gallium arsenide (GaAs)

Gallium phosphide (GaP)

Cadmium sulfide (CdS)Fused
quartz

Sulfur

Diamond
(pure)
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FIGURE 3.2 Conductivity/resistivity range for common materials.

FIGURE 3.1 Paul Drude (1863–1906).
FIGURE 3.3 J.J. Thomson demonstrated that an electron 
behaves as a particle using an apparatus as shown here 
(A and B are anodes). The electron stream is deflected by 
electric and magnetic fields.



78   Solid-State Physics, Fluidics, and Analytical Techniques in Micro- and Nanotechnology

than those of a gas at normal conditions, and 
the assumption that there are no strong electron-
electron and electron-ion interactions is wrong. In 
spite of this, the model successfully explains the 
form of Ohm’s law. However, it does fail to explain 
many other important aspects of conductors, such 
as the exact magnitude of electrical conductivity 
and heat capacity and their temperature depen-
dence, or the relationship between electrical and 
thermal conduction. 

In what follows we apply macroscopic boundary 
conditions to a piece of metal. In the nanoworld, as 
we will learn, things are different: with a macroscale 
conductor wire, the mean free path of the electrons, 
λ, is very small compared with the wire length, and 
the motion of electrons is diffusive. But, with a 
nanowire, the wire is short compared with λ and the 
electron motion may turn ballistic.

We start with the experimental observation that 
the current in a conductor is proportional to the 
applied voltage (V ∝ I), i.e., Ohm’s law. If an elec-
trical field E (V/m) is applied over a conductor of 
length L, a charge, Q, flows and an electrical current, 
I = dQ/dt, results [SI unit: 1 ampere (A) = 1 cou-
lomb per second (C/s)]. The current density is given 
as J = I/A or dI/dA, with A the cross-sectional area of 
the current pathway or also:

 I J dA (3.1)

where J is given by (see Chapter 2):

 J E (2.2)

or also (see Chapter 2):

 E J (2.4)

σ is the electrical conductivity, and ρ is the electri-
cal resistivity (σ = 1/ρ). The SI unit for resistivity is 
in ohm·meter (Ω·m) and ohm = volt/ampere (V/A); 
the SI unit for conductivity is in siemens per meter 
(S/m–1) and siemens = ampere/volt = ohm–1. The con-
ductivity, σ, and resistivity, ρ, are intrinsic character-
istics of a material and are independent of sample 
geometry but are linked to the crystal structure as 
we may glean from Equations 2.3–2.7 in Chapter 2. 
From Equation 2.2, σ measures the current den-
sity for a given electric field. For now, we assume 

an isotropic solid, and because J = I/A and E = V/L, 
Equation 2.2 can be rewritten as J = I/A = σ V/L or:

 V (L/ A) ( L/A) RI I I  (3.2)

i.e., the familiar Ohm’s law, with the resistance, R, 
linked to the geometry of the sample (L and A). The 
SI unit for resistance is ohm (Ω).

Drude’s microscopic interpretation of Ohm’s law 
can be understood from an inspection of Figure 3.4, 
where we consider the conduction of electrons in a 
metal wire on application of an electrical field in the 
x-direction, Ex. There are n electrons per unit volume 
(electron density), and they all move in the direction 
of the current, I, with a drift velocity in the x-direction, 
vdx. The drift velocity, vdx, is the net motion of elec-
trons opposite to the electrical field (Figure 3.5). The 
number of electrons crossing area A in a time dt is 
nAvdxdt. In the time segment dt, the electrons have 
traveled a distance L along the wire. The current den-

sity in the x-direction, Jx, is then 
I
A

 or 
Q (ne)(AL)

AL dxA t /v
, 

and with Q the charge we calculate:

 J vx dxen  (3.3)

Finish

L

E

Start

vd

FIGURE 3.5 Drift of an electron opposite the electrical 
field. During an average time τ, the electron travels a 
mean free path λ = vdxτ. In a time dt, the electrons have 
traveled a distance L along the wire.

Ex
L

vdx

Jx

FIGURE 3.4 Electron conduction in a section of metal wire 
in the presence of an electrical field. The average distance 
traveled by an electron is the mean free path λ, which 
Drude assumed to be equal to the lattice constant, a.
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where e is the charge of the electron. By convention, 
a positive charge moves with the electrical field, 
and Equation 3.3, more correctly, should read 
Jx = envdx, with Jx and vdx vectors with a direction 
and magnitude. For simplicity, we often leave the 
vector notation out, and introduce it only when we 
want to draw special attention to it. Drude treated 
the free electron gas as a gas of molecules where 
distribution of velocities follows the Maxwell-
Boltzmann distribution (see below). In such a gas, at 
T = 0, all the free electrons in a conductor have zero 
kinetic energy. When heating the conductor, the 
 lattice ions acquire an average kinetic energy of 
3
2  kBT, where kB is the Boltzmann constant. This aver-
age energy is imparted to the electron gas by colli-
sions between electrons and lattice ions. The latter is 
a consequence of the equipartition theorem. At ordi-
nary temperatures (∼300 K) the mean kinetic energy 
of the electrons based on this model is about 0.04 eV. 
From this mean kinetic energy, we approximate the 
thermal velocity, vth, of the electrons in a metal from 

the root mean square (rms speed) or v
3k T

rms
B

me

 

(see Equation 3.20 below), which is slightly larger 

than the average vavg or mean speed v
8k TB

me

 (see 

Equation 3.21 below), as vth = v ≈ vrms = 1.57 × 105 m/s 
or almost 1000 km/s (this is about 1% of the speed 
of light!). However, when calculating vdx in Equation 
3.3 for a current of 1 A, one obtains velocities of the 
order of 10−4 m/s or only 0.1 mm/s! The reason for 
the huge difference between drift and thermal veloc-
ity is that electrons travel at fast thermal velocities 
for a short, average time, τ, and then “scatter” because 
of collisions with atoms, grain boundaries, impuri-
ties, or material surfaces (especially in very thin 
films or small particles). The drift velocity is also not 
how fast “electricity travels,” for electric fields travel 
essentially at the speed of light. To reconcile this dis-
crepancy, think of electrons in a wire as a pipe full of 
water; when a little water enters one end of the pipe, 
almost immediately some water flows out at the 
other end.

The very small drift velocity caused by the electric 
field has essentially no effect on the very large mean 
speed of the electrons: in other words, vth does not 

depend on E. Drude assumed that all of the elec-
trons’ forward velocity is reduced to zero after each 
collision and must then be accelerated again by the 
electrical field. 

The forces exerted on a colliding electron in an 
electric field, E, are given by Newton’s second law, 
according to which forces give rise to a change in the 
momentum of particles [(F = d(mevdx)/dt = dpx/dt] or:

 

d
dt

e e

e
m

x
x coll x

x

x
e dx

p
E F E

p

E
v

 (3.4)

where –eEx is the force on the electron garnered from 
the electrical field, me the mass of an electron in 
vacuum, Fcoll the collision force, and px the electron’s 
momentum in the x-direction (=mevdx). Because 

 e m /x e dxE v 0 (3.5)

the result is a constant average velocity:

 v
E

dx
xe

me

 (3.6)

where we introduced a minus sign because, as 
remarked above, the drift velocity is opposite the 
electrical field E. Substituting this result in Equation 
3.3 and generalizing for three directions, we obtain 
the famous Drude result (ignoring vector notation):

 ne
m

and
m

ne

2

e

e
2

 (3.7)

Scatter time τ is also known as the relaxation time, 
the collision time, or the mean free time a randomly 
picked electron travels before the next collision. 
Scatter time τ decreases with increasing tempera-
ture T, i.e., more scattering at higher temperatures 
leads to higher resistivity in a metal. During an aver-
age time τ, electrons travel a mean free path λ, i.e., 
λ = vthτ, and in terms of the mean free path and the 
mean speed the resistivity is given as:

 
m v
ne

e th
2  (3.8)

According to Ohm’s law, the resistivity is indepen-
dent of the field, and in Equation 3.8 only λ and vth 
could possibly be dependent on the field. But we 
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just saw that the very small drift velocity caused 
by the electric field has essentially no effect on the 
very large mean speed of the electrons or vth does 
not depend on E. Drude assumed the electron mean 
free path, λ, to be equal to the lattice constant, a, 
which is of the order of 1 nm, and of course also 
independent of the electric field E; neither λ nor 
vth depends on E in accordance with Ohm’s law. In 
the absence of an electric field, the electrons per-
form a random, thermal motion, and there is no 
conduction, but when an electric field is applied, 
electrons move into a direction opposite to the 
field, thus generating a current. The value of the 
resistance is finite because electrons collide with 
the lattice ions, and they are stopped frequently 
in their tracks before being accelerated again. This 
simple model does explain correctly the form of 
Ohm’s law.

From Equation 3.7 there are two contributions 
to the conductivity. One is the number of charges 
(ne), and the second is how easily those charges can 
be accelerated (eτ/me). To really understand the dif-
ferences between the numbers of “free charges” in 
different materials requires the quantum descrip-
tion introduced below. However, let us accept for 
now that in a material such as silver, the number of 
electrons that are free to move equals 5.8 × 1028/m3 
and that in zinc it is even larger, 1.3 × 1029/m3. From 
these numbers one would expect zinc to be the bet-
ter conductor! However, as we shall see, this is not 
the end of the story. The second contribution to the 
conductivity in Equation 3.7 is the charge carrier’s 
drift mobility, μe (in the case of electrons), which, in 
cm2/Vs, is given as:

 e

e
me

 (3.9)

Therefore, the conductivity is the product of the 
number of free charges and the mobility of those 
charge carriers:

 σ = μene (3.10)

The drift mobility, μe, may also be defined as the 
drift velocity per unit applied electric field, or:

 e

v
E

d  (3.11)

The drift mobility, from Equation 3.9, is linked in 
turn to the mean scattering time between collisions, 
τ. Coming back to the comparison of the conduc-
tivity of silver and zinc, typical mobilities in silver 
are much higher than those in zinc so that the elec-
trical conductivity is higher, even though zinc has 
more electrons. This makes silver the better con-
ductor after all. Once we have introduced quantum 
mechanics, it will become clear that the mean scat-
tering time, τ, has nothing to do with the stagnant 
lattice ions in the crystal but is determined by lattice 
vibrations, imperfections, and impurities instead. 
Consequentially, the mobility of a metal can be 
reduced by introducing defects (e.g., kinking a wire) 
or by increasing the number of lattice vibrations, i.e., 
phonons (by raising the temperature).

The Maxwell-Boltzmann Distribution

The next question is, how does resistivity of a metal 
depend on temperature? To answer this we calculate, 
à la Drude, how the drift velocity, vd, depends on 
temperature. With electrons behaving like an ideal 
gas, the distribution of electron speeds is described 
by a Maxwell-Boltzmann (MB) distribution. In a MB 
distribution, the probability of finding particles in 
a particular energy state varies exponentially as the 
negative of the energy divided by kBT or:

 f E) AeMB

E
k TB(  (3.12)

where A is a normalization constant, and e
E

k TB  is 
called the Boltzmann factor. Based on Equation 
3.12, at a given temperature, particles are distrib-
uted among all available levels, and the ground state 
always contains the bulk of the particles, whereas 
other levels will contain exponentially less. The 
Maxwell-Boltzmann distribution is illustrated in 
Figure 3.6.

The number of particles per unit volume, i.e., 
density n(E), that have energies between E and E + 
dE is n(E)dE, where n(E) = G(E)fMB(E). The function 
G(E)dE is the total number of possible (allowed-to-
occupy) energy states per unit volume with energies 
between E and E + dE. It is also referred to as the den-
sity of state function, often abbreviated as DOS. The 
other function, fMB(E), is the Maxwell-Boltzmann 
distribution, representing the probability function 
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of occupancy of a state with energy E. Because 
E  mv2/2, we may, using Equation 3.12, rewrite 
n(E)dE as:

 n(E)dE G(E)Ae dE
mv
2k T

2

B  (3.13)

To find the number of gas molecules with a speed in 
the range dv, irrespective of the direction of the veloc-
ity, we need the speed distribution function, n(v). 
The number of allowed states (velocities) between v 
and v + dv, i.e., the number of states between a sphere 
of radius v and a sphere of radius v + dv, as illustrated 
in Figure 3.7, is:

 4 v dv G(E)dE2  (3.14)

For every value of v there is a value of E in G(E), 
and substituting Equation 3.14 in Equation 3.13 we 
obtain: 

 n(E)dE n(v)dv A4 v e dv2
mv
k T

2

B2  (3.15)

To calculate the value of A, we remember that we can 
derive the number of molecules per unit volume or 
volume density of all particles (all velocities/ener-
gies) as:

 N
V

n(v)dv
0

 

or

 
A

V
m
kT2

3
2

 
(3.16)

 since v e dv
a a

2 av

0

2 1
4  

From Equations 3.15 and 3.16, the Maxwell-
Boltzmann speed distribution is derived as: 

 n(v)dv
N

V
m

2 k T
v e dv

B

2
mv
k T

2

B
4

3
2 1

2  (3.17)

This expression gives us the speed distribution of n 
particles as a function of their mass and the tem-
perature: it represents the probability that a particle 
has a speed in the range v to v + dv as illustrated in 
Figure 3.8. As the temperature increases, the curve 
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FIGURE 3.7 The velocity is a vector in three-dimensional 
space, and one needs to take into account that, with the 
increase of the magnitude of v, the space accessible to a 
particle increases.
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FIGURE 3.8 The Maxwell-Boltzmann distribution of 
speeds of particles as a function of the temperature 
and mass of the particles. The most probable speed vmp 
is the speed at which the distribution curve reaches a 
peak, v  is the average speed, and the root mean square 
speed is vrms.
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broadens and extends to higher speeds. Using dE = 
mvdv (E = mv2/2), the Maxwell-Boltzmann distribu-
tion of kinetic energies is: 

 n(E)dE
N

V k T
E e dE

B

E
k TB

2 1
3
2

 (3.18)

Comparing Equation 3.18 with Equation 3.13 yields 
the 3D density of states function for gas molecules:

 G(E)
N

V kT
E

B

2 1
3
2

 (3.19)

This function increases smoothly with the square 
root of the energy. 

The most probable speed vmp
Bk T

m
2

 is the 

speed at which the speed distribution (Equation 
3.17) reaches a peak; this can be calculated from 
dn v

dv
( ), setting it to zero, and solving for v. Although 

Equation 3.17 gives the distribution of speeds or, in 
other words, the fraction of molecules having a 
particular speed, we are often more interested in 
quantities such as the root mean square speed or 
the average speed of the particles rather than the 
actual distribution. The root mean square speed is 
given as:

 v

v n(v)dv

N/V
k T
m

rms

2

B0 3  (3.20)

and the average or mean speed v  is given as: 

 v

vn(v)dv

N/V
8k T

m
B0  (3.21)

In the case in which the Maxwell-Boltzmann dis-
tribution is applied to electrons rather than gas 
molecules, we must replace m with me, the mass of 
an electron. The Maxwell-Boltzmann distribution, 
shown in Figure 3.8, is a classical distribution of 
particles; in quantum statistics, other particle dis-
tribution functions are introduced. In the Maxwell-
Boltzmann distribution function, it is assumed 
that all the particles are distinguishable; particles 

are physically identical but distinguishable in posi-
tion and trajectory. Particles are considered distin-
guishable if the distance separating them is large 
compared with their de Broglie wavelength (see 
below). Another way of saying this is that the aver-
age distance between particles must be large com-
pared with the quantum uncertainty. For an ideal 
gas, this criterion is certainly fulfilled, but it is not 
true for electrons and, as we remarked before, this 
is ultimately the reason why the Drude model fails 
to explain conductivity correctly: the Maxwell-
Boltzmann distribution is not valid for a collection 
of electrons.

Drude Fails 

Above we saw that during an average time τ, elec-
trons travel a mean free path λ, i.e., λ = vthτ, and 
because Drude assumed the electron mean free 
path, λ, to be equal to the lattice constant, a, 
which is of the order of 1 nm, this yields a typical 
value for τ of about 10−14 s (because we calculated 
v v v m/s)th rms 1 57 105. . Based on Equations 
3.8 and 3.21, where we replaced m with me and used 
v  for calculating vth (Equation 3.21), one derives for 
the resistivity: 

 1 8m v
ne

m
ne a

k T
m

e th
2

e
2

B

e

 (3.22)

Using the lattice constant, a, for the mean free path 
and the Maxwell-Boltzmann equation at T = 300 K 
to calculate vth, values for the resistivity of a metal 
are obtained that are six times too large. In addition, 
from Equation 3.22 the temperature dependence of 
resistivity is determined by vth, which in this model 
is proportional to T . In practice, the temperature 
dependence of the resistivity is represented by the 
empirical relationship:

 0 T (3.23)

where ρ0 is the resistivity at a reference temperature, 
usually room temperature, and α is the temperature 
coefficient. An expanded version of Equation 3.23 is 
known as the Matthiessen rule. This rule is just an 
approximation (a rule of thumb that works pretty well), 
not a true physical law. According to Matthiessen 
rule, the resistivity can be expressed as a sum of 
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terms resulting from (nearly) independent contribu-

tions, for example, 0 T IT C other . Here, 
ρ0 is the extrapolation of the resistivity to 0 K, TT  
is the roughly linear and independent contribution 
caused by temperature, ρIC is the roughly linear con-
tribution caused by solid solution impurities, and 
ρother represents the contributions from other scat-
tering centers, such as dislocations and precipitates. 
Typical values of ρ0 and α are listed in Table 3.1, 
along with the calculated resistivity at 100°C.

Experimentally determined resistivity versus tem-
perature plots for a metal, an insulator, and a super-
conductor are shown in Figure 3.9. Superconductivity 
is the flow of electric current without resistance. It 
has been observed in certain metals, alloys, and 
ceramics at temperatures near absolute zero, and 
in some cases at temperatures hundreds of degrees 
above absolute zero. At low temperatures, all mate-
rials, other than superconductors, are insulators or 

metals. For pure metals, the resistivity increases rap-
idly with increasing temperature, whereas for insula-
tors the resistivity decreases rapidly with increasing 
temperature [this was first observed by Michael 
Faraday (1791–1867) in 1833]. Semiconductors have 
resistivities intermediate between metals and insu-
lators at room temperature. Instead of a square root 
dependence of temperature, the plot in Figure 3.9 
reveals that, for a metal, there is proportionality 
with T at higher temperatures, and, at low tempera-
tures, the resistivity is proportional to T 5! The latter 
is known as the Bloch-Gruneisen T 5 law. 

From the above observations it is clear that some 
of the Drude assumptions are very wrong. Moreover, 
Drude’s model cannot explain why one material 
acts as an insulator and another as a metal. This was 
all very confusing around Drude’s time. Because 
solids contain a number of atoms and electrons 
with a similar density, why the large conductivity 

TABLE 3.1 Resistivity Values of Common Metals

Material ρ0 (μΩ·cm) α (μΩ·cm/K)* Resistivity at 100ºC (μΩ·cm)

Aluminum 2.284 0.00390 3.0640
Copper, annealed 1.7241 0.00393 2.5101
Copper, hard-drawn 1.771 0.00382 2.5350
Brass 7.000 0.00200 7.4000
Gold 2.440 0.00340 3.1200
Iron 9.710 0.00651 11.0120
Lead 20.6480 0.00336 21.3200
Nickel 11.000 0.00600 12.2000
Silver 1.590 0.00380 2.3500
Steel 10.400 0.00500 11.4000
Nichrome 100.000 0.00040 100.0800
Platinum 10.000 0.00300 10.6000
Tungsten 5.600 0.00450 6.5000

*Determined at 25°C.
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FIGURE 3.9 The three states of solid-state matter as defined by their electrical resistivity in the low temperature limit. 
The resistivity at low temperatures is finite for a metal, very large for an insulator, and zero for a superconductor.
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differences shown in Figure 3.2? More intriguing 
yet, in the case of carbon, the same material may 
act as a good insulator (diamond), as a semimetal 
(graphite), and even as a superconductor (buckmin-
sterfullerenes and carbon nanotubes)* (see Figure 
3.10). The answer, we will learn, is that electrons 
are fermions, and only electrons with energy on the 
order of a few kBT contribute to the conduction pro-
cess, at room temperature. A fermion is a particle, 
such as an electron, proton, or neutron, having half-
integral spin and obeying statistical rules requiring 
that not more than one in a set of identical particles 
may occupy a particular quantum state. For fermi-
ons, the Boltzmann distribution must be replaced 
by a Fermi-Dirac distribution. Because of the wave 
nature of electrons and the exclusion principle (to 
be discussed below), the energy distribution of elec-
trons in a metal does not even resemble a Maxwell-
Boltzmann distribution. Moreover, the collision 
between ions and electrons cannot be pictured as 
that of two hard objects. Instead it involves the scat-
tering of electron waves by lattice ions. 

Drude AC Electrical Conductivity 
and Dielectric Functions

Drude AC Electrical Conductivity In the previ-
ous sections we considered the dc conductivity of 

* The latter were not yet discovered at the time; if they had been, this 
would have led to even more consternation. How can the same mate-
rial have all these different resistivities?

metals; we now consider their ac electrical conduc-
tivity. We assume that the wavelength of the elec-
tromagnetic (EM) field is large compared with the 
electronic mean free path λ, so that electrons “see” 
a homogeneous field when moving between colli-
sions. In Equation 3.4, we used Newton’s second law 
to launch the change of momentum of a free electron 
in the presence of an applied dc electrical field. Here 
we use the same expression to derive the change of 
momentum of electrons in a time-harmonic electric 
field, given by:

 E E( ,t) ( )e iwt (3.24)

The equation for the momentum per electron is:

 d (
dt

e ( ,t)
( ,t)p

E
p, )t

 (3.25)

where τ is the relaxation time or the mean free time 
a randomly picked electron travels before the next 

collision in a metal. Because 
d

dt
i t

p
p

( ,t)
( , ), 

this expression may be rewritten as:

p
E

1

E

( ,t)
e ( ,t)

or also

e

i

(( ,t)

e ( )

1

E
1

2
2

1
i

2
2

1
i cos t isin tt

e ( )E
1

2
2

1
cos sint tt

i cos t
1

t (3.26)sin

We analyze this expression now for two different 
and important situations: 1) with ω << 1/τ, where the 
electrons can follow the changing electrical field, 
and 2) with ω >> 1/τ, i.e., at very high frequencies 

Diamond

Graphite (10, 10) Tube

buckminsterfullerene
C60

FIGURE 3.10 Carbon may act as an insulator (diamond), 
as a semimetal (graphite), and as a superconductor 
 (buckminsterfullerene and carbon nanotube).
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(optical frequencies we will see), where the elec-
trons cannot follow the fast changing electrical field 
anymore. 

 1. With ω << 1/τ:

 

p
E
1

( , ) cos sint
e ( )

t i
1

2

1
tt

e ( )
e e ( ,t

E
1

Eiwt )) (3.27)

  At these frequencies, p(ω,t) is in phase with 
E(ω,t).

 2. With ω >> 1/τ:
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At very high frequencies, where the electrons are 
too slow to follow the very fast changing elec trical 
field vector, p(ω,t) is out of phase with E(ω,t); 
moreover, p(ω,t) tends to zero. The transition 
between these two behaviors occurs when the ac 
frequency exceeds the collision frequency τ. 
With a typical value for τ of metal of about 10−14 s, 
that transition frequency is at roughly 1014 Hz 

( .10
5000 10

14
8

s, v c or v
3.10 cm/s

cm

10

11014 Hz), 

corresponding to optical frequencies (light waves). 
The equations derived here apply for the ac behavior 
of metals as well their interaction with light (metal 
optics).

Relying on Equation 3.3, rendered in vector for-
mat as J(ω) = −envdx, and given that p(t) = mev(t), we 
can also write:

 J
p

E

1
( ) ( )

en ( )
m

e n
m

( )

ie

2

e EE( ) (3.29)

so that the Drude complex AC conductivity is calcu-
lated as:

 ( ) 0

1 i
 (3.30)

which simplifies to the DC conductivity, i.e., σ0 

(
ne
m

2

e

, Equation 3.7), in the case of very low ac 

frequencies (ω <<<<< 1/τ). 
The real and imaginary parts of the complex con-

ductivity are:

 0
2 21

(Re) (3.31)

and

 0
2 21

(Im) (3.32)

The real (σ′) and imaginary (σ′′) parts of the com-
plex conductivity σ(ω) are plotted versus ωτ in Figure 
3.11. The maximum in σ′′ is called the Drude peak 
and is characteristic for each metal. 

We consider now what happens with the current 
and the conductivity as a function of frequency. At 
very low ac frequencies (ω << 1/τ), electrons have 
many collisions before the direction of the wave 
changes; this situation corresponds to the Ohm’s law 
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FIGURE 3.11 Frequency dependency of the real (σ’) and 
imaginary (σ’’) in parts of the conductivity. The maximum 
in σ’’ at σ’’/σ0 = 0.5 is the Drude peak at ωτ = 1 and is a 
characteristic of a metal. The DC conductivity σ0 is reached 
at ωτ = 0 (σ’’/σ0 = 1).
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regime—J follows E—and σ is real. At very high fre-
quencies (ω >> 1/τ), electrons might have only one 
collision or less when the direction of the ac field is 
changed. In this case J is imaginary and out of phase 
with E, and σ is also imaginary. As we noted above, 
the transition from one regime to the other occurs 
at optical frequencies, and qualitatively we can say 
that with ωτ << 1, electrons are in phase and reir-
radiate, i.e., they are reflected and the metal appears 
shiny. With ωτ >> 1, electrons are out of phase as 
they are too slow, there is less interaction, and we 
have transmission. More specifically, free electrons 
do not influence E-fields in metals with frequencies 
greater than that of visible light, or the electron gas is 
transparent in the UV range! No energy is absorbed 
from the field in this range, and no joule heating 
occurs.

Next, we will investigate how the permittivity or 
dielectric constant of a medium changes as a func-
tion of frequency of the applied electrical field (again 
from ac fields to electromagnetic radiation). 

Dielectric Functions and an Introduction to Metal 
Optics The permittivity or dielectric constant of a 
medium describes how an electric field both affects 
and is affected by that medium and can be looked 
at as the quality of a material that allows it to store 
electrical charge. The dielectric constant ε or permit-
tivity (As/Vm) is a materials-dependent “constant,” 
and its frequency dependence defines the so-called 
dielectric function ε(ω). In the most general terms, 
dielectric functions are dependent on both fre-
quency (ω) and wave-vector k: ε(ω,k). To understand 
the dielectric behavior and optical properties of 
metals better, we need to explain how plasma oscil-
lations come about and analyze how the dielectric 
“constant” ε of a metal changes with frequency. A 
plasma, in general, is a medium with equal amounts 
of positive and negative charges, of which at least 
one charge type is mobile. In case of a plasma in 
a metal, the mobile charges are the free electrons, 
and these charges are balanced by the positive, 
immobile, metal ion cores. Drude’s free electron gas 
(FEG), with an ac field applied, can exhibit collec-
tive longitudinal oscillations of the plasma because 
the displacement of all the electrons against the ion 
bodies of the material induces a dipole moment 

and an electric field opposing that displacement, 
as shown in Figure 3.12. In longitudinal oscilla-
tions, the displacement is in the same direction as 
the wave motion, as in sound waves. To appreciate 
better how oscillations of free electrons are induced 
by a time harmonic electrical field E(ω,t) = E(ω)e−iωt, 
we rewrite Equation 3.25 for one dimension with 
px(ω,t) = mevx(ω,t) = medx/dt as:

 m
d x
dt

m
dx
dt

e t) = –e ( )ee

2

2 e
–i tE E(  (3.33)

In the Drude model, electrons are free, and a damp-
ing factor γ comes about only because of electron 
scattering. The damping factor is related to the scatter-
ing constant as 1/γ = τ (as we saw, typically ∼10–14 s in 
a metal). The solution of Equation 3.33—the dis-
placement x of the entire free electron gas—is then 
given as:

 x(t)
e ( )

m i )e

E
( 2

 (3.34)

Polarization comes about as a result of small dis-
placement of charges in an electrical field. The mac-
roscopic polarization density P (C/m2), illustrated in 
Figure 3.12, is a vector field that represents the density 
of permanent or induced electric dipole moments 
and is given by the product of the displacement x(t) 
and the electron density ne(P = − nex) or:

 P
Ene (t)

m i )

2

e(
2

 (3.35)

The polarization P is also related to the electrical 
field as:

 P E( ,t) ( ,t)e 0  (3.36)

where χ 
e is the electric susceptibility tensor of the 

material, a proportionality constant relating the elec-
trical field E to the induced dielectric polarization 
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E P

FIGURE 3.12 Drude bulk plasma oscillation in a metal 
film. E is the electrical field, and P is the polarization. 
The entire free electron gas is displaced over a small 
distance, δx.
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density P, and ε0 is the permittivity of free space with 
a value of 8.854 pF/m. In the case of a linear homo-
geneous and isotropic material, χ 

e becomes a scalar 
constant. The polarization P is further linked to the 
electric displacement field D, expressed in coulombs 
per square meter (C/m2), and to the dielectric con-
stant ε(ω,k) or permittivity (As/Vm), a materials-
 dependent constant, as:

 D E P E k E0 e )( ) ( ,1 0  (3.37)

In the expression D E P0  we have separated 
the electric displacement D in its materials (P) and 
vacuum parts (ε0E). The permittivity of a material 
is usually given as a relative permittivity εr(ω) (also 
called the dielectric constant). The permittivity 
ε(ω,k) of a medium is an intensive parameter and 
is calculated by multiplying the relative permittiv-
ity by ε0, or ε(ω) = ε0εr(ω). The permittivity of air is 
εair = 8.876 pF/m, so the relative permittivity of air 
is εr,air = 1.0005, and for vacuum it is 1 by definition. 
From Equation 3.37, it then also follows that εr(ω) = 
1 + χ e. The electric displacement field, D, is in turn 
related to the electric field E (in units of V/m) by the 
constitutive relation:

 D = ε(ω,k) E (3.38)

Using Equation 3.36 for the polarization P, we can 
rewrite Equation 3.37 as:

 D k E E P E
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From Equation 3.39 we arrive at the following 
expression for the complex dielectric function:
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 (3.40)

The plasma frequency ωp in Equation 3.40 is de -
fined as:

 p

2

e

ne
m 0

 (3.41)

where n is the density of electrons in the metal. 
To obtain εr(ω), the relative dielectric response of 

a material to electromagnetic waves at various fre-
quencies, one divides by ε0 because ε(ω,k)/ε0 = 
εr(ω,k). The corresponding real and imaginary com-
ponents of the complex dielectric function are:

 r ( , Rek) p
2 2

2 21
 (3.42)

and

 r ( ,
( )

Imk) p
2

1 2 2  (3.43)

In a metal, the damping term γ is just the electron 
collision rate, which is the inverse of the mean elec-
tron collision time, τ, i.e., γ = τ −1. As stated before, 
the collision rate can be quite rapid—tens of fem-
toseconds. But for optical frequencies (e.g., for 
λ = 500 nm, ω = 2πc/λ = 3.8 × 1015 rad/s) (ωτ)2 >> 1. 
Under this approximation, we find: 

 r ( ,k) 1 p
2

2  (3.44)

and

 r ( ,k) p
2

3

p
2

3
 (3.45)

This approximation may break down in the far-in-
frared spectral region, where damping can be signif-
icant. Note that damping (γ) is absolutely necessary 
to have an imaginary part of r( ). The dispersion 
of the real part of the dielectric function r ( ,k) 
(Equation 3.44) is plotted in Figure 3.13. The Drude 
model predicts a monotonous decrease of r ( , )k  
for decreasing frequency, and experiments confirm 
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FIGURE 3.13 The dielectric function: ε ŕ as a function of ω. 
The dielectric constant ε ŕ becomes zero when ω = ωp, and 
this supports free longitudinal collective modes for which 
all electrons oscillate in phase.
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that r ( , )k  becomes zero when ω = ωp. When r ( ) 
becomes zero at ω = ωp, the material can support free 
longitudinal collective modes for which all electrons 
oscillate in phase. Such a collective charge oscilla-
tion is called a plasmon. Note that in the limit of γ 
going to 0, Equation 3.40 leads to the same result as 
shown in Equation 3.44 (no imaginary component 
to the dielectric constant at γ = 0). We come back to 
the field of plasmonics in Chapter 5 on photonics, 
and at that point we will not only analyze plots of 

r( ) for metals but also of n(ω) (refractive index), 
α(ω) (absorption), and R(ω) (reflectance) for all 
types of materials.

With reference to Figure 3.12, we can derive 
the plasma frequency ωp in yet another way. 
Let us look at the case where ε′r(ω) = 0 at ω = ωp; 
because r e( ) 1 , this means that at this 
frequency, e 1, and with the polarization, 
P E( , )t te 0 ( , ) P (Equation 3.36), this results 
in P E( , )t t0 ( , ). The displacement δx of the 
 electron gas of density n creates an electric field E = 
−P/ε0 = neδx/ε0; this opposing field acts as the restor-
ing force (Fr = −eE) on the electron gas. The equation 
of motion resulting from this restoring force Fr in 
such a simple electron gas oscillator is given as: 

 F eE
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This results in oscillations at the plasma frequency 

of p

2

e

ne
m 0

 (Equation 3.41).

The plasma frequency ωp comes with a free space 
wavelength of:
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In Table 3.2 we compare the plasma frequency and 
the free space wavelength for a generic metal and a 

generic semiconductor. Using Equation 3.41 we can 
now calculate ωp for a variety of materials. For silver, 
for example, with a σ of 6.2 × 107 Ω-m, one obtains 
ωp = 9.65 × 1014 Hz (= 311 nm or 4 eV). The lower 
the resistivity (higher n), the higher the plasma fre-
quency. Consequently, plasma frequencies ωp are in 
the optical range (UV) for metals and in the THz to 
the infrared region for semiconductors and insula-
tors. Metals reflect light in the visible region and are 
transparent at very high frequencies (UV and x-rays). 
With a free space wavelength less than λp, a wave 
propagates; when it is longer, the wave is reflected 
(ω > ωp, or λ < λp).

In a metal where both bound electrons [εB(ω)] 
and conduction electrons [εr(ω)] contribute an effec-
tive dielectric constant, εEff(ω) must be defined as:

 Eff B r( ) ( ) ( ) (3.48)

where εr(ω) is the complex dielectric constant at 
ωτ >> 1, given by (see Equations 3.44 and 3.45):
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Plasma oscillations can be excited in dielectric 
films as well. A dielectric material is a nonconduct-
ing substance whose bound charges are polarized 
under the influence of an externally applied elec-
tric field. In this case, although qualitatively the 
same effect as in a metal, the oscillations of the 
bound electrons are with respect to the immobile 
ions instead of with respect to the films bound-
ary, and a restoring force related to the strength 
of the bond of the electrons to those ions must 
be introduced. In Chapter 5 on photonics, after 
introducing the Maxwell equations, the Drude 
plasmon model will be upgraded with the more 
complete Drude-Lorentz model that includes such 
a restoring force term. The restoring force pulls 
charges back in their equilibrium position. The 
Drude-Lorentz model without the restoring force 
reduces back to the Drude model, in which con-
duction electrons are not bound to atoms. There 
we will also calculate the effective dielectric con-
stant εEff(ω) (with bound and free electron contri-
butions) of Equation 3.48.

TABLE 3.2 Plasma Frequency (ωp) and Free Space 
Frequency (λp) for a Generic Semimetal and 
Semiconductor

Property Metal Semiconductor

Electron density: n, cm−3 1022 1018

Plasma frequency: ωp, Hz 5.7 × 1015 5.7 × 1013

Space frequency: λp, cm 3.3 × 10−5 3.3 × 10−3

Spectral range UV Infrared region
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Specific Heat Capacity of 
Metal and Insulators

Different materials require different amounts of 
heat to increase their temperature. Heat capacity per 
unit mass of a substance is known as specific heat, 
and as we will see, it is a measure of the number of 
degrees of freedom of the system. When using clas-
sical models, as in the case of electrical conductiv-
ity, things went wrong for calculations of the specific 
heat capacity of metals and insulators. 

Based on the Drude assumption that electrons in 
a metal behave as a monatomic gas of N classical 
particles, they should be able to take up translational 
kinetic energy when the metal is heated. According 
to the equipartition principle of energy in a gas with 
N particles, the electron internal energy U, at tem-
perature T, expressed per mole is:

 U
n

N
n

k T = 
3
2

N kT = 
3
2

RTB A
3
2

 (3.50)

with n the number of moles in the system, NA 
Avogadro’s number, R the ideal gas constant, and kB 
Boltzmann’s constant. Remember also from ther-
modynamics that the first derivatives of the funda-
mental thermodynamic equations, in U (internal 
energy) or S (entropy), correspond to the intensive 
parameters T, P, and μ (chemical potential), whereas 
second derivatives correspond to important materi-
als properties such as the molar heat capacity, or:

 C T
s
T

T
n

S
T n Tv

v v v

1 Q
 (3.51)

This equation basically tells us that the molar heat 
capacity at constant volume is the quasistatic heat 
flux per mole required to produce a unit increase in 
the temperature for a system maintained at constant 
volume. Materials with high specific heat capacity 
(Cv) require more energy to reach a given tempera-
ture. In the case of a metal, one expects contribu-
tions to the heat capacity from both the lattice and 
the free electrons. The electronic contribution to the 
molar specific heat capacity at constant volume, Cv, 
from Equation 3.50, is:

 C
T

U
n

Rv,el

v

3
2  (3.52)

or about 12.5 J/(mol·k). 

Atoms in a lattice usually have no translational 
energy, and as temperature increases only vibra-
tional energy increases. In the case of a monova-
lent metal, the lattice specific heat contribution, 
Cv,lat, equals 3R. This follows from the fact that a 
classical atom oscillator has 3 degrees of freedom in 
vibration, or U = 3NkT. The vibration of a classical 

1D harmonic oscillator is U = kT, with 
1
2

kT for 

kinetic and 
1
2

kT for potential energy (Figure 3.14). 

From the latter we expect Cv,lat to be constant at 3R 
or 25 J/(mol·k), the so-called Dulong-Petit law. 
Experimentally, Cv, the sum of vibrational and elec-
tronic contributions (Cv = Cv,el + Cv,lat), is propor-
tional to T 3 at low T and approaches a constant 3R at 
high T (see Figure 3.15). Diamond reaches the 
Dulong-Petit value 25 J/(mol·k) only at high tem-
perature, whereas lead reaches the Dulong-Petit 
value at relatively low temperature.

From the above, at high temperature, electrons 
are expected to contribute to the lattice heat capacity 

for a total Cv = Cv,el + Cv,lat or 
9
2

R, which is obviously 

a different result from Dulong-Petit’s 3R! The total 
Cv for metals is found to be only slightly higher than 
that for insulators, which only feature lattice con-
tributions. The question is then: where is the elec-
tronic contribution? The absence of a measurable 
contribution by electrons to the Cv was historically 

FIGURE 3.14 Cv: energy needed to raise T of 1 mol by 1 K 
at constant V, volume. The internal energy resides in vibra-
tions of the solid constituents. The vibration of a classical 
1D harmonic oscillator is U = kT. In a solid there are three 
perpendicular modes of vibration or three harmonic oscilla-
tors, and the total energy of a solid is thus U = 3N kT = 3RT.
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one of the major objections to the classical free elec-
tron model: because electrons are free to carry cur-
rent, why would they not be free to absorb heat 
energy? Conduction electrons only contribute a 
small part of the heat capacity of metals, but, as we 
will see below, they are almost entirely responsible 
for the thermal conductivity. 

In the above model, we used the principle of equi-
partition of the energy, which we borrowed from 
classical ideal gas theory. But, as Planck discovered 
in 1901, a vibrating system can only take up energy 
in quanta, the size of which is proportional to the 
vibration energy such that E = hν, where ν is fre-
quency and h is the Planck constant. The chance that 
an atom vibrator can pick up an energy hν is propor-
tional to e−hν/kT, and the average energy of a vibrating 
atom, at low temperature, may fall so low that the 
value of kT is now small compared with the size of 
the quantum hν, and the probability factor e−hν/kT is 
dramatically decreased. Therefore, Dulong-Petit is 
incorrect at low temperatures as vibrations of suc-
cessively lower frequencies fail to become excited. 
Atoms in a crystal do not obey Maxwellian statis-
tics at low temperatures, and one needs to invoke 
the Einstein or Debye law instead. The reason that 
electrons do not contribute to the heat capacity at 
room temperature is, just like in the case of electrical 

conductivity, that they are fermions and cannot be 
treated as an ordinary Maxwell-Boltzmann gas. At 
room temperature, only the very few electrons in the 
so-called Maxwell-Boltzmann tail of the Fermi dis-
tribution can contribute to the heat capacity. Thus, 
at ordinary temperatures the electronic heat capacity 
is almost negligible, and it is the atomic vibration, 
i.e., the contribution of phonons, that dominates. 
In Figure 3.16 we show the experimental molar heat 
capacity as a function of temperature and the expec-
tations for those values from classical theory and 
from the Einstein and Debye models, which are dis-
cussed at the end of this chapter. It is seen here that 
the electronic contribution Cv,el varies linearly with 
temperature. 

Thermal Conductivity

Heat conduction is the transfer of thermal energy 
from a hot body to a cold body. In a solid both 
electrons and phonons can move, and depending 
on the material involved, one or the other tends 
to dominate. We intuitively expect electrical and 
thermal conductivities somehow to be linked; from 
experience we know that, in general, good electri-
cal conductors are also good thermal conductors. 
The connection between electrical and thermal 
conductivities for metals was first expressed in the 
Wiedemann-Franz law in 1853, suggesting that elec-
trons carry thermal energy and electrical charge. 
Insulators are often transparent, and conducting 
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FIGURE 3.15 Dulong-Petit law with Cv = 3R or 25 J/(mol·k) 
at high temperatures.

Dulong-Petit value ~ 25 J/(mol·k)

Classical theory

exp.

Einstein model
Debye
model

Electronic heat capacity

Cv

300 K T0

FIGURE 3.16 Schematic representation of the tempera-
ture dependence of the molar heat capacity, experimental 
and according to four models. For the Debye and Einstein 
models, see further below.
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metals are reflecting and shiny when polished. Most 
metals are shiny because when light strikes a metal, 
the light is scattered by the moving electrons. For an 
exception, think about diamond, which is a trans-
parent insulator but conducts heat better than alu-
minum or copper. For a glaring difference between 
heat and electrical conduction, consider that elec-
trical conductivity of materials spans 25 orders of 
magnitude, whereas thermal conductivity only 
spans about four orders. In metals, heat is mostly 
transferred by electrons, but in electrical insulators, 
there are few free electrons, so the heat must be con-
ducted in some other way, i.e., lattice vibrations or 
phonons. Thus, materials are divided into phonon 
conductors and electron conductors of heat as illus-
trated in Figure 3.17.

There is a major difference between heat conduc-
tion by electrons and by phonons; for phonons, 
the number changes with the temperature, but the 
energy is quantized, whereas for electrons, the num-
ber is fixed, but the energy varies. We will analyze 
now in more detail what that relation between elec-
tronic conductivity, σ, and thermal conductivity, κ 
is, and will discover that, when using classical mod-
els, the experimental results again cannot be prop-
erly explained. 

Recall the electrical result J = σE (Equation 2.2) 

and also J = σE = σdV
dx

. The thermal equivalent for 

this expression is Fourier’s law for heat conduction, 
Q, which states that:

 Q A
T T

L
A

dT
dx

h c  (3.53)

with Th the hot temperature and Tc the cold tempera-
ture, κ the thermal conductivity, L the thermal con-
duit path-length, and A its cross-sectional area. From 
the first law of thermodynamics (heat conservation), 

we know that the rate of heat conduction must equal 
the rate of change of energy storage:

 
2T
x

C
T
t2 v.el

 (3.54)

The specific heat capacity, in general, is made up of 
a phonon and an electron term (Cv = Cv,el + Cv,lat). In 
most metals, the contribution of the electrons to heat 
conductivity greatly exceeds that of the phonons, 
and the phonon term can be neglected (Cv = Cv,el). 
Because of electrical neutrality, equal numbers of 
electrons move from hot to cold as the reverse, but 
their thermal energies are different.

Equations 3.53 and 3.54 only apply under the 
conditions that: 

t >> scattering mean free time of the energy 
 carriers (τ)

L >> scattering mean free path of the energy 

 carriers (λ)

These conditions break down for applications 
involving thermal transport in small length/time 
scales, e.g., nanoelectronics, nanostructures, NEMS, 
ultrafast laser processing, etc. (see below and 
Volume III, Chapter 7 on scaling). For now, how-
ever, we are interested in the relation between elec-
tronic con ductivity, σ, and thermal conductivity, κ, 
for somewhat larger systems. 

To arrive at the expression for thermal conductiv-
ity, κ, we inspect Figure 3.18 and consider a metal 
bar [area A is a unit area (A = 1) here] with a tem-
perature gradient dT/dx where we are interested in 
a small volume of material, with a length 2λ, with 
λ the mean free path between collisions. The idea 
is that an electron must have undergone a collision 
in this space and hence will have the energy/tem-
perature of this location. To calculate the energy 
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flowing per unit time per unit area from left to right 
(E1), we multiply the number of electrons N crossing 
by the energy of one electron:

 

energy kT k T
dT
dx

number

1 0

1
2

1
2

1
6

1
2

nv

E
nv

2
k T

dT
dx

dx

1
dx

0

 (3.55)

with vdx the drift velocity in the x-direction, and 
dT/dx a thermal gradient in the x-direction. We 
know that for charge neutrality the same number 
of electrons must flow in the opposite direction to 
maintain charge neutrality, but their energy per 
electron is lower. 

Based on:

 E
nv

2
k T

dT
dx2

dx
0

1
2  (3.56)

the thermal energy transferred per unit time per 
unit area is:

 Q E E
nv

2
k

dT
dx1 2

dx  (3.57)

Comparing this result with Equation 3.53 (with 
A = 1), we obtain:

 1
2

nv kdx  (3.58)

This says that the thermal conductivity is larger if 
there are more electrons (n large), the electrons 
move faster (vdx large), and they move more easily 
(large λ with fewer collisions). Because NAk = R with 
R the ideal gas constant, N/NA = n (number of moles 
of electrons), and the electronic contribution to the 
molar specific heat capacity at constant volume, Cv,el, 
from Equation 3.52 is 3/2R. The bulk heat conduc-
tivity of a solid per mole (n = 1) can then be rewrit-
ten as:

 1
3

C v or also
1
3

C v sine vv,el dx v,el dx
2

ddx  (3.59)

As mentioned above, in most metals the conduc-
tion by electrons greatly exceeds that of the phonons; 
typically the phonon contribution at room tempera-
ture is only 1% of the electron contribution.

In 1853, long before Drude’s time, Gustav 
Wiedemann and Rudolf Franz published a paper 
claiming that the ratio of thermal and electrical 
conductivities of all metals has almost the same 
value at a given temperature:

 
C mv

ne
k
e

Tv,el dx
2

2
B

3
3
2

2

 (3.60)

calculated through Drude’s application of classical 

gas law: C nkelv, B and
3
2

 1
2

mv k Tdx
2

B

3
2

. Ludwig 

Lorenz realized in 1872 that this ratio scaled linearly 
with temperature, and thus a Lorenz number, L, was 
defined as: 

 
T

L (3.61)

which is very nearly constant for all metals (at room 
temperature and above). A typical value for L, say for 
Ag, is 2.31 10−8 WΩK−2 at 0°C and 2.37 10−8 WΩK−2 at 
100°C (see Table 3.3).

Although Equation 3.61 is the correct relation-
ship, we now know that the value for L calculated 
from it is wrong. However, Drude, using classical 
values for the electron velocity vdx and heat capac-
ity Cv,el, somehow got a number very close to the 
experimental value. But how lucky that Drude dude 
was: by a tremendous coincidence, the error in 
each term he made was about two orders of magni-
tude … in the opposite direction [the electronic Cv,el 

E1 E2

x1 x2x0
x

Unit area

FIGURE 3.18 Fourier’s Law for heat conduction: we are 
interested in a small volume of material, with a length 2λ, 
where λ is the mean free path between collisions with the 
lattice.
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is 100 times smaller than the classical prediction, 
but (vdx)2 is 100 times larger]. So the classical Drude 
model gives the prediction:

 L W KDrude 1 1210 8 2.  (3.62)

But in Drude’s original paper, he inserted also an 
erroneous factor of two, as a result of a mistake in 
the calculation of the electrical conductivity. So he 
originally reported:

 L W K2 24 10 8 2.  (3.63)

The correct value for the Lorenz number, L, derived 

from quantum mechanics is 
2k
e

B
2

3 2
 or 2.45 × 10−8 

WΩK2 (see Equation 3.340 below). So although 
Drude’s predicted electronic heat capacity was far 
too high (by a factor of 100!), his prediction of L 
made the free electron gas (FEG) model seem more 
impressive than it really was and led to a general 
acceptance of the model. 

Hall Coefficients 

Conductivity measurements do not yield informa-
tion about the sign of charge carriers; for this we 
need the Hall effect. The Hall effect uses current 
and a magnetic field to determine mobility and the 
sign of charge carriers. The Hall effect, discovered 
in 1879 by American physics graduate student (!) 
Edwin Hall, is simple to understand.1 With refer-
ence to Figure 3.19, consider a fairly strong mag-
netic field B (~2000 Gauss) applied perpendicular 
to a thin metal film (thickness is d and width is w) 
carrying a current I. The magnetic Lorentz force is 

normal to both the direction of the electron motion 
and the magnetic field. The path of the charge car-
riers shifts as a result of this Lorentz* force, and, as 
a consequence, the Hall voltage, VH = Eyw (where 
Ey is the Hall field strength), builds up until it pre-
vents any further transverse displacement of elec-
trons. In other words, the Hall field increases until 
it is equal to and opposite of the Lorentz force. The 
orientation of the fields and sample is illustrated in 
Figure 3.19. 

In mathematical terms, the above translates as fol-
lows. With both electric and magnetic fields present, 
a charge carrier with charge q experiences a Lorentz 
force in the lateral direction:

 F v BL d zq( ) (3.64)

We do use the drift velocity vd of the carriers because 
the other velocities (and the forces caused by these 
components) cancel to zero on average. Note that 
instead of the usual term “electron,” the term “charge 
carrier” is used here because in principle an electri-
cal current could also be carried by charged par-
ticles other than electrons, e.g., positively charged 
ions or holes (missing electrons). The vector prod-
uct in Equation 3.64 ensures that the Lorentz force 
is perpendicular to vd and Bz. For the geometry 
assumed in Figure 3.19, the Lorentz force FL has only 
a component in the y-direction, and we can use a 

* This is the Lorentz we encounter again in Chapter 5 (Figure 5.50), not 
the Lorenz from the Lorenz number L.

TABLE 3.3 Some Typical Lorenz Numbers

Lorenz Number L in 10−8 WΩK2

Metal 273 K 373 K
Ag 2.31 2.37
Au 2.35 2.40
Cd 2.42 2.43
Cu 2.23 2.33
Ir 2.49 2.49
Mo 2.61 2.79
Pb 2.47 2.56
Pt 2.51 2.60
Sn 2.52 2.49
W 3.04 3.20
Zn 2.31 2.33

Lorentz force
F = –qv × B

B

v

F V = 0

V = VH

w

e

d
I

B x

y
z

Coordinate
system

FIGURE 3.19 The Hall effect. Magnetic field B is applied 
perpendicular to a thin metal film sample carrying current 
I. VH is the Hall voltage.
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scalar equation for the Lorentz force: FL = –qvdBz or 
with Equation 3.11 (where we replaced μe by μq for 
generality):

 FL = −qμqExBz (3.65)

As more and more carriers are deflected by the 
magnetic force, they accumulate on one side of the 
thin-film conductor, and this accumulation of charge 
carriers leads to the “Hall field” Ey that imparts a 
force opposite to the Lorentz force. The force from 
that electrical field Ey in the y-direction (which is of 
course q·Ey) must be equal to the Lorentz force with 
opposite signs. This way we obtain:

 

F q q or

F

L x z y

L x z y

q

q

E B E

E B E
 (3.66)

The Hall voltage VH now is simply the field in y-di-
rection multiplied by the dimension w in the y-direc-
tion (=wEy). It is clear then that the (easily measured) 
Hall voltage is a direct measure of the mobility μ 
of the carriers involved, and that its sign or polarity 
will change if the sign of the charges changes.

It is customary to define a Hall coefficient, RH, for 
a given material as:

 R
JH

yE

Bx z

 (3.67)

In other words, we expect that the Hall voltage, wEy, 
will be proportional to the current density Jx and the 
magnetic field strength B, which are, after all, the 
main experimental parameters (besides the trivial 
dimensions of the specimen):

 E By H xR Jz  (3.68)

Using Equations 3.10, 3.66, and 3.67, as well as 
Jx = σEx, we calculate RH as:

 R
qnH

q x z

x z

1
qn

E B

E B
 (3.69)

When we calculate RH from our measurements 
and assume |q| = e (which Hall at the time did not 
know!), we can find n, the charge density. Also, the 
sign of VH and thus of RH tells us the sign of q! If RH 
is negative, the predominant carriers are electrons; 
if positive, they are holes. If both types of carriers 
are present, the Hall field will change its polarity 
depending on the majority carrier (Figure 3.20). 
Also from Equation 3.69 one sees that the lower the 
carrier density, the higher RH and thus the higher 
VH; this is a key to some very sensitive magnetic field 
sensors. 

For most metals the Hall constant is negative 
because electrons are majority carriers. But for Be and 
Zn, for example, there is a band overlap with domi-
nant conduction by holes in the first band and fewer 
electrons in the second. As a result, RH is positive for 
these metals. Of course energy bands were not heard 
of yet, and the results of a positive RH were baffling at 
the time: how can we have q > 0 (even for metals!)? 
The Hall coefficient changes sign with the sign of the 
charge carrier and therefore provides an important 
method for investigating the electronic structure of the 
solid state. In particular, the positive Hall co efficients 
exhibited by metals such as magnesium and alumi-
num are a clear indication that a naive picture of a 
sea of conduction electrons is inappropriate because 
the majority carriers are clearly positively charged 
(and are, in fact, holes). The discrepancies between 
the FEG predictions and experiments nearly vanish 
when liquid metals are compared (see Table 3.4). This 
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FIGURE 3.20 Electron and hole charge carriers in the Hall effect. When the charge carriers are negative, the upper edge 
of the conductor becomes negatively charged (a). When the charge carriers are positive, the upper edge becomes posi-
tively charged (b).
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reveals clearly that the source of these discrepancies 
lies in the electron-lattice interaction of a solid.

The Hall effect “oddities” will be properly exp-
lained once we have introduced quantum physics. 
We will also see that under special conditions of 
extremely low temperature, high magnetic field, and 
two- dimensional electronic systems (2D electron 
gas, in which the electrons are confined to move 
in planes), the Hall resistance RH is quantized and 
increases as a series of steps with increasing mag-
netic field. These discrete energy levels are called 
Landau levels.

Blackbody Radiation

Planck first discovered the discontinuous behavior 
that characterizes the atomic world in his analysis 
of the light spectra emitted from blackbodies in 
1900. All substances, with thermal energy, radiate 
EM waves, and the radiation emanating from solids 
consists of a continuous spectrum of wavelengths. A 
blackbody (also cavity radiation) is a hypothetical 
object that is a perfect absorber or perfect emitter of 
radiation (Figure 3.21).

“Blackbody” is an unfortunate name as the ideal 
radiating/absorbing body does not have to be black; 
stars and planets, to a rough approximation, are 
blackbodies! When a blackbody is heated, it first feels 
warm and then glows red or white hot, depending on 
the temperature. A typical spectrum of the radiated 
light intensity, brightness, or emittance of a black-
body is shown in Figure 3.22. Intensity is a measure 
of how much energy is emitted from an object per 
unit surface area per unit time at a given wavelength 

and in a particular direction. A blackbody of tem-
perature T emits a continuous spectrum peaking 
at λmax. At very short and very long wavelengths 
there is little light intensity, with most energy radi-
ated in some middle range frequencies. As the body 
gets hotter, the peak of the spectrum shifts toward 
shorter wavelengths (higher frequencies), but there 
is always a cutoff at very high frequencies. 

It was experimentally observed that the bright-
ness peak position shifted with temperature as: 

 T constant m Kmax 2 898 10 3.  (3.70)

This is known as the Wien displacement law (see 
Figure 3.22). It was also known that the total energy, 
E, could be represented as the Stefan-Boltzmann law: 

 E T 4 (3.71)
where the constant σ = 5.6704 × 10–8 W/m2·K4. 
Classical interpretation predicted something 

TABLE 3.4 Discrepancies between the FEG Predictions 
for RH and Experiments Nearly Vanish When Liquid 
Metals Are Compared*

 RH (10−11 m3/As)

Metal n0 Solid Liquid FEG Value

Na 1 −25 −25.5 −25.5
Cu 1 −5.5 −8.25 −8.25
Ag 1 −9.0 −12.0 −12.0
Au 1 −7.2 −11.8 −11.8
Be 2 +24.4 −2.6 −2.53
Zn 2 +3.3 −5 −5.1
Al 2 −3.5 −3.9 −3.9

*This reveals clearly that the source of these discrepancies lies in the 
electron-lattice interaction. Notice positive RH for Be and Zn.

FIGURE 3.21 Ideal blackbody (also cavity radiation). 
“Blackbody radiation” or “cavity radiation” refers to an 
object or system that absorbs all radiation incident on it 
and reradiates energy that is characteristic of this radiat-
ing system only, not dependent on the type of radiation 
that is incident on it. The radiated energy can be consid-
ered to be produced by standing wave or resonant modes 
of the cavity, which is radiating.
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FIGURE 3.22 Blackbody radiation spectra at four differ-
ent temperatures.
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altogether different; in the classical Rayleigh-Jeans 
model, instead of a peak in the blackbody radiation 
and a falling away to zero at zero wavelength, the 
measurements were predicted to go off scale at the 
short wavelength end as shown in Figure 3.23.

Here is how the British physicists Lord Rayleigh 
and Jeans derived their model. They interpreted the 
blackbody radiation coming from a solid as electro-
magnetic radiation from oscillators that vibrate at 
every possible wavelength λ. In Figure 3.23 the radi-
ated intensity, E(λ), in Js−1 m−3, is the energy distri-
bution, i.e., the energy, E, at each λ. At equilibrium, 
the mean energy of all oscillators at temperature T 
is kT. The energy Eλ in a small interval dλ is then 
given by:

 Eλ dλ = kTdn (3.72)

where dn is the fraction of oscillators at the “average 
energy” in the dλ interval. From the Maxwell equa-
tions (see Chapter 5) one derives:

 
dn
d

8
4  (3.73)

Substituting this relation in Equation 3.72 leads to:

 
E d kT

8
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(3.74)or also since ν = c/λ

 

E d kT
8
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3

2

The term in brackets 
8 2

c3  is the number of modes 

per unit frequency per unit volume.
The amount of radiation emitted in a given fre-

quency range should be proportional to the number 
of modes in that range. The best of classical phys-
ics suggested that all modes had an equal chance 
of being produced, and that the number of modes 
increased proportionally to the square of the fre-
quency. Equation 3.74 works at long wavelengths 
(see Figure 3.23) but fails at short wavelengths. This 
failure at short wavelengths is called the ultraviolet 
catastrophe; as λ decreases, Eλ goes to +∞. Even at 
very low T, the exponential curves in Figure 3.23 
would have a huge value for visible light. Objects 
would be visible in the dark. The predicted con-
tinual increase in radiated energy with frequency 
(dubbed the “ultraviolet catastrophe”) did not hap-
pen. Nature knew better.

The UV catastrophe attracted the attention of 
many physicists at the end of the nineteenth century, 
including Max Planck. Planck took the revolutionary 
step that led to quantum mechanics. He concluded 
that the available amount of energy could only be 
divided into a finite number of pieces among the 
atom oscillators in the cavity walls, and the energy 
of such a piece of radiation must be related to its 
frequency according to a new extremely important 
equation: 

 E = hν (3.75)

where h was a new constant now called the Planck 
constant. The quantization implies that a photon 
of blue light of given frequency or wavelength will 
always have the same size quantum of energy. For 
example, a photon of blue light of wavelength 450 
nm will always have 2.76 eV of energy. It occurs in 
quantized chunks of 2.76 eV, and you cannot have 
half a photon of blue light—it always occurs in pre-
cisely the same-sized energy chunks. Planck showed 
that the intensity I of radiation from a blackbody 
could be described by the function (now known as 
the Planck function):

 I( ,T)
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body radiation.
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This Planck function was initially found empiri-
cally by trial and error but later derived by assuming 
the Planck constant and a Boltzmann distribution. 
Differentiating the Planck function with respect to 
wavelength one derives Wien’s displacement law—
the wavelength of the maximum:

 max

hc
4.965kT

 (3.77)

The constant hc/4.965kT agrees with the 2.898 × 
10–3 m·K experimental value from Equation 3.70. 
Integration of the Planck function with respect to 
wavelength over all possible directions results in the 
total energy emitted per unit area per unit time from 
the surface of a blackbody (or absorbed per unit area 
per unit time by a body in a blackbody radiation 
field). This gives us back the Stefan-Boltzmann law 
(Equation 3.71):

 E E T)
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c h
T T
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 (3.78)

which also enables us to verify that the constant σ is 
indeed 5.6704 × 10−8 W/m2·K4.

Planck, interestingly, never appreciated how far 
removed from classical physics his work really was. 
He spent most of his life trying to reconcile the new 
ideas with classical thermodynamics. The Planck 
constant h was a bit like an “uninvited guest” at a 
dinner table; no one was comfortable with this 
new guest. But today we know that discontinuities 
in the nanoworld are meted out in units based on 
this Planck constant. This constant and its particu-
lar magnitude constitute one of the great mysteries 
in nature. It is the underlying reason for the per-
ceived weirdness of the nanoworld, the existence of 
a “least thing that can happen” quantity—a quan-
tum. The ubiquitous occurrence of discontinuities 
in the nanoworld constantly upsets our common-
sense understanding of the apparent continuity of 
the macroscopic world.

Light as a Stream of Particles

Photoelectric Effect

The photoelectric effect, discovered by chance, by 
Heinrich Hertz and his student Hallwachs in 1888, 

is a process whereby light falling on negatively 
charged Zn, in an evacuated vessel, knocks elec-
trons out of the surface as illustrated in Figure 3.24. 
The details of the photoelectric effect were in direct 
contradiction to the expectations of very well-
 developed classical physics of light waves, and the 
correct explanation by Einstein in 1905 marked one 
of the major steps toward quantum theory. Classical 
light wave theory predicts that the electrons in the 
metal will absorb radiation energy continuously. 
Once an electron has absorbed energy in excess of 
its binding energy, it will be ejected, and one would 
expect that a higher intensity would increase the 
chance that electrons are ejected. 

As illustrated in Figure 3.24, to test this model 
we introduce a metal collector plate that collects 
electrons and a circuit that may be closed to mea-
sure the current I. In this setup, a retarding or stop-
ping potential, V0, may be applied to determine 
the kinetic energy of the electrons (eV0 = 1/2 mv2). 
The classical wave model implies that the stopping 
voltage V0 must be proportional to the intensity. 
Increasing frequency ν should not matter much, 
perhaps only causing a small decrease in current I, 
as a result of the rapid wave oscillations at high fre-
quencies. With low intensity light, there should be a 
time delay to build up enough energy before current 
starts to flow.

The results were unexpected; no electrons were 
ejected, regardless of the intensity of the light, 
unless the frequency exceeded a certain threshold 
characteristic of the bombarded metal (red light 
did not cause the ejection of electrons, no mat-
ter what the intensity). The electrons were emitted 
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FIGURE 3.24 Experimental setup for studying the photo-
electric effect.
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immediately—no time lag. Increasing the intensity 
of the light increased the number of photoelectrons 
but not their maximum kinetic energy (a weak vio-
let light would eject only a few electrons, but their 
maximum kinetic energies were greater than those 
for intense light of longer wavelengths). The kinetic 
energy of the ejected electrons varied linearly with 
the frequency of the incident radiation but was inde-
pendent of the intensity, or:

 eV0( = kinetic energy of the electrons) = hν − Φ
(3.79)

where Φ, the photoelectric work function, is the 
energy lost by a surface when an electron is freeing 
itself from its environment. This cannot be explained 
by the Maxwell equations.

If the charge of the electron is known, a plot of 
retarding or stopping voltage versus frequency of inci-
dent light, shown for three different metals in Figure 
3.25, may yield a value for the Planck constant h. The 
electron charge was determined by Robert Millikan 
in 1909, and with that value and the slope of the 
lines in Figure 3.25, a value for h of 6.626 × 10−34 J∙s 
was calculated, identical to the one derived from the 
hydrogen atom spectrum and blackbody radiation 
(see above). The intercept with the frequency axis (at 
kinetic energy zero) is the threshold frequency, ν0, 
and the stop or retarding voltage axis intercept is the 
binding energy (–Φ) of the electron.

The photoelectric phenomenon could not be 
understood without the concept of a light particle, 

i.e., a quantum amount of light energy for a particu-
lar frequency. Einstein’s paper explaining the pho-
toelectric effect was one of the earliest applications 
of quantum theory and a major step in its establish-
ment. The remarkable fact that the ejection energy 
was independent of the total energy of illumination 
showed that the interaction must be like that of a 
particle that gave all of its energy to the electron! 
This fit in well with Planck’s hypothesis that light in 
the blackbody radiation experiment could exist only 
in discrete bundles with energy. In quantum theory, 
the frequency, ν, of the light determines the energy, 
E, of the photons and E = hν, where h is Planck’s 
constant (h = 6.626069 × 10−34 J·s) (Figure 3.26).

This assumption explains quantitatively all the 
observations associated with the photoelectric 
effects. A photon hits an electron and is absorbed. 
The energy of the emitted electron is given by the 
energy of the photon minus the energy needed to 
release the electron from the surface. This explains 
the observance of a threshold value below which no 
electrons are emitted. Thus, it depends on the fre-
quency of light falling on the surface but not on its 
intensity. It also explains why there is no time lag; a 
photon hits an electron, is absorbed by the electron, 
and the electron leaves. Higher intensity light con-
tains more photons, and so it will knock out more 
electrons. However, if the frequency of the light is 
such that a single photon is not energetic enough to 
release an electron from the surface, then none will 
be ejected no matter how intense the light. Gilbert 
N. Lewis in 1926 called Einstein’s light particles pho-
tons. Just as the word photon highlights the particle 
aspect of an electron, the word graviton emphasizes 
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FIGURE 3.25 A plot of retarding or stopping voltage 
versus frequency of incident light. Slope is the Planck con-
stant h. The intercept with the frequency axis (at kinetic 
energy zero) is the threshold frequency, ν0, and the stop 
voltage axis intercept is the binding energy.
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FIGURE 3.26 Light as energy packets with an energy 
E = hν.
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the particle aspect of gravity, and gluon that of the 
strong nuclear force. 

The young Einstein, in 1905, was the first scien-
tist to interpret Planck’s work as more than a math-
ematical trick and took the quantization of light 
(E = hν) for physical reality. He gave the uninvited 
dinner guest—the Planck constant h—a place at the 
quantum mechanics dinner table. What Einstein 
proposed here was much more audacious than 
the mathematical derivations by Planck to explain 
away the UV catastrophe. For a long time the sci-
ence of optics had hesitated between Newton’s cor-
puscular hypothesis and Huygens’ wave theory. By 
the beginning of the nineteenth century the wave 
theory had become the dominant theory, largely 
because of the persistence of Augustin Fresnel 
(1788–1827), who described diffraction mathe-
matically, and James Clerk Maxwell (1831–1879), 
who introduced the famous Maxwell equations in 
1864 (Chapter 5). No wonder Einstein wrote at that 
time to one of his friends: “I have just published 
a paper about light, but I am sure nobody will 
understand it.” Einstein reintroduced a modified 
form of the old corpuscular theory of light, which 
had been supported by Newton but which was long 
abandoned.

The particle nature of light was hard to swallow 
at the time, and it indeed still is. Remember the dif-
fraction of x-rays on a crystal described in Chapter 2. 
Diffraction is something that happens with waves, 
not with particles. Einstein’s light particles also 
negated the issue of “ether,” a medium required 
for wave propagation as in the case of sound waves 
(sound waves cannot propagate in a vacuum); light 
is perfectly happy traveling in a vacuum.

How can we reconcile this duality of a photon 
as both wave- and particle-like in nature? We will 
have to learn to think of the wave as the probabil-
ity of finding the particle. For example, if we know 
the momentum of the particle exactly, we can-
not say where it is, only where it is likely to be [the 
Heisenberg uncertainty principle (HUP)].

Compton Scattering

The first strong support for the quantum nature 
of light came from monochromatic x-ray scatter-
ing on a graphite block. In 1922, Arthur Compton 

(Figure 3.27), at Washington University in St. Louis, 
saw that the wavelength of x-rays increases on scat-
terings off graphite, depending on the angle (Figure 
3.28). This effect cannot be explained using wave 
theory of x-rays. 

As first explained by Compton in 1923, a photon 
can lose part of its energy and momentum on scat-
terings with electrons in the graphite, and the result-
ing energy loss (or change in wavelength, Δλ) can 
be calculated from the scattering angle θ. The result 
is that some of the scattered radiation has a smaller 
frequency (longer wavelength) than the incident 

FIGURE 3.27 Arthur Harry Compton (1892–1962).
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radiation. This change in wavelength depends on the 
angle through which the radiation is scattered, and 
Compton concluded that an x-ray photon—or light 
in general—possesses momentum and thus behaves 
as a particle. Obviously, this was a big boost for the 
theory of light as composed of quanta. The three 
experiments that made the quantum revolution— 
blackbody radiation, the photoelectric effect, and 
the Compton effect—all indicate that light consists 
of particles.

Quantum Mechanics to the Rescue

Introduction

Invoking quantum mechanics we can solve the many 
problems with classical theories we exposed in the 
previous sections. Central to quantum mechan-
ics is Schrödinger’s equation, but before introduc-
ing Schrödinger’s equation, we must put down 
some more foundations. We start with Kelvin’s and 
Thomson’s plum pudding atom model, then review 
Rutherford’s and Bohr’s improved orbital atom 
models, emphasize the importance of the Balmer’s 
hydrogen emission lines in the discovery of the 
inner structure of an atom, and then we get baf-
fled by de Broglie’s matter waves and Heisenberg’s 
uncertainty principle (HUP). There are four princi-
pal representations of quantum mechanics: Dirac’s 
Hamiltonian and quantum algebra representation; 
the matrix representation of Born, Heisenberg, 
and Jordan; Schrödinger’s wave equations; and 
Feynman’s sum-over-histories approach; the latter 
constitutes a fundamentally new way of looking at 
quantum theory. With the Schrödinger formalism 
of quantum mechanics we tackle the band model 
and revisit electrical and thermal conductivity and 
heat capacity. 

Bohr’s and Rutherford’s Atom

The Greek philosopher Leucippus of Miletus, who 
lived around 400 BC, first proposed atomic the-
ory of matter. His disciple, Democritus of Abdera, 
concluded that infinite divisibility of a substance 
belongs only in the imaginary world of mathematics 
and further developed his mentor’s atomic theory 
(Figure 3.29).

Democritus suggested that all things are “com-
posed of minute, invisible indestructible particles 
of pure matter.” According to the ancient Greeks, 
“atomos”* or atoms were all made of the same basic 
material, but atoms of different elements had dif-
ferent sizes and shapes. The sizes, shapes, and 
arrangements of a material’s atoms determined the 
material’s properties. For example, sour-tasting sub-
stances were believed to contain atoms with jagged 
edges, whereas round atoms made substances oily. 
It was further believed that there were four ele-
ments that all things were made of: earth, air, fire, 
and water. This basic theory remained unchanged 
until the nineteenth century, when it first became 
possible to test the theory with more sophisticated 
experiments. Lord Kelvin and J.J. Thomson devel-
oped a “raisin cake” model of the atom (also called 
the plum pudding model, 1897), which incorpo-
rated Thomson’s negatively charged electrons as the 
raisins in a positively charged cake (Figure 3.30). 

* Atomos in Greek means “unbreakable.”

FIGURE 3.29 Democritus.

FIGURE 3.30 Kelvin’s and Thomson’s raisin cake.
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To check the Kelvin and Thomson model, Geiger 
and Marsden, working in Rutherford’s lab in 1911, 
directed a narrow beam of alpha particles, double-
ionized helium atoms, of known energy onto a 
thin gold foil. A ZnS scintillation screen was used 
to record the striking alpha particles. Most particles 
went through the gold film undeflected, and some 
were deflected at small angles; however, they found 
that, once in a while, for about 1% of particles, the 
α-particles were scattered backward by the target 
(Figure 3.31).

For a moving alpha particle to be scattered 
through a large angle, a considerable repulsive force 
must be exerted. To explain the backscattering, 
Rutherford proposed that the positive charge in a 
gold atom must be concentrated in a small region. 
Rutherford proposed in this way the first realistic 
model of the atom: he concentrated 99.99% of the 
mass of the atom in the nucleus, which is only 10−15 
m across (Figure 3.32). In other words, the atom 
(and therefore matter in general) is composed of 
99.9999999999999% empty space. The proportion 

of nucleus to total atom size is obviously not drawn 
to scale in Figure 3.32.

The problem is that according to classical models 
the Rutherford model cannot lead to stable atoms. 
Rutherford’s electrons are undergoing a centripetal 
acceleration and should radiate electromagnetic 
waves of the same frequency, so-called bremsstrahl-
ung or “braking” radiation, leading to an electron 
“falling on a nucleus” in about 10−12 s! In the real 
world we have stable atoms, and atoms emit certain 
discrete characteristic frequencies of electromag-
netic radiation. The Rutherford model is unable to 
explain these phenomena.

It was the analysis of light emitted or absorbed by 
atoms and molecules that led the way to better and 
better atom models. Cold, dilute gases absorb light 
at characteristic and discrete wavelengths (absorp-
tion spectra), and hot gases emit light at discrete 
wavelengths while continuous light spectra result 
when hot solids, liquids, very dense gases, or black-
bodies (see Figure 3.33) emit light at all wavelengths 
(emission spectra).

Scattered particles Most particles
are undeflected

Beam of
particles

Thin gold
foil

Source of
-particles

Circular
fluorescent screen

FIGURE 3.31 The Rutherford experiment. Structure of 
atom experiments.

FIGURE 3.32 Rutherford’s atom. Matter is mostly empty 
space. 
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When the light emitted from a hot gas is analyzed 
with a spectrometer, a series of discrete bright lines is 
observed. Each line has a different wavelength and 
color. This series of lines is the emission spectrum 
(Figure 3.33A). The absorption spectrum consists of 
a series of dark lines superimposed on the otherwise 
continuous spectrum. The dark lines of the absorp-
tion spectrum coincide with the bright lines of the 
emission spectrum. The continuous spectrum emit-
ted by the sun passes through the cooler gases of the 
sun’s atmosphere. The various absorption lines can 
be used to identify elements in the solar atmosphere, 
and this led, for example, to the discovery of helium.

Atomic hydrogen (one electron and one proton) in 
a gas discharge tube emits strongly at visible wave-
lengths Hα, Hβ, and Hγ. More lines are found in the 
ultraviolet region, and the lines get closer and closer 
until a limit is reached (Figure 3.33B). These same 
lines are also seen in stellar spectra from absorption 
in the outer layers of the stellar gas.

There are four bright lines in the hydrogen emis-
sion spectrum, and in 1885, a Swiss teacher, Johann 
Balmer (1825–1898), guessed the following formula 
for the wavelength of these four lines:
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 (3.80)

where n = 3, 4, 5, and 6, which are now called the 
Balmer series. Equation 3.80 may be rewritten as the 
so-called Balmer formula as:

 
1 1 1

R
n kH 2 2  (3.81)

with positive n and k integers and n > k and RH the 
Rydberg constant for hydrogen with a measured value 
of 1.096776 × 107 m−1. With n = 1, we obtain the 
Lyman series in the UV; visible light is emitted in the 
Balmer series (n = 2), and with n ≥ 3 the infrared series 
are obtained (Paschen with n = 3, Brackett with n = 4, 
and Pfund with n = 5). The discrete emissions in Figure 
3.33B suggest discrete energy levels, and Balmer’s 
formula suggests that the allowed energies are given 
by (RH/n2) (in case of hydrogen) (Figure 3.34).

The “Great Dane,” Niels Bohr, explained the 
above results for the H emission spectra by intro-
ducing four quantum postulates in a model halfway 

between classical physics and quantum theory. He 
reasoned that if electrons orbit the nucleus in circles 
with radii restricted to certain values, then the energy 
also can only take on certain discrete values, i.e., if it 
is quantized and there is a lowest energy orbit, and 
the electron is not allowed to fall to a lower energy. 
The allowed states are called stationary states. When 
in these permitted orbits, contrary to classical the-
ory, the electrons do not radiate (Postulate 1). Bohr 
also assumed that classical mechanics applies to 
electrons in those stationary states (Postulate 2). He 
recognized that there might be a link between stable 
orbits and the Planck’s and Einstein’s quantum rela-
tion between the quantized energy of a photon and 
its frequency, so he proposed that radiation absorp-
tion or emission corresponds to electrons moving 
from one stable orbit to another, i.e., ΔE = hν (where 
h is the Planck constant = 6.6 × 10−34 J·s) (Postulate 
3). In classical physics, angular momentum (L) of an 
object in circular motion is defined as mass (me) mul-
tiplied by velocity (v), multiplied by the radius (r) of 
the orbit, i.e., L = mevr (or L = pr) (Figure 3.35). Bohr 
argued that allowed orbits are determined by the 
quantization of that angular momentum, L = nh/2π. 

FIGURE 3.34 Some of the hydrogen emission lines.

FIGURE 3.35 Momentum p for circular motion is mevr.
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In this expression n is called the principal quantum 
number, and the ground state corresponds to n = 1. 
So here Bohr postulated that it was not the atom that 
determined the Planck constant h, but h that deter-
mined the properties of atoms (Postulate 4)!

Although this planetary kind of model has been 
shown to be mostly wrong, it makes for a very 
nice transition to full-fledged quantum mechanics. 
Bohr’s theory, with slight modifications, is used, for 
example, to estimate the binding energies of dop-
ant atoms in Chapter 4 and to explain the energy of 
excitons in Chapter 5. 

Mathematically we can express Postulate 4 in vec-
tor notation as |L| = |p × r| = mevr, with v the tangen-
tial velocity and p the momentum of the electron 
(Figure 3.35). Bohr now combined his quantum 
model of the atom with Newton’s classical model of 
planetary orbits to calculate the radius of the hydro-
gen atom. The attractive force between the electron 
and the proton in a hydrogen atom is caused by the 
Coulomb force and is given as: 
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Based on Newton (Postulate 2), we may write:
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Rutherford could not explain the spectral lines in 
and Figures 3.33 and 3.34, but he did set up the 
energy balance for a H atom correctly: 

 En (total energy) = KE (kinetic energy) 
 + PE (potential energy) (3.84)

where the KE term depends on the velocity v and the 
PE term on the system (e.g., positional or electro-
static), or in the current case:
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 (3.85)

The radial acceleration is a = v2/r, and with Newton’s 
Law (F = ma) this yields F = e2/(4πε0r2) = mv2/r, 
which, solving for r, results in:

 r e / m v2
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And substituting Equation 3.86 in Equation 3.85 
results in:
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meaning that, because E < 0, the motion of the 
electron is not free: it is bound by the attractive 
force of the nucleus as illustrated in Figure 3.36. 
To free the electron (and ionize the atom), the 
electron must receive an amount of energy, called 
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FIGURE 3.36 The electron is bound by the attractive force of the nucleus E < 0.
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ionization energy, that will bring its total energy up 
to zero. Although this concept of a negative energy 
is somewhat counterintuitive, it does make sense; 
if we say that an electron has zero energy when far 
removed from the nucleus, then the electrons that 
are attached to an atom have a negative amount of 
energy.

The Quantum Numbers

First or Principal Quantum Number 
n for the Level of Energy En

Now we recall Bohr’s fourth postulate about the quan-

tization of angular momentum, L m vr
nh
2n e n  or 

also m vr ne n  with  = h/2π. In the latter expres-
sion, n = 1, 2, 3, 4… and is called the principal quan-
tum number; the ground state corresponds to n = 1. 
Thus, Ln is not only conserved but also constrained 
to discrete values by the quantum number n. This 
quantization of angular momentum is a crucial 
result and can be used in determining the Bohr orbit 
radii and Bohr energies. From the expression for r 
(Equation 3.86), we derive:
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Solving this expression for rn results in:
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where a0 is the Bohr radius, and permitted orbits 
have radii r1 = a0, r2 = 4a0, r3 = 9a0 … for n = 1, 2, 3, … 
as shown in Figure 3.37.

The Bohr radius, a
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, has a value of 

0.53 × 10−10 m. 
We are now also in a position to calculate Bohr 

orbit speeds vn:
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With the latter two expressions, we are able to cal-
culate the total energy of the electron, En, associated 

with any integer value for n; by substituting the last 
two expressions in Equation 3.85, we obtain:
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(3.91)

and E
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 with a value of 13.6 

eV = 21.8 × 10–19 J, sometimes called the Rydberg 
energy. The 13.6-eV energy value for an electron in a 
hydrogen atom (with n = 1) is the energy required to 
remove an electron from that atom (see also Figure 
3.33). The possible energy levels of the hydrogen 
atom are labeled by the values of the quantum num-
ber n. The lowest energy level occurs for n = 1; this is 
the most negative energy level and the ground state. 
As n progressively increases, the energy increases 
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FIGURE 3.37 The Bohr atom with permitted radii. This 
Bohr model picture of the orbits has some usefulness for 
visualization, as long as it is realized that the “orbits” and 
the “orbit radius” just represent the most probable values 
of a considerable range of values.
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(becomes less negative) for the excited states of the 
hydrogen atoms, as is clear from Figure 3.36.

Using the expression E
E
n

n
0
2
, we can now 

invoke Bohr’s second postulate, which says that the 
photon energy is the difference in En values, and we 
derive Balmer’s formula:

 

E h
hc

E
1 1

n

1
hc

1
n

1
k

n 0 2

0
2

k

E

2

2

e2

2

H 2

8 0 0
2

2

a hc
1

n
1
k

R
1

n
1
k

 

(3.92)

It was considered a big success for the Bohr model that 
it accounted for Balmer and other series and that the 
calculated RH agreed almost exactly (to within 0.1%) 
with the phenomenological value for the Rydberg 
constant for hydrogen, i.e., 1.096776 × 107 m−1. The 
model also gives an expression for the radius of the 
atom that increases with n2, the orbit speed that 
decreases with 1/n, and predicts the energy levels of 
a hydrogen atom that increase with −1/n2, and it can 
be extended to “hydrogen-like” atoms. 

Second Quantum Number l 
for Orbital Angular Momentum

By 1914, Bohr had combined the quantum models 
of Planck and Einstein with the experimental work 
of Rutherford to provide a quantum model of the 
hydrogen atom, which fully explained the bright 
line spectra of hydrogen. To explain the spectra of 
more complicated atoms, other quantum numbers 
in addition to the principal quantum number n, 
defined by Bohr, had to be introduced. More detailed 
analysis of light spectra again led the way. Arnold 
Sommerfeld’s (1868–1951) first major contribution 
was to extend Bohr’s model to quantize all types 
of motion. He conceived elliptical atomic orbits by 
analogy to Johannes Kepler’s elliptical planetary 
orbits and described mathematically orbits with 
different elliptical shapes but the same value of the 
principal quantum number n. This gave a number 
of different stationary states, some with slightly 
smaller and some with slightly larger energies—and 

hence multiple spectral lines—just as observed. The 
orbital angular momentum for an atomic electron 
can be visualized in terms of a vector model where 
the angular momentum vector is seen as precess-
ing about a direction in space. Whereas the angu-
lar momentum vector has the magnitude shown 
in Figure 3.38, only a maximum of l units of  can 
be measured along a given direction, where l is the 
orbital quantum number. One of Sommerfeld’s 
other important contributions was to link quantum 
theory to relativity. If one calculates the speed of 
an electron moving around the nucleus of an atom 
a value of the order of 1000 km/s is found. This is 
small compared with the velocity of light but large 
enough to have to use relativistic mechanics (see 
Chapter 5). Using this approach Sommerfeld was 
able to work out the fine structure of the hydrogen 
spectrum—a result that was regarded as a triumph 
both for relativity and quantum theory. 

Third Quantum Number m, 
the Magnetic Number

In the 1890s, Pieter Zeeman (1865–1943) had 
noticed that if a magnetic field B was applied to a 
hot gas, the emission lines were further split into yet 
a finer structure. Sommerfeld, in 1916, showed that 
this was because of the direction (i.e., the orienta-
tion) of the orbiting of the electron with respect to 
the magnetic field. Sommerfeld was able to account 
for this orientation effect with the addition of a 
magnetic quantum number, m, which was an inte-
ger (Figure 3.39). Although called a “vector,” the 

 

FIGURE 3.38 The Bohr-Sommerfeld atom. Sommerfeld 
introduced a second quantum number, l for elliptical orbitals. 
Spin-up and spin-down. Pauli’s fourth quantum number: the 
electron spin s (see text later this chapter and Figure 3.39).
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orbital angular momentum in quantum mechan-
ics is a special kind of vector because its projection 
along a direction in space is quantized to values one 
unit of angular momentum ( ) apart. In Figure 3.39 
we show that the possible values that the “magnetic 
quantum number,” ml (for l = 2), can take are the 
values m = –2, –1, 0, +1, +2. 

Fourth Quantum Number s for Electron Spin

More detailed measurements of the effects of a 
magnetic field on spectral line splitting showed yet 
further fine double splitting of the spectral lines. 
Wolfgang Pauli (1900–1958) explained this a little 
later, in 1921, by introducing yet another quantum 
number. While still a student, he proposed a fourth 
quantum number that he took to represent the elec-
tron spinning, not just in its orbit, but around its 
own axis. Because there are only two directions of 
spin, clockwise or spin-up and counterclockwise or 
spin-down, there are only two values for Pauli’s elec-
tron spin quantum number. No two electrons in an 
atom can have identical quantum numbers. This is 
an example of a general principle that applies not 
only to electrons but also to other particles of half-
integer spin (fermions). It does not apply to particles 
of integer spin (bosons). The two lowest-energy elec-
tron shells have an almost identical shape. Of the 
two, one shell is occupied or “filled” first with an 
electron that has an intrinsic magnetic direction that 
is opposite to the intrinsic magnetic field caused by 
the nucleus. The next shell has an electron with the 

opposite magnetic direction. The Dutch-American 
physicists Samuel Goudsmit and George Uhlenbeck 
discovered the intrinsic “spin” magnetism of the 
electron in the 1920s. It had been discovered years 
earlier that in a magnetic field, a beam of electrons 
splits into two beams (Stern-Gerlach experiment). 
This fourth quantum number explains this phenom-
enon. It is believed to be caused by some internal 
circulation of the electron matter, in addition to its 
wave flow around the equator of the shell. The wave 
flow around the equator of the atom also produces 
atomic orbital magnetic effects. Some shells have 
no net orbital circulation, which is explained as the 
result of two equal and opposite counter- rotating 
orbital waves. The magnetism of the nucleus itself 
is the result of the fundamental internal spin of the 
proton.

Surprisingly, it turned out that the fourth quantum 
number, spin, s, had only half of the usual quantiza-
tion value of h/2π, i.e., s = ±1/2 h/2π. Each quantum 
state, characterized by n, l, and m, is restricted to 
one electron of s = +1/2 and one electron of s = –1/2. 
Here classical analogies break down completely—a 
spin of a half implies the electron has to turn round 
twice to get back to where it started! 

The implications of Pauli’s exclusion principle are 
extremely profound. It is the restrictions imposed by 
Pauli’s exclusion principle—i.e., the fact no two elec-
trons can be in the same quantum state—that pre-
vents all the electrons from piling up into the lowest 
(n = 1) energy state, and hence stops all matter from 
collapsing! Pauli’s exclusion principle also implies 
that there is some sort of connectivity between the 
electron states in an atom: one electron must “know” 
which states all the other electrons are occupying to 
choose its own state! It is part of one of our most 
basic observations of nature: particles of half-integer 
spin must have antisymmetric wave functions, and 
particles of integer spin must have symmetric wave 
functions.

In Table 3.5 the different quantum numbers with 
their properties are summarized. The quantum 
numbers associated with the atomic electrons along 
with Pauli’s exclusion principle provide insight into 
the building up of atomic structures and the periodic 
properties observed. For a given principal number n, 
there are 2n2 different possible states.

FIGURE 3.39 The quantum number m describes how the 
direction of the angular momentum is quantized with 
respect to the direction of the magnetic field.
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The Periodic Table of Dmitri 
Mendeleev (1834–1907)

Most of the qualities of an atom are derived from the 
structure of its electron cloud with the nucleus in 
the hinterland. This includes most chemical, mate-
rial, optical, and electronic properties. Not only did 
the quantum model of the atom proposed by Bohr, 
Sommerfeld, and Pauli explain atomic spectra, it 
also explained the periodic table itself (inside front 
cover plate)! Dmitri Mendeleev (1834–1907) had 
devised the periodic table by grouping together ele-
ments with similar chemical properties. 

The order of filling of electron energy states in an 
atom is dictated by energy, with the lowest avail-
able state consistent with Pauli’s principle being the 
next to be filled. The labeling of the levels follows 
the scheme of the spectroscopic notation. For each 
value of principal quantum number, one refers to a 
different shell: n = 1 for the K shell, n = 2 for the L 
shell, n = 3 for the M shell, and n = 4 for the N shell. 
Different values of l correspond to different sub-
shells. For example, for n = 2 (K shell) we have two 
subshells, namely, 2s and 2p. For historical reasons, 

the orbital quantum numbers l were given names 
associated with their appearance in spectroscopic 
emission and absorption patterns: l = 0 is given the 
letter s (for sharp), l = 1 is given the letter p (for prin-
cipal), l = 2 is given the letter d (for diffuse), and l = 3 
is given the letter f (for fundamental). Therefore, we 
can write the electronic occupation of an atom’s shell 
as nle, where n is the principal quantum number, l is 
the appropriate letter, and e is the number of elec-
trons in the orbit. So, for example, nitrogen (N) with 
seven electrons has the configuration: 1s22s22p3. In 
chemistry, this is called the Aufbau (build-up) prin-
ciple, from the German word for structure.

As the periodic table of the elements is built up 
by adding the necessary electrons to match the 
atomic number, the electrons will take the lowest 
energy consistent with Pauli’s exclusion principle. 
The maximum population of each shell is deter-
mined by the quantum numbers, and the diagram 
in Figure 3.40 is a convenient way to illustrate the 
order of filling of the electron energy states. For a 
single electron, the energy is determined by the 
principal quantum number n, and that quantum 

TABLE 3.5 Quantum Numbers and Their Properties

The principal quantum number:

n The principal quantum number. Quantization of angular momentum: must be a positive integer 
(1, 2, 3, 4 … etc.).

The angular momentum quantum number:

l Related to the ellipticity of the orbit: must again be an integer but for a particular orbit can be no 
bigger than n (l = 0, 1, 2, 3 … n − 1).

The magnetic quantum number:

m Quantization of the orientation of the orbit with respect to a magnetic field: can be a positive or 
negative integer (m = −l, −l + 1, 0, 1, 2, … l) but must be no larger than –l ≤ ml ≤ 1.

The spin quantum number:

s The electron spin quantum number: must be +1/2 or −1/2.

n Possible l Possible m Possible s
Spectroscopic  

Notation
Total  

States
Shell/Maximum 

Number of Electrons

1 0 0 ±1/2 1s 2 K or 1st/2

2 0
1

0
−1,0,+1

±1/2
±1/2

2s
2p

2
6

L or 2nd/8

3 0
1
2

0
−1, 0, +1

−2, −1, 0, +1, +2

±1/2
±1/2
±1/2

3s
3p
3d

2
6

10

M or 3rd/10

4 0
1
2
3

0
−1, 0, +1

−2, −1, 0, +1, +2
−3, −2, −1, 0, +1, +2, +3

±1/2
±1/2
±1/2
±1/2

4s
4p
4d
4f

2
6

10
14

N or 4th/32
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number is used to indicate the “shell” in which the 
electrons reside. For a given shell in multielectron 
atoms, those electrons with lower orbital quantum 
number l will be lower in energy because of greater 
penetration of the shielding cloud of electrons in 
inner shells. These energy levels are specified by the 
principal and orbital quantum numbers using the 
spectroscopic notation. When you reach the 4s level, 
the dependence on orbital quantum number is so 
large that the 4s is lower than the 3d. Although there 
are minor exceptions, the level crossing follows the 
scheme indicated in the diagram, with the arrows 
indicating the points at which one moves to the 
next shell rather than proceeding to a higher orbital 
quantum number in the same shell.

The quantum scheme gives a firm scientific basis 
for Mendeleev’s grouping: the chemical properties 
of the elements are defined by how nearly full or 
nearly empty a shell is. For example, full shells are 
associated with chemical stability (e.g., helium, 
neon, argon). Shells with a single electron or with 
one electron short of a filled shell are associated 
with chemical activity (e.g., sodium, potassium, 
chlorine, bromine). Most metals are formed from 
atoms with partially filled atomic orbitals, e.g., Na 
and Cu, which have the electronic structure:

 Na
Cu

1 2 2 3
42 2 3 3

s s p s
ss s p s d

2 2 6 1

12 2 6 2 101
 

In the simplest picture, a metal has core electrons 
that are bound to the nuclei and valence electrons 
that can move through the metal. Insulators are 
formed from atoms with closed (totally filled) shells, 
e.g., inert gases:

 
He
Ne

1
1

2

2 2 6
s
s s p2 2  

or they form closed shells by covalent bonding as in 
the case of diamond. 

With principal quantum number n = 4, the 4f 
orbitals make their capricious appearance. Because 
electrons in these orbitals are less strongly held by 
the nucleus, it is easier to excite them, and they can 
exhibit a myriad of distinct energy states. This gives 
rise to the unusual optical and magnetic properties 
of the rare-earth elements.

Most atoms with odd atomic numbers (1, 3, 5…) 
have a very slight overall atomic magnetism because 
of the one electron spin (and some orbital magne-
tism in some elements), whereas most even atomic 
number (2, 4, 6…) atoms have no net electron spin 
magnetism, and thus approximately zero resulting 
atomic magnetism.

Bohr’s Correspondence Principle

Classical physics works for large systems; it is only at 
the atomic level that it fails. In 1923, Bohr proposed 
that any satisfactory quantum theory, then still 
being sought, should be in agreement with classical 
physics when the energy differences between quan-
tized levels are very small or the quantum numbers 
are very large. This is the so-called Bohr correspon-
dence principle. Let us consider the two main dif-
ferences between the quantum theory and classical 
physics. The first difference is that whereas classical 
theory deals with continuously varying quantities, 
quantum theory deals with discontinuous or indi-
visible processes (e.g., the unit of energy packed in 
a quantum). The second difference is that whereas 
classical theory completely determines the relation-
ship between variables at an earlier time and those 
at a later time, quantum laws determine only prob-
abilities of future events in terms of given conditions 
in the past. The Bohr correspondence principle states 
that the laws of quantum physics must be so cho-
sen that in the classical limit, where many quanta 
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FIGURE 3.40 The periodic table of the elements is built 
up by adding the necessary electrons to match the atomic 
number.
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are involved (e.g., n is a large integer in E = nh), the 
quantum laws lead to the classical equations as an 
average. This requirement combined with indivis-
ibility and incomplete determinism defines the 
quantum theory in an almost unique manner. In 
this chapter we will on a few occasions show how 
classical theory can be derived from an extension of 
quantum mechanics. An example of this principle 
that we may appreciate already is that of Newtonian 
mechanics as a special case of relativistic mechanics 
when the speed is much less than the speed of light 
(v << c) (see Chapter 5, Equation 5.180). Similarly, 
Schrödinger’s equation agrees with Bohr’s ideas in 
general, except that the electron wave function is not 
at a given radius but spread out over a range of radii. 

Summary of Bohr’s Model

Although Bohr’s model, in which r (space), energy, 
and momentum are quantized, was a major step 
toward understanding the quantum theory of the 
atom, it is not in fact a correct description of the 
nature of electron orbits. Some of the shortcomings 
of the model are:

 1. It fails to provide any understanding of why 
certain spectral lines are brighter than others.

 2. There is no mechanism for the calculation of 
electron transition probabilities.

 3. Bohr’s model treats the electron as if it were 
a miniature planet, with definite radius and 
momentum. This is in direct violation of the 
uncertainty principle (see below), which dic-
tates that position and momentum cannot be 
simultaneously determined.

The precise details of spectra and charge distribu-
tion must be left to quantum mechanical calcula-
tions. Wave functions derived from Schrödinger’s 
equation, the model that corrects all of Bohr’s errors, 
are determined by the values of the above reviewed 
quantum numbers. For each energy level En, there is 
more than one distinct state with the same energy 
but different quantum numbers; this is called 
degeneracy. Degeneracy has no counterpart in Bohr’s 
model. The solution of Schrödinger’s equation, 
introduced below, for the case of the hydrogen atom 
is achieved by using spherical polar coordinates and 

by separating the variables so that the wave function 
is represented by the product of three terms. The sep-
aration leads to three equations for the three spatial 
variables, and their solutions give rise to three quan-
tum numbers associated with the hydrogen energy 
levels. The solution to these equations can exist 
only when a few constants, which arise in the solu-
tion, are restricted to integer values. This gives the 
same hydrogen atom quantum numbers: n, l, and 
m as introduced. The fourth quantum number is, of 
course, again the electron spin s = 1/2, an intrinsic 
property of electrons. 

de Broglie Matter Waves

Matter Waves

To launch Schrödinger’s equation, we revisit de 
Broglie’s concept of “matter waves.” Louis-Victor, 
seventh duc de Broglie (1892–1987), discovered that 
the secret of Planck’s and Einstein’s quanta could be 
found in a general law of nature, i.e., the dual char-
acter of waves and particles. 

Einstein’s special relativity* (Chapter 5) allows 
one to calculate the momentum, p, of a photon 
starting from:

 E c) m c2 2
0

2( ( )p 2 (3.93)

The rest mass, m0, is zero for a photon, so one obtains 
for its momentum: 

 E c) or E c2 2(p 0 p  (3.94)

And also, from Einstein and Planck, E = hν (the pho-
toelectric effect), or:

 p
E
c

h
c

h
 (3.95)

de Broglie, while studying for his PhD in Paris in 
1924, postulated that Equation 3.95 also applied to 
a moving particle such as an electron, in which case 
λ is the wavelength of the wave associated with the 
moving particle, i.e., a “matter wave.” Einstein com-
mented about this fantastic insight: “de Broglie has 
lifted the great veil.” From Equation 3.95, pλ = h, 

* For p = 0 Equation 3.93 leads to the familiar E = m0c2. This amounts 
to 511 keV for an electron and 930 GeV for a proton. Where atomic 
physics deals in eV to keV, nuclear physics deals in keV to MeV and 
particle physics involves GeV to TeV. 



110   Solid-State Physics, Fluidics, and Analytical Techniques in Micro- and Nanotechnology

or momentum multiplied by wavelength, gives the 
Planck constant; the smaller the wavelength, the 
bigger the momentum of the particle! Thus, elec-
trons, with their small mass and correspondingly 
small momentum, are very “wavy” particles. The de 
Broglie wavelength of a particle is then given as:

 h
mv

 (3.96)

where v is its velocity. This simple equation proves 
to be one of the most useful, and famous, equations 
in quantum mechanics. It accounts for both waves 
(characterized by wavelength and frequency) and 
particles (characterized by position, mass, and veloc-
ity), incorporating momentum (particle aspect) and 
the wavelength (wave aspect).

The critical reader could very legitimately ask 
here: “But how can photons have a momentum if 
they do not have any mass?” The answer is that pho-
tons do not have a mass, but they do have energy, 
and as Einstein famously proved, mass and energy 
are the same thing. For photons, the wavelength and 
frequency, from Equation 3.95, are related because 
λν = c is fixed, but for matter particles λν is not a 
constant because they do not travel at speed c. For 
nonzero rest mass particles, such as electrons or pro-
tons, neither λν = c nor E = pc applies.

We almost have come full circle here; Einstein 
gave what we had come to think of as a wave (light) 
a particle character, and de Broglie gave what we 
thought of as a particle (electrons) a wave charac-
ter. Radiation has wave character and particle char-
acter, and matter has particle and wave character, 
or at the nanoscale, nature presents itself with a 
wave-particle duality. This duality for material 

things is only significant at the very small scale. 
With its mass me of 9.11 × 10−31 kg and a velocity v 
of 3 × 106 m/s (i.e., c/100), an electron has a wave-
length of 2.5 × 10–10 m. Larger objects, such as a car 
(1000 kg), moving at highway speeds (60 mph ≈ 
100 km/h) have a de Broglie wavelength as well, 
but there is no measurement capable of resolving 
them; the oscillations cannot be seen. In other 
words, the car does not behave like a wave, with a 

h
p

h
mv

J s
kg 10  m/h 1h/36,5

6 6 10
1000

34.
  0000 s

 

2 4 10 38. m. A man (60 kg) running at 20 km/h 
(5 m/s) has a wavelength of 2.2 × 10−36 m (for some 
other matter wave examples see Table 3.6).

Wave Packets

Because we associate a de Broglie wave with a mov-
ing body, it is reasonable to expect that this wave 
moves at the same velocity as that of the particle—
this turns out not to be the case. de Broglie hypoth-
esized that the particle itself was not a wave but 
always had with it a pilot wave, or a wave that helps 
guide the particle through space and time. He also 
pointed out that in wave theory there is a differ-
ence between the speed of waves of some uniquely 
defined frequency and the speed of a localized pulse. 
Waves have both a phase velocity and a group veloc-
ity, and de Broglie proposed to associate the local-
ized pulse, wave packet, or group velocity with the 
moving particle. 

To understand matter waves and their link with 
wave packets or group velocity and phase velocity 
better, we reconsider here for a moment a sinusoi-
dal wave function ψ(x) = Aeikx = A coskx + iA sinkx 

TABLE 3.6 de Broglie Wavelengths of Various Moving Objects

Mass Kinetic Energy (eV) de Broglie Wavelength (m)

Electron 9.11 × 10−31 1 1.23 × 10−9

100 1.23 × 10−10

104 1.23 × 10−11

Neutron 1.67 × 10−27 1.00 × 103 9.05 × 10−13

1.00 × 106 2.86 × 10−14

1.00 × 109 9.05 × 10−16

Proton 1.67 × 10−27 1.00 2.86 × 10−11

1.00 × 102 2.86 × 10−12

1.00 × 103 9.04 × 10−13

Thermal neutrons (300 K) 2.50 × 10−2 1.81 × 10−10
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that extends all the way from x = −∞ to x = +∞ with 
an amplitude A. To make this wave more localized 
or “lumpy,” we add together two different station-
ary-state waves with slightly different wave vectors 
k (e.g., k1 and k2) and different amplitudes A (e.g., 
A1 and A2) and consider the result at one instance 
of time, e.g., at t = 0. For t = 0, the time factor of the 
superposed waves, e−iωt (e.g., ω1 and ω2), is equal for 
both superposed waves, i.e., e0 = 1, so the wave func-
tion is represented by:

 

(
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A k x) iA k
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(3.97)

This is represented in Figure 3.41a, where we graph 
the real parts of the individual waves for the case 
that A2 = –A1. The real part of the combined wave 
function is shown in Figure 3.41b. With two addi-
tional sinusoidal waves, we can choose to empha-
size every other lump and suppress the in-between 

ones as illustrated. Going on like this, we can, in the 
extreme, superpose a very large number of waves 
with different k and A values to construct a wave 
with only one lump, as illustrated in Figure 3.41c. 
The latter wave pulse is called a wave packet. The par-
ticle represented by the lump in Figure 3.41c is more 
likely to be found in the region of the lump than in 
other regions; in other words, it has become more 
localized. However, the particle now does have a less 
definite momentum as we introduced a very large 
number of different waves. The above procedure 
of adding waves is not new to us: in Chapter 2 on 
Fourier transforms (Equations 2.15 and 2.16) we saw 
how a localized disturbance or pulse can be synthe-
sized from a very large number of pure sinusoidal 
waves of different frequencies and amplitudes. Such 
a pulse, a wave function with a lump, is an entity 
with both particle and wave characters. It behaves 
like a particle in the sense that it is localized in space, 
but it also has periodicity, a property of a wave. The 
Fourier integral representing the synthesized pulse 
or wave packet is: 

 ( )x) A( e dikxk k  (3.98)

This Fourier integral superimposes wave functions 
with a continuous distribution of k values and 
amplitudes A(k) that depend on k. Below we will 
see how Heisenberg’s uncertainty principle (HUP) 
follows directly from the existence of the de Broglie 
waves and this Fourier integral (see Figure 3.47 fur-
ther below). 

The synthesized pulse travels with a group 
velocity (Vg) that may be different from the 
characteristic phase velocity (Vp) of the indi-
vidual waves. Let us consider the Fourier super-
position of just two waves, 1 sin[kx t]  and 

2 sin[( ( )k k)x t], as represented in 
Figure 3.42a, where we can write:
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FIGURE 3.41 (a) Two sinusoidal waves with slightly 
different wave numbers at one instant of time (A2 = −A1) in 
Equation 3.97. (b) The superposition of these two waves has 
a wave number equal to the average of the two individual 
wave numbers. The amplitude varies, giving the total wave 
a more lumpy character. (c) Superimposing a large number 
of sinusoidal waves with different wave numbers and 
appropriate amplitudes can produce a wave pulse.
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The phase velocity is directly proportional to the 
angular frequency, but inversely proportional to the 
wave number, or the phase velocity vp is given as:

 vp
2

2
k

k k
 (3.100)

from the sine wave in Equation 3.99. For the group 
velocity vg and thus the particle velocity:

 v 2
k

d
dkg

2
k

 (3.101)

which is based on the modulation amplitude in 
Equation 3.99. This group velocity, the derivative of 
the angular frequency with respect to the wave vec-
tor, is the velocity at which the energy of the wave 
propagates. Group and phase velocities are illus-
trated in Figure 3.42b.

The group velocity is the derivative of the phase 
velocity, and it is often the case that the phase veloc-
ity is larger than the group velocity. For any wave 
that is not electromagnetic, the phase velocity will 
be larger than c, or the speed of light. 

de Broglie was trying to find a velocity that was fit 
for all particles (not just photons), so he associated 
the group velocity vg with any particle’s velocity. He 
equated the following two expressions:

 v
E

g k p
 (3.102)

because vp = E/p and vg = ∂E/∂p and (as we will see 
below) E  and p k, where h/2 . In the 
case of light:

 v
E mc

mc
c and v

E
p

pc
p

cp

2

gp
 (3.103)

We get the same result for phase and group veloc-
ity. For any other particle, from Equation 3.93 with 
m0 = (m ≠ 0), we obtain:

 v
E
p

pc

c) mc

pc
Eg

2

2 2

2

(p
2

 (3.104)

with m = m0, vg = c again. 

de Broglie Vindicated

de Broglie’s doctoral dissertation exam committee 
was distinctly unsure as what to do with the thesis of 
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FIGURE 3.42 (a) Using Fourier’s theorem to construct wave packets. (b) Phase velocity vp from the sine wave and group 
velocity vg from the modulation amplitude.
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the prince. Luckily, Langevin, who was on the com-
mittee, asked Einstein’s opinion on the work, and, 
as mentioned above, Einstein was duly impressed. 
Experimental evidence was soon to follow.

J.J. Thompson received the Nobel Prize in 1906 
for his work demonstrating the particle nature of 
an electron. J.J. Thompson’s son, G.P. Thompson, 
received the Nobel Prize in 1937 for experiments 
that tested Equation 3.96, demonstrating that elec-
trons also exhibit wave-like properties. In his 1928 
tests, G.P. Thompson and Reid at the University of 
Aberdeen observed interference patterns from elec-
trons reflecting from a thin polycrystalline metal foil 
surface. Working independently, Clinton Davisson 
and Lester Germer, at Bell Laboratories, in 1927 
found the same experimental evidence: a beam of 
electrons scattered from a single-crystal of nickel 
resulted in a diffraction pattern fitting Bragg’s dif-
fraction law (Equation 2.20 and Figure 3.43). This 
established the wave character of electrons, forming 
the basis of analytical techniques for determining the 
structures of molecules, solids, and surfaces, such as 
in low energy electron diffraction (LEED) and SEM 
described in Volume III, Chapter 6 on metrology. 
Whereas optical microscopes cannot resolve details 
smaller than the wavelength of visible light, with 
an SEM the wavelength depends on the electron’s 
momentum in accordance with de Broglie’s relation. 
In this case we can increase the resolution by simply 
accelerating the electron more.

Other particles, including protons, neutrons, 
and He atoms, were subsequently found to possess 

wave properties, including diffraction. In 1999, 
researchers from the University of Vienna dem-
onstrated that the wave-particle duality even 
applied to molecules such as fullerene. One of the 
coauthors of this research, Julian Voss-Andreae, 
became an artist and has since created several 
sculptures symbolizing wave-particle duality in 
buckminsterfullerenes.2

Bohr’s Model and de Broglie Matter Waves

de Broglie’s idea of matter waves fits nicely with 
Bohr’s model; the de Broglie wavelength associated 
with the electron is what causes the quantization 
that Bohr had assumed before matter waves were 
even known. The angular momentum of the elec-
tron is restricted to certain values because an integral 
number of electron wavelengths must fit into the cir-
cumference of the circular orbit. Mathematically we 
expressed Bohr’s Postulate 4, in vector notation, as 
|L| = |p × r| = mevr, with v the tangential velocity and 
p the momentum of the electron. Bohr’s model, as 
we saw above, assumed L = 2πr, or:

L
p

n
2 r n

nh
and r

p
with

h
2

( )

or 
(3.105)

L r
nh
2

p n

The latter is illustrated in Figure 3.44, where we 
show that only an integer number of wavelengths 
fits into a circular orbit or, i.e., L = nh/2π (where L 

FIGURE 3.43 Davisson-Germer experiment (1927). A graph of the intensity of the scattered electron beam demonstrates 
that the angular position of the maxima depended on the accelerating voltage used to produce the electron beam. Using 
the de Broglie equation, the de Broglie wavelength of the electron could be calculated.
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is the length of an orbit). Thus, a wave-mechanical 
picture leads naturally to the quantization of the 
angular momentum.

de Broglie’s relations imply the quantization of 
orbits of electrons in atoms, L = n  with n an integer, 
but although this explains the root of quantization—
the wave nature of matter—it does not provide a 
complete dynamic that would be able to describe the 
motion of particles that are waves at the same time. 
One needs a wave equation for that, and Maxwell’s 
equations are inappropriate for this purpose because 
they predict that λν = c, which is not valid for matter 
particles, where νλ = v. Interestingly, we will see next 
that Bohr’s model violates Heisenberg’s uncertainty 
principle: an electron may not move in a circle with 
exact radius r!

Heisenberg’s Uncertainty Principle

The wave-particle duality introduced in the previous 
section forced physicists to reconsider their descrip-
tion of the position and momentum of very small 
particles, and it is at the core of Heisenberg’s uncer-
tainty principle (HUP). In Newtonian mechanics, we 
can always describe a particle in terms of its spatial 
coordinates and the three components of its velocity. 
However, in the nanoworld, Heisenberg’s principle 
states that there are physical parameters in quantum 
physics whose values cannot be known accurately 
simultaneously. For example, the momentum, px, 
and position, x, of an electron cannot be known 
simultaneously. In classical physics, knowing px 
would not be difficult because light is considered 
to have continuously varying energies and would 
hence cause minimal disturbance on an electron 
that is being observed. In quantum physics, light 
consists of photons that have discrete (quantized) 
energies, and a photon bouncing off an electron 
being observed gives that electron a kick, disturbing 
its momentum (Figure 3.45). To obtain an accurate 
measurement of the position of the electron, one 
must use a very short probing wavelength because a 
long wavelength would not have enough resolution 
to locate the electron. Thus, a short wavelength is 
expected to give good resolution or a small uncer-
tainty in position. Nevertheless, a short wavelength 

Before
collision

After
collision

Incident
photon

Scattered
photon

Recoiling
electron

Electron

FIGURE 3.45 Looking is disturbing! Imagine trying to see an electron with a powerful optical microscope. At least one 
photon must scatter off the electron and enter the microscope, but in doing so it will transfer some of its momentum to 
the electron.

(a) (b)

Destructive
interference

r1
r2

FIGURE 3.44 Bohr’s atom model: only an integer number 
of wavelengths fits into a circular orbit, L = nh/2π (where L 
is the length of an orbit and h is the Planck constant). 
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also means a large energy and hence a large momen-
tum (px = E/c), which gives the observed electron 
too large a kick and too large an uncertainty about 
its momentum Δpx (Compton effect).

A more quantitative analysis shows that the 
product of the two uncertainties, Δx and Δpx, is a 
constant:

 px x
h
2

 (3.106)

where h is again the Planck constant, and the 
constant “h-bar” has the approximate value of 
10−34 J·s. There is an uncertainty relation as shown 
in Equation 3.106 for each coordinate and its cor-
responding momentum component. Equation 3.106 
is graphically represented in Figure 3.46. Note that 
there is no restriction on the precision in simultane-
ously knowing/measuring the position along a given 
direction (x) and the momentum along another, 
perpendicular direction (y or z). 

For a particle in circular motion, the equiva-
lent Heisenberg expression to Equation 3.106 is 

p rr . Applying this to Bohr’s model, in which 
an electron moves in a circle of exact radius r, we 
obtain Δr = 0 and ΔPr = ∞, or the model violates the 
uncertainty principle. We will see further below that 
despite this obvious problem, the energy level pre-
dictions of Bohr’s model remain valid. 

Similar ideas lead to the expression of uncer-
tainty for other pairs of observables such as time 
and energy:

 E t
h
2

 (3.107)

This says that if an energy state only lasts for a limited 
time, its energy will be uncertain. The uncertainty 
about the energy of a particle depends on the time 
interval Δt that the system remains in a given energy 
state. Importantly, this also means that conservation 
of energy can be violated if the time is short enough. 
From the uncertainty principles, it is possible that 
empty space locally does not have zero energy but 
may have sufficient ΔE for a very short time Δt to cre-
ate particles and their antiparticles. This can be dem-
onstrated through the Casimir effect (see below). 
Equation 3.107 is responsible for “lifetime broad-
ening” of spectral lines. Short-lived excited states 
(small Δt) possess large uncertainty in the energy 
of the state (large ΔE). As a consequence, shorter 
laser pulses (e.g., femto- and attosecond lasers) have 
broader energy (therefore, wavelength) bandwidths. 

The existence of a zero-point energy—vibrational 
energy cannot be zero even at T = 0 K (see below)—is 
also a consequence of Heisenberg’s uncertainty prin-
ciple. If the vibration would cease at T = 0 K, then the 
position and momentum would both be 0, violating 
the HUP.

One might object that perhaps light was a poor 
choice to measure the position and momentum of 
the electron and that some other method might 
avoid these uncertainties. No such luck: it turns out 
that this is the absolute best that can be achieved 
independently of the measuring method. Note that 
in the last two equations all references to light have 
dropped out; the result does not depend on λ, n, or c. 
The Heisenberg uncertainty principle follows solely 
from the wave-particle duality and has nothing to 
do with the unavoidable disturbance of the system 
by the measurement. Quantum mechanics tells us 
there are limits to measurement—not because of the 
limits of our instruments, but inherently. 

Actually, the uncertainty principle is an inevi-
table consequence of de Broglie’s relation and the 
Fourier integral representing the synthesized pulse 
or wave packet (Equation 3.98). In Figure 3.47 
we illustrate qualitatively how ψ(x) depends on 
A(k). In Figure 3.47a, we show a sharp peak in A(k) 
for a narrow range of wave numbers k. The resulting 
real part of the wave pulse, shown in Figure 3.47b, 
is relatively broad: a narrow range of k means a nar-
row range of px k  and thus a small px, and the 

Δ Δp <

Δ Δp ≥

Δ Δp =

Δ

Δp

FIGURE 3.46 A graphic presentation of the Heisenberg 
principle from Equation 3.106 for position and momentum.
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result is a relatively large Δx. Broadening the A(k) 
function in Figure 3.47c results in a more localized 
wave pulse with a smaller Δx, as clear from Figure 
3.47d. In other words, this is Heisenberg’s uncer-
tainty principle, px x , in action.

Heisenberg’s relations are of no practical impor-
tance in the macroworld, and in classical physics 
they can be ignored completely. 

The Launchpad: Classical 
Mechanics Revisited

By 1924, the quantum concepts of Planck, Einstein, 
Bohr, and de Broglie were widely accepted, and 
between 1925 and 1927 three distinct, independent, 
and very different integrating theories of quantum 
theory were proposed: Dirac’s Hamiltonian and quan-
tum algebra representation; the matrix representation 
of Born, Heisenberg, and Jordan; and Schrödinger’s 
wave equations. Much later, in the late 1940s, Feynman 
formulated his sum-over-histories approach. 

Schrödinger, after attending a seminar on 
Einstein’s and de Broglie’s ideas that wave-like 
entities can behave like particles, and vice versa, 
thought that there must be a wave equation, Ψ(x,t), 
to describe particles. Schrödinger almost completely 
dispensed with the concept of a particle and instead 
focused on the wave-like properties of matter. His 
picture of the atom has the electron standing waves 
vibrating in their orbitals much like the vibrations 
on a string—but in three dimensions instead of one. 
In Figure 3.48, a 2D representation of Schrödinger 
waves, like vibrations on a drum skin, is shown. 

A concept that plays an important role in 
both classical and quantum theory is that of the 
Hamiltonian of a system. Consider an isolated sys-
tem composed of one or more particles, and assume 
that the total energy of this system remains constant. 

The Hamiltonian of this system is merely its total 
energy: 

 H = En(total energy) = KE (kinetic energy, 
 depends on v) + PE (potential energy, 
 depends on position) (3.84)

with the kinetic energy arising from motion and the 
potential energy arising from the position in a force 
field, F. The Hamiltonian in quantum mechanics is 
an example of an operator, a mathematical object 
that tells us what operation to perform on the func-
tion that follows. We rewrite Equation 3.84 here as:

 H E E V(x)k
 (3.108)

The linear momentum p equals mv so that Ek = mv2/2 
or p2/2m. When working with the Hamiltonian, the 
kinetic energy of a particle is expressed as p2/2m, not 
as mv2/2. Thus, Equation 3.84 may be rewritten as: 

 H E
m

V(x)
p2

2
 (3.109)

In case the potential is time varying, the last term 
in Equation 3.109 must be written out as V(x,t). The 
total energy, E, in the absence of a potential energy 

FIGURE 3.48 A two-dimensional representation of 
Schrödinger waves. Notice the nodes of the vibration.
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FIGURE 3.47 (a) A sharp peaked A(k) function leads to a wave function ψ(x) with a broad spatial extent (∆x) (b); 
(c) a broad peaked A(k) function leads to a wave function ψ(x) with a narrow spatial extent (∆x) (d).



Quantum Mechanics and the Band Theory of Solids   117

equals Ek. Newton’s second law relates potential 
energy to change in momentum. According to this 
law of mechanics, forces give rise to a change in the 
momentum of particles [(F = d(mv)/dt = dp/dt], and 
each force, F, has an associated potential energy V(x) 
(F = −dV/dx). The direction of the force is toward 
decreasing potential energy:

 

F
dp
dt

ma m
d x
dt

F –
dV(x)

dx

2

2

 (3.110)

or:

 F
dV(x)

dx
m

d x
dt

2

2

i.e., given V(x) one can solve for x(t) or v(x,t). We 
illustrate the use of the above deterministic expres-
sions with two important examples so we might 
better appreciate the analogies and the differences 
between classical and quantum physics. 

Example 3.1: Free particle [no force, V(x) = 0] 
moving along x (1D problem):

 E E
mv p

m
k

2 2

2 2
 (3.111)

v = dx/dt, and: 

 v
dx
dt

E
m

k2
 (3.112)

Therefore, we can formulate the differential 
equation:

 dx
2E
m

dtk  (3.113)

Integration from x0 to xt and from t = 0 to 
t = t and using Equation 3.112 results in:

 x x
E
m

t
p
m

t vtt 0
k

2

2

2 2
2

p
m

t  (3.114)

With V = 0, knowing x0 and p, we can predict xt 
at t; in other words, we can predict the trajec-
tory at all times later.

Example 3.2: Harmonic oscillators [F = −kx with 
x the displacement]. The pendulum, which is 

just a mass on a spring, is an example of a har-
monic oscillator, but its physical description also 
encompasses many objects that oscillate, from 
tuning forks to oscillating bridges and oscillat-
ing skyscrapers (Figure 3.49). 

Let us first calculate V(x) in Equation 3.109 for 
the given problem. The force F = −dV(x)/dx = −kx 
(Hooke’s law), with k the force or spring con-
stant, or:

 dV(x) = kxdx (3.115)

Integrating, we obtain:
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(3.116)

The force F = ma = −kx, and we obtain the dif-
ferential equation:

 d x
dt

k
m

x
2

2
 (3.117)

with a solution:

 x(t) Asin
k
m

t  (3.118)

where A is the maximum displacement (xmax = A). 
For a simple harmonic oscillator ω = 2πf = 2π/T 
and:

 
k
m

and T 2
m
k  

(3.119)
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Rubberband, slinky

Bending something:
Diving board, bridge,
building, tuning fork

Torsional pendulum
Torsional spring

g

FIGURE 3.49 A wide variety of harmonic oscillator examples.
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Observe that frequency only depends on char-
acteristics of the system (m,k) and not on the 
amplitude A. The first and second derivatives of 
Equation 3.118 are given as: 

 
v(t)

dx
dt

A
k
m

k
m

tcos
 

and

 
a(t)

d x
dt

A
k
m

k
m

t
k
m
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2

2
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(3.120)

with vmax = Aω, and amax = Aω2. For the momen-
tum, p(t) = mv, we obtain:

 p(t) mv m
dx
dt

A
k
m

k
m

tm cos  (3.121)

We can now solve for E exactly:

 

E
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m

kx
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mv kx
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t  (3.122)

Thus, the total mechanical energy of a simple 
oscillator is proportional to the square of the 
amplitude. As the amplitude (A) can take any 
value, this means that the energy (E) can also 
take any value—i.e., energy is continuous. Any 
energy value is allowed by simply changing the 
force constant k. At x = −A and x = A, E = kA2/2, 
and at x = 0, E = mv2

max/2 (see Figure 3.50). 
In Figure 3.51 we show a typical nonquan-

tized oscillator with a parabolic curve for the 
potential energy as a function of position 
x – x0 of the mass. The potential sketched here 
is very important because it describes the 
potential for many systems, including vibra-
tional and electronic states in molecules. It 
approximates the potential in many more sys-
tems for small departures from equilibrium. 
As a typical application, in Figure 3.52, we 
illustrate the potential energy for two hydro-
gen atoms approaching each other. Clearly 
over a considerable range of energies, a para-
bolic curve, typifying a simple harmonic oscil-
lator, can represent the real situation. The 
horizontal lines cutting through the parabolic 
part of the curve in Figure 3.52 represent 
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FIGURE 3.50 Spring/mass system with values for kinetic and potential energy as a function of the position of the mass 
on the x-axis. (a) x = A; (b) x = 0; (c) x = −A; and (d) x = x.
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FIGURE 3.51 Typical nonquantized oscillator with a parabolic curve for the potential energy as a function of position x 
of the mass.
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the quantization of the vibration states as 
introduced next. 

The above examples demonstrate the essence of 
 determinism in classical physics, i.e., given V(x), 
one can solve for x(t) or v(x,t), or also at any time (t), 
the position [x(t)] and velocity [v(t)] can be deter-
mined exactly—i.e., the particle trajectory can be 
specified precisely. In other words, given the force, 
the motion can be found. In the late eighteenth cen-
tury the mathematician Pierre Simon de Laplace 
(1749–1827) encapsulated classical determinism as 
follows: “…if at one time we knew the positions and 
motion of all the particles in the Universe, then we 
could calculate their behavior at any other time, in 
the past or the future.” In classical physics, particles 
and trajectories are real entities, and it is assumed 
that the universe exists independently from the 
observer, that it is predictable, and that for every 
effect there is a cause so experiments are reproduc-
ible. Heisenberg’s uncertainty principle destroyed 
all this. In quantum physics, measured and unmea-
sured particles are described differently. The mea-
sured particle has definite attributes such as position 
and momentum, but the unmeasured particle does 
not have one but all possible attribute values, as Nick 
Herbert describes it in his book Quantum Reality … 
somewhat like a broken television that displays all 
its channels at the same time.3 

We shall see that these ideas of classical mechan-
ics fail when we go to the atomic regime (where E 
and m are very small). Classical mechanics also fails 
when velocity is very large (as v → c) because of rela-
tivistic effects.

Schrödinger’s Equation 

Plausibility of Schrödinger’s Equation 

From the evidence presented above, an atomic or 
subatomic particle cannot be described anymore as 
a simple Newtonian point, and matter waves must be 
taken into account. For matter waves, from p = h/λ 
(Equation 3.95), the smaller the wavelength, the 
bigger the momentum, and as we calculated, elec-
trons, for example, are very “wavy” particles. The 
book-keeping term for the energy of a system or the 
Hamiltonian, H, for a Newtonian particle with mass 
m is: 

 H E
m

V(x)
2p

2
 (3.109)

An equivalent to Newton’s equation is needed to cal-
culate how forces (described by a potential energy) 
affect λ or p in the case of a “waving” particle. Once 
that differential wave equation is found, we may 
solve it for a wave, which has an amplitude for each 
value of position (x) and time (t). 

Erwin Schrödinger (1887–1961), in 1926, encour-
aged by Debye, who remarked that there should be 
a wave equation to describe the de Broglie waves, 
proposed a wave equation that can be applied to any 
physical system in which it is possible to describe 
the energy mathematically. In one dimension he 
postulated:

 
2 28(

[
x,t)

x
m

h
E V(x,t)] (x,t) 0

2 2
 (3.123)

with Ψ(x,t) the wave function, a wave representing 
the spatial distribution of a “particle,” and m the 
characteristic mass of the particle. The first term 
on the left is the rate of change of the wave func-
tion with distance x. The energy of the particle is 
E, and the potential energy function to describe the 
forces acting on the particle is represented by V(x,t). 
Schrödinger’s equation has the same central role 
in quantum mechanics that Newton’s laws have in 

FIGURE 3.52 Application of simple oscillator approxima-
tion: two hydrogen atoms in a hydrogen molecule. For 
an explanation of the horizontal lines in this figure, see 
quantized oscillator below.
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mechanics and Maxwell’s equations have in electro-
magnetism. Solutions to Newton’s equations are of 
the form v = f(x,t) (see Examples 3.1 and 3.2 above), 
whereas solutions to the wave equation (Equation 
3.118) are called wave functions Ψ(x,t). Schrödinger’s 
equation is more difficult to solve than Newton’s 
equation, but it is just as well-defined, and like 
Newton’s equation, it describes the relation between 
kinetic energy, potential energy, and total energy. If 
one knows the forces involved, one can calculate the 
potential energy V and solve the equation to find 
Ψ. Solving Schrödinger’s equation specifies Ψ(x,t) 
completely, except for a constant; if Ψ(x,t) is a solu-
tion, then AΨ(x,t) is a solution as well. Remember 
that Equation 3.123, like Newton’s law, cannot be 
derived—it is a plausibility argument. Einstein called 
Ψ a Gespensterfeld or ghost field. Because it carries 
no energy, the wave function is also referred to as 
an empty wave. In France, the Ψ wave is sometimes 
called densité de présence, or presence density.

 Here is how Schrödinger, using a rather sophis-
ticated analogy with classical mechanics, came to 
derive Equation 3.123. He assumed a sinusoid wave 
of wavelength λ and frequency ν and hence a veloc-
ity v = λν. The equation of such a traveling wave, as 
we saw in Chapter 2, is Ψ(x,t) = Αcos(kx x − ωt) + 
Bsin(kx x − ωt), where kx (the wave number) = 2π/λ, 
and the period is T = 2π/ω = 1/ν. Rewriting this 
expression in terms of the complex variable form, 
with B = iA and using Euler’s formula, one obtains 
as the simplest form of a wave:

 (x,t) Aei(k x- t)x  (3.124)

This is classical so far; indeed, we will see in the sec-
tion “Solution of the Wave Equation for Free Particles”, 
this chapter, and in Chapter 5 that Equation 3.124 
is also a solution of the Maxwell equations. 

Now apply Einstein’s photon formula, i.e., E = hν, 
to the particle, with ν the frequency of the “wav-
ing” of the particle—de Broglie’s idea! Because E = 
hν = (h/2π)(2πν) = ω, we find ω = E/ , where we 
have introduced the definition of “h-bar,”  = h/2π. 
From de Broglie, p = h/λ and p = (2π/λ)(h/2π) = kx  
and kx = p/ . Substitute the results for ω and k into 
Equation 3.124 and obtain:

 (x,t) Ae
i(px-Et)

 (3.125)

Schrödinger now assumed that the total energy E 
could be expressed in terms of the kinetic energy 
(KE) and the potential energy (PE) of the particle:

 H = E = Ek + V(x) = p
m

V(x,t)
2

2
 (3.126)

The derivatives of Equation 3.125 are:
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and
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Note that Ψ cannot be canceled. Making use of 
the correspondence of the operators on ψ(x,t) we 

can write: 
2

2 2x
p

and
t

iE2

h h
, and substitut-

ing these into the total energy equation (Equation 
3.109) one derives:

 E i
t m x
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2
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Applying these operators to Ψ(x,t), we obtain:
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(3.129)

which, the reader can easily demonstrate, is the 
famous Schrödinger’s wave equation (Equation 
3.123) for the 1D case. We may rewrite Equation 
3.129 also in the form:
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m x
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2

28 2

2

 (3.130)

This equation shows that H, the Hamiltonian opera-
tor, is given by:

 H
h

m x
V(x,t)

2

28 2

2

 (3.131)

Thus, Equation 3.130 may simply be formulated in 
operator form as HΨ (operator Ψ acting on function 



Quantum Mechanics and the Band Theory of Solids   121

Ψ, an eigenfunction) = EΨ(function Ψ multiplied 
by a number E, an eigenvalue), where H is the 1D 
Hamiltonian operator and in which the energy E 
of the particles is called the eigenvalue, and Ψ the 
eigenfunction. Note again that Ψ cannot be can-
celed. The latter merely represents the wave associ-
ated with the particle. Expressed yet another way, 
kinetic and potential energies are transformed into 
the Hamiltonian, which acts on the wave function to 
generate the evolution of the wave function in time 
and space. Schrödinger’s equation gives the quantized 
energies of the system and gives the form of the wave 
function so that other properties may be calculated.

The above does not represent a derivation of the 
wave equation; it is just a description of Schröding-
er’s thought process to make his postulate more 
plausible.

Wave Function Interpretation

Schrödinger did not have a clear idea of the meaning 
of a matter wave. However, in 1926 Max Born (1882–
1970) presented a new, vivid interpretation of the 
particle wave function. The so-called “Copenhagen 
interpretation” of Schrödinger’s equation is that 
the Ψ(x,t) function is not some physical representa-
tion of a physical substance as in classical physics 
(e.g., the amplitude of a water wave), but rather a 
“probability amplitude” of the particle, which, when 
squared, gives the probability of finding the particle 
at a given place at a given time: |Ψ(x,t)|2dx = prob-
ability the particle will be found between x and 
x + dx at time t and the wave function itself has no 
physical meaning. Because Ψ(x,y,z,t) is complex and 
can be positive or negative, it cannot be the prob-
ability directly. The Born interpretation of Ψ places 
restrictions on the form of the wave function:

 1. Ψ must be continuous (no breaks).
 2. The gradient of Ψ(dΨ/dx) must be continuous 

(no kinks).
 3. Ψ must have a single value at any point in space.
 4. Ψ must be finite everywhere.
 5. Ψ cannot be zero everywhere.

The Copenhagen interpretation also holds that 
an unmeasured particle is not real: its attributes are 
created or realized by the measuring act. Another 

way of saying this is that a wave function collapses 
up on measurement; before measurement a par-
ticle is described by a wave function described by 
Schrödinger’s equation, but on measuring that par-
ticle’s wave suddenly and discontinuously collapses. 
We will come back to this mystic interpretation 
of quantum reality when introducing Schrödinger’s 
cat at the end of this chapter. Because the probabil-
ity that the particle is somewhere must equal one, 
it holds that one can normalize this probability 
function as:

 | (x,t)| dx 12
 (3.132)

Note that the probability is a real number; although 
Ψ is complex, |Ψ(x,t)|2 is real. In this case, Ψ is said 
to be a normalized wave function. Electrons do not 
fly around the nucleus like the Earth around the sun 
(Rutherford, Bohr), but depending on which energy 
level it is in, the electron can take one of a num-
ber of stationary probability cloud configurations 
(Schrödinger). 

The boundary conditions imposed on Ψ mean 
that only certain wave functions and thus only cer-
tain energies of the system are allowed. Quantization 
of the wave function leads to quantization of the 
energy.

As we will learn below, solutions of Schrödinger’s 
equation for an atom are spherical Bessel functions. 
In Figure 3.53 we show, as an example of the type 

Probability
of finding
electron

0.0529 nm
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0 0.05 0.10 0.15 0.20

FIGURE 3.53 The probability of finding the ground 
state hydrogen electron (n = 1) as a function of the radial 
distance from the proton. The value of |Ψ(x,t)|2 at some 
location is proportional to the probability of finding the 
particle at that location at that time.
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of solutions obtained, the probability of finding an 
electron around the nucleus of a hydrogen atom. The 
potential that must be used in Schrödinger’s equa-
tion for this case is V(r) ∝ 1/r. Where we assume that 
the Coulomb force between the electron and the 
nucleus is the force responsible for binding the elec-
tron in the atom, this is the so-called central force or 

inverse square law [F r( )
r 2

1
].

Within Schrödinger’s model the atom is regarded 
as a sort of vibrating balloon that extends to infin-
ity and whose vibrations are in tune with Bohr’s 
frequencies. The quantum numbers of Bohr and 
Sommerfeld are related to the number of nodes 
in this vibrating 3D system. This theory of mat-
ter waves also reproduces the Balmer series for the 
bright lines in the hydrogen atom. Schrödinger 
removed the mysterious discontinuous jumps 
between electron orbitals, replacing them with 
“beats” between the vibration frequencies of dif-
ferent quantum states. Schrödinger’s elegant wave 
theory explains many things but lacks elsewhere, 
e.g., it cannot explain quantum processes such as 
the photoelectric effect.

The Time-Independent Schrödinger 
Equation (TISE) for Stationary States

The value of | (x,t)|2  in Equation 3.132 at a particu-
lar point is in general a function of time. However, 
if the particle under consideration has a definite 
energy—think about an electron in a specific energy 
level in an atom—then the value of | (x,t)|2  at each 
point becomes independent of time. It follows from 
quantum mechanics that for a particle in such a 
state of definite energy E, Ψ can be factored into a 
time-dependent component and a space-dependent 
component: Ψ(x,t) = ψ(x)ψ(t):

 
(x,t) (x)e

spatial temporal

iEt

 (3.133)

This is the time-dependent wave function for a sta-
tionary state where we use Ψ if the wave is a function 
of all coordinates and time, and ψ if it is a function 
of the space coordinates only. For simplicity we just 
deal with the x-coordinate here. The probability 

distribution function |Ψ|2 for this state is the prod-
uct of Ψ and its complex conjugate Ψ*, or:
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As ψ(x) does not depend on time, we see from 
Equation 3.134 that the probability function does 
not depend on time either. As soon as one can define 
a state with a definite energy, one can define a sta-
tionary state. 

We can now substitute the result from Equation 
3.133 into the time-dependent Schrödinger’s equa-
tion (Equation 3.129) to get:
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Dividing both sides by ψ(x)ψ(t) results in:
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(3.136)

If the potential V is independent of t, then V(x,t) = 
V(x), and the left side in Equation 3.136 depends 
on t only and the right side on x only. The only 
way these two sides can be equal to each other is 
if they are both equal to a constant, i.e., E. In the 
case V(x,t) is independent of time, Equation 3.130 
can thus be converted into a time-independent 
Schrödinger’s equation (TISE). Hence we obtain the 
time-independent form of Schrödinger’s equation as:

 
2 2

2m x
V(x) x) E (x)

2
(  (3.137)

Solving this equation, say for an electron acted on 
by a fixed nucleus, we will see that this results in 
standing waves.

The more general Schrödinger equation features 
a time-dependent potential V = V(x,t) and must be 
used, for example, when trying to find the wave 
function of an atom in an oscillating magnetic field 
or other time-dependent phenomena such as pho-
ton emission and absorption.
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Applications of Schrödinger’s Equation 

Solution of the Wave Equation for Free Particles

The wave function of free particles, such as photons, 
phonons, plasmons, and “nearly free” particles, such 
as conduction electrons in metals, should all be solu-
tions of Schrödinger’s equation. In the case of freely 
traveling photons, the expression for planar light 
waves, (x,t) Aei(k x t)x  (1D case), derived from 
Maxwell’s equations in Chapter 5, according to Bohr’s 
correspondence principle, should also be a solution 
of Schrödinger’s equation. To solve this first problem, 
we start from Equation 3.137, with V(x) = 0. This rep-
resents a free particle that experiences no force, has 
a definite energy E, and is moving in the x-direction 
with a momentum px (see Figure 3.54), say a photon: 
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2
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d
dx

mE2

2

2

2 2
 (3.138)

This is a second-order differential equation whose 
solutions are functions that, when differentiated 
twice, yield back the same functions multiplied by 
a constant. Such solutions include sines, cosines, 
and exponentials. Specifically, in this case, solving 
Equation 3.138 leads to the general solution, 
consisting of the superposition of two spatial wave 
functions of the form:

 (x) Aeik xxx  (3.139)

The two traveling waves, one traveling in the 
+x-direction and one traveling in the –x-direction, 
can be rewritten (using Euler) as:

 

( [cos(

[cos(

x) A x) isin( x)]

A x) is

1 x x

2 x

k k

k iin(– x)]xk  (3.140)

where A1 and A2 are constants. We expected this 
result, of course, because in the preceding section 
we saw how Schrödinger built up his equation with 
the requirement that it would, at minimum, yield 
the same results that Maxwell’s equations provide. 
This wave function for a free particle has a definite 
momentum px in the x-direction, or Δpx = 0. From 
the Heisenberg uncertainty principle (Equation 
3.106), it then follows that Δx must be infinite; we 
have no idea where the particle is located in space. 
This makes sense as we are dealing with traveling 
waves. To confirm this further, we calculate the 
probability distribution function |Ψ|2 for a free 
photon, which is the product of Ψ and its complex 
conjugate Ψ*, or:
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This result is independent of space and time, some-
thing we again expect for a sinusoidal wave func-
tion that extends all the way from x  =  −∞ to x  =  +∞ 
with an amplitude A. Normalization is not possible 
here as the wave extends to infinity; integration of 
Equation 3.139 over all space is infinite for any value 
of A. 

By substituting (x) Aeik xxx  into Equation 3.138, 
we derive:

 E = p2/2m (3.142)

and also:

 k x
mE2

 (3.143)

With a positive kx, the wave function represents a 
free particle moving in the positive x-direction. If kx 
is negative, the motion is in the negative x-direction. 
For a free particle, there is no restriction on the value 
of kx, and the associated, unquantized energy from 
Equation 3.143 is given as: 

 E( )
k
m

2 2

k x

2
 (3.144)

Any positive value of energy is allowed for such a 
free wave/particle; there is nothing that restricts the 
values of E. Equation 3.144 is the so-called disper-
sion relation for free particles. When we plot the 

V(x)

V(x) = 0
0

x

FIGURE 3.54 Photon, no boundary conditions, except for 
V(x) = 0.
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energy E versus the wave vector kx for free particles, 
we obtain the parabola shown in Figure 3.55. It is 
appreciated from this plot that mass, m, is inversely 
proportional to curvature.

Free Electrons in an Infinite Piece of Metal

For free electrons in an infinitely large 3D piece of 
metal, the allowed electron states are solutions of 
an expanded version of Schrödinger’s equation in 
Equation 3.123, or:

 2 ( [r r r)
8 m

h
E V( )] ( ) 0

2

2
 (3.145)

For electrons swarming around freely in this infinite 
metal, the potential energy V(r) is zero inside the 
conductor, and the solutions inside the metal are 
plane waves moving in the direction of r: 

 k ) Aexp i(r k r (3.146)

where r is any vector in real space, and k is any wave 
vector. As with a freely moving particle, normaliza-
tion is impossible as the wave extends to infinity. 

Plotting the energy E versus the wave number kx 
for a free electron gas in one direction leads to the 
same parabolic dispersion relation shown in Figure 
3.55. The density of states (DOS) function G(E) is 
the number of possible energy states per unit vol-
ume (also degeneracy), and we will derive it further 
below for free electrons in a bulk piece of solid. We 
find that, just as in the case of the density of states of 
an ideal gas (Equation 3.19), it increases smoothly 
with the square root of the energy. Importantly, we 
will also find that when reducing the dimensionality 
of the solid, say to a plane, a line, or a dot, the density 
of state function changes dramatically and acquires 
more density of states at specific energy values; i.e., 
G(E) is not a smooth function of E anymore.

From classical theory we could not appreciate 
the occurrence of long electronic mean free paths; 
indeed, Drude used the interatomic distance a for the 
mean free path λ. But from experiments with very 
pure materials and at low temperatures it is clear the 
mean free path may be much longer; actually it may 
be as long as 108 or 109 interatomic spacings or more 
than 1 cm. The quantum physics answer is that the 
conduction electrons are not deflected by ion cores 
arranged in a periodic lattice because matter waves 
propagate freely through a periodic structure just as 
predicted by Equation 3.146. 

Confining electrons by limiting their propagation 
in certain directions in a crystal introduces a varying 
V(r) in Schrödinger’s equation, and this may lead to 
an electronic bandgap as we will introduce below. 

Particles in Infinitely Deep Potential 
Wells of Finite Size 

The Born and von Karman’s Periodic Boundary 
Condition According to Pauli’s exclusion princi-
ple, in an atom, no two electrons can have all four 
quantum numbers the same. We ask ourselves now 
if there are similar restrictions for electrons in a 
larger structure. Instead of the infinitely large piece 
of metal, considered above, we limit the size of the 
metal chunk to say a 1-cm3 piece of metal, and we 
find that restrictions for electron energies do indeed 
materialize. Discrete energy levels inevitably arise 
whenever a small particle such as a photon or elec-
tron is confined to a region in space. Sommerfeld, in 
1928, was the first to show this. He adopted Drude’s 
free electron or Fermi gas (FEG) and added the 
restriction that the electrons must behave in accor-
dance with the rules of quantum mechanics. In his 
Fermi gas, electrons are free, except for their confine-
ment within a cubic piece of crystalline conductor 
with a volume of V = L3, and they follow Fermi-Dirac 
statistics instead of Maxwell-Boltzmann rules. The 
choice of a cube shape is a matter of mathematical 
convenience; a periodic boundary condition ensures 
that the free electron form of the wave function is 
NOT modified by the shape of the conductor or its 
boundary. This can be interpreted as follows: an 
electron coming to the surface is not reflected back 
in but reenters the metal piece from the opposite 
surface. This excludes the surfaces from playing any 

E(k)

kx

FIGURE 3.55 Plot of energy versus wave number kx from 
Equation 3.144 for free particles. Dispersion relation E(kx).
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role in transport phenomena. The value L is set by 
the Born and von Karman’s periodic boundary con-
dition, i.e., that the wave functions must obey the 
following rule:

 ( (x L, y L, z L) x,y,z) (3.147)

For the derivation of the possible energies, we assume 
N electrons (one for each metal ion) in a cube of 
solid conductor with sides of length L.

Outside the 3D cube of solid the potential V → ∞, 
and the wave function ψ is zero anywhere outside 
the solid with x,y,z ≤ 0 and x,y,z ≥ L. The situation 
applies, for example, to totally free electrons in a 
metal where the ion cores do not influence their 
movement. Sommerfeld assumed that V(x) outside 
the conductor equaled the work function Φ. The 
work function is the amount of energy required to 
remove an electron from the surface of a metal, i.e., 
the height of the wall electrons would have to scale to 
escape the solid, but V = ∞ is a good enough approxi-
mation for electrons in low-energy levels. Before we 
apply the Born and von Karman’s periodic bound-
ary condition to a finite-size 3D box that is infinitely 
deep (V = ∞), we consider finite-size infinitely deep 
1D and 2D wells. 

Infinitely Deep, Finite-Sized 1D Potential Wells—
Quantum Wells We apply Equation 3.137 now to 
a finite-sized 1D box with infinitely high potential 
walls (Figure 3.56). In a 1D box, V(x) in Equation 
3.137—the time-independent Schrödinger equation 
(TISE)—is 0 everywhere inside the conductor (region 

II) and is infinite outside the conductor (regions I 
and III).

Outside the well V → ∞ and ψ = 0 for x ≤ 0 and 
x ≥ L. For the Schrödinger equation inside the well 
(0 < x < L), we write:
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with:
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 (3.150)

We are interested in the quantum mechanically 
allowed energy levels of the electrons in this 1D box; 
because V(x) = 0, these will be kinetic energy levels 
(from Equation 3.109, E = p2/2me). From Equation 
3.148 the kinetic energy is proportional to the cur-
vature of ψ (the curvature of a function is its second 
derivative). 

In Sommerfeld’s mathematical model, for x = 0 
and at x = L, the wave function must be zero. The 
general stationary state solution for Equation 3.149 
consists of the superposition of two spatial wave 
functions (x)=Aei xkx , as shown in Equation 3.140, 
which we rewrite here as:

 ( )cos )sinx) (A A x i(A A x1 2 x 1 2 xk k  
(3.151)

with one traveling in the +x-direction and one trav-
eling in the –x-direction. The boundary conditions 
are set as follows: x = 0, ψ(x) = A1 + A2 = 0 or A2 = −A1, 
and we rewrite Equation 3.151 as:

 ( sin sinx) 2iA x x1 x 0 xk k  (3.152)

From the second boundary condition that Ψ0 sin(kxL) 
must be 0, it follows that either ψ0 = 0 or sin(kxL) = 0. 
If ψ0 = 0, the wave function is zero everywhere, or 
there is no probability of finding the particle in the 
box anywhere; therefore, this solution must be dis-
regarded. Hence kxL = nπ, where n = 1, 2, 3,… or:

 ( sinx)
n x

L0  (3.153)
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V(x) = 

V(x) = 

V(x)

FIGURE 3.56 Electron in a box. L is not the real physical 
boundary of the conductor, as the surfaces of the conduc-
tor are not determining the physical properties. The value 
of L is set by the Born and von Karman periodic boundary 
condition (see Equation 3.147).
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This is a standing wave that acts like a string clamped 
down at both ends. With n = 1 one has the basic har-
monic, and with n = 2, 3,... higher harmonics result. 
Note that the constant, ψ0, cannot be determined 
from solving Schrödinger’s equation because we are 
dealing with a linear equation. The constant must be 
recovered from the normalization condition, which 
is required to give a probability interpretation to the 
wave function. The constant ψ0 is calculated as:
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or we find:

 n x,t)
2
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with n = 1,2,3,…. These are the eigenfunctions of 
an electron in a box. The discrete energies—energy 
eigenvalues—that the electron can adopt are:
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e
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2

2

 (3.156)

The values of E )n(k  for different quantum numbers 
n represent the various allowed energy levels in a 1D 
box, and the gap between two successive levels 
describes the effect of quantization (discreteness). 
At the lowest energy (n = 1), the ground state, the 
energy remains finite despite the fact that V = 0 inside 
the region. According to quantum mechanics, an 
electron cannot be inside the box and have zero 
energy. This is called the zero-point energy, an 
important consequence of Heisenberg’s uncertainty 
principle (we elaborate on this point on p. 114 
“Heisenberg’s Uncertainty Priniciple”). If V(x) ≠ 0, 
everywhere in the box, all energies are shifted by 

V (E
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). For the same value of quantum 

number n, the energy is inversely proportional 
to the mass of the particle and to the square of the 
length of the box. For a heavier particle and a 
larger box, the energy levels become more closely 
spaced. Only when meL2 is of the same order as 
h2 do  quantized energy levels become important 
in  experimental measurements (with L = 1 nm, 

E
m L

eV1
e

2

h2

8
0 36. ). With a 1-cm3 piece of metal 

(instead of 1 nm3), the energy levels become so 
closely spaced that they seem to be continuous 
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quantum mechanics formula gives the classical 
result for dimension such that meL2 >> h2. This is 
another nice illustration of Bohr’s correspondence 
principle: for large dimensions, Schrödinger’s equa-
tion yields the classical results back. Because the 
kinetic energy is proportional to the curvature of 
the wave function, a higher kinetic energy En, caused 
by a higher value of n and/or a smaller value for L, 
corresponds to a more curved wave function (shorter 
wavelength). On a molecular scale, because L2 
appears in the denominator of Equation 3.156, 
increasing L, the size of the box, stabilizes the par-
ticle. Chemists are familiar with this effect in the 
case of electrons where delocalization is a stabiliz-
ing factor. As a consequence, allyl and benzyl carbo-
nium ions, radicals, and carbanions are relatively 
stable. 

The wave number kx given as:

 k x
e np

h
p m E2 2

 (3.150)

is now also quantized because En is quantized so 
that kx = nπ/Lx where n can take on only values 1, 
2, 3…. 

Quantization occurs because of boundary con-
ditions and the requirement for ψ to be physically 
reasonable (Born interpretation). The quantum 
number n labels each allowed state (ψn) of the sys-
tem and determines its energy (En). Knowing n, we 
can calculate ψn and En. The wave number is related 
to the momentum px of the electron, viewed as a 
particle, by kx = 2πpx/h, and to the wavelength (λ) 
of the electron, viewed as a wave, by kx = 2π/λ. 
The dispersion function E(kx) for an electron in an 
infinite deep well of finite size is shown in Figure 
3.57. The dispersion or energy spectrum E(kx) is 
now discrete rather than continuous; the allowed 
wave vectors are uniformly spaced in k-space with 
a separation of π/L; and the sample size L deter-
mines the spacing of allowed wave vectors and 
single- particle energies, with a smaller box giving 
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the larger spacings. For the free electron, no such 
values exist (see Figure 3.55).

The ground state (n = 1) of the wave function ψ1 
(Equation 3.150) has no “zero crossings.” The first 
excited state (n = 2) has one zero crossing, and so 
on. Successive functions possess one more half-wave 
(they have a shorter wavelength). Nodes in the wave 
function are points at which ψn = 0 (excluding the 
ends, which are constrained to be zero), and the 
number of nodes = n − 1. The important point to 
notice is that the imposition of the boundary condi-
tions has restricted the energy to discrete values. The 
allowed wave functions, a family of standing waves, 
and energies of an electron in a 1D box are summa-
rized in Figure 3.58. 

As apparent from Figure 3.58, the probability 
distribution of the particle in a box is not uniform; 
however; for a very large n, the probability is almost 
uniform throughout the box, as dictated again by 

classical physics. The probability of finding the par-
ticle at some point varies with the energy of the 
particle. A particle with energy E1 is most likely to 
be found in the middle of the box. A particle with 
energy E2 will never be found at that spot. As the 
energy of the particle increases, so does the number 
of nodes in the eigenfunction. Increasing the num-
ber of nodes (decreasing λ) corresponds to increas-
ing kinetic energy.

Devices that come with a length L in one direction 
comparable with the size of the de Broglie wavelength 
of an electron are known as quantum wells (1D con-
finement). With at least one dimension between 1 
and 100 nm, the excess electrons in this confined 
direction have no room to move in a Newtonian 
fashion. Instead their positions and velocities take 
on a probabilistic nature as their wave nature now 
dominates. Charge carriers are still free to move in 
the other two unconstrained directions though and 
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FIGURE 3.57 Dispersion E(kx) function for an electron in an infinite box compared with the dispersion of the electron in 
a finite-size box. Finite size drastically alters allowed energy levels.

(x)

n = 1 n = 3

n = 2 L x

n = 3

n = 2
n = 1

V = 

(a) (b) (c)

0 L x0 L x0

V = 
V = V = 

V = 
En

3 
2

FIGURE 3.58 Particle in a box: overview. (a) Standing waves in the box. (b) The probability distribution |ψ3|2. (c) The 
energy is proportional to n2.
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form a 2D carrier gas in a plane perpendicular to 
the confinement direction (the x-y plane if the con-
finement is in the z-direction). Quantum wells are 
relatively easy and cheap to fabricate. By using two 
different types of semiconductor materials, one of 
these having a wider bandgap, quantum wells are 
formed on sandwiching a thin layer of a narrow 
bandgap material between wider bandgap semicon-
ductor layers. This is realized, for example, by sand-
wiching a thin epitaxial layer of GaAs between two 
layers of AlxGa1-xAs, in a so-called heterostructure as 
depicted in Figure 3.59. The narrower bandgap GaAs 
is enclosed by AlxGa1-xAs, a material with a consider-
ably larger bandgap to establish a potential barrier for 
electrons at the surface of the confined material. The 
motion of electrons and holes is thereby restricted in 
the direction perpendicular to the thin layer of GaAs 
(z-direction). In this structure, electrons are still free 
to move unrestricted in the x-y plane.

These quantum wells (QWs) were developed 
in the early 1970s and constituted the first lower 
dimensional heterostructures. The foremost advan-
tage of such a design involves their improved optical 
properties. Reduced dimensionality leads to marked 
improved optical performances because of the 
change in the density of state or DOS function (see 
p. 161 “Fermi Surfaces, Brillouin Zones, Density of 
State Functions, and Conductivity as a Function of 
Quantum Confinement” for more details) for such 
a device compared with its 3D counterpart. In con-
trast to a bulk semiconductor, in a QW there are no 
allowed electron states at the very lowest energies 
(an electron in a box with energy = 0 does not exist; 
see p. 125 “Infinitely Deep, Finite-Sized 1D Potential 
Wells—Quantum Wells”), but there are many more 

available states (higher DOS) in the lowest conduc-
tion state in a QW so that many more electrons can 
be accommodated. Similarly, the top of the valence 
band has plenty more states available for holes. This 
means that it is possible for many more holes and 
electrons to combine and produce photons with iden-
tical energy for enhanced probability of stimulated 
emission (lasing) (see Chapter 5). Optical properties 
can be tuned by changing the structural parameters 
of a QW, principally its thickness and composition; 
this is known as bandgap engineering. 

Today QWs form the basis of most optoelectronic 
devices. QWs are used, for example, in high electron 
mobility transistors (HEMTs) and solar cells with 
high efficiency. HEMTs are in use in all types of high 
frequency electronics such as cell phone and satel-
lite television. The reason for the higher speed of a 
HEMT over a classical transistor is that the mean free 
path of the charge carriers in the 2D GaAs layer of a 
HEMT can be made larger than the gate length of the 
transistor, resulting in ballistic transport, i.e., charge 
transport without any intervening collisions with 
other charge carriers. Another mature application of 
QWs involves solid-state lasers. With the right volt-
ages applied over a single QW, very large numbers of 
holes and electrons can be brought together in a tiny 
physical space and narrow energy range, leading to 
powerful surface emitting lasers as used in $5 laser 
pointers, compact disc players, and laser printers.

Almost 30 years after quantum wells were first 
developed, the 2000 Nobel Prize in Physics was 
awarded to Zhores Alferov and Herbert Kroemer 
(Figure 3.60) for their contributions in the field of 
semiconductor heterostructures and their high-
speed and optoelectronics applications.

AlxGa1–xAs

AlxGa1–xAs
Lz

x

y

z

GaAs

FIGURE 3.59 Quantum well with x,y dimensions infinite and Lz finite.4
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Led by the insights garnered on QWs, scientists 
investigated the possibility of reducing the dimen-
sionality of heterostructures even further to create 
1D (quantum wire) and 0D (quantum dot) struc-
tures (see following sections).

Infinitely Deep, Finite-Size 2D Potential Wells—
Quant um Wires For a particle in a finite-sized, 
2D infinitely deep potential well, we define a wave 
function similar to the 1D potential well, but now 
we obtain ψ(x,y) solutions that are defined by two 
quantum numbers, one associated with each con-
fined dimension. The pertinent wave functions and 
energies for a 2D infinitely deep potential well, as 
shown in Figure 3.61, are:
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with n1 = 1, 2, 3 and n2 = 1, 2, 3 and where L1 is 
along the x-axis and L2 along the y-axis, making the 
z-direction the unconstrained axis. The energy is 
quantized now along the x- and y-axes as a conse-
quence of the boundary conditions, and most of the 
features of the 1D well are reproduced. Some of the 
low-energy wave functions together with their con-
tour maps are illustrated in Figure 3.62.

One new feature in 2D potential wells, not found 
in 1D potential wells, is degeneracy, i.e., the occur-
rence of several quantum states at the same energy 
level. This is best understood through an inspection 
of Equations 3.157 and 3.158: for a square 
well instead of a rectangular one, L1 = L2 = L, and 

(a) (b)

FIGURE 3.60 Zhores Alferov (a) and Herbert Kroemer 
(b) were awarded the Nobel Prize in Physics in 2000.

0
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y
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FIGURE 3.61 A 2D square well. A quantum wire.

(a) (b) (c)

FIGURE 3.62 (a) ψ11, (b) ψ21, and (c) ψ22 for a 2D square potential well. A quantum wire.
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Equation 3.158 yields now the same energy 
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with n1 = b and n2 = a has the same energy as a state 
with n2 = a and n2 = b (even if a ≠ b); these different 
states that correspond to a same energy are called 
degenerate. That these are indeed different quantum 
states becomes obvious when substituting the quan-
tum numbers for such states in Equation 3.157. In 
the case of two degenerate states with a = 1 and b = 2, 

both corresponding to an energy of 5
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two different wave functions: 
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Degeneracy is obviously connected to the degree 
of symmetry of a system; in the case we make an 
asymmetric box with L1 ≠ L2 (rectangle instead of a 
square), the degeneracy disappears.

When L is very small along two directions (2D 
confinement)—of the order of the de Broglie wave-
length of an electron—one obtains a quantum wire 
where electrons can only move freely in one direc-
tion, i.e., along the length of the quantum wire as 
illustrated in Figure 3.63.

Examples of 2D quantum confinement comprise 
nanowires and carbon nanotubes. Quantum wires 
represent the smallest dimension feasible for efficient 
transport of electrons and are thus aimed at as the 
ultimate interconnects in nanoelectronics and nano-

optoelectronics. We mentioned above that quantum 
well lasers are superior over traditional-bulk solid-
state lasers. Structures with yet lower dimensionality, 
such as nanowires and quantum dots (see next sec-
tion), are even better, coming with a lower threshold 
current and switching on and off faster than quan-
tum well lasers (~40 GHz and higher). Quantum 
wires also have been made into transistors (bipolar 
and FET), inverters, LEDs, and memory structures. 

Compared with the fabrication of quantum 
wells, the realization of nanoscale quantum wires 
requires more difficult and precise growth control 
in the lateral dimension, and, as a result, quan-
tum wire applications are only in the develop-
ment stage. Quantum wire fabrication techniques 
include nanoscale lithography, self-organization, 
selective growth, and chemical and electrochemi-
cal synthesis (see Volume III, Chapter 3). In the 
top-down approach, taking advantage of well-de-
veloped quantum well fabrication technologies, 
using molecular beam epitaxy (MBE) and meta-
lorganic vapor deposition (MOCVD), the most 
straightforward method to realize 1D nanostruc-
tures is etching (and regrowth) through wire-defin-
ing masks placed above a quantum well. This way, 
GaAs quantum wires are fabricated starting from 
the same thin layer of GaAs sandwiched between 
two layers of AlxGa1-x As we encountered in the 
manufacture of quantum wells. In the bottom-up 
approach, quantum wires are formed via direct 
growth in the form of semiconductor or metal 
nanowires and carbon nanotubes. Sumio Iijima 
(Figure 3.64) discovered multiwall carbon nano-
tubes (MWNTs) in 1991, after experimenting with 

x

z

y

GaAs

Lx
Ly

AlxGa1–xAs

FIGURE 3.63 Quantum wire with dimensions z infinite 
and Lx, Ly finite.4

FIGURE 3.64 NEC’s Sumio Iijima discovered multiwall 
carbon nanotubes (MWNTs) in 1991.
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an arc-discharge technique similar to the one used 
by Richard Smalley and his team at Rice University 
in the discovery of buckminsterfullerene (C60). 
During arc discharge between two closely spaced 
graphite rods, carbon vaporizes and after condens-
ing yields a “sooty” mass. When Iijima looked at the 
soot with an SEM, he noticed hollow nanotubes of 
carbon. One may speculate that this finding, like 
that of C60 “buckyballs,” could have been achieved 
earlier if better microscopy techniques had been 
available to see the nano-sized products hidden in 
the soot.

During the past decade, there has been major 
progress reported in the chemical synthesis (i.e., 
bottom- up manufacture) of all types of nanoscale 
semiconductor wires. As originally proposed by 
R.S. Wagner and W.C. Ellis, from Bell Labs, for the 
Au-catalyzed Si whisker growth, a vapor-liquid-solid 
mechanism is still mostly used.5 The field got a shot in 
the arm (a rebirth, so to speak) with efforts by Charles 
Lieber (Harvard) (Figure 3.65), Peidong Yang (http://
www.cchem.berkeley.edu/pdygrp/main.html), James 
Heath (http://www.its.caltech.edu/~heathgrp), and 
Hongkun Park (http://www.people.fas.harvard.edu/ 
~hpark). Lieber’s group at Harvard (http://cmliris.
harvard.edu) reported arranging indium phosphide 
semiconducting nanowires into a simple configura-
tion that resembled the lines in a tick-tack-toe board. 

The team used electron beam lithography to place 
electrical contacts at the ends of the nanowires to 
show that the array was electronically active. The 
tiny arrangement is not yet a circuit, but it is a first 
step, showing that separate nanowires can be con-
tacted to one another.

Infinitely Deep, Finite-Sized 3D Potential Wells—
Quantum Dots The solution of Schrödinger’s 
equation for electrons in a cube of metal with side L 
is given as:

 k ) V exp( )(r kr
1
2 i  (3.159)

—a 3D generalization of Equation 3.157 (with V = 
L3). The wave vector k, if you recall, points in the 
direction of wave propagation and has a magni-
tude given by 2π/λ for a plane wave. Generally, if a 
wave propagates along a displacement vector r, the 

amount of phase accumulated by the wave is given 
by k·r. From the generalization of Equation 3.158, 
electrons in a cubic box of side L (L1 = L2 = L3) have 
allowed energy levels specified by three quantum 
numbers n1, n2, and n3, or:
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and they come with the following allowed wave 
vectors:
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The allowed k-states are uniformly spaced along the 
axes with one state per length 2π/L. This is shown 
for a 2D square array and a 3D cubic array in Figure 
3.66. One consequence of confining a quantum 
particle in a cubic 3D is again “degeneracy.” As we 

FIGURE 3.65 Harvard’s Charles Lieber reinvigorated the 
nanowire field.

ky
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kz
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FIGURE 3.66 A 2D array of allowed k-state where we 
are looking in “k-space” or “reciprocal space” (so-called 
because k has units of 1/L) (a) and a cubic array of allowed 
states in 3D k-space; in three dimensions, we have states 
described by k = (kx; ky; kz) (b). The area per point is 
(2π/L)2, and the volume per point is (2π/L)3.

http://www.cchem.berkeley.edu/pdygrp/main.html
http://www.cchem.berkeley.edu/pdygrp/main.html
http://www.its.caltech.edu/~heathgrp
http://www.people.fas.harvard.edu/~hpark
http://www.people.fas.harvard.edu/~hpark
http://www.cmliris.harvard.edu
http://www.cmliris.harvard.edu
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saw for the 2D case, degeneracy reflects an underly-
ing symmetry in the V(x,y,z) potential and can be 
removed if certain symmetry is broken (e.g., by mak-
ing L1 ≠ L2 ≠ L3). Each dot in Figure 3.66 represents 
an allowed k-state. An important feature here is that 
the larger the box, the closer the spacing in energy of 
single particle states, and vice versa. The k-states are 
discrete, but for a normal-sized conductor there are 
~1026 states, so we can treat them as a continuum.

From Figure 3.66a, each value of k occupies an 
area A = (2π/L)2, and from Figure 3.66b each point 
occupies a volume V = (2π/L)3. The number of states 
per unit volume of k-space is 1/V (or L/2π)3.

When L becomes very small, of the order of the 
de Broglie wavelength of an electron in all three 
directions, the electrons lose all capacity to move 
(3D confinement). These 0D structures, with 3D 
quantum confinement, are called quantum dots or 
QDs, as illustrated in Figure 3.67. Quantum dots, 
also known as nanocrystal semiconductors, rang-
ing from 2 to 10 nm (10–50 atoms) in diameter, 
are typically composed of materials from periodic 
groups II–VI, III–V, or IV–VI (e.g., CdS, CdSe, PbS, 
PbSe, PbTd, CuCl…). The trapped electrons in these 
dots behave as de Broglie standing waves. The con-
finement of the waves leads to a blue energy shift, 
and by varying the particle size one can produce any 
color in the visible spectrum, say from deep (almost 
infra-) reds to screaming (almost ultra-) violets as 
illustrated in Figure 1.31. A quantum dot (QD) is an 
atom-like state of matter sometimes referred to as an 
“artificial atom.” What is so interesting about a QD 
is that electrons trapped in them arrange themselves 

as if they were part of an atom, although there is no 
nucleus for the electrons to surround here. The type 
of atom the dot emulates depends on the number of 
atoms in the well and the geometry of the potential 
well V(x) that surrounds them. 

An important consequence of decreasing the 
dimensionality even further than in quantum wells 
and wires is that the density of state function for 
quantum dots features an even sharper and yet more 
discrete density of states. As a consequence, quan-
tum dot lasers exhibit a yet lower threshold current 
than lasers based on quantum wires and quantum 
wells, and because of the more widely separated dis-
crete quantum states, they are also less temperature 
sensitive. However, because the active lasing mate-
rial volume is very small in quantum wires and dots, 
a large array of them has to be made to reach a high 
enough overall intensity. Making quantum wires 
and dot arrays with a very narrow size distribution 
to reduce inhomogeneous broadening remains a 
real manufacturing challenge, and as a result only 
quantum well lasers are commercially mature. 

However, quantum dots already form an important 
alternative to organic dye molecules. Unlike fluorescent 
dyes, which tend to decompose and lose their ability 
to fluoresce, quantum dots maintain their integrity, 
withstanding many more cycles of excitation and light 
emission (they do not bleach as easily!). Combining 
a number of quantum dots in a bead conjugated to 
a biomolecule is used as a spectroscopic signature—
like a bar code on a commercial product—for tagging 
those biomolecules (see Chapter 7, “Fluorophores, 
Quantum Dots, and Fluorescent Proteins”).

In the early 1980s, Dr. Ekimov discovered quan-
tum dots with his colleague, Dr. Efros, while work-
ing at the Ioffe Institute in St. Petersburg (then 
Leningrad), Russia.6,7 This team’s discovery of quan-
tum dots occurred at nearly the same time as Dr. 
Louis E. Brus (Figure 3.68), a physical chemist then 
working at AT&T Bell Labs (he is now at Columbia), 
found out how to grow CdSe nanocrystals in a con-
trolled manner.8,9 Experimenting with CdSe nano-
crystal semiconductor material, Dr. Brus and his 
collaborators observed solutions of astonishingly 
different colors made from this same substance. 
Their observation led to the recognition that there 
is a very clear transition in material behavior when 
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FIGURE 3.67 Quantum dot with dimensions Lx, Ly, and Lz 
that are finite.4
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a chunk of it becomes smaller than a fundamental 
scale, intrinsic to the substance.

Even though it was predicted in 1982 that QDs 
could be used as the active region of lasers, provid-
ing reduced threshold current and lower tempera-
ture dependence, it took nearly a decade to develop 
reliable growth techniques to produce QDs of a 
quality suitable for commercial applications. Major 
contributions to making QDs a reality were made by 
two Bell Labs scientists, Dr. Moungi Bawendi and 
Dr. Paul Alivisatos. They have since moved to MIT 
and University of California, Berkeley, respectively, 
where they continue their investigation of optical 
properties of quantum dots. Before 1993, QDs were 
prepared in aqueous solution with added stabiliz-
ing agents to avoid colloid precipitation (see col-
loid stability in Chapter 7, p. 518 “Intermolecular 
Forces”). In 1993, Bawendi and coworkers synthe-
sized better luminescent CdSe QDs by using a high-
temperature organometallic procedure instead.10,11 
Crystallites from 12 to –115 Å in diameter with con-
sistent crystal structure, surface derivatization, and 
a high degree of monodispersity were prepared in a 
single reaction based on the pyrolysis of organome-
tallic reagents by injection into a hot coordinating 
solvent. At that time, even if one could make QDs in 
a narrow size range, they still came with two major 
problems: 1) poor fluorescence and 2) hydrophobic-
ity, making them useless in biology. The addition of 
semiconductor caps, such as ZnS or CdS caps over a 
CdSe core, was found to dramatically increase the 
fluorescence quantum yield to 45% or higher.12–14 
The core determines the nanocrystal color, and the 
shell of the higher bandgap material (ZnS or CdS) 
dramatically enhances not only the brightness but 

also the chemical stability. A few different meth-
ods for making nanocrystals water soluble are also 
available today.15 Methods for water solubilization 
of QDs include derivatizing the surface with mer-
captoacetic acid or dithiothreitol, and Alivisatos and 
coworkers use a silica/siloxane coating.16,17 The addi-
tion of these coats makes the particles water soluble, 
and therefore more useful in biology experiments.

The quest to find new energy solutions stimulated 
the development of modern quantum dot tech-
nology even further. The advantage of the surface 
area-to-volume ratio of nanocrystal particles for 
energy conversion was realized, and photoelectro-
chemistry research (e.g., solar energy conversion) 
tapped the semiconductor/liquid interface to exploit 
this (also visit http://www.technologyreview.com/
Energy/19256).18,19 

Quantum dots, we will learn in Chapter 7 and 
Volume III, Chapter 3, are manufacturable through 
a very wide variety of methods, including self-
 assembly in colloidal wet chemical synthesis, tem-
plate chemistry (zeolite, alumina templates), sol-gel 
methods, micelle methods, organometallic synthe-
sis, pyrolysis, lithography and etching, electrostatic 
confinement, scanning tunneling microscope (STM) 
tips, epitaxial strain, and so on. QD devices have 
now been demonstrated in many research laborato-
ries, and commercial products are available on the 
market.

Zero Point Energy We noted before that at the low-
est electron energy (n = 1), the ground state energy, 
remains finite despite the fact that V = 0 inside the 
solid (see Equation 3.156 and Figure 3.58c). In classi-
cal physics, both the kinetic energy (KE) and poten-
tial energy (PE) can have a zero value, but not in 
quantum physics! According to quantum mechan-
ics, an electron in a box of length L must necessarily 
have energy. It cannot be inside the box and have 
zero energy. The minimum possible energy is E1 and 
is called the zero point energy (ZPE). Zero point 
energy hypothesized by Max Planck in 1911 and 
developed by him and Walter Nernst between 1911 
and 1916. It was first measured by Dr. Willis Lamb 
in 1947 as a slight upward shift of electrons in their 
atomic orbitals. The concept of a zero point energy 
has very far-reaching consequences, manifesting 

FIGURE 3.68 Columbia’s Louis Brus.

http://www.technologyreview.com/Energy/19256
http://www.technologyreview.com/Energy/19256
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themselves from the quantum world to the cosmos. 
The existence of a zero point energy for a quantum 
particle is a general phenomenon and is consis-
tent with the Heisenberg uncertainty principle; i.e., 
particles with zero momentum cannot be local-
ized. From the Heisenberg uncertainty principle 
(Equation 3.106), it follows that for a 1D box:
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because kx = 2π/L (see Equation 3.161).
That the zero point energy is a direct consequence 

of the Heisenberg uncertainty principle can simply 
be recognized by considering an electronic vibra-
tion ceasing at T = 0. If such a thing could happen, 
then position and momentum both would be zero, 
which would violate the Heisenberg uncertainty 
principle.

The zero point energy can be measured through 
the Casimir force, a small attractive force between 
two close parallel, uncharged plates in a vacuum 
(see Volume III, Chapter 8 on actuators). This force, 
inversely proportional to the fourth power of the 
distance between the plates, comes about because, 
according to quantum physics, even a perfect vac-
uum contains a zero point energy keeping virtual 
particles in a continuous state of fluctuation (see 
Equation 3.107). Given the equivalence of mass and 
energy expressed by Einstein’s E = mc2, the vacuum 
energy must be able to create particles, known as vir-
tual particles. They flash briefly into existence and 
expire within an interval dictated by the uncertainty 
principle. Casimir realized that only the virtual pho-
tons with wavelengths that fit a whole number of 
times into the gap between the two plates should be 
part of the energy calculation (i.e., no half-quantum 
lengths are allowed). Moving the plates together, 

the energy density should thus decrease as there are 
more allowed virtual photon states pushing against 
the plates from the outside than from between the 
two plates (see Figure 3.69).

An example of a practical application of the exis-
tence of the zero point energy for confined electrons 
is the quantum well laser, which is more efficient 
than a diode laser. In a quantum well, as we saw 
above, there are no allowed electron states at the 
very lowest energies, but there are more available 
states in the lowest conduction band state and at the 
top of the valence band so that many more holes 
and electrons can combine and produce photons 
with identical energy for enhanced probability of 
stimulated emission (lasing; see also Chapter 5).

Potential Wells of Finite Depth and Size, 
Finite Barriers, Tunneling, and Interfaces

Finite-Depth Potential Wells A potential well is a 
potential energy function with a minimum. An infi-
nitely deep potential well, as considered above, is an 
idealization. On the atomic scale there are no infi-
nitely high and sharp barriers, and both ψ(x) and 
dψ(x)/dx go to zero smoothly near a boundary. If the 
walls of an electron prison are not infinitely high, 
as sketched in Figure 3.56, but can be scaled by the 
particles inside as sketched in Figure 3.70, Equation 
3.137 must be rewritten as: 
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with V0 the potential barrier the particle must jump 
to get out of the well. We will now solve this equa-
tion in the three regions marked in Figure 3.70. 

A quantum well with finite potential walls for 
trapped particles is a more realistic picture than the 
infinite potential wells assumed earlier and applies 

Vacuum
fluctuations

Casimir plates

FIGURE 3.69 Vacuum fluctuations. The Casimir effect.
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to most practical 3D (quantum dots), 2D (quantum 
wires), and 1D (quantum wells) confined structures. 
The representation also applies to nucleons inside 
the nucleus of an atom. Even the Krönig-Penney 
model, used to calculate the potential energy of an 
electron in a row of atoms in a linear solid, uses an 
array of periodic square wells of the type shown in 
Figure 3.70. In this model, each cell with V(x) = 0 
represents an atom. 

Outside the box sketched in Figure 3.70, in regions 
I and III, the boundary condition is that V(x) = V0. 
These are regions that are “forbidden” to classical 
particles with E < V0. With E < V0 a classical par-
ticle cannot penetrate a barrier region: think about a 
particle hitting a metal foil and only penetrating the 
foil if its initial energy is greater than the potential 
energy it would possess when embedded in the foil 
and where otherwise it will be reflected. Defining 
α as:
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In a region with E < V0 there is an immediate effect 
on the waveform for the particle because kx is real 
under these conditions, and we can write:

 k x
0m(V E)2

 (3.167)

We find for the general solution of Equation 3.164 
in regions I and III a wave function of the form 

(x) Ae Be+ x x, i.e., a mixture of an increas-
ing and a decreasing exponential function. With a 

barrier that is infinitely thick we can see that the 
increasing exponential must be ruled out as it con-
flicts with the Born interpretation because it would 
imply an infinite amplitude. Therefore, in a barrier 
region the wave function must simply be the decay-
ing exponential Be x, the important point being 
that a particle may be found inside a classically for-
bidden region (regions I and III).

If the barrier thickness is not infinite, then the 
increasing exponential component in the wave 
function cannot be ruled out because the wave func-
tion amplitude may not necessarily rise to infinity 
before the potential drops back to zero. In this case, 
the solutions for regions I and III are the following 
damped exponentials:

 I
xx) Ae region I, x 0)( (  (3.168)

 III
xx) Be region III, x L)( (  (3.169)

The values for A and B of the damped exponentials 
in Equations 3.168 and 3.169 are determined from 
the boundary conditions. These boundary condi-
tions include the fact that wave function ψ and its 
derivative dψ/dx must be continuous at boundaries 
between regions I, II, and III (the boundary condi-
tions require that ψI = ψII at x = 0 and ψII = ψIII at 
x = L).

In Figure 3.71, the “leaky” waves in the forbidden 
regions are shown as exponential tails. The penetra-
tion depth of these waves is the distance outside the 
potential well over which the probability signifi-
cantly decreases and is given by:

 x
m(V E)0

1

2
 (3.170)

Thus, the penetration distance that violates classi-
cal physics is proportional to Planck’s constant and 
also depends on the value of V0 − E and on the mass 
of the particle. Because of this “barrier penetration,” 
the electron density of a material extends outside 
the surface of the material.

In region II (0 < x < L) where V(x) = 0, the wave 
equation becomes:

 d
dx

2

2 xk2  (3.171)

where:
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FIGURE 3.70 Quantum well with finite walls.
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 k x i and =
2mE

 (3.172)

The solution here is an oscillating wave just as in the 
case of the well with infinite walls (Figure 3.56): 

 II
i x i xCe Dek kx x

 

or (3.173)

 II 0 0x) x x( sin cosk kx x  

Thus, the wave functions for a particle in a well with 
finite walls look very similar to the ones for the infi-
nite square well … except that the particle now has a 
finite probability of “leaking out” of the well! 

Finite Height Barriers (Step Functions)
(1) E > V0 A potential barrier is the opposite of 

a potential well. It is a potential energy function 
with a maximum. For a barrier of finite height and 
thickness (Figure 3.72) and with E > V0, we use again 
the TISE (Equation 3.137). For particles outside and 

above the barrier (regions I and III), V = 0 and we 
obtain:

 
I

+ik x -ik x

III
+

x) Ae Be x 0 and V 0)

x) Ee

I I( (

( iik x -ik xIII IIIFe x L and V 0)(  (3.174)

These are oscillations with the wave vector:

 k kI III
2mE

2  (3.175)

We have replaced kx here with the symbol kI = kIII 
or kII to be more specific about the regime under 
consideration. 

It is important to recognize here that with E > V0 a 
particle would, in a classical picture, easily overcome 
the barrier, and one would expect a 100 % transmis-
sion. We will see that this is not the case when the 
particle is “wavy.” In the barrier region (region II), 
where 0 < x < L, we calculate:

 II
+ik x -ik xx) Ce DeII II(  (3.176)

with the wave vector:

 k
2m(E V

II
0)

 (3.177)

whereas in the case of E < V0, kx is real in a barrier 
region (see Equation 3.167), in the case of E > V0, kx 
(=kII) remains imaginary. If we are only considering 
waves moving from left to right (Figure 3.73), we can 
simplify the above wave functions to:

 Incident wave: I
ik xx) Ae I(  (3.178)

 Reflected wave: I
ik xx) Be I(  (3.179)

 Transmitted wave: III
ik xx) Ee I(  (3.180)
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FIGURE 3.71 (a) Energies of a wave function inside the quantum well (region II). (b) The wave functions leak out of the 
well: see exponential tails.
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FIGURE 3.72 Finite barrier with boundary conditions.
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We define a “reflection coefficient” R as:

 R
B

A

2

2  (3.181)

and likewise we can define a transmission coeffi-
cient T as: 

 T
E

A

2

2  (3.182)

The probability of the particles being reflected R or 
transmitted T is then:

 R
reflected)

incident)

B

A

I

2

I

2

2

2

(

(
and:

 T
transmitted)

incident)

E

A

III

2

I

2

2

2

(

(
 (3.183)

The transmission probability is the probability that 
a particle incident on the left of the barrier emerges 
on the right of it. 

(2) E < V0 The situation where classically the par-
ticle does not have enough energy to surmount the 
potential barrier, E < V0, is sketched in Figure 3.74. 

With E < V0, the particle will be reflected at x = 0 
with the same kinetic energy and Equation 3.176 
again applies, but the transmitted wave is now a 
damped exponential as we saw above. The wave 
function in region II becomes:

 

Unphysical 0

x) Ce De

Damped

II
x x(  (3.184)

with k
2m(V – E

II
0 )

 (see Equation 3.167).

Tunneling We briefly return here to the tunnel-
ing phenomenon as described in Equation 3.167. 
The violation of classical physics in tunneling as 
described by this equation is allowed by the uncer-
tainty principle. A particle can violate classical phys-
ics by ΔE for a short time, Δt ~ /ΔE (see Equation 
3.107). The tunneling wave function is shown in 
Figure 3.75. The exponential decay of the wave func-
tion inside the barrier is given as: 

 (x) Ae x (3.185)

with 2 2m(V E0 )
 (Equation 3.165). If the bar-

rier is narrow enough (L in Figure 3.75 is small), 
there will be a finite probability P of finding the par-
ticle on the other side of the barrier. The probability 
of an electron reaching across barrier L is: 

 p x) A e
2 2 2 L(  (3.186)

where A is a function of energy E and barrier 
height V0. The probability of finding an electron 
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FIGURE 3.73 Wave with E > V0 moving from left to right.

V(x)

IIIIII
E

En
er

gy

Classical
behavior

0 L
x

V0
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FIGURE 3.75 Tunneling wave function. The rectangular 
barrier stretches from x = 0 to x = L, the height of the 
barrier is V0.
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on the other side of a barrier of width L can be 
probed with a fine needle tip from a scanning tun-
neling microscope (STM) (see also Volume III, 
Chapter 6 on metrology). The tunneling current, 
based on Equation 3.186, picked up by the sharp 
needle point is given by:

 I f ew
L(E)A2 2  (3.187)

where fw(E) is the Fermi-Dirac function, which con-
tains a weighted local density of electronic states in 
the solid surface that is being probed and states in 
the needle point (see also Fermi’s golden rule fur-
ther below). The weighted local density of electronic 
states is a material property of both probed surface 
and probe and may be obtained by measurements 
of the current I as a function of bias voltage V (dI/
dV), which gives spatial and spectroscopic informa-
tion about the quantum states of a nanostructure. 
From Equation 3.187, when L changes by 1 Å, the 
current changes by a factor of about 10! Obviously, 
the current is very sensitive to the gap distance. The 
size of the gap in practice is on the order of a couple 
of Angstroms! If the tip has two atoms vying for sit-
ting at the very apex of the tungsten tip, the atom 
recessed by two atoms lower than the winning atom 
carries about 1 million times less current. That is 
why one wants such a fine tip. 

Because particles must be either reflected (R) or 
transmitted (T) we have R + T = 1. By applying the 
boundary conditions x → ±∞, x = 0, and x = L, we 
may also calculate the theoretical transmission or 
tunneling probability P from:
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G
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L L
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1
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(3.188)

We note that P can be nonzero; i.e., particles may 
tunnel through a barrier even when E < V0. The 
wave function does not fall abruptly to zero inside 
a region where its potential energy exceeds its total 
energy. This quantum mechanical result is a most 
remarkable feature of modern physics: there is a 
finite probability that the particle can penetrate the 
barrier and even emerge on the other side! We also 
notice here that even when E > V0, P < 1. So a par-
ticle that has enough energy to overcome a barrier 

has a high probability to be reflected instead. This 
is counterintuitive as a classical particle with that 
energy would have a P = 1. We can summarize this 
situation as follows: quantum mechanics predicts an 
enhanced tunneling when E < V0 and an enhanced 
reflection when E > V0. This is equivalent to light 
reflecting from an interface with an abrupt change 
of refractive index.

Example 3.3: Assume that the work function 
(i.e., the energy difference between the most 
energetic conduction electrons and the poten-
tial barrier at the surface) of a certain metal is 
Φ = 5 eV. Estimate the distance x outside the sur-
face of the metal at which the electron prob-
ability density decreases to 1/1000 of that just 
inside the metal.
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with m = me.

In this section we considered the simplified problem 
of tunneling through a square barrier, but in most 
cases the barriers are not simply square shaped. One 
then needs to obtain a more general expression for 
the tunneling probability. These calculations are 
fairly involved, and we refer the reader to the spe-
cialized literature (e.g., Wolf ’s Principles of Electron 
Tunneling Spectroscopy20).

Some Tunneling History  The concept of tunneling 
has no analogy in classical mechanics. The experi-
mental manifestations of this effect are one of the 
many triumphs of the quantum theory. Based on 
electron tunneling, Fowler and Nordheim, in 1928, 
explained the main features of electron emission 
from cold metals by high external electric fields, 
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which had been unexplained since its first observa-
tion by Lilienfeld in 1922. 

The discovery of the Esaki tunnel diode 
(see Figure 4.44) was very significant in the his-
tory of tunneling as it was the first electronic 
device where electron tunneling was clearly mani-
fested in a semiconductor. Esaki described the tun-
nel diode in his 1957 thesis and received the 1973 
Nobel Prize for his invention (http://nobelprize.
org/nobel_prizes/physics/laureates/1973/esaki-bio.
html). The next significant event was early in the 
1970s, when the first quantum wells (QWs), which 
were also the first low-dimensional heterostructures, 
were demonstrated (see the AlGaAs/GaAs/AlGaAs 
structure in Figure 3.59). 

Esaki was not only the originator of the Esaki tun-
nel diode; he also invented the double-barrier reso-
nant tunneling diodes (abbreviated DBRT diode; 
see Figure 5.149) in 1974. Furthermore, in 1969, 
Esaki* and Tsu initiated research on semiconductor 
superlattices based on a periodic structure of alternat-
ing layers of semiconductor materials with wide and 
narrow bandgaps, in other words, a series of quantum 
wells or multiquantum well devices (MQWs).21 The 
first superlattices were fabricated using an AlGaAs/
GaAs material system (Figure 5.148). 

In 1981, Gerd Binnig and Heinrich Rohrer 
invented the scanning tunneling microscope (STM), 
enabling the visualization and moving of individual 
atoms for the first time. 

Tunneling is also of great importance in the his-
tory of nuclear physics. The decay of a nucleus is 
the escape of particles bound inside a barrier. The 
phenomenon of tunneling explains α-particle decay 
of heavy, radioactive nuclei. Inside the nucleus, 
an α-particle feels the strong, short-range attrac-
tive nuclear force as well as the repulsive Coulomb 
force. The nuclear force dominates inside the nuclear 
radius where the potential can be approximated by 
a square well. The rate for escape can be very small; 
particles in the nucleus “attempt to escape” 1020 
times per second but may succeed in escaping only 
once in many years! Even if the quantum state (wave 

* Esaki worked for IBM at the Thomas J. Watson Research Center, 
Yorktown Heights, New York, until 1992, when he returned to Japan 
to become president of Tsukuba University, Ibaraki.

function) of the nucleus is completely defined with 
no uncertainty, one cannot predict when a nucleus 
will decay (Figure 3.76). Quantum mechanics tells us 
only the probability per unit time that any nucleus 
will decay (Figure 3.76a). Electrons, we saw above, 
are bound with negative total energy and can never 
escape the nucleus (Figure 3.76b). But a nucleon, 
such as an α-particle, is held inside the nucleus by 
the strong nuclear force and can escape by tunneling 
through the positive Coulomb barrier, which leads 
to the nuclear decay processes (G. Gamov, 1928). 
The potential barrier at the nuclear radius is sev-
eral times greater than the energy of an α-particle. 
Based on Equation 3.107, for a short time, a particle 
can “borrow” energy from the uncertainty relation, 
gaining enough energy to jump over the potential 
barrier before giving it back. When it returns to its 
“proper” energy state, it is just outside the barrier 
instead of just inside, and rushes away. The process 
is as if the particle tunneled through the barrier, and 
it is purely a quantum effect. 

Interfaces The theoretical treatment of particles 
hitting an interface is the same as the treatment of 
particles hitting one side of a square barrier (half 
square or half step function) and finds all types 
of applications. The results allow one to handle 
important problems involving the transmission 
and reflection of particle waves, such as encoun-
tered in vacuum/metal interfaces (work function), 
vacuum/semiconductor interfaces, semiconductor/
metal interfaces, metal/metal interfaces (e.g., in 
thermocouples), and semiconductor/semiconduc-
tor interfaces (e.g., in diodes). For this analysis no 
new equations are needed as we can retrieve all the 
necessary expressions from our treatment of the full 
square barrier as summarized in Table 3.7.

Ee > 0E
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(b)(a)  Energy

Positive Coulomb
barrier

Nuclear potential well
in which -particle is 
confined
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electron and nucleus
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r

FIGURE 3.76 Nucleons escape the nucleus in radioactive 
decay (a); electrons cannot escape the nucleus (b).
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Harmonic Potential Wells

We now revisit the harmonic oscillator from Figure 
3.51 and solve it in the Schrödinger way so we may 
learn how quantization comes about in the case of 
an oscillating system. Simple harmonic oscillators 
describe many physical situations from springs to 
diatomic molecules and atomic lattices. In all cases, 
harmonic oscillations occur because the system 
contains a part that experiences a restoring force 
(spring) proportional to the displacement from 
equilibrium. In Figure 3.77, depicting a harmonic 
potential well, we discern two regions: inside the 
well (region I), with E > V(x), and outside of the well 
(region II), with E < V(x). 

The time-independent Schrödinger equation 
(TISE) for a harmonic oscillator is given as:

 
2 2

2
2

2m

d x

dx
E k x x

1
2

 (3.189)

where V(x) = 
1
2 kx2 (in this equation k is the force 

constant, not the wave number k!) and 
k
m

1
2

. 

The general solutions for Equation 3.189 are bell-
shaped Gaussian functions multiplied by a Hermite 
polynomial Hn(y): 

 

n e( ) ( )x N H x

with n 0,1,2,3... and

n n

1
2

x
2

2

K

N a normalization constant

m

1
2

n

2

1
( )

(22
1
2

1
4

n n!)  
(3.190)

Some values for Hn(y) are listed in Table 3.8.
The energy is given by:

 
E n n 0,1,2,3 ...n

1
2

,
 

(3.191)

with n the vibrational quantum number. As shown 
in Figure 3.78, energies are evenly spaced and again 
cannot be zero in the ground state because of quan-
tum confinement. Here we start the quantum num-
bers from n = 0 rather than n = 1. 

The ground state (n = 0) of the wave inside the 
box is a simple Gaussian with no zero crossings 
(Figure 3.79a):

 n 0

x

x e
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with zero point energy:

 E0

1
2

 (3.193)

TABLE 3.7 Transmitted and Reflected Particle Waves 
on an Interface

Energy Equations Wave Vectors
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FIGURE 3.77 Harmonic potential well.

TABLE 3.8 Hermite Polynomials, Hn(y)

n Hn(y)

0 1
1 2y
2 4y2 − 2
3 8y3 − 12y
4 16y4 − 48y2 + 12
5 32y5 − 160y3 + 120y

n = vibrational quantum number.
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The first excited state (n = 1): n=1

1
4

(x) =  

2 xe
– x2

2  has one zero crossing; the second excited 

state (n = 2): n 2
2x x e
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2 1 2  has 

two zero crossings; the third excited state (n = 3): 

n 3
2x x x e

x2

( ) ( )

1
4 1

3
2 3 2  has three 

crossings; and so on. From Figure 3.79b the lowest 
energy state (n = 0) of the QM oscillator has a 

maximum probability at the equilibrium position, 
whereas the classical oscillator always has its maxi-
mum probability at the extremes.

As expected from Bohr’s correspondence prin-
ciple, the higher the quantum numbers, the better 
the quantized oscillator resembles the classical non-
quantized oscillator from Figure 3.51. This is illus-
trated in Figure 3.80. 

Quantized harmonic oscillators are all around 
us: diatomic molecules, vibrations within mole-
cules, vibrations of atoms about equilibrium posi-
tions, oscillations of atoms or ions in crystal lattices 
(phonons), normal modes of electromagnetic fields 
in a cavity (blackbody radiation), Landau levels 
in the quantum Hall effect, and to a first approxi-
mation, any oscillatory behavior. We will encounter 
another example of the harmonic quantum oscilla-
tor solution presented here in the solution Einstein 
proposed in 1903 for the energies of the ”atomic 
oscillators” in solids (see below under “Classical and 
Quantum Oscillators”).

Example 3.4: The spacings between vibrational 
levels of molecules in the atmosphere, CO2 and 
H2O, are in the infrared frequency range: ΔE = 
hν = ω ~ 0.01 eV. As a consequence, Earth has 
an atmosphere acting as a greenhouse. 

Particles in an Atom: Central Force 

An electron bound to the hydrogen nucleus is an 
example of a central force system: the force depends 
on the radial distance between the electron and the 
nucleus only. The potential energy associated with a 
central or inverse square law force is very important 
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FIGURE 3.80 Quantized oscillator. Probability densities 
P for n = 10 states of a quantum mechanical harmonic 
oscillator. The probability densities for classical harmonic 
oscillators with the same energies are shown in black. In 
the n = 10 state, the wavelength is shortest at x = 0 and 
longest at x = |L|. The higher the quantum number n, the 
closer the solution resembles the classical one represented 
in Figure 3.51.
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and was illustrated earlier for the case of a hydro-
gen atom in Figure 3.53. The potential energy of the 
electron-proton system is:

 V(r)
e

r

2

04
 (3.194)

The solutions of Schrödinger’s equation with this 
potential are spherical Bessel functions. In Figure 
3.53 the probability of finding the ground state for a 
hydrogen electron (n = 1) as a function of the radial 
distance from the proton was shown. The value of 
|Ψ(x,t)|2 at some location at a given time is propor-
tional to the probability of finding the particle at that 
location at that time. The wave functions for hydro-
gen are like vibrating strings or membranes, but 
the vibrations are in three dimensions and they are 
described by spherical Bessel functions. In Figure 3.81 
we show solutions for higher quantum number cases 
(up to n = 4). In Figure 3.81A we provide a summary, 
and Figure 3.81B details some of these solutions for 
hydrogen. The lowest shells are spherical, 1s (n = 1, 
l = 0, m = 0), 2s (n = 2, l = 0, m = 0), 3s (n = 3, l = 0, 
m = 0), and 4s (n = 4, l = 0, m = 0), and hold two 
electrons each. The next shells are three 2p orbitals 
(n = 2, l = 1 and m = 1, 0, −1), which are dumbbell 
shaped and fit into the atom along perpendicular 
axes. A total of six electrons can fit. Level three (n = 3) 
has one s orbital and three p’s—just like the ones at 
level two—and five three d’s (with m = −2, −1, 0, +1, 
+2). The d orbitals are shaped for the most part like 
four-leaf clovers. At level four (n = 4) we encounter 

for the first time the 4f orbitals. They hold 14 elec-
trons and look somewhat like onion blossoms. The 
electrons in the 4f orbitals are the furthest removed 
from the nucleus, are easily excited, and exhibit 
thousands of distinct energy states. They are associ-
ated with the many unusual optical, magnetic, and 
catalytic properties of the rare earth elements.

We come back to the mathematical formulation 
of the solutions of Schrödinger’s equation for a cen-
tral force when analyzing energy levels for quantum 
dots. These “artificial atoms” have energy quantiza-
tion just as like atoms and molecules. 

Summary: Most Important Periodic Potential 
Profiles and the Sommerfeld Model

Summarizing, the quantization for three of the most 
important potential profiles leads to the following 
mathematical solutions of Schrödinger’s equation: 
for the central force, we obtain spherical Bessel func-
tions; for an infinite square well potential, sines, 
cosines, and exponentials; and for an oscillator, 
Hermite polynomials. The quantized energy levels 
for each case are summarized in Figure 3.82 (only 
the 2D case is shown). Notice that the separation 
between consecutive energy levels increases with 
increasing n for an infinite square well potential (b) 
are evenly spaced for a harmonic well potential (c), 
and in the case of an inverse square law potential (a) 
the separation becomes closer with the larger n. 

Sommerfeld’s model assumes that the electrons 
in a metal experience a constant zero potential so 

FIGURE 3.81  (A) Summary or overview of atomic orbitals up to n = 4.



Quantum Mechanics and the Band Theory of Solids   143

(b)

(B)(a)

(c)

(d)

FIGURE 3.81 (Continued) (B) Where red = negative phase of Ψ and yellow = positive phase of Ψ. The density of dots 
reflects the magnitude of Ψ. (a) n = 3, l = 0, m = 0 for hydrogen. (b) n = 3, l = 1, m = −1 for hydrogen. (c) n = 3, l = 2, m = −1 
for hydrogen. (d) 4 = 3, l = 3, m = 0 for hydrogen.
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that the electrons are completely free to move about 
in the crystal. The important thing Sommerfeld’s 
model does is introduce a finite surface for the metal 
at L and adopting a Fermi distribution for the charge 
carriers. What is most different from the classical the-
ory as a result is the notion that only a few electrons, 
those with energies close to the Fermi level, contrib-
ute to the conduction mechanism. The Sommerfeld 
theory successfully explains specific heat, electrical 
conductivity, thermionic emission, thermal conduc-
tivity, and paramagnetism. However, the model fails 
to explain why some solids are good conductors, oth-
ers are semiconductors, and yet others are insulators. 
The model also cannot account for the fact that some 
metals such as Be, Zn, and Cd exhibit a positive Hall 
constant; the free electron model always predicts a 
negative Hall coefficient! This model further pre-
dicts that the electrical conductivity is proportional 
to the electron concentration, but in reality divalent 
metals (Be, Cd, and Zn) and even trivalent metals 
(Al, In) have consistently lower conductivities than 
monovalent metals (Cu, Ag, and Au). Also, measure-
ments of the Fermi surface, a concept introduced 
further below, indicate that it is often not spherical, 
contradicting Sommerfeld’s model, which predicts a 
perfect sphere.

We prepare ourselves now to launch the more 
realistic Krönig-Penney model, where the potential 
energy of an electron in a row of atoms in a linear 
solid is modeled as an array of periodic square wells. 
We start by learning to combine atoms in simple 
molecules in the valence bond and molecular orbital 
theory; we then learn how to work with Bloch func-
tions; and at last we are ready to introduce the band 
theory of solids.

Bringing Atoms Together

Molecules: Valence Bond and 
Molecular Orbital Theory

Molecules are formed from atoms by quantum 
mechanical forces. The so-called covalent bonds have 
no classical counterparts. They exist only because 
of the fermionic nature of the valence electrons. In 
the valence bond (VB) theory, atoms form electron-
pair covalent bonds through the overlap of atomic 
orbitals of adjacent atoms. In the molecular orbital 
(MO) theory, shared, delocalized, valence electrons 
are viewed as occupying regions of space extend-
ing over all the binding atoms. When two atoms 
come together to form a molecule a valence bond 
is formed, and the valence electrons are in orbitals 
(called molecular orbitals) spread over the entire 
molecule, i.e., the electrons are delocalized. Half-
filled atomic orbitals from the binding partners over-
lap and form bonds with two electrons of opposite 
spin occupying the molecular orbital. The latter cor-
responds to Pauli’s exclusion principle, i.e., there are 
a maximum of two electrons with opposite spin per 
orbital. A diagram of the potential energy versus the 
internuclear distance for two approaching hydrogen 
atoms is shown in Figure 3.83a. The example involves 
the formation of a sigma bond (σ) from the overlap 
of s orbitals from the binding hydrogen atoms. At 
an internuclear distance, r0, of 74 picometers, equi-
librium is reached, and the attraction between the 
binding partners is maximized with an H-H bond 
strength of –436 kJ/mol. Hydrogen atoms react to 
form a molecule because the energy of the system 
is less than the sum of the individual constituents. 
From Figure 3.83b and c, we learn that compared 
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FIGURE 3.82 Quantized energy levels for a particle in an inverse square law potential (a) an infinite square well poten-
tial (b) and a harmonic well potential (c) 2D cases. 
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with a single hydrogen atom there are twice as many 
theoretically permitted electron shells; the bonding 
molecular orbital (σ1s) is lower in energy than the 
parents’ atomic orbitals, and the antibonding (σ*1s) 
is higher in energy. The available electrons of the just 
created molecule are assigned, just as in the case of 
an atom, orbitals of successively higher energy and 
in the case of orbitals of equal energy—degenerate 
orbitals—these are filled one electron at a time before 
paring begins (Hund’s rule), and only two electrons 
of opposite spin can occupy the same energy level 
(Pauli’s exclusion principle). The total number of 
molecular orbitals equals the number of atomic 
orbitals contributed by the atoms constituting the 
molecule. When we examine a very large N-atom 
molecule, such as a long carbon chain hydrocarbon, 
we find a splitting of each one-atom energy level into 
N energy levels, each one corresponding to a some-
what different electron shell form.

Molecules also have excited states originating 
from a variety of sources. Because they are not usually 

spherically symmetric, molecules can rotate around 
several of their axes. The rotational energy is again 
quantized and depends on the l quantum number. 
The atoms in the molecule also vibrate compared to 
each other around an equilibrium distance. This can 
be described well by a harmonic oscillator spectrum 
(Equation 3.191).

To form a solid, one keeps adding atoms in three 
dimensions, making a very large molecule, and that 
is exactly what we will do next. We will see that in 
solids, just like in molecules, higher energy states 
occur where they interact to form a higher band of 
allowed energies.

Solids: A First Look at The Band Model of Solids 

For the total number N of atoms in a solid (~1023 
cm–3), N energy levels split apart within a width ΔE 
at r0 as shown in Figure 3.84a, where first two, then 
six, and then N, 3s atomic levels combine. This leads 
to a band of energies for each initial atomic energy 
level, and 2N electrons may occupy an energy band 

FIGURE 3.83 (a) A diagram of the potential energy versus the internuclear distance for two approaching hydrogen 
atoms. A sigma bond (σ) is formed from the overlap of the s orbitals from the binding hydrogen atoms. At an internu-
clear distance, r0, of 74 picometers, equilibrium is reached, and the attraction between the binding partners is maximized 
with a H-H bond strength of –436 kJ/mol. (b) A bonding and antibonding molecular orbital is formed. (c) The bonding 
molecular orbital (σ1s) is lower in energy than the parents’ atomic orbitals, and the antibonding (σ*1s) is higher in energy.
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containing N energy levels. In Figure 3.84b, sets of 
1s and 2s levels are combined into allowed energy 
bands separated by a forbidden energy zone, the 
bandgap, Eg. A group of energy states incompletely 
filled at room temperature and empty at 0 K is called 
a conduction band. A conduction band is able to sup-
port the movement of electrons. A band of energy 
levels, missing some electrons at room temperature 
and completely filled at 0 K, is called a valence band. 
The valence band supports the movement of missing 
electrons, which are called holes. As illustrated in 
Figure 3.85, the relative position of conduction band, 
valence band, and forbidden bandgap are instruc-
tive for the classification of materials into conduc-
tors, semiconductors, and insulators. In conductors, 
the conduction band is partially filled, allowing 

electrons to move freely, or the valence band over-
laps with the conduction band, again enabling free 
electron movement. In insulators there is a substan-
tial forbidden energy gap between completely filled 
valence band and empty conduction band (~9 eV 
in Figure 3.85). Semiconductors are similar to insula-
tors, but the bandgap is narrower, and electrons and/
or holes are available at room temperature. Because 
in semiconductors the energy gap is small, thermal 
energy might suffice for some electrons to jump from 
the valence band to the conduction band; however, 
more often doping with impurities is needed to gen-
erate enough charge carriers at room temperature. 

Altering the band structure, confining the geome-
try or the potential of electrons, leads to engineered 
states with very interesting unseen properties. 
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Bloch Functions

Introduction Armed with some understanding 
of quantum mechanics and an introduction to the 
valence bond (VB) and molecular orbital (MO) the-
ory, we are in a much better position to understand 
the band model of solids. The Drude free electron 
gas model surveyed above explained a number of 
important metallic properties, but it did not explain 
the most intriguing problems: what is it that distin-
guishes a metal from an insulator, and how can the 
same material, say carbon, form a conductor, a super-
conductor, a semiconductor, or an insulator? These 
facts remain unanswerable until one also takes into 
account that an electron gas moves through space 
occupied by a periodic array of positive-charged 
atomic cores (Figure 3.86). When electrons are free to 
roam in an infinite solid, e.g., in a metal, the electronic 
“orbitals” are traveling wave solutions, but when the 
metal is limited to a cube of size L3 or a periodic array 
of positive ions is assumed, this will act to restrict the 
allowed energies and hence other quantities such as 
momentum, spin, and so on. Let us specify the force 
acting on the “free” electrons as V(r).

Because the ion cores in a crystal are arranged peri-
odically, the potential an electron feels is also peri-
odic; with the periodicity of the underlying Bravais 
lattice in three dimensions, this yields the Born and 
von Karman’s periodic boundary condition:

 V( V(r R r) ) (3.195)

for all Bravais lattice vectors R (see also Chapter 2). 
In Figure 3.87 we illustrate how the potential V(r) 
for a single atom compares with that of two and with 
that of an array of atoms. Electrons in isolated atoms 

occupy discrete allowed energy levels E1, E2, and so 
on, with a potential energy of the electron at a dis-
tance r from a positively charged nucleus q given as 
(see Figure 3.87a):

 V( ) =
qe

0

r
r4

 (3.196)

The 1D potential energy of an electron caused by 
an array of nuclei of charge q separated by a distance 
R is:

 V( ) =
qe

n0n

r
r R4

 (3.197)

where n = 0, ±1, ±2, and so on. This is shown in 
Figure 3.87d. The periodic potential in one dimen-
sion, shown here, is a Krönig and Penney-like poten-
tial (see Figure 3.98). From this figure, V(r) is lower 
in the solid than in the isolated atoms. In the lowest 
binding energy states, conduction electrons move in 
a nearly constant potential as shown in Figure 3.88. 
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FIGURE 3.86 Positive ion cores in a metal. 
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These electrons are trapped within the metal; a work 
function of several electron volts prevents them 
from escaping from the surface. 

The higher energy states of tightly bound elec-
trons are very similar to those of the isolated atoms. 
Lower binding electron states from the atoms 
become bands of allowed states in the crystal, and 
we will learn shortly that with partially filled bands 
the solid becomes a conductor.

Consider now what potentials an electron would 
see as it moves through a crystal lattice (limited to 
1D for now). The electrostatic potential, V(x), is peri-
odic such that V(x + L) = V(x). Bloch’s theorem states 
that because the potential repeats every L length, the 
magnitude of the wave function (but not necessar-
ily the phase) must also repeat every L length. This 
is the case because the probability of finding an elec-
tron at a given point in the crystal must be the same 
as found in the same location in any other unit cell. 
Generalizing, according to Bloch’s theorem (1928), 
if ψ0(r) is a solution of Schrödinger’s equation in 
free space, then a solution in a potential field that 
is periodic with period R is a product of ψ0(r) and 
another function V(r), which is itself periodic with 
period R. This theorem is one of the most important 
formal results in all of solid-state physics because it 
tells us the mathematical form of an electron wave 
function in the presence of a periodic potential 
energy. Thus, the wave function of the electron in a 
periodic potential V(r) has the form:

 ( ) ( ) V( )0r r r  (3.198)

These are the so-called Bloch functions. In the Bloch 
approach an electron is considered to belong to the 
crystal as a whole rather than a particular atom. We 
have encountered the solution for ψ0(r) already. It 
is a running wave that can be written as a sine or 
cosine function or, more generally, in the form eik r , 
where k is equal to 2π/λ, λ being the wavelength of 
the electron in this case. The running wave repre-
sents the behavior of the free electron. In the pres-
ence of the periodic potential, the running wave is 
modulated to give:

 ( ) V( )r rik re  (3.199)

where V(r + R) = V(r) for all R in the Bravais lattice. The 
Bloch function can be interpreted (approximately) 

as describing the electron distribution within a 
single unit cell, and an overall phase variation term 
eik∙r represents a phase difference of the wave func-
tion in adjacent unit cells. The latter can take on 
several values depending on the wave vector k. For 
core electrons (those tightly bound to the nucleus) 
Equation 3.199 represents a strongly localized wave 
function similar to the electron orbitals around a 
hydrogen atom. The less strongly bound valence 
electrons are described by more extended wave 
functions that have significant amplitude between 
neighboring atoms. Free electrons are described by 
wave functions with a high energy E, such that the 
wave vector remains real between atoms [where V(r) 
is high]. This important result shows that the wave 
function for the electron itself has the periodicity 
of the lattice. As a consequence, just like with x-rays 
or vibrations of atoms in crystals (phonons), only 
certain wavelengths (that is, energies) are permis-
sible for electrons in crystals. Importantly, we shall 
see that this leads, among other things, to a natural 
distinction among metals, insulators, and semicon-
ductors. From Equation 3.199 we must have stand-
ing waves in the crystal that have a period equal to 
a multiple of the period of the crystal’s electrostatic 
potential (similar to a multilayer antireflection coat-
ing in optics). Indeed, when an electron travels in 
a solid and enters a region with a lower potential 
energy (e.g., closer to a positively charged atom), 
the kinetic energy goes up, and the wave function 
acquires a shorter wavelength. This behavior of elec-
tron waves entering a low potential region resem-
bles that of light entering a high refractive index 
region. Just as for light, changes in wavelength give 
rise to reflections, in this case electron wave reflec-
tion. Inside a crystal, electrons experience a peri-
odic potential caused by the regularly spaced atomic 
cores in the crystal lattice, leading to multiple elec-
tron wave reflections and electron wave interfer-
ence. The multiple reflections result in eigenmodes 
that are affected by the exact shape of the periodic 
potential V(x). For an infinite crystal, the eigenfunc-
tions describe a state with a well-defined energy and 
a corresponding spatial distribution of the electron 
throughout the entire crystal. In a simple linear lat-
tice with lattice spacing a, we have V(r + R) = V(r), as 
shown above.
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It is important to note that because the wave 
function repeats each unit cell, we only have to con-
sider what happens in one unit cell to describe the 
entire crystal. Thus, we can restrict ourselves to val-
ues of k such that –π/a to +π/a [implying ka ≤ 1 or 
(2π/λ) a ≤ 1], or we can describe the electron behav-
ior in a solid with wave vectors that lie in the first 
Brillouin zone. 

Bloch Function Applied to a Six-Atom Linear 
Lattice To get a better appreciation about Bloch 
functions, let us consider an array of six atoms 
(N = 6), as illustrated in Figure 3.89. The Bloch 
function for an electron in this linear solid is 

n
i x(x) V(x)e nk , with a function V(x) that depends 

on the electronic states involved (see Figure 3.90). 
The Born and von Karman’s periodic boundary con-
dition (Equation 3.195) can only be satisfied if the 
wave vector k has N possible values from k = π/L to 
k = π/a, with L the total length of the six-atom crystal 
and a the lattice spacing. In other words, kn = nπ/L, 
with n = 1, 2, 3… L/a, or there are N = L/a states. 
This is really nothing else than the electron in a box 
problem, except that the box is now divided in six 
compartments!

For N = 6, there are six different superpositions 
of the atomic states that form the crystal states as 
shown in Figure 3.91 (where we only consider the 1s 
combinations).

Bloch Function for Metals Let us now take an exam-
ple metal and determine which states its electrons 

are occupying. In Figure 3.92 we have filled the 
Bloch functions of sodium with electrons according 
to Pauli’s principle. We consider N sodium atoms, 
and because for sodium Z = 11 (1s22s22p63s1), this 
means we have 11N electrons to distribute. Notice 
that the 3s band is only half filled (N orbital states 
and N electrons). Electrons in this 3s band are easily 
promoted to higher states in the band (Figure 3.93), 
and this is what makes sodium a good conductor. 
In other words, to get a good conductor one needs a 
band partially filled with electrons. 

The Bloch wave functions in metals are stationary 
waves, and in a perfectly periodic metal lattice, an 
electron would freely move without scattering from 
the atomic cores. This corresponds to a metal without 
any resistance at all! An electron in a periodic poten-
tial has a well-defined wave vector and momentum, 
and it is only when there are defects in the crystal, 
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FIGURE 3.89 The states in a six-atom linear crystal (N = 6).
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FIGURE 3.90 The periodic potential V(x) depends on the 
electronic states of the atoms involved.

FIGURE 3.91 Six different super positions of the 1s atomic 
states form the crystal states.
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FIGURE 3.92 Filling the Bloch functions of sodium with 
electrons.

FIGURE 3.93 Half-filled 3s band of sodium.
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breaking up the lattice periodicity, that an electron 
may scatter to other Bloch states. Lattice vibrations 
also may break the perfect lattice periodicity, and as 
a consequence, electrons in metals scatter more at 
higher temperatures. This is all very different from 
Drude’s hypothesis: it is not collisions with lattice 
atoms that determine the resistance of a metal but 
rather defects and lattice vibrations.

Bloch Functions for Semiconductors and Insulators  
Next we will fill the Bloch function of a semicon-
ductor such as Si with electrons. This is illustrated in 
Figure 3.94. In the case of Si, Z = 14, and the atom 
orbitals are 1s22s22p63s23p2. With a total number 
of N atoms, we will have 14N electrons to accom-
modate. At first blush it appears that, like Na, Si 
will also have a half-filled band because the 3s3p 
band has 4N orbital states and 4N electrons. By this 
analysis, Si should be a good metal, just like Na. But 
something unique happens for C and Si and other 
group IV elements.

In group IV elements, bonding orbitals are hybrid 
combinations of s and p states, so-called sp3 hybrids. 
Hybrid atomic orbitals were introduced to reconcile 
the discrepancy between what atomic orbital theory 
predicts and what is seen experimentally. Take car-
bon, for example; the electron configuration is 1s2, 
2s2, 2p2, so one expects carbon, in say methane, to 
form two bonds via the two unpaired p electrons; in 
practice we know that carbon forms four equivalent 
bonds. The hybridization process, in the case of C in 
methane, is explained in Figure 3.95. A 2s electron 
is promoted, and one 2s orbital and three 2p orbit-
als form four equivalent sp3 hybrid orbitals used 
in binding four hydrogens to make a tetrahedral-
shaped methane molecule. Similarly, in a Si lattice, 

four sp3 orbitals link all the Si atoms tetrahedrally 
together. In the Si case, the hybridizing orbitals are 
one 3s orbital and three 3p orbitals, and these four 
equivalent bonding orbitals are completely filled in 
the single-crystal Si with two electrons each. 

The superposition of sp3 bands between neigh-
boring Si atoms results in a filled bonding band, the 
valence band, and an empty antibonding band, the 
conduction band, as illustrated in Figure 3.96. 

The electrons in a filled band cannot contribute 
to conduction because within reasonable E fields 
they cannot be promoted to a higher kinetic energy. 
Therefore, at T = 0, Si is an insulator. At higher tem-
peratures, however, electrons are thermally pro-
moted into the conduction band. For a Si crystal at 
room temperature, the amount of energy an elec-
tron must gain to overcome the bandgap is about 
40 times more than the average amount of thermal 
energy. As a consequence, in a semiconductor the 
number n of free electrons increases rapidly with T 
(much faster than the scattering time τ decreases), 
whereas for a metal scattering time, τ gets shorter 
with increasing T (Figure 3.97).

Thus, energy bands and the gaps between them 
determine the conductivity and other properties of 
solids. Insulators have a valence band that is full and 
a large energy gap (a few eV). Consequently, no states 
of higher energy are available for electrons to go to. 
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FIGURE 3.94 Filling the Bloch functions of silicon with 
electrons.

FIGURE 3.95 Hybridization of one 2s and three 2p orbit-
als in carbon to form four sp3 hybrid orbitals. In methane 
carbon, four equivalent bonds are formed with hydrogen.
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FIGURE 3.96 Two hybrid sp3 bands in Si split in an empty 
conduction band and a filled valence band.
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Semiconductors are insulators at T = 0, but they have a 
small energy gap (~1 eV) between valence and conduc-
tion bands, so they conduct only at higher T. Metals 
have an upper band that is only partly full; in other 
words, the Fermi level lies within the valence band, 
and when applying an electric field, lots of states of 
higher energy are available for electrons to go to. 

The Krönig-Penney Model

Solution of Schrödinger’s Equation 
for a Periodic Potential 

Bloch’s theorem, along with the use of periodic 
boundary conditions, enables the calculation of the 
energy bands of electrons in a crystal if the potential 
energy function experienced by the electron is known. 
This was demonstrated for a simple finite square well 
potential model by Krönig and Penney in 1931, repre-
senting the first solution of Schrödinger’s equation for 
a periodic potential. The Krönig-Penney model uses 
a simple 1D model of a crystalline solid as shown 
in Figure 3.98. The period of the potential is (a + b = 
L). The potential (V) is assumed equal to zero in the 
region of an atom, e.g., for 0 < x < a, and to equal V0 in 
the region between atoms, e.g., –b < x < 0. The calcula-
tions are a repeat of the calculations for a square barrier 
carried out above. For the zero regions, where elec-
trons essentially act as free particles, the Schrödinger 
equation that applies is (Equation 3.171):

 
d
dx

2

2
k x

2  

with (Equation 3.172):

 
k x

2mE
i

 

and the solution is an oscillating wave like in 
Equation 3.173:

 Ae Bei x i xx xk k  

In the nonzero regions, electrons must tunnel 
through the rectangular barriers for which the 
following Schrödinger equation applies (Equation 
3.166): 

 
d
dx

2

2
2  

where α is (Equation 3.167):

 
2m V – E0

and the solution is the summation of the damped 
exponentials of Equations 3.168 and 3.169: 

 x Ce Dex x

It is assumed that the energy E of the electron is 
always smaller than V0; in other words, electrons 
stay in the solid. 

We will not detail solving Schrödinger’s equa-
tions for a linear array of atoms here. A detailed 
treatment can be found, for example, in A.J. 
Dekker22 and better yet in S.O. Pillai.23 Suffice it to 
say that one finds two solutions: one for the regions 
where V(x) = 0, and one for the regions where V(x) 
= V0, and that these solutions come with constants 
A, B, C, and D. The boundary conditions are that 
the wave functions and their derivatives are con-
tinuous across the potential boundaries and that 

FIGURE 3.97 Resistivity as a function of temperature for a 
metal and a semiconductor.
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FIGURE 3.98 (A) (a) The periodic lattice potential in a 
real crystal (see also Figure 3.94). The bullets represent 
the positions of the nuclei. (b) One-dimensional periodic 
potential used in the Krönig-Penney model. A central 
question is whether an electron with energy E will be able 
to propagate from one lattice cell to another. (B) Electrons 
are essentially free between 0 < x < a (and in any similar 
region along the lattice) and have to tunnel through the 
barrier regions. 
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the solutions must be Bloch functions of the form 

n
i x(x) V(x)e kx , with V(x + nL) = V(x), n = 0, +1, +2, 

+3, . . ., representing the symmetry of the assem-
blage of atoms. With application of these boundary 
conditions including the use of Bloch’s theorem, 
the constants A, B, C, and D can de determined and 
the wave functions calculated. One can then show 
that, under the simplifying conditions, V0 tends to 
infinity and b approaches zero, whereas the product 
V0b remains finite, and solutions to the wave equa-
tions exist only if: 

 P
sin a

a
a = cos acos k  (3.200)

where P is mV a0
2

b , a measure for the potential  barrier 

height and width, and with β equal to 2
2

1
2mE . In 

Figure 3.99 we plot P
a

a
a

sin
cos , the left side of 

Equation 3.200, versus βa, fixing P at a value of 3π/2, 
as a typical example. Because β2 is proportional to 

the energy E, the x-axis in this figure is a measure of 
energy. Importantly, the right side in Equation 3.200, 
the term coska, can only have values between –1 
and +1, as marked by the two dashed horizontal 
lines in the figure. Obviously this condition can only 
be satisfied with values of βa for which the left side 
lies between +1 and –1.

Analysis of the Solution

Some very important insights can be gained from 
an analysis of Equation 3.200 and an inspection of 
Figure 3.99: 

 1. Because β is related to E, electrons possess ener-
gies within certain bands but not outside those 
bands: there are allowed bands of energy and 
forbidden bands of energy (see arrows).

 2. If V0 increases, then P increases, the binding 
energy goes up, and the width of a particular 
allowed band decreases. The left side of 
Equation 3.200 becomes steeper, and in the 
limit, with P tending to infinity, the allowed 
energy bands reduce to the single energy levels 
we encounter in isolated atoms. In the latter 
situation, the equation only has solutions if 
sinβa = 0, in other words, if βa = ± nπ with 
n = 1, 2, 3,… and the energy spectrum becomes 
that of an electron in a constant potential box 
of atomic dimensions. In such cases, the energy 
levels are the energy levels of a potential well 

with L = a: E nn
2

2

22ma

2

 (see Equation 3.156). 

Each electron is confined to one atom by an 
infinite potential well, so electrons are com-
pletely bound to atoms. 

 3. In the case we decrease V0 and reduce P to 
zero—in other words, when the binding energy 
goes to zero—Equation 3.200 is reduced to cos 
(βa) = coska (β = k), and the energy E is now 

given by E
k
m

22

2
, i.e., the parabolic E-k rela-

tion for free electrons (see Figure 3.55). By vary-
ing V0, the model thus covers the whole range 
from completely free electron to completely 
bound electron. In Figure 3.100 we illustrate 
the energy level structure as a function of vary-
ing degrees of binding strength.
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 4. The width of allowed energy bands increases 
with increasing values of βa, i.e., with increas-
ing energy, because the first term in the equa-
tion decreases on average with increasing βa. 

 5. From Figure 3.99a we see that at the boundary 
of an allowed energy band the cos (ka)  =  ±1 
with k = nπ/a (dashed horizontal lines in the 
figure). Based on Equation 3.200 we can rep-
resent the energy also as a function of wave 
number k. The result is shown in Figure 3.99b 
and Figure 3.101 further below. This particular 
way of displaying the electronic levels in a peri-
odic potential is known as the extended-zone 
scheme. Discontinuities in the E-k curve occur 
for k = nπ/a with n = 1, 2, 3,…. The zones in 
k-space that correspond to allowed energies for 

motion of an electron are the Brillouin zones 
(BZ), which we first encountered in Chapter 2.* 
The periodic potential V(x) splits the free elec-
tron E-k curve into “energy bands” separated 
by gaps at each BZ boundary. Electrons can 
never have an energy within this energy gap. 
In a metal, the periodic potential V(x) is very 
small or 0; in a semiconductor, the potential is 
large and consequently the energy splitting is 
large. The first Brillouin zone extends between 
k = −π/a and k = +π/a; the second is in the range 
of k from –2π/a to –π/a plus the range from 
π/a to 2π/a. There can be no energy value for 
an electron between the bottom of the conduc-
tion band, Ec, and the top of the valence band, 
Ev. Therefore, the value Ec − Ev = Eg is an energy 
gap at k = ±π/a. The existence of forbidden 
energies has very fundamental consequences. 
It happens for electrons in crystals with a peri-
odically varying potential and for photons in 
systems with a periodically varying refractive 
index, in which case we call the gap a photonic 
bandgap (see Chapter 5). Brillouin zones are 
further detailed in the section below. 

 6. Finally, inspection of Equation 3.200 reveals 
that when k is substituted by k + 2πn/a, where 
n is an integer, the right side of the equation 
remains the same, or k is not uniquely deter-
mined. In other words, in a given energy band, 
the energy is a periodic function of k. Given 
this periodicity, it is often convenient to intro-
duce a “reduced wave vector” as –π/a ≤ k ≤ +π/a. 
By shifting the second Brillouin zone 2π/a left or 
right, one can obtain the reduced zone scheme. 
A representation of energy versus reduced wave 
vector is marked by a double pointed arrow in 
Figure 3.102a. Obviously one does not need all 
E-k curves in all BZs. All information is already 
contained in the first Brillouin zone in a reduced 
zone scheme because of the 2π/a periodicity. In 
Figure 3.102a, we also display the electronic 

* From Chapter 2 we remember that the x-ray diffraction pattern of 
a crystal is a map of the reciprocal lattice. It is a Fourier transform 
of the lattice in real space or also the representation of the lattice in 
k-space. This is true for the x-rays considered in Chapter 2 but also for 
the matter waves associated with electrons, neutrons, and so on. We 
are presenting BZs for all dimensionalities of the electronic structure 
further below.

E

Free
electron

Intermediate
case
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binding

FIGURE 3.100 Energy level structure as a function of 
binding strength. 

FIGURE 3.101 Energy versus wave number for motion 
of an electron in a one-dimensional periodic potential. 
The range of allowed k values goes from –π/a to + π/a 
corresponding to the first Brillouin zone for this system. 
Similarly, the second Brillouin zone consists of two parts: 
one extending from π/a to 2π/a, and another part extend-
ing between –π/a and –2π/a. This representation is called 
the extended zone scheme. Deviations from free electrons 
parabola are easily identified. 
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levels in a repeated or periodic zone scheme 
and repeat the extended zone scheme from 
Figure 3.101. In Figure 3.102b, we show what 
happens when the periodic potential becomes 
vanishing small; the bandgaps disappear and 
we get zone folding. 

It is easy to show that the number of k values 
in each BZ is just N, the number of primitive unit 
cells in the sample. For this consider the finite, 
linear crystal with a total length of L = Na. The 
allowed values of the electron wave vector k in the 
first Brillouin zone for this arrangement are exactly 
N (k = 0, ±2π/L, ±4π/L,…, ±Nπ/L). Each primitive 
cell contributes exactly one independent value of 

k to each energy band. Thus, 2N electrons result-
ing from spin degeneracy can occupy each band. A 
monovalent element with one atom per primitive 
cell has only one valence electron per primitive cell 
and thus N electrons in the lowest energy band. 
This band will only be half-filled, and the material 
will be a conductor. The Fermi energy, the energy 
dividing the occupied and unoccupied states, for 
such a monovalent element will be in the middle 
of the valence band. If each atom contributes two 
valence electrons to the band (divalent element), the 
band, at T = 0 K, will be filled to the top. Thus, the 
simple rule whether an element is an insulator or a 
metal is given by whether the number of electrons 
is odd or even. This rule works surprisingly well; 

FIGURE 3.102 (a) Different representations of E-k in the presence of a periodic potential, band splitting. The extended 
zone scheme: plot E-k from k = 0 through all possible Brillouin zones (bold curve); the periodic or repeated zone scheme: 
redraw E-k in each zone and superimpose; the reduced zone scheme: all states with |k| > π/a are translated back into the 
first BZ. (b) Different E-k plots in the presence of a vanishing periodic potential: zone folding (left) and a nonvanishing 
periodic potential (right). 
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the exceptions are caused by bands with more com-
plicated structures in three dimensions than those 
discussed here. Indeed, the fact that a monovalent 
element is a conductor does not mean that a diva-
lent element will always be an insulator. Although 
true in the 1D, it is not necessarily so in 2D or 3D! 
Bands along different directions in k-space can over-
lap, so that electrons can partially occupy both of 
the overlapping bands and thus form a semimetal. 
A semimetal is a metal with a carrier concentra-
tion several orders of magnitude smaller than the 
1022 cm−3 typical for ordinary metals. Graphite and 
the pentavalent conducting elements, for example, 
are semimetals. A 2D band diagram for a semimetal 
is shown in Figure 3.103. In this example we show 
a material with three valence electrons and Fermi 
levels EF1

 to EF3
. This case illustrates how bands in 

different directions overlap, resulting in a semi-
metal (this corresponds to the situation depicted in 
Figure 3.104b). 

However, it remains true that only crystals with an 
even number of valence electrons in a primitive cell 
can be insulators. Depending on the energy band 
structure, for a given number of electrons, you can 
get a different filling, and it is the band structure that 
determines electronic and optical behavior. Some 
example band configurations leading to insulating 
and metallic behavior are shown in Figure 3.104.

The Effective Mass, Velocity of Charge 
Carriers, and Crystal Momentum 

Up to this point we have implied that the mass of an 
electron in a solid is the same as the mass of a free 
electron (me). In reality, for some solids the mea-
sured electron mass is larger than that of the free 
electron, and in other cases it is smaller. The cause 
for this deviation is found in the interactions between 
the drifting electrons and the atoms in the crystal. 
The mass of an electron in a crystal is called the 
effective mass, me

* , and in general it is different from 
the mass of a free electron. The effective mass, me

* , of 
an electron is the mass of the free electron modified 
by the presence of the periodic potential of an array 
of positive lattice ions. Rather than moving undis-
turbed through the lattice, electrons are constantly 
jostled by atom movements (phonons). By lowering 
the temperature, atoms move more sluggishly, and 
this reduces the lattice resistance for electrons. 
However, temperature reduction does not reduce the 

FIGURE 3.103 The presence of more than one periodic-
ity in a crystal may cause the overlap in the integrated 
density of states as shown here as black rectangles along 
the E-axis. The material depicted in the E-k diagram is a 
semimetal conductor; see also Figure 3.104b.

FIGURE 3.104 Occupied states and band structures leading to (a) semiconductor or insulator: two electrons per atom, N 
states per band, and two electrons/state; (b) semimetal: two electrons per atom, N states per band, and two electrons/
state, a semimetal because bands overlap; (c) and metal: three electrons per atom (Li), N states per band, and two elec-
trons/state, metal because of electron population. 
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influence of lattice defects; the only avenue here is to 
purify the crystal further, but even the purest crystal 
features some remaining defects. A third phenome-
non controlling the speed of an electron through a 

crystal is the electron mobility, e

e
me

 (Equation 

3.9). Applying the same voltage to equally pure sam-
ples of Si and GaAs, one finds that electrons in GaAs 
are accelerated much more. The electrons in Si and 
GaAs are of course the same, but their host lattices 
influence them differently. We refer to this property 
by saying that an electron has an effective mass in a 
given material; therefore, the effective mass me

* of an 
electron in gallium arsenide is less than that of an 
electron in silicon (making μe in GaAs larger; see 
Equation 3.9).

For a free particle such as an electron, we 
derived a wave solution (x) Aei xkx  with energy 

E
m 2m

2 2

e e

k px

2

2

 (Equation 3.144). For a free elec-

tron, the quantity k represents the true momentum 
p of the electron. For electrons in a crystal, we need 
to define a crystal momentum that is different from p 
because the energy for electrons in a crystal does not 
vary in the same fashion with k as it does for free 
electrons—in other words, the dispersion curve E(k) 
is different for an electron in lattice than that of a 
free electron. When dealing with interactions of the 
electron with the lattice, we must use the conserva-
tion of crystal momentum k and not that of a 
free electron. 

We will now show how the effective mass and 
the velocity of an electron in a lattice can both be 
derived from a knowledge of the energy disper-
sion curves E(k). Remember that an electron state 
is a wave packet with a group velocity vg given as 
the derivative of ω, the angular frequency of the de 
Broglie waves with respect to the wave number k or:

 v
d
dg k

 (3.101)

From quantum theory the frequency of a wave func-

tion with energy E is 
E

 (because E = ), so that 
we may write:

 dE
d

d
dk k

 (3.201)

Substituting this expression in Equation 3.101 
re sults in:

 v
dE
d

or more generally E(g g k

1 1
k

v kk) 

  (3.202)

The group velocity of a wave packet is basically the 
velocity at which the wave packet transports energy 
through the system. It also gives the average velocity 
of the Bloch electron. The influence the crystal is 
exerting on the electron motion is contained in the 
dispersion relation E(k), and the velocity of an elec-
tron in a crystal then depends on the dispersion 
curve E(k). Let us illustrate this point with a simple 
example. For a free electron, with the parabolic dis-

persion function E
2m

( )k
k2 2

x  (Equation 3.144), we 

derive 
dE
dk

k2

me

, and using Equation 3.202 we cal-

culate for the free electron velocity:

 v
m m mg

e e e

k k p p2
h

 (3.203)

In this equation we have a linear relation of vg with 
k, which is of course expected because E is propor-
tional to k2. In general, E is not proportional to k2, 
or at least only in small regions as schematically 
reproduced here in Figure 3.105d. 

In Figure 3.105c, we show the velocity v as a 
function of k. We observe that at the bottom of the 
energy band (k = 0), the velocity is zero and then 
increases with k until it reaches a maximum value at 
k = k0, corresponding to the inflection point in the 
E-k curve. Beyond the inflection point, the velocity 
starts to decrease and finally assumes the zero value 
at k = π/a, which is at the top of the band.

An electron has a well-defined mass, and when 
accelerated it obeys Newtonian mechanics. To cal-
culate the acceleration (a = dvg/dt) of an electron in a 
crystal we derive from Equation 3.202 that:

 a
2
h

d
dt

dE
d

or also a
2
hk

dd E
d

d
dt

2

2k
k

 (3.204)

The term 
d E
d

2

2k
 we can get from the E-k relationship, 

but we still need to derive dk/dt tocalculate a. For an 
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electron with velocity vg, subjected to the influence 
of an external field E applied for a time dt, the dis-
tance traveled is vgdt, so that the work dE done by the 
electrical field on the electron is:

 d e dtE Evg
 (3.205)

Substituting the value for vg from Equation 3.202 in 
the above equation, we get:

 d e
2
h

d
d

dtE E
E
k  (3.206)

or:

 
d
dt h
k 2 eE

 (3.207)

or since F Ee :

 
d
dt
k

F  (3.208)

The last expression shows us that in a crystal 
d
dt
k

 

is equal to the external force on the electron, whereas 
in free space the force is equal to d(mv)/dt. The elec-
tron in a crystal is subject to both forces from the 
lattice and from external fields. In case there is also 
a magnetic field present, the force term F in Equation 
3.208 must include the Lorentz force, FL = –e(vg × B) 
(see Equation 3.64), so that the equation of motion 

of an electron with group velocity vg in a constant 
magnetic field B is given by: 

 d
dt

)
k

v Be( g
 (3.209)

Combining Equation 3.204 with Equation 3.207 
(no magnetic field) we finally derive for a: 

 a
4

e
d
d

2 2

2h2
E

E
k

 (3.210)

Comparing this equation with that for a free, clas-
sical particle where we have me(dv/dt) = eE and 
a = (dv/dt) = (eE/me), we then define the effective 
electron mass me

* as:

 m
h

e
*

2

2

1

4
d E
d

2

2k
 (3.211)

so that:

  a
eE
me

*
 (3.212)

From Equation 3.211, the effective mass is deter-

mined by 
d E
d

2

2k

1

 (see Figure 3.105a). For a free elec-

tron me
* = me because E and

d E
d m

2

2

2 2

e em
k

k2

2

. All 

the equations for a free electron may be used for an 
electron in a crystal, provided that me in each case is 
replaced by the suitable me

*. For example, we may 
write: 

 E
m

2k2

2 e
*

 (3.213)

Typically one considers states near the top of the 
valence band to be holes (particles of charge +e) 
with free electron-like dynamics but with effective 
mass mh

*, and states near the bottom of the conduc-
tion band to be electrons with free electron-like 
dynamics but effective mass me

*. The effective mass is 
inversely proportional to the curvature of the band, 
and in general m* is different in each direction of the 
crystal and is a tensor. 

From experimental values for me
*, it is apparent that 

the effective mass need not always be larger than me. It 
can be smaller, and it may even be negative. For most 
metals, it is from one-half to twice me. For some tran-
sition metals, it is much higher than me, and for semi-
conductors it is lower. From Figure 3.105a, near k = 0, 

(a)

(b)

(c)

(d)

m*

fk fk
k0k0

k0k0

k0 k0

k0
k k

a– k0 00

v

E

Valence band Conduction band

E

v

m*

a a a–

FIGURE 3.105 Effective mass m*, fk, velocity v, and energy 
E as a function of k0 for electrons in the conduction band 
(right) and holes in the valence band (left). See text for 
details.
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the effective mass approaches me. With k increasing, 
me

* also increases, and it reaches a maximum value 
at the inflection point (k0) of the E-k curve. Above 
the inflection point (k > k0), me

* becomes negative, 
and as k approaches π/a it decreases to a small nega-
tive value. Near the bottom of the band, the effec-
tive mass me

* has a constant positive value because 
the quadratic equation E ∝ k2 holds over a small 
region here (second derivative is a constant). As k 
increases, the quadratic relation no longer holds, and 
me

* changes with k. Beyond k0, the mass m* becomes 
negative because the region is close to the top of the 
band, and a negative mass is to be expected. The 
way to interpret this is to consider that for k > k0 the 
velocity decreases, and therefore the acceleration is 
negative, implying a negative mass. In this region of 
k-space, the lattice exerts such a large retarding force 
on the electron that it overcomes the applied force 
and produces a negative acceleration. In other words, 
in the upper half of the band the electron behaves 
as a positively charged particle, referred to as a hole. 
Because we can describe the holes in terms of an 
E-k diagram, we can again define an effective mass 
simply by putting a minus sign in front of Equation 
3.210. This turns out to be positive and given by the 
curvature of the E-k diagram at the top of the valence 
band. Therefore, here we finally have our answer 
why even metals might produce a positive Hall effect 
and why the conductivity is not simply proportional 
to the electron density; it matters where in the band 
these electrons find themselves! 

Neither the electron nor the hole as described by its 
effective mass exists outside of the material; they are 
more properly referred to as quasiparticles. The ficti-
tious positively charged particle is even stranger than 
a conduction band electron with an effective mass. If 
we add a hole to a completely filled valence band, we 
must end up with an empty electron state. Therefore, 
the hole must have a charge of +e (compared with an 
electron’s –e). If an empty state exists at low energy, 
then it is energetically favorable for an electron from 
a higher energy state to fall into it. In terms of holes, 
this means it is energetically favorable for the hole to 
rise to the top of the valence band, i.e., the energy 
scales for holes are reversed from those for electrons. 

In Figure 3.105b we plot the degree of freedom of 
an electron, fk, as a function of k. Here fk, a measure 

of the extent to which an electron in state k is free, 
is defined as:

 
f

m
m

d E
d*

2

2k k
m

2  (3.214)

If the effective mass is large, fk is small, or the particle 
behaves as a heavy particle. When fk = 1, the electron 
behaves as a free electron. In the lower half of the band, 
fk is positive, and in the upper half fk is negative. 

The behavior of electrons and holes near the band 
edges determines most of the optical and electronic 
properties of a solid-state device. From the preced-
ing, near the band edges, the electrons and the holes 
can be described by a simple effective mass picture, 
i.e., the electrons behave as if they are in free space 
except their masses are me

* and mh
*, respectively. 

In Figure 3.106, we show a four-band model for a 
generic semiconductor with a parabolic approxima-
tion of the bands. This simplified band structure 
was first proposed by Kane (1957) and is valid near 
k = 0. The valence band features a heavy holes (hh) 
band (I), a light holes (lh) band (II), and a split-off 
(so) band (III).

Electron transitions 1 and 2 are from the heavy 
holes band to the conduction band and from the 
light holes band to the conduction band, respec-
tively. Split-off hole transitions are also possible. 

As shown in Figure 3.106, along a given direction, 
the top two degenerate valence bands can be approx-
imately fitted by two parabolic bands with different 
curvatures: the heavy holes band (the wider band, 

FIGURE 3.106 Four-band model. In the valence band, we 
have a heavy holes (hh) band (I), a light holes (lh) band (II), 
and a split-off (so) band (III). 
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with smaller 
2E k
k k

( )

i j

) and the light holes band (the 

narrower band, with larger 
2E k
k k

( )

i j

). Thus, the effec-

tive mass, in general, is tensorial with components:

 
1 1

2

2

m
E(k)

kij
*

i k j

 (3.215)

which represents a generalization of Equation 3.211. 

Example 3.5: In Si, mhh = 0.53 m0 and mlh = 0.16 m0; 
and in GaAs, mhh = 0.51 m0 and mlh = 0.074 m0.

Because there are multiple valence bands 
available for holes but there is only one conduc-
tion band for electrons, electromagnetic radia-
tion absorption by holes is different from that of 
electrons. Free electrons located at wave vector  
k = 0, at the bottom of a single parabolic conduc-
tion band, may reach higher energy states only if 
their momentum is increased. As a consequence, in 
n-type semiconductors, conduction band electrons 
may only be excited by the simultaneous absorption 
of a photon and the absorption or the emission of 
a phonon to conserve momentum (see also direct 
and indirect bandgap transitions discussed further 
below). This three- particle process (photon-electron-
phonon) is less probable than a two-particle process 
(electron-photon). With p-type semiconductors, 
one can have such direct (i.e., no phonons needed) 
transitions between the different degenerate valence 
bands (heavy and light hole bands) because they 
occur at the same k. Because no momentum or k 
change is required, holes produce stronger free car-
rier absorption than conduction band electrons.

Below we take a closer look at the density of states 
(DOS) function, which describes the number of 
allowed energy states that are available in a system 
per unit energy and per unit volume (i.e., in units 
of number of states/eV/cm3). From the preceding we 
can appreciate that the density of states, the effective 
mass, and the electron mobility are all correlated. 
When traveling through a crystal and bumped off 
course by a phonon or an impurity, the new ener-
gies an electron can adopt depend on the number 
of available states at the bottom of the conduction 

band. The density of states at the bottom of the con-
duction band is larger for Si than it is for GaAs, and 
as a consequence an electron traveling through sili-
con has a greater chance of being knocked off course 
into an allowed energy state. In general, then, a 
small effective mass is indicative of a relatively low 
number of energy levels at the bottom of the con-
duction band. The effective mass of an electron in 
silicon is six times heavier than that in GaAs, and as 
a consequence, based on Equation 3.9, the electron 
mobility in GaAs is six times larger or an electron 
can race six times faster through a GaAs lattice com-
pared with a Si lattice (see Table 3.9). GaAs transis-
tors, although much more difficult to fabricate than 
Si transistors, are used in cases where speed is of 
utmost importance; this includes military applica-
tions and the latest generations of supercomputers 
(e.g., the Cray 3).

Particle Distributions Functions

Introduction

Particle distributions functions f(T, E) represent the 
probability that a particular state with energy E is 
occupied by a particle (say an electron) in equilib-
rium at a given temperature T. Earlier in this chapter 
we introduced the Maxwell-Boltzmann distribu-
tion, a classical distribution of particles, illustrated 
in Figure 3.6. In this distribution function, it is 
assumed that all the particles are distinguishable. 
This kind of consideration comes from the fact that 
all particles have characteristic wave properties 
according to the de Broglie hypothesis. Two parti-
cles can be considered to be distinguishable if their 
separation d is large compared with their de Broglie 
wavelength and are considered to be indistinguish-
able if their wave packets overlap significantly. In 
such case, a Fermi-Dirac particle distribution and 
(fFD) must be applied. The thermal de Broglie wave-
length is roughly the average de Broglie wavelength 

TABLE 3.9 Electron and Hole Mobilities

Material Mobility (cm2/V-s)

Si μn = 1500, μp = 460
Ge μn = 3900, μp = 1900
GaAs μn = 8000, μp = 380
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of the gas particles in an ideal gas at the specified 
temperature and is given by:

 DB
Bmk T

h2 2

p
 (3.216)

We can take the average interparticle spacing in an 
ideal gas to be approximately (n = V/N)1/3, where V 
is the volume, N is the number of particles, and n is 
the density of particles. When the thermal de Broglie 
wavelength is much smaller than the interparticle 
distance, the gas can be considered to be a classical 
or a Maxwell-Boltzmann gas, or:

 DB d n
1
3
 (3.217)

On the other hand, when the thermal de Broglie 
wavelength is on the order of, or larger than, the 
interparticle distance, quantum effects will domi-
nate, and the gas must be treated as a Fermi gas or 
a Bose gas, depending on the nature of the gas par-
ticles. Particles become indistinguishable when d = 
n−1/3 ∼ λDB. The de Broglie temperature is given by:

 T
mk

nDB
B

2
32 2

 (3.218)

Example 3.6: For an electron gas in metals, n = 
1022 cm−3, m = me, and TDB ~ 3 × 104 K, but for a 
gas of Rb atoms, n = 1015 cm−3 and matom = 105 
me, so we obtain a TDB ~ 5 × 10−6 K. In other 
words, at room temperature electrons are indis-
tinguishable with overlapping wave functions, 
whereas Rb atoms only become so at very low 
temperatures. 

Besides the Fermi-Dirac distribution, we will 
also introduce the Bose-Einstein distribution func-
tion (fBE) and explain under what conditions they 
each apply. We will see that at T < TDB, fBE and fFD 
are strongly different from fMB and at T >> TDB: fBE ≈ 
fFD ≈ fMB.

Fermi-Dirac

When assigning electrons to the energy levels one 
must require, as Sommerfeld did, that the allowed 
wave functions obey Pauli’s principle (introduced 
in 1925), i.e., one can only put two electrons with 
opposite spin in each level of quantum number 
n. When that is done this level is filled. One then 

proceeds to the next higher level for the next pair of 
electrons. The result is obvious—all the lowest lev-
els are filled with pairs of electrons until they reach 
some maximum value of energy EF, the so-called 
Fermi energy. The exclusion principle applies to all 
“spin one-half” particles, which include electrons, 
protons, and neutrons. If we draw the distribution 
function, i.e., the probability of filling a level, f(E,T), 
as a function of E, for two different temperatures, we 
find the result shown in Figure 3.107. 

The probability of an energy state being occupied 
is called the Fermi factor, f(E,T). As T approaches 
zero, the Fermi-Dirac distribution becomes a step 
function. At 0 K, f(E, T) = 1 until we reach the max-
imum level EF, after which it falls to zero. If we 
increase the temperature, thermal energy can excite 
electrons to energy levels higher than EF. Because the 
kinetic energy of the lattice ions is of the order of kT 
(~0.025 eV), electrons cannot gain much more than 
kT in collisions with lattice ions. This is determined 
by the Fermi-Dirac distribution, which applies for 
any particle that follows Pauli’s exclusion princi-
ple—no more than two particles of opposite spin 
being allowed in a given energy level. Half-integer 
spin particles are called fermions, and Fermi-Dirac 
statistics and Pauli’s exclusion principle hold. The 
“material” particles, such as electrons, protons, 
and neutrons, are all fermions, and without Pauli’s 
exclusion principle, the plethora of chemical ele-
ments and the variety of our physical world would 
simply not exist. Other particles such as α-particles, 
deuterons, photons, and mesons do not obey Pauli’s 
exclusion principle. Such particles are called bosons 

EF

T2 > T1

T1

Boltzmann
approximation

2 kT

E

f (E, T)

1

0

~~

FIGURE 3.107 The Fermi-Dirac distribution function for 
two different temperatures. The Boltzmann approxima-
tion is indicated as well (green line). 
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and have either zero intrinsic spin or integral spin 
quantum numbers. Fermion and boson particle 
distributions are compared further below in Figure 
3.108. The wave function that describes a collection 
of fermions must be antisymmetric with respect to 
the exchange of identical particles. One fermion of a 
system in a certain state prevents all other fermions 
from being in that state. The mathematical expres-
sion for the Fermi-Dirac distribution as a function 
of energy and temperature is:

 f(E, T)
1

e

or
1

Ae
FD E

kT

E
kT

1 1
 (3.219)

where μ is the chemical potential and A = e−μ. At T = 
0, one can see that μ(T = 0) = EF, the Fermi energy. 
Above T = 0 there is no abrupt energy that sepa-
rates filled from unfilled levels, so the definition of 
the Fermi energy must be slightly modified. Note 
that when f(E, T) = 1/2, there is a 50-50 probabil-
ity of finding the level occupied and E = EF. Thus, at 
temperature T, the Fermi energy is defined as that 
energy for which the probability of being occupied 
is 0.5. The Fermi energy plays a very important role 
in the band theory of semiconductors and metals. In 
metals the Fermi energy is an effective cutoff level 
for the allowed energies of the electrons. By anal-
ogy, imagine a sea of electrons with a “depth” of EF. 
At room temperature only a small fraction of the 
electrons will ever have an energy much above that 
sea level (≈2kT1 at T1). The energy EF corresponds to 
the chemical potential, μ, i.e., the amount of energy 
needed to add an electron to the system (EF = μ). For 
fermions, the chemical potential may be either posi-
tive or negative. From thermodynamics, the chemi-
cal potential, and thus the Fermi energy, is related 
to the Helmholtz free energy: μ = F(n + 1) − F(n)|T,V, 
where F = U − TS. For comparison, we have indicated 

the Maxwell-Boltzmann distribution in Figure 3.107 
as well (green line).

With T > 0 K, the f(E, T) function has the general 
shape as sketched in Figure 3.108, but as the tem-
perature keeps on increasing it gradually smears out, 
and finally at very high temperature (T >> 0 K) it begins 
to look like an ordinary Boltzmann distribution as 
shown in Figure 3.108 (see also Figure 3.6). At ordi-
nary temperatures, say 1000 K, kT = 0.088 eV, whereas 
for gold EF = 5.51 eV and for sodium it is 3.12 eV-
typical values for metals. In other words, EF >> kT, and 
an electron gas in a metal cannot usually be treated 
as an ordinary Maxwell-Boltzmann gas. With EF >> 
kT, the electron distribution is  quantum-mechanical, 
and the electron gas is said to be degenerate. A Fermi 
gas well described by a Fermi-Dirac distribution that 
is approximately step-like is termed degenerate.

Remember that Drude used a Maxwell-Boltzmann 
distribution for the free electrons in a metal. From 
the above we now recognize that this was the wrong 
particle distribution to use. The Maxwell-Boltzmann 
distribution, shown in Figure 3.6, is a classical dis-
tribution of particles, but with particles satisfying 
quantum statistics, a Fermi distribution must be 
used. The electronic velocity vector component dis-
tribution for a single direction vi according to Drude 
(based on Equation 3.17, which gives the distribu-
tion of speeds of molecules rather than their compo-
nent velocities), is given as:

 f v n
m

2 k TMB i
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2
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where n = N/V with n the electron density, V the vol-
ume, and N the sum of all electrons. The Maxwell-
Boltzmann distribution assumes that the described 
particles are distinguishable. In other words, we can 
make a distinction as to which particle is in which 
energy state. For an ideal gas, that is certainly the case, 
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FIGURE 3.108 Evolution of Fermi distribution function as a function of temperature. At the highest temperatures the 
Fermi-Dirac function smears out and starts resembling a Boltzmann distribution.
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but this is not true for electrons, and this is the reason 
why Drude’s model ultimately failed. Sommerfeld 
used the same classical gas as Drude but used the 
quantum Fermi-Dirac distribution for the electrons’ 
velocity vector component in one direction (vi):
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The temperature T0 is determined by the normaliza-
tion n f(v )dvi i . 

We can understand now why the electron gas 
does not contribute to the heat capacity of met-
als. As a metal is heated, the only way an electron 
can take up energy is by moving into a somewhat 
higher allowed energy level. But a typical electron is 
buried deep inside the Fermi sea, and there are no 
empty levels to move to because each level above the 
electron is already occupied by a pair of electrons 
of opposing spin. Only the relatively few electrons 
at the top of the distribution can find empty levels 
to move into. These electrons find themselves in the 
so-called Maxwellian tail of the Fermi-Dirac func-
tion. They are the only electrons that contribute to 
the heat capacity, as we will calculate below. Thus, at 
ordinary temperatures the electronic heat capacity 
is almost negligible, as we can see from Figure 3.16. 
But why then can all the electrons in a free electron 
gas contribute to the electrical conductivity? We 

would expect that also in this case, electrons take 
energy from the electrical field and move into higher 
energy levels. What happens in this case, however, 
is a shift of the entire set of electron energy levels 
from lower to higher values. The Fermi distribution, 
in this case, as we will show below in Figure 3.121, 
is shifted bodily by the applied field. Thus, electrons 
can acquire an average drift velocity in the field 
without violating Pauli’s exclusion principle. 

Bose-Einstein Distribution

Bosons are a third type of particles that come with 
their own kind of distribution law, i.e., the Bose-
Einstein distribution. Violations of the Maxwell-
Boltzmann statistics are observed if the density of 
particles is very large (neutron stars), the particles are 
very light (electrons in metals, photons), or they are at 
very low temperatures (liquid helium). Classical and 
quantum mechanics particle distributions are com-
pared in Table 3.10. From this table we recognize that 
with a very large E or small T all three distributions 
reduce to the classical Maxwell-Boltzmann form. 

Whole-integer spin particles are called bosons, 
for which Bose-Einstein statistics are applicable. The 
wave function that describes a collection of bosons 
must be symmetric with respect to the exchange 
of identical particles. One boson of a system in a 
certain state increases the probability of finding 
another boson in this state. Satyendra Bose and 
Albert Einstein developed these statistics in the 

TABLE 3.10 Classical and Quantum Distributions of Particles, with μ = EF the Chemical Potential of the Particle

Distribution Name Properties of the Particles Examples Distribution Function, F

Maxwell-Boltzmann Spin does not matter. Unlimited number of 
particles per state. Particles are identical but 
distinguishable. Wave functions do not 
overlap. 

Classical gas. Fermions 
and bosons at high T 
(μ − E >> kT). 

F e

Ae

MB

E
kT

E
kT

or

Bose-Einstein Boson particles are indistinguishable with 
integer spin (0, 1, 2…). Unlimited number of 
particles per state. Wave functions overlap.

Liquid 4He, photons, 
Cooper pairs, excitons, 
Rb.

F

e

or

Ae

BE E
kT

E
kT

1

1

1

1

Fermi-Dirac Fermion particles are identical with half-
integer spins (1/2, 3/2, 5/2…). Wave functions 
overlap. Never more than one particle per 
state.

Free electrons in 
metals, protons, and 
neutrons; electrons in 
white dwarfs.

F

e

or

Ae

FD E
kT

E
kT

1

1

1

1
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1924–1925 time frame. Bose, a reader in physics at 
Dacca University, first derived Planck’s blackbody 
law anew from a combination of light quanta of 
zero mass and statistics. By treating radiation as a 
quantum gas and counting particles instead of wave 
frequencies, Bose cut quantum theory loose from its 
classical antecedents. Then Einstein developed these 
statistics further and applied them to collections of 
atoms—gas or liquid—obeying the same rules, and 
he predicted the phenomenon of what later would 
be called the Bose-Einstein condensation (BEC) or 
superatoms. If one concentrates a large number of 
identical bosons in a small region at low tempera-
tures, their wave functions start to overlap, and the 
bosons lose their individual identities and become 
one object. The BEC is a macroscopic matter wave, 
and it is formed of atoms that are delocalized and 
indistinguishable. In other words, order appears in 
momentum space (atoms adopt a collective behav-
ior). In Figure 3.109a and b we compare how fermions 
and bosons fill up a set of energy levels and in c we 
illustrate how bosons, when they get close together, 
can be described by a single macroscopic wave func-
tion ψ. Einstein was himself not convinced that BEC 
could happen: “Die Theorie ist schön, aber ist sie auch 
war?” The Bose-Einstein distribution is given as:

 f E)
1

or
1
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BE (E )

kT

E
kT

(

e 1 1
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where A = exp(−μ). The boson statistics would mark 
Einstein’s last great contribution to quantum theory.

Bose-Einstein, Maxwell-Boltzmann, and Fermi-
Dirac distributions are compared in Figure 3.110 
for the same value of A = 1. It is clear that these 

distributions deviate the most at low temperatures, 
so one expects to see quantum phenomena emerge 
at low temperatures.

With bosons there is no exclusion principle, and 
a macroscopic number of bosons occupy the lowest 
energy quantum state. The blackbody law, for exam-
ple, is a direct result of photons, which are bosons, all 
trying to get into the same energy state. Among other 
things, bosons also explain superconductivity, lasers 
(detailed in Chapter 5), and superfluidity in 4He. A 
superfluid has no viscosity; in effect it experiences no 
friction and is able to flow forever while at the same 
time the thermal conductivity becomes very large! 

Fermi Surfaces, Brillouin Zones, Density 
of State Functions, and Conductivity as 
a Function of Quantum Confinement

Introduction

In this section we consider how electronic processes, 
like charge transport, are affected by the dimen-
sions of the solid. For this, we need to introduce 
the density of state functions for electronic systems 
with different levels of quantum confinement. The 
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FIGURE 3.109 (a) Fermions at T > 0 and at T = 0 filling up a set of energy levels. (b) Bosons at T > 0 and T = 0. The low-
est state is macroscopically populated. (c) The particles get so close together that their wave functions overlap, and the 
condensate is described by a single, macroscopic ψ.
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FIGURE 3.110 Bose-Einstein, Maxwell-Boltzmann, and 
Fermi-Dirac distributions compared.
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density of state function, G(E), is also called the 
degeneracy of a system and is often abbreviated as 
DOS. The DOS function describes the number of 
allowed energy states that are available in a system 
per unit energy and per unit volume (i.e., in units 
of number of states/eV/cm3). Earlier, we showed that 
for a gas of molecules, the number of molecules 
per unit volume, i.e., density n(E), that have ener-
gies between E and E + dE, is n(E)dE, where n(E) = 
G(E)fMB(E) with fMB(E), the Maxwell-Boltzmann dis-
tribution, representing the probability function of 
occupancy of a state with energy E. In the case of 
an electron gas, the number of electrons, n(E), with 
energies between E and E + dE, is again given by the 
product of G(E)fFD(E) and a distribution function 
fFD(E), which in this case is the Fermi-Dirac distribu-
tion. Thus, combining the density of available states 
(DOS) with the Fermi function, one can calculate 
the density of filled states n(E). In other words, we 
obtain a number for those charge carriers that can 
contribute to conductivity and charge transport.

Systems with 3, 2, 1, and 0 degrees of freedom for 
electrons to move in are referred to as bulk mate-
rial, quantum wells, quantum wires, and quantum 
dots, respectively, as summarized in Table 3.11. In 
this table, λDB represents the de Broglie wavelength 
(see Equation 3.216). It is the size of L1, L2, L3 com-
pared with λDB that determines whether we are deal-
ing with a bulk semiconductor (L1, L2, L3 > λDB), a 
quantum well (L1, L2 > λDB > L3), a quantum wire 

(L1 > λDB > L2, L3), or a quantum dot (λDB > L1, L2, L3). 
We will see that the DOS function, G(E), strongly 
depends on the degrees of freedom of the electrons 
in the system.

To calculate the charge carrier transport or current 
density (J vne ), using solids of different dimen-
sionalities, we need to know the charge carrier den-
sity n as a function of dimensionality, but also the 
concept of Fermi surfaces needs to be introduced, and 
we need to get reacquainted with the Brillouin zones 
of Chapter 2. A Fermi surface is a surface of constant 
energy EF in k-space, and at absolute zero tempera-
ture, it separates occupied from unoccupied quantum 
states. The way Fermi surfaces fill Brillouin zones 
determines whether a material will be a metal, semi-
metal, semiconductor, or an insulator. For example, if 
the first Brillouin zone is completely filled and there 
is a large gap between it and the next Brillouin zone, 
we have an insulator; a smaller gap makes for a semi-
conductor. If the first band is not completely filled or 
overlaps with an empty second Brillouin zone, a con-
ductor or a semimetal results, respectively. 

Bulk Materials: L1, L2, L3 > λDB

Fermi Surface for Bulk Materials A Fermi surface 
is a surface of constant energy EF in k-space, and at 
absolute zero temperature, it separates occupied from 
unoccupied quantum states. With a large number of 
electrons N at T = 0, the electrons will occupy the 
lowest energy states, consistent with the exclusion 

TABLE 3.11 Examples of Reduced-Dimensional Material Geometries and Definitions 
of Their Dimensionality and of the Associated Type of Confinement*

L1,2,3 > λDB No nanostructures No confinement Bulk material

L1,2 > λDB > L3 2D nanostructures 1D confinement Wells

L1 > λDB > L2,3 1D nanonstructures 2D confinement Wires

λDB > L1,2,3 0D nanostructures 3D confinement Dots

*Here λDB represents the de Broglie wavelength.



Quantum Mechanics and the Band Theory of Solids   165

principle. Thus, the N electrons will fill up the low-
est N/2 energy levels (two electrons per level). The 
energy of the last filled (or half-filled) level at T = 
0 is called the Fermi energy, EF. An unrestricted 3D 
Fermi electron gas is isotropic, so that a surface of 
constant energy E in k-space is a sphere with a sur-
face called the Fermi surface (Figure 3.111). This 
surface separates the occupied from the unoccupied 
states at 0 K. At T = 0 K, all the free electron states 
are occupied up to an energy EF, and all fall within 
a Fermi sphere with a Fermi wave vector, kF. When 
electrons are not free, a Fermi surface still exists, 
but it is distorted by the interaction with lattice ions 
(see, for example, Figure 3.117). The Fermi energy 
EF is an effective cutoff level for the allowed ener-
gies of the electrons and corresponds to the chemi-
cal potential, μ, i.e., the amount of energy needed to 
add an electron to the system (EF = μ). The quanti-
ties kF and EF are called the Fermi wave vector and 
Fermi energy, respectively, in honor of Enrico Fermi. 
To calculate their exact value, we need to introduce 
the density of states function (see below, Equations 
3.238 and 3.232, respectively).

Brillouin Zones for Bulk Materials Brillouin zones for 
crystals were first introduced in Chapter 2 in the con-
text of x-ray diffraction. An x-ray diffraction pattern 
of a crystal represents a map of the reciprocal lattice, a 
Fourier transform of the lattice in real space, or also a 
representation of the lattice in k-space. Each Brillouin 
zone is a primitive cell of the reciprocal lattice, which 
corresponds to the Wigner-Seitz primitive cell of the 
real lattice (Figure 2.34). The boundaries of Brillouin 
zones satisfy the von Laue conditions for diffraction, 
and the Brillouin zone surface describes all k vectors 
that are constructively diffracted by the crystal. In 
other words, Bragg planes bound the Brillouin zones. 

This is true for the x-rays considered in Chapter 2 but 
also for the matter waves associated with electrons, 
neutrons, etc., discussed in this chapter. In discuss-
ing the Ewald sphere in Chapter 2 we also pointed 
out that the Bragg planes bisect the shortest vectors 
of the reciprocal lattice and that one can define the 
first Brillouin zone as the set of points in k-space that 
can be reached from the origin without crossing any 
Bragg planes. The second Brillouin zone is the set 
of points that can be reached from the first zone by 
crossing only one Bragg plane. The nth Brillouin zone 
can be defined as the set of points that can be reached 
from the origin by crossing n − 1 Bragg planes, but no 
fewer (see the Brillouin zone for a square and a trian-
gular 2D lattice in Figure 2.33). To get reacquainted 
with the procedure of constructing Brillouin zones, 
we start off here with a simple square lattice of atoms 
with interatomic distance, a. Its reciprocal lattice is 
also a square, with reciprocal lattice base vector of 
length 2π/a. That reciprocal lattice is shown in Figure 
3.112a, where we also have drawn the three short-
est vectors marked G1, G2, and G3. Three lines, Bragg 
planes, are drawn as perpendicular bisectors of these 
three vectors. By drawing all the lines equivalent 
by symmetry with those bisector lines, we obtain 
the regions in k-space that constitute the first three 
Brillouin zones as marked (Figure 3.112b).

We turn now to a 3D crystal where we find again that 
a zone structure exists that may be different for differ-
ent directions in k-space. The coordinates kx, ky, and 
kz specify a point in k-space: a value of the vector from 
the origin that specifies the momentum of the elec-
tron. The zones in k-space corresponding to allowed 
energies for motion of an electron in a solid are 3D 
Brillouin zones forming nested sets of polyhedra. 
Different potentials exist in different directions, so 
the electron wavelength and crystal momentum, 
k = 2π/λ, differ with direction, and many different par-
abolic E-k relationships exist, depending on the crys-
talline momentum. For a simple example, consider a 
cubic crystal with a Bragg  reflection (Equation 2.20 
with d = a) occurring when: 
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These are the zone boundary values corresponding 
to discontinuities in the allowed energy levels. 
From Bragg’s law, reflecting planes with the largest 
interplanar spacings (d = a) have the smallest 
 values for k. The planes with the largest spacing 
are the {100} planes. Thus, the first Brillouin zone 
in k-space is bounded by the {100}* planes at 

k k kx y za a a
, , , which therefore is a 

cube with faces π/a from the origin as shown in 
Figure 3.113. The next set of reflecting planes are the 
{110} planes with spacing d = a/21/2. Corresponding 
planes in k-space are: 

 k k k k k kx y x z x z

2
a

2
a

2
a

, ,  
  

(3.224)

*  See Chapter 2 on crystallography on Miller indices.

These 12 planes outline the dodecahedron shown 
in the same figure. The second Brillouin zone is the 
k-space between the cube and the dodecahedron. 

In Figure 3.114 we show what happens when 
one fills up the first Brillouin zone (BZ) of a face-
centered cubic structure with electrons. In this case 
the largest spacing that satisfies the Bragg condition 
involves both {111} and {200} planes. These are 
the set of planes that would be reached first (larg-
est a is smallest k). The zone boundaries then derive 
partly from planes derived from {200} and partly 
from planes derived from {111}. Envision a growing 
Fermi sphere inside this first Brillouin zone. Near 
the center of the zone the electrons are virtually free 
and behave like an electron gas with an energy given 
by Equation 3.144. At these energies, well below the 
zone boundaries, the surfaces of constant energies 
are represented as spheres within the Brillouin zone 
as drawn in Figure 3.114a. But when adding more 
and more electrons, we approach the diffraction 

FIGURE 3.113 First two Brillouin zones for a simple cubic 
lattice. The first zone is the cubic volume 8π3/a3 in k-space. 
The second zone is the k-space between the cube and the 
circumscribed dodecahedron.
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FIGURE 3.114 (a) The first Brillouin zone of a face-
 centered cubic (FCC) structure with surfaces of constant 
energy of electrons shown for nearly free electrons near 
the bottom of the zone and (b) electrons at the zone 
boundary.
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FIGURE 3.112 Illustration of the definition of the Brillouin zones for a 2D square Bravais lattice. To go from (a) to (b): the 
numbers in (b) denote the zone to which the region belongs. The numbers are ordered according to the length of the 
vector G used in the construction of the outer boundary of the zone (a). 
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boundaries, and the wave vectors near or at the BZ 
feel the periodic potential of the crystal, whereas the 
others do not. All wave vectors that end on a BZ will 
fulfill the Bragg condition and thus are diffracted. 
Because electrons cannot transgress this boundary, 
the spherical surface becomes distorted by bulging 
out toward the zonal plane (Figure 3.114b). These 
electrons no longer behave as a free electron gas. 
Wave vectors completely in the interior of the first 
BZ, or between any two BZs, will never get dif-
fracted; they move pretty much as if the potential 
would be constant; i.e., they behave very close to the 
solutions of the free electron gas.

If the first Brillouin zone is completely filled and 
there is a considerable gap between it and the next 
Brillouin zone, we have an insulator at hand. With 
a smaller gap, we are dealing with a semiconductor. 
If the first band is not completely filled or overlaps 
with an empty second Brillouin zone, we are dealing 
with a conductor or a semimetal, respectively. 

Some other jargon often associated with the dif-
ference between a metal, a semiconductor, and an 
insulator is the characterization of the highest occu-
pied molecular orbital (HOMO) and the lowest 
unoccupied molecular orbital (LUMO). If the dif-
ference in the energy between the HOMO and the 
LUMO is zero, then just a little energy can promote 
an electron in an unoccupied level. Therefore, with 
an electrical potential difference, some electrons 
are very mobile and give rise to electrical conduc-
tivity in a metal. When the temperature increases, 
there are more electrons excited toward empty orbit-
als. However, the conductivity decreases because 
the vibration of the nuclei increases the collisions 
between the transported electrons and the nuclei, 
so there is a less-efficient transport or the resistance 
increases. When the HOMO-LUMO energy differ-
ence is nonzero, there is an electronic gap. If the 
bandgap is small, thermal excitations can promote 
electrons to unoccupied levels; consequently, those 
electrons can contribute to the electrical conductiv-
ity. This is the case of semiconductors, and that is 
why the conductivity of semiconductor increases 
with temperature. Insulators are characterized by a 
huge HOMO-LUMO energy difference, and the elec-
trons cannot reach the unoccupied levels; there is no 
measurable conductivity.

In Figure 3.115 we show the first Brillouin zone 
for Si, a semiconductor. Letters are used to mark 
many of the high symmetry points on this first BZ 
boundary. The gamma point (Γ) is always the zone 
center, where k = 0 (kx = ky = kz = 0), the X point is at 
kx = 2π/a and ky and kz = 0 (center of a square face), 
and the L point at kx = ky = kz = π/a (center of a hex-
agonal face) (a is the lattice constant, i.e., cube edge). 
K is in the middle of an edge joining two hexagonal 
faces, L is at the center of a hexagonal face, and W is 
a corner point. Σ means directed from Γ to K. Most 
semiconductors have band edges of allowed bands 
at one of these points. Zone edges or surfaces are 
marked with symbols from the Roman alphabet, 
whereas the interior is marked with symbols from 
the Greek alphabet. Two example Greek letters not 
yet introduced are: Δ which means directed from Γ 
to X and Λ which means directed from Γ to L. These 
symbols are not marked in Figure 3.115 where we 
only introduced Γ and Σ but they are used in Figure 
3.116. In Figure 3.116 the energy bands in 2D are 
plotted along the major symmetry directions in the 
first BZ for two of the industrially most important 
semiconductors, namely, Si and GaAs. 

Group IV and III–V semiconductors have a band 
structure that appears somewhat similar because 
their basic character is controlled by sp3 hybridization 
and tetrahedral bonding. From Figure 3.116a, in the 
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FIGURE 3.115 First Brillouin zone for Si. Points of high sym-
metry on the Brillouin zone have specific importance. The 
most important point for optoelectronic devices is the cen-
ter at k = 0, known as the gamma point Γ (000). One finds X 
at the surface boundaries (100), (001), and (010); K at (110); 
and L at (111). K is in the middle of an edge  joining two 
hexagonal faces, L is at the center of a hexagonal face, and 
W is a corner point. Σ means directed from Γ to K.
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case of silicon, the valence band maximum (VBM) 
occurs at k = 0 (Γ point). However, the conduction 
band minimum (CBM) occurs to the left of X. Thus, 
the VBM and the CBM occur at different points in the 
Brillouin zone, and this makes Si an indirect bandgap 
material (with a bandgap Eg = 1.1 eV). For an electron 
to move from the VBM to the CBM, its k vector needs 
to be changed, making the process less likely because 
a phonon is required for the electron to change its 
momentum (three-particle process: electron, pho-
ton, and phonon). Its indirect bandgap makes Si a 
weak absorber of light and thus a poor optoelec-
tronic material. The Si band diagram also has two 
critical points at E1 (3.2 eV) and at E2 (4.3 eV). Critical 
points (van Hove singularities) occur whenever dE/
dk = 0, in other words, when the bands are parallel 
to each other. At those critical points, band transi-
tions are more likely because no momentum change 
is required (parallel band effect). The Si band struc-
ture also features six equivalent conduction band 
minima at X along six equivalent <100> directions, 
and the valence band maxima for the heavy-hole, 
light-hole, and split-off bands are located exactly at 
the Γ point. Germanium and diamond also are indi-
rect bandgaps. GaAs is a direct bandgap semiconduc-
tor (Figure 3.116b) because the VBM and CBM occur 
at the same point in the BZ, and it features a strong 
absorption at ω > Eg (for GaAs, Eg = 1.5 eV), making 
it an excellent optoelectronic material. 

The Fermi surface for Cu, shown in Figure 3.117, is 
a sphere entirely contained within the first Brillouin 
zone. Even if the free electron Fermi sphere does 
not intersect a BZ boundary, its shape can still be 

affected at points close to the boundary where the 
energy bands begin to deviate from the free electron 
parabolic shape. This is the case with Cu, where in 
the <111> directions, contact is made with the hex-
agonal Brillouin zone faces. Eight short “necks” 
reach out to touch the eight hexagonal zone faces. 
The Fermi surface shown in Figure 3.117 can extend 
throughout many unit cells if the necks in the <111> 
directions are joined together with similar surfaces 
in adjacent cells. A section of such a continuous zone 
structure is shown in Figure 3.118. A magnetic field 
may close off these necks, a phenomenon that may 
be studied using cyclotron resonance. These necks are 
clearly evident from de Haas-van Alphen oscillations 
(http://www.lanl.gov/orgs/mpa/nhmfl/users/pages/
deHaas.htm and http://physics.binghamton.edu/Sei_
Suzuki/pdffiles/Note_dHvA.pdf) for magnetic fields 
in the <111> directions, which contain two periods, 
determined by the extremal “belly” (maximum) and 
“neck” (minimum) orbits. The de Haas-van Alphen 

k k

FIGURE 3.116 (a) Si is an indirect semiconductor because the maximum of the valence band (Ev at Γ) does not coincide 
with the minimum of the conduction band (Ec at X). For silicon, the valence band maximum (VBM) occurs at k = 0 (Γ point). 
However, the conduction band minimum (CBM) occurs to the left of X. This makes Si an indirect bandgap material. The 
shortest distance between Ec and Ev is the bandgap Eg of Si: 1.1 eV (a). GaAs is a direct bandgap semiconductor because the 
VBM and CBM occur at the same point in the Brillouin zone, and it features a strong absorption. For GaAs, Eg = 1.5 eV (b).

FIGURE 3.117 Brillouin zone for Cu with free electron 
sphere bulging out in the <111> directions to make contact 
with the hexagonal zone faces.

http://www.lanl.gov/orgs/mpa/nhmfl/users/pages/deHaas.htm and http://physics.binghamton.edu/Sei_Suzuki/pdffiles/Note_dHvA.pdf
http://www.lanl.gov/orgs/mpa/nhmfl/users/pages/deHaas.htm and http://physics.binghamton.edu/Sei_Suzuki/pdffiles/Note_dHvA.pdf
http://www.lanl.gov/orgs/mpa/nhmfl/users/pages/deHaas.htm and http://physics.binghamton.edu/Sei_Suzuki/pdffiles/Note_dHvA.pdf
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effect has its origin in the Bohr-Sommerfeld quanti-
zation of the orbits of conduction electrons under the 
influence of a magnetic field. A measurement of the 
temperature dependence of the oscillation amplitude 
permits a determination of the cyclotron frequency 
or, equivalently, the electron mass. 

Density of States for Bulk Materials The DOS 
function G(E) is a property that quantifies how 
closely packed energy levels are in some physical 
system. It is usually expressed as a function of inter-
nal energy E, [G(E)], or as a function of the wave 
vector k, [G(k)]. The density of k-states, G(k), in the 
Fermi sphere drawn in Figure 3.111 is the number of 
allowed states between k and k + dk, i.e., the number 
of states between a sphere of radius k and a sphere 
of radius k + dk (analogous to the calculation of 
the density of states for gas molecules illustrated in 
Figure 3.7). In three dimensions the volume between 
the two shells, V is given by:

 V k k kd d4 2
 (3.225)

The density of states G(k)3D is then derived by divid-
ing this volume by the volume of a single energy 
state. From Figure 3.66b we recognize that each 
value of k occupies a volume V = (2π/L)3, so that the 
number of states per unit volume of k-space is 1/V 
or (L/2π)3. We also introduce a factor of two here 
from Pauli’s exclusion principle: each energy state 
can accommodate two electrons, or: 
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To obtain the density of states in terms of the energy 
[G(E)3D], we use the relation between E and k, 

derived earlier as k
2

1 2
m Ee

*

2

/

 (Equation 3.150). 

For every k-state there is a corresponding energy 
state. Differentiating the latter expression with 
respect to energy leads to:
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The density of energy states G(E)3D, the number 
of allowed states between E and E + dE, is then 
obtained using the chain rule and dividing by L3 
(=V) because we want an expression per unit energy 
and unit volume:

 G G( ) ( )E
d
dE

k d
dE3D 3Dk

k k2

2
 (3.228)

Thus, we calculate the density of states for a para-
bolic band in a bulk material (three degrees of free-
dom) as:

 G(E) dE
2m

3D
e
*

3
21

2
E dE

2 2

1
2  (3.229)

for E ≥ 0. There are no available states at E = 0, 
and the effective mass of the electron takes into 
account the effect of the periodic potential on the 
electron. The minimum energy of the electron is the 
energy at the bottom of the conduction band (CB), 
Ec. For the valence band (VB), similar results hold. 
In the case that the origin of the energies is not cho-
sen to be the bottom of the band (i.e., Ec ≠ 0), for 
the conduction band Equation 3.229 comes with an 
energy term (E – Ec)1/2, and in the case of the valence 
band the energy term is given as (Ev – E)1/2. Here the 
contributions from the light- and heavy-hole bands 
add to give the total DOS. Note that, just like the 
DOS in a 3D ideal gas (Equation 3.19), we obtain a 
square root dependence in energy E. This function 
is illustrated in Figure 3.119 (full line). Thus, in the 
case of free 3D motion, the electronic DOS has a 
smooth square root dependence on energy E with 
three continuously varying wave vectors kx, ky, and 
kz. This holds for materials that are large compared 
with the de Broglie wavelength (L1, L2, L3 > λDB). An 
important feature of nanostructure devices is that 
their DOS is very different from this expression, and 

FIGURE 3.118 Continuous Fermi surfaces extending 
through adjacent unit cells in gold structures.
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this will turn out to have important consequences 
for their electrical and optical properties.

Equation 3.229 gives us the number of possible 
electronic states of a large 3D device (L1, L2, L3 > 
λDB). To deduce how these states are occupied with 
electrons, we need to multiply the density of state 
function [G(E)3D] with the Fermi-Dirac distribution 
function, fFD(E, T), which gives the probability that 
a state of energy E is occupied by an electron. The 
number of electrons with energies between E and 
E + dE is then written as:

 n(E)3DdE G(E)f E)dEFD(  (3.230)

where G(E)3DdE is the number of states between E 
and E + dE. This function is shown as a broken line 
in Figure 3.119. 

The integral of n(E)3DdE over all energies gives 
the total number of electrons n3D per unit volume 
(=n3D/V). From Equation 3.230, with f(E) = 1 (T = 
0 K), the number density of filled states n3D is:
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(3.231)

Note that at T = 0, n(E)3D is zero for E > EF, so we only 
have to integrate from E = 0 to E = EF. In Figure 3.119 
this integral corresponds to the shaded area. 

For a metal with a total number n3D of valence 
electrons per unit volume, we can now calculate the 
maximum energy (EF) and the maximum k value 
(kF). The maximum energy (the energy at the sur-
face of the sphere) at T = 0 K is obtained by solving 
for EF: 
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This Fermi level is the top of the collection of elec-
tron energy levels at absolute zero temperature, and 
it depends on the number of electrons per unit vol-
ume (n3D). Example numbers for Fermi energies for 
different metals can be found in Table 3.13. 

Because fermions cannot exist in identical energy 
states (see the exclusion principle), at absolute zero, 
electrons pack into the lowest available energy states 
and build up a “Fermi sea” of electron energy states. 
In this state (0 K), the average energy per electron in 
a 3D electron gas is calculated as: 
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 (3.233)

For Cu, for example, this average energy is 4 eV, 
huge compared with typical thermal energies of 
0.025 eV (kT at 300 K). Contrast this result with that 
of a gas of molecules where a Boltzmann distribu-
tion leads to an energy E of zero at 0 K and of the 
order of kT at a temperature T!

The total number N of k-states within the Fermi 
sphere can be calculated as:

 

N

4
3

6
vF

2

k kF

L

3

3

3

2
 

(3.234)

because each k-state occupies (2π/L)3 and the total 

volume of the Fermi sphere equals 
4
3

kF
3. The ratio of 

EF

kBT

E

Shaded area–filled
states at T=0

Density of
filled states
G(E)f(E,T)

Density of
states
G(E)

G(E)dE =

1

2

× [the number of states in the energy range from E to E + dE]1
V

G(E)f(E)dE =

× [the number of filled states in the energy range from E to E + dE]1
V

FIGURE 3.119 Density of states (DOS) (full line) and occu-
pied states (shaded area filled at T = 0 K) around the Fermi 
energy [G(E)3D]. The density of filled states is marked with 
a broken line. As the temperature increases above T = 0 K, 
electrons from region 1 are excited into region 2. 
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these two gives the total number of states N, each of 
which accommodates two electrons; in other words, 
the density of states n3D(=N/V) at the Fermi level is:

 n
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giving us back Equation 3.231. Thus, the density of 
single-particle states available per unit volume per 
unit energy of states at the Fermi level in an unre-
stricted (3D) electronic device is derived as:
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This is a very important quantity as the rates of 
many processes are proportional to G(E). Increasing 
n3D, the density of electrons in 3D increases both 
EF (Equation 3.232) and G(E)3D (Equation 3.236). 
This is of course the same outcome as obtained in 
Equation 3.229, the only difference being that we 
replaced E with EF here.

The result in Equation 3.236 can be simplified by 
comparing it with Equation 3.235 to obtain:

 G( ( )E) E E
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E3D F
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E  E
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F
F

3
2  (3.237)

What this means is that the density of single-par-
ticle states available per unit volume and per unit 
energy of states at the Fermi level in 3D is 1.5 times 
the density of conduction electrons divided by the 
Fermi energy.

Example 3.7: Calculate the Fermi energy EF of Na. 
Na has an atomic density of 2.53 × 1028 atoms/m3. 
We are assuming me = me

*, i.e., h2/2me= 1.505 
eV.nm2.
Answer: Sodium has one valence electron (3s) 
per atom, so the electron density is n = 2.53 × 
1028/m3. Using Equation 3.232 we obtain:
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Obviously electrons in a metal have a very large 
kinetic energy, even at T = 0! 

From Equation 3.235, kF is given by:

 kF
2n( )3

1
3 (3.238)

which depends only on particle concentration n. 
We can now also ask, what is the speed in the 

highest occupied state EF? From kF, the Fermi wave 
vector, we calculate the velocity vF of the electrons 
on the Fermi surface, i.e., the Fermi velocity (see 
Equation 3.203, with group velocity vg = vF) as:

 v
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e
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The Fermi velocity is the average velocity of an elec-
tron in an atom at absolute zero. This average veloc-
ity corresponds to the average energy given above 
(Equation 3.233). In Equation 3.239, pF is the Fermi 
momentum, i.e., the momentum of fermions at the 
Fermi surface, and with the expression for kF in 
Equation 3.238 we obtain: 

 v F 3Dm
n3 2

1
3 (3.240)

We see that in 3D, the higher the electron density, 
the faster the electrons are moving. In the presence 
of an electrical field, all the electrons in a conduc-
tor move together, so the exclusion principle does 
not prevent the free electrons in filled states from 
contributing to the conduction. This is illustrated in 
Figure 3.120, where we show the Fermi function in 
one dimension versus velocity at an ordinary tem-
perature. Over a wide range of velocities, the Fermi 
function equals 1, and speeds vF marked in this fig-
ure are given by Equations 3.239 and 3.240. 

The dashed curve represents the Fermi function 
after the electric field has been applied for a period t. 

No electric field With electric field
f(E)

–vF +vF vx

FIGURE 3.120 The Fermi function versus velocity in one 
dimension for a conductor with (solid) and without (bro-
ken line) electrical field in the +x-direction. The effect is 
greatly exaggerated (see text).
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All the electrons have been shifted to higher veloci-
ties, but the net effect is equivalent to shifting elec-
trons near the Fermi level only. 

A typical value for the Fermi velocity at 0 K is ∼106 
m/s or 1000 km/s; as pointed out before, this is a 
surprising result because for a classical gas at 300 K 

the thermal velocity v
k

rms
B8 T
m

 = 105 m/s (see 

Equation 3.21) with a velocity that goes to zero at 
T = 0 K! 

The Fermi wavelength λF is given as 2π/kF; it rep-
resents the de Broglie wavelength associated with 
the Fermi wave vector kF. The Fermi temperature is 
the temperature TF at which kBTF = EF. Thus, it is the 
energy of the Fermi level of an assembly of fermions 
divided by Boltzmann’s constant. The quantity TF is 
not to be confused with the temperature of the elec-
tron gas. Below the Fermi temperature, a substance 

gradually expresses more and more quantum effects 
of cooling. For temperatures much lower than the 
Fermi temperature, the average energy of the pho-
nons of the lattice will be much less than the Fermi 
energy, and the electron energy distribution will not 
differ greatly from that at T = 0. We also recognize 
here that photons travel much faster than electrons! 
Photons travel at c = 3.0 × 108 m/s (in vacuum) ver-
sus electrons that travel at vF (Fermi speed) = 1.57 × 
106 m/s (copper wire). 

The Fermi quantities we introduced in this sec-
tion are summarized in Table 3.12, and in Table 3.13 
we list calculated free electron Fermi surface param-
eters for some metals at room temperature.

Electronic Conductivity for Bulk Materials Drude, 
at the end of the nineteenth century, could not 
have known about the Fermi-Dirac distribution. 
Electrons, being fermions, follow this distribution, 
and at room temperature it is almost the same as 
at absolute zero temperature, resulting in a velocity 
distribution for fermions very different from the one 
predicted by Maxwell-Boltzmann statistics. Only 
electrons near the Fermi level contribute to electri-
cal conductivity, and as a result of the wave nature 
of the electrons, they can pass through a perfect 
crystal without suffering any resistance at all. This 
means that the mean free path of an electron pass-
ing through a perfect crystal with all nuclei at rest 
is infinity rather than the interatomic spacing of the 
order of 1 nm assumed by Drude. In such an ideal 
crystal, a Bloch function ψk evolves into k kx

, and 

TABLE 3.12 Fermi Quantities*

Fermi Quantity Equation 3D Typical Value

Fermi wave vector kF
2

1
33 n)( ~108 cm−1

Fermi energy E
2m 3 n)F

2
2

2
3

e
*

( ~1–10 eV

Fermi wavelength λF = 2π/kF Few nanometers 
for metals, several 
tens of nanometers 
for semiconductors

Fermi temperature TF = EF/kB ~104–105 K
Fermi momentum p = kF

Fermi velocity v m
k

mF
Fp

e e
* * ~108 cm/s

*All values at T = 0 K.

TABLE 3.13 Calculated Free Electron Fermi Surface Parameters for Metals at Room Temperature

Metal/Valency
Electron Concentration  

n (cm−3)
Fermi Wave Vector 

(cm−1)
Fermi Velocity 

(cm s−1)
Fermi Energy 

EF (eV)
Fermi Temperature  

TF = EF /kB (in K)

Cu(1) 8.45 × 1022 1.36 × 108 1.57 × 108 7.00 8.12 × 104

Ag(1) 5.85 1.20 1.39 5.48 6.36
Au(1) 5.90 1.20 1.39 5.51 6.39
Be(2) 24.2 1.93 2.23 14.14 16.41
Mg(2) 8.60 1.37 1.58 7.13 8.27
Zn(2) 13.10 1.57 1.82 9.39 10.90
Al(3) 18.06 1.75 2.02 11.63 13.49
Ga(3) 15.30 1.65 1.91 10.35 12.01
In(3) 11.49 1.50 1.74 8.60 9.98
Pb(4) 13.20 1.57 1.82 9.37 10.87
Sn(4) 14.48 1.62 1.88 10.03 11.64
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when this electron state reaches the Brillouin zone 
at k = +π/a, it re-enters the crystal at –π/a or we get 
resistance-less Bloch oscillations.

In the absence of an electric field, the same 
number of electrons is moving in the ±x-, ±y-, and 
±z-directions, so the net current is zero. But when 
a field E is applied, e.g., along the x-direction, the 
Fermi sphere in Figure 3.121, in the absence of col-
lisions, is displaced at a uniform rate by an amount 
related to the net change in momentum, Δpx, of the 
free electron gas (FEG) as a whole. The equation of 
motion (Newton’s law) describes this situation as 
(see Equation 3.208): 

 m
d
dt

dk
dt

E e Fe
* x x

x

v
 (3.241)

The quantity k is the crystal momentum, and 
thus one can say that the force caused by the elec-
tric field is equal to the time derivative of the crystal 
momentum. Integrating the previous expression we 
obtain:

 k k
E

x x(t) (0)
e tx  (3.242)

The shift in Fermi sphere creates a net current flow 
because more electrons move in the + x-direction 
than the –x-direction. According to this model, 
the Fermi sphere moves with constant velocity 
in k-space. This means that the electron velocity 
increases indefinitely. This is of course not possible, 
and it is evident that scattering processes must limit 
the electron velocity and hence the finite electrical 
conductivity of metals. A viscous term must be intro-
duced in the equation of motion. In a real crystal, 

scattering events with a scattering time τ, involving 
collisions of electrons near the Fermi surface (these 
are the only ones that can move into empty states), 
prevent the observation of the ideal Bloch oscilla-
tions and oppose the electrical field effect so that 
the Fermi sphere reaches a steady state when the 
new center is displaced in the x-direction by an aver-
age wave vector:

 k
E

avg
xe  (3.243)

The wave vector changes calculated from Equation 
3.243 are very small changes; for example, with an 
electric field E of 1 V/m and with a value for the scat-
tering time τ of ~10−14 s we calculate a value for |kavg| 
of ~15 m−1, a quantity very small compared with a 
BZ dimension, which we calculate as:

 kBZ a m
m

2 2
3 00 10
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The effect of the Fermi shift in Figure 3.121 are 
greatly exaggerated. If at t = 0 an electrical field is 
applied to a Fermi sphere centered at the origin of 
k-space, the sphere will move to a new position in a 
characteristic time between scattering events given 
by:

 vavg
 (3.244)

From Equation 3.243 the average velocity of the 
Fermi sphere is given by:
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At the steady state the current density is then given 
as:

 J v
E

Ene
ne

me
*avg

x
2

 [3.3][3.6]

where n is the electron density and: 

 
ne
m
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e
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 (3.7)

These are the same expressions as derived in Drude’s 

model, but with τ given now as 
vavg

 (Equation 

3.244) and me
* replacing me. The average velocity, 

F

kx

ky

kavg

FIGURE 3.121 Dis placement of the Fermi surface with 
an applied electrical field. Collisions with thermal vibra-
tions and defects (not stationary ions or other electrons, 
as Drude envisaged) stop the Bloch oscillations and cause 
electrons to settle to a drift velocity. See also Figure 3.71, 
where the Fermi factor in one dimension for a conductor 
with (solid) and without (broken line) electrical field in 
the + x-direction is shown. 
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derived as v
8k T

m
B  (Equation 3.21) from the 

Boltzmann distribution of speeds in Drude’s model, 

is replaced here by v
k E

avg
avg

e
*

x

e
*m

e
m

 (Equation 

3.245). In Drude’s model the mean free time between 
collisions of electrons with lattice ions, τ, is related 

to the average velocity in v v
E

dx
x

em
e

 (Equation 
3.6) as:
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Drude assumed the electron mean free path, λ, to be 
equal to the lattice constant, a, which is of the order 
of 1 nm, in which case this equation yields a typical 
value for τ of about 10−14 s. Based on Equations 3.7, 
3.21, and 3.246, Drude then derived the following 
relationship for the resistivity: 
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Using the lattice constant, a, for the mean free path, 
this equation leads to values for the conductivity of 
a metal that are six times too small. Moreover, from 
Equation 3.22 the temperature dependence of the 
resistivity is determined by vdx, which in this model 
is proportional to T , whereas in practice the tem-
perature dependence of the resistivity is represented 
by the empirical relationship:

 0 T (3.23)

where ρ0 is the resistivity at a reference temperature, 
usually room temperature, and α is the temperature 
coefficient. If the Boltzmann distribution function 
is applied to the electron gas, one thus immediately 
finds the velocity of the electron to change as T . 
According to Drude’s model, the mean free path is 
obviously temperature-independent because it is 
calculated from the scattering cross-section of rigid 
ions (with lattice constant a). This results in a resis-
tivity proportional to T , provided that the number 
of electrons per unit volume n is temperature-inde-
pendent (Equation 3.22). However, people at that 
time had been well aware that the resistivity of typi-
cal metals increases linearly with increasing temper-
ature well above room temperature (Equation 3.23). 

To be consistent with the Maxwell–Boltzmann dis-
tribution law, one then had to assume n to change as 
1

T
 in metals. This was not physically accepted, and 

the application of the Maxwell–Boltzmann distribu-
tion to the electron system was apparently the source 
of the problem.

In the quantum mechanical model, only a few 
electrons, all moving at the temperature- independent 
very high Fermi velocity vF ~108 cm/s (Equation 
3.239), carry the current, instead of all electrons 
moving at the average drift velocity vd (~0.1 cm/s) 
in Drude’s model (see p. 82 “Drude Fails”). Only 
electrons near the surface of the Fermi sphere find 
empty orbitals in which they can scatter. Electrons 
in the inner part of the Fermi sphere find no empty 
states with similar energy as those electrons near 
the Fermi sphere. Therefore, inner electrons cannot 
scatter, and those electrons do not contribute to the 
current transport process. Replacing vth with vF in 
Equation 3.8, one obtains a value for the resistiv-
ity that is 100 times larger than the experimental 
numbers—understandable because vF is 16 times 
larger than vth, and we know that the numbers 
obtained with vth were already six times too large. 
The resolution lies in the calculation of the mean 
free path λ; in a perfectly ordered crystal λ = ∞; in a 
real crystal, λ is determined by scattering phenom-
ena. We need to replace the inner atomic distance 
a in Equation 3.22 with the quantum mechanics 
value for λ, the mean free path of the conduction 
electrons. Experiments have shown that the elec-
trons can move surprisingly far without any inter-
action; the mean free electron pass can be up to 108 
atom distances at low temperatures. Electrons are 
not scattered by the regular building blocks of the 
lattice because of the wave character of the elec-
trons. Scattering mechanisms instead are: 

 1. Lattice defects (foreign atoms, vacancies, inter-
stitial positions, grain boundaries, dislocations, 
stacking disorders), and

 2. Thermal vibration of the lattice (phonons).

Item 1 is more or less independent of tempera-
ture, whereas item 2 is independent of lattice defects 
but dependent on temperature. The mean free path 
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now does not depend on the radius of the ions but 
rather on deviations of the ions from a perfectly 
ordered array such as seen from lattice thermal 
vibrations and the presence of impurities. The ion 
vibrations lead to an effective area A that results in 
an electron mean free path given as λ = 1/nionA. 
Lattice ions are basically points only, but their ther-
mal vibration has them occupy an electron scatter-
ing area A = πr2, where r is the amplitude of the 
thermal vibrations. The energy of thermal vibration 
in a simple harmonic oscillator is proportional to 
the square of the amplitude of the vibration (r2). In 
other words, the area A is proportional to the energy 
of the vibrating lattice ions. From the equipartition 
theory we know that the average vibration energy is 
proportional to kT, so it follows that A is propor-
tional to T and λ is proportional to 1/T. Because the 
mean free path is inversely proportional to tem-

perature at high temperatures, it follows that 
1
T

, 

in agreement with the experimental evidence 
(Equation 3.23). This solves the issue of the wrong 
temperature dependence of the resistivity. We need 
to also calculate a correct absolute value for the resis-
tance using the quantum mechanical mean free path. 

The quantum mechanical mean free path of the 
conduction electrons, say in Cu, is defined as:

 v F  (3.247)

where vF is the velocity at the Fermi surface, because 
all collisions involve only electrons near the Fermi 
surface. With Fermi velocities vF of typically 108 
cm/s (see Table 3.13) and with room-temperature 
resistivities for many metals of ρ ~ 1–10 μΩ·cm, the 
corresponding relaxation time is ~10−14 s and the 
resulting averaged free electron path at room tem-
perature is about 100 Å. So it is of the order of a 
few 10s to 100s of interatomic distances. At low tem-
peratures for very pure metals the mean free path 
can actually be made as high as a few centimeters 
(τ ≈ 2 × 10−9 s at 4 K for very pure Cu). Compared 
with using the lattice constant, a, for the mean free 
path, this equation leads obviously to values for the 
conductivity that are 100 times higher—in agree-
ment with experimental data. 

For a current J of 1 A/mm2 in a conduc-
tor with an electron density of n = 1022 cm−3, we 

calculate an average speed vavg of the Fermi sphere 
of J/ne ∼ 0.1 cm/s (see Equation 3.3), which is much 
less than the Fermi velocity vF ~ 108 cm/s. In a con-
ductor, charges are always moving at the Fermi 
velocity, but the Fermi sphere moves much slower 
because electrons travel at fast Fermi velocities for a 
short average time, τ, and then “scatter” because of 
collisions with atom vibrations, grain boundaries, 
impurities, or material surfaces (especially in very 
thin films). 

The value for n(E)3D in J = − n(E)3Devavg (Equation 
3.3) at T > 0 is obtained from Equation 3.230:
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For a large semiconductor, Equation 3.248 was 
illustrated in Figure 3.119 with a broken line. We 
will see below that G(E) depends strongly on dimen-
sionality, so we also expect the current density to 
vary strongly with dimensionality. 

Quantum Wells: L1,2 > λDB > L3

Quantization As we saw earlier, devices that come 
with a length L that in one direction is comparable 
with the size of the electron de Broglie wavelength 
are known as quantum wells (1D confinement). A 
planar quantum well structure may be made from 
a thin region of a narrow gap semiconductor sand-
wiched between two layers of a wide bandgap 
semiconductor. We use for an example of such 1D 
confinement a quantum well made by sandwiching 
a layer of GaAs between two layers of AlxGa1-xAs, as 
shown first in Figure 3.59 and, simplified, repro-
duced in Figure 3.122. Growing two different semi-
conductors on top of each other, as illustrated, 

L
z

y

x

z

FIGURE 3.122 A quantum well can be made, for example, 
by sandwiching a layer of GaAs between two macroscopic 
layers of AlxGa1-xAs. This creates a layer in which the electrons 
(and holes) behave in a 2D way (see also Figure 3.59).
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forms heterojunctions. The narrower bandgap GaAs 
material is enclosed by a material with a consider-
ably larger bandgap to establish a potential barrier 
at the surface of the confined material. Because of 
the potential barrier, the motion of electrons and 
holes is restricted in one dimension (thickness L in 
the z-direction in this case) and is forced to occupy 
discrete states of energy instead of staying arbitrarily 
within an energy continuum. Hence quantization 
of the system occurs by shrinking the thickness of 
the GaAs layer. A 2D electron gas in the laboratory 
is really a 3D electron system in which the electron 
motion is strongly confined in one spatial direction 
but in which free motion is still allowed in the other 
two directions. At the interface of the semiconductors 
GaAs and AlxGa1-xAs a potential well is formed. The 
potential well is a result of charge transfer between 
the two materials and their conduction band off-
set (Ec), confining the electrons, and the motion of 
electrons perpendicular to the plane of the hetero-
 interface (z-axis in Figure 3.122) is quantized.

The composition x of the ternary semiconductor 
AlxGa1-xAs can be varied to control the electron bar-
rier height. A good lattice match between GaAs and 
AlxGa1-xAs over a wide range of x values minimizes 
lattice strain at the interfaces. When the electron and 
holes are confined in the same layer, one talks about a 
type I quantum well; with electron and holes confined 
in different layers, one defines a type II quantum well.

For the quantum well considered here, the 
AlxGa1-xAs layers are thick enough so that tunneling 
through these layers remains very limited. 

For an energy E smaller than the potential barrier 
V, the energy of an electron in the conduction band 
of a quantum well is given as:
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with the wave function:

 n n
i x i y(x, y, z) (z)e exk ky  (3.250)

There is one quantized component in the z-direction 
and a “free” electron component in the x-y plane. 
The second term on the right side of Equation 3.249 

represents the quantized energy in the z- direction 
(the thickness direction L of the GaAs film). This is 
the same expression we derived in Equation 3.156 
for a finite-sized 1D box with infinitely high poten-
tial walls. For quantization to be important, the dif-
ference between the electron energy levels should 
be much larger than the thermal energy kBT, that is, 
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 where nz = 1, 2, 3 are the quan-

tum numbers labeling.the energy levels. Ec
0 is the 

energy corresponding to the bottom of the conduc-
tion band. Strictly speaking, the above expressions 
apply only to an infinitely deep potential well. 
However, we can use the same equations as long as 
En is well below the bottom of the conduction band 
of the wide band material. Using this condition, we 
find, for example, that in GaAs where me

*/me = 0.067, 
the levels are quantized at room temperature when 
Lz = 150 Å. The third term on the right side of 
Equation 3.249 represents the kinetic energy of the 
electrons in the x-y plane where they are free to 
move. The kz-component is absent in the last term 
of Equation 3.249 because the motion in this direc-
tion is quantized. Equation 3.249 reveals that for 
each value of the quantum number n, the values of 
wave vector components kx and ky form a 2D band 
structure. The wave vector kz in the z-direction, on 
the other hand, can only take on discrete values, kz 
= nzπ/Lz. For each value of n there is a sub-band with 
n the sub-band index as illustrated in Figure 3.123. 
In this figure we show energy levels (bottoms of 

E E

G(E)
(in x-y plane)

(a) (b) (c)

nz = 3

nz = 2
nz = 1

k

Sub-
bands

m*/πħ2

FIGURE 3.123 (a) Energy levels (bottoms of sub-bands) 
for a quantum well made by sandwiching a layer of 
GaAs between two macroscopic layers of AlxGa1-xAs 
(Lz is 150 Å). (b) Energy versus k k k( )x

2
y
2 1 2 for 2D 

 electron gas in GaAs quantum well. (c) Density of states 
for quantum well structure (Harris, 2006.4)
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sub-bands), density of states for a quantum well 
structure, and energy versus k k k( )1 2

x
2

y
2  for the 

2D electron gas in the GaAs quantum well. 
We can carry out an analogous argument for the 

holes in the valence band with the difference that 
their quantized energy is inverted and that we need 
to invoke mh

* for the effective mass of the hole. For 
a quantum well, the lowest-energy band-to-band 
(interband) transition is now different from the 
bandgap (Eg) transition of the bulk semiconductor. 
It will occur at a higher energy level (shorter wave-
length) between the lowest energy state for electrons 
in the conduction band (n = 1) and the correspond-
ing state for holes in the valence band. This defines 
the effective bandgap for a quantum well as:
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 (3.251)

The shift to higher wavelengths is referred to as a 
“blue shift,” caused by quantization.

Fermi Surfaces and Brillouin Zone for Quantum 
Wells In the case of a free 3D electron gas we appre-
ciate that the surface of the Fermi sea is a sphere 
of radius kF connecting points of equal energy in 
k-space (see Figure 3.111). In 2D this becomes a circle 
connecting points of equal energy in 2D k-space. In 
Figure 3.124 we show the Fermi circles correspond-
ing to 2D crystals with one, two, three, and four 
valence electrons per atom. In this figure we also 
show the 2D Brillouin zone (see square in dashed 
line), and we see how the free electron circle of a 
three-valent metal (red circle) cuts the Bragg planes 

located at π/a. The square shown in Figure 3.124 cor-
responds to the first Brillouin zone of a 2D square 
lattice (Figure 3.112b).

Density of States for Quantum Wells The density 
of states for each sub-band of a quantum well (Figure 
3.123c) can be found using an approach similar to 
the one we used above for a 3D density of states func-
tion, that is, by counting the number of states with 
wave vectors k between k and dk. In the case of 1D 
confinement of electrons we must find the number 
of k-states enclosed in an annulus of radius k + dk 
(see Figure 3.125). Each state occupies an area A of 

2
2

L
. The area of the annulus, A, is given by:

 Ad kdk k2  (3.252)

Dividing the area of the annulus by the area occu-
pied by a k-state, and remembering again to mul-
tiply by 2 for the electron spin states, we get for the 
number of states per unit area:
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Or, in terms of energy per unit area at an energy E 
(dividing by L2), the density of states for each sub-
band is given as:
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FIGURE 3.124 Free electron circles for 1, 2, 3, and 4 
valence electrons. The free electron circle of a three-valent 
metal (red circle) cuts the Bragg planes located at π/a. 
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FIGURE 3.125 Density of states, G(k)2D, is the number of 
allowed states between k and k + dk, i.e., the number of 
states between a sphere of radius k and a sphere of radius 
k + dk.
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For this derivation we used Equation 3.227, which 
holds true for any dimensionality D of the problem. 
Importantly, in an ideal 2D system, the density of 
states is constant and does not depend on energy.

The density of states in a 2D electron gas, in 
which only the lowest energy sub-band (n = 1 level 
Ez1) is occupied, is illustrated in Figure 3.126a, 
where we assume that the confinement is in the 
z-direction. For all electron energies up to Ez1 the 
density of states is zero because electrons cannot 
exist in the well at lower energies than this. Because 
of the freedom of motion in the plane of the hetero 
interface (with continuously varying wave vectors 
kx and ky in the x-y plane), the energy levels that 
form in the potential well are highly degenerate. If 
the electron density is sufficiently low, then all elec-
trons can be accommodated in the lowest level of 
the well, and the freedom of motion in the trans-
verse direction is frozen out and the electron sys-
tem effectively behaves as the ideal 2D one as 
described by Equation 3.254 with a single step in 

energy only with a constant value me
*

2
. In the regime 

where only the lowest sub-band is occupied, increas-
ing energy corre sponds to increasing electron 
motion in the x-y plane (kinetic energy). 

As the electron filling of the quantum well is 
increased, eventually electrons begin to fill the next 
transverse level of the potential well (Figure 3.126b). 
At this point we have two so-called 2D sub-bands 
occupied in the quantum well. To a good approxi-
mation, electrons in the two sub-bands may be 
viewed as forming two independent 2D electron gas 
systems. Thus, the density of states is double that 
which we would expect in the case where just a sin-
gle sub-band is occupied. For each quantum state in 

the quantum well, there will be a step in the density 
of states. The overall density of states is discontinu-
ous, with a stepwise structure that is characteristic 
of quantum wells. Because of the summing over the 
different sub-bands, a more general description of a 
2D system has Equation 3.254 modified as:

 G(E) H(E – E2D n

me

n

*

)
2

 (3.255)

where H(E − Ec) is the Heaviside step function.* It 
takes the value of zero when E is less than En and 1 
when E is equal to or greater than En. En is the nth 
energy level within the quantum well.

In Figure 3.127 we summarize the characteristics 
of a 2D density of states function G(E)2D. The energy 
spacing shown here increases with decreasing L; the 
thinner the 2D film, the more it approximates an 
ideal 2D gas with only one sub-band. 

The step-like behavior of a 2D density of states 
function G(E)2D implies that the density of states in 
the vicinity of the bandgap is much larger than in 
the case of a bulk semiconductor, where the value 
of G(E)3D goes to zero (E1 versus Eg). This makes for 
stronger optical transitions because a major factor 

* The Heaviside step function, H, also called the unit step function, is 
a discontinuous function whose value is zero for negative argument 
and one for positive argument.

FIGURE 3.126 Filling of the first two sub-bands in a 2D structure. The first sub-band has a constant energy at m*
e
2
 (a), 

and the second has a constant energy at 2 em*
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 (b).4 
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FIGURE 3.127 The  density of states function for a quan-
tum well. The solid black curve is that of a free electron. 
The bottom of the quantum well is at energy Eg. 
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in the expression for the probability of optical tran-
sitions is the density of states. The strength of an 
optical transition is often defined as the oscillator 
strength, and the oscillator strength of a quantum 
well in the vicinity of the bandgap is considerably 
enhanced compared with a bulk semiconductor. 
Below we will show how Fermi’s golden rule for 
absorption describes transition rates between lev-
els in terms of the availability of states [density of 
states: G(E)], the availability of photons (intensity 
E0), and a “coupling strength” between the levels 

(transition matrix element Hv,c

2
). The enhanced 

oscillator strength of quantum-confined structures 
is put to good use in the fabrication of laser media 
for highly efficient and compact solid-state lasers 
(see Chapter 5). In Figure 3.128 we illustrate the 
bound-state energies for electrons in the conduc-
tion band and for holes in the valence band for a 
GaAs/AlxGa1-xAs heterojunction. If the GaAs layer 
is thin enough, bound states form as indicated here 
by dashed lines. For a perfect 2D electron gas, each 
bound state corresponds to a discontinuous jump in 
the electronic density of states function. The density 
of states function (DOS) can be investigated by mea-
suring the absorption α of electromagnetic radiation 
associated with the excitation of an electron from 
the valence band to the conduction band. Because 
the wavelength of the radiation is long compared 
with the width of the well, transitions only occur 
between states for which the spatial variation of 
the wave function is similar; this leads to the selec-
tion rule Δn = 0 for the adsorption. Therefore, the 
allowed transitions are those indicated by the arrows 

in Figure 3.128a. The frequency dependence of the 
absorption should reflect the steps in the DOS with 
the steps in the absorption expected to occur at fre-
quencies ωn given by: 

 n Cn VnE E  (3.256)

where ECn − EVn is the energy difference between 
the nth bound states in the conduction and valence 
bands. The measured adsorption spectra for GaAs 
layers of thickness 140, 210, and 4000 Å are shown 
in Figure 3.128b, and the expected step structure 
is clearly visible for the two thinner layers, with 
arrows indicating the frequencies at which steps are 
expected. Peaks at energies just a little below the 
predicted values mark the absorption. These results 
from the creation of an exciton, an electron-hole 
bound state that is created when a photon is absorbed 
(see below for details). Because there is an attraction 
between the electron and the hole in an exciton, the 
photon energy required to create an exciton is lower 
than the predicted values that ignore such interac-
tions. Thus, the difference in energy of the peak and 
the predicted absorption edge is a measure of the 
binding energy of the electron-hole pair. An exciton, 
with an energy just below the bandgap, is clearly 
seen in the absorption curve for the 4000-Å layers, 
but the step-like structure has disappeared, indicat-
ing that the DOS is a smooth curve as one expects 
for 3D behavior. 

Electronic Conductivity of Quantum Wells The cir-
cles shown in Figure 3.124 are the Fermi circles cor-
responding to 2D crystals with one, two, three, and 
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FIGURE 3.128 (a) Heterojunction of GaAs and AlxGa1-xAs. If the GaAs layer is thin enough, bound states (dashed lines) 
form. When photons are absorbed, electrons are excited between these bound states. (b) The adsorption of light, mea-
sured as a function of photon energy for GaAs layers of thickness 4000, 210, and 140 Å. The arrows indicate the energies 
at which the onset of adsorption is expected to occur for transitions involving the nth bound state.
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four valence electrons per atom. The circles repre-
sent surfaces of constant energy for free electrons 
[V(x) = 0], i.e., the Fermi surface for some particular 
value of the electron concentration. The total area 
of the filled region in k-space depends only on the 
electron concentration and is independent of any 
interaction of electrons with a lattice. In a solid more 
realistic shape of the Fermi surface depends on the 
lattice interaction of the electrons and will usually 
not be an exact circle in a lattice. There is a disconti-
nuity introduced into a free electron Fermi circle any 
time it approaches a 2D Brillouin zone boundary. 
In Figure 3.129 we see how the shape of the Fermi 
circle is distorted near the surface if V(x) is not zero.

Energy gaps appear at zone boundaries, and the 
Fermi surface intersects zone boundaries almost 
always perpendicularly. The crystal potential causes 
rounding of sharp corners on a Fermi surface. The 
volume enclosed by a Fermi surface only depends 
on electron density and not on details of the lattice 
interaction. In other words, the volume enclosed 
by a Fermi surface remains unchanged under the 
“deformations” just mentioned.

The number of occupied states per unit volume in 
the energy range E to E + dE and with f(E) = 1 (T = 0) 
is calculated as:
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To calculate the current density for a 2D gas at 
a particular temperature we substitute the value 
for n(E)2D at T > 0 [and thus f(T) can then be different 

from 1] in J = −n(E)2Devavg (Equation 3.3). The func-
tion n(E)2D for a given temperature T (>0) is shown 
as a red line in Figure 3.130. In the same graph we 
also show the Fermi-Dirac function and the DOS 
function (blue). 

The form of the density of states function of a 2D 
gas can also be dramatically modified by a magnetic 
field, giving rise to very pronounced behavior in the 
conductance with the appearance of the so-called 
Landau levels. 

Quantum Wires: L1 > λDB > L2, 3

Quantization We saw earlier that when L 
becomes very small along two directions (2D 
confinement)—of the order of the de Broglie wave-
length of an electron—one obtains a quantum 
wire where electrons can only move freely in one 
direction, i.e., along the length of the quantum 
wire as shown first in Figure 3.63 and, simplified, 
reproduced in Figure 3.131. These 1D electronic 
structures with 2D quantum confinement com-
prise nanowires, quantum wires, nanorods, and 
nanotubes.

The starting point for the fabrication of one type 
of quantum wire is a 2D electron gas confined in 
one direction as discussed above. A 2D quantum 
gas that is very strongly confined at some interface 
and where we can assume that only the lowest sub-
band of the electron gas is occupied, so that the 
motion transverse to that interface is frozen out. 
This is the situation we encountered for a 

FIGURE 3.129 Deformation of the free electron circle 
near Bragg planes, V(x) ≠ 0.
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FIGURE 3.131 A rectangular quantum wire. 
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FIGURE 3.130 Quantum wells (QWs). Density of states 
(DOS) (blue) and occupied states (red) around the Fermi 
energy for a quantum well. The Fermi-Dirac function is 
f(E), and the product of f(E)G(E)2D = n(E)2D at T > 0. 
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heterojunction with a very small L, so that Equation 

3.254 is applicable [G(E)
m

2D
e
*

2
 (no summation of 

steps)]. To this strong confinement, a typically 
weaker, lateral confinement of the electrons is 
added by etching nanowires in the 2D quantum 
well. In Figure 3.131 we drew a rectangular quan-
tum wire with a square cross-section; in reality 
nanowires will typically be much wider than they 
are thick (the x-direction is assumed to be the film 
thickness direction), so the quantum confinement 
is most severe in the x-direction. The reason for this 
discrepancy is that in micro- and nanotechnology 
it is much easier to control a film’s thickness 
(x- direction) than it is possible to control the lat-
eral dimensions of a structure (y direction). Let us 
consider the 75-nm-wide quantum wires etched in 
a GaAs/AlxGa1-xAs heterojunction in Figure 3.132. 
The 2D electron gas formed at the heterointerface is 
confined here in a scale of just a few nanometers (in 
the thickness or x- direction), and so its quantized 
energies are large in the x direction. The lateral con-
finement (y direction) of electrons in the 75-nm-
wide wire is much weaker than this and its quantized 
energies are consequently much smaller. The weaker 
lateral confinement in the wires gives rise to a series 
of relatively closely spaced energy levels  (see EY in 
Figure 3.132). Therefore, transport through the wire 
in the z-direction will involve electrons that occupy 
many of these lateral sub-bands. Thus, these struc-
tures in reality are quasi-2D confined systems with 
free electron motion in one direction and two dif-
ferent types of confinement in the other two. 

For an idealized nanowire with a square cross 
section and the x = y dimensions in the nanoscale 
but continuous along the wire axis (z-direction), the 
energy dispersion function may be written as:
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with the wave function:

 ( (x, y, z) x, y)en ,n1 2
yzik

 (3.259)

with n1 and n2 the quantum numbers labeling the 
eigenstates in the x-y plane and kz the wave vector in 
the z-direction, and where we assume that the dis-
persion relation for the electron energy is parabolic. 
The energy term has again two contributions: one is 

caused by the continuous band value 
2k
m

z
2

e
*2

, and 

the other term [E E kn n z1, 2 ( )] is that of the quantized 
values of electrons confined in two dimensions as 
derived in Equation 3.158 (unconstrained direction 
is along the z-axis). Referencing energies to the con-
duction band edge, the latter expression may be 
rewritten as:
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where Ec
0 is the bottom of the conduction band. The 

lowest sub-band is obtained for n1 and n2 = 1. The 
energy at the bottom of each sub-band (kz = 0) is 
simply given by:
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If we choose the cross-section of the GaAs quan tum 
wire containing the 2D confined electron gas to be 
equal to 100 × 100 Å, then the lowest energies in 
the two lowest sub-bands are equal to 0.112 eV and 
0.280 eV. This is determined from Equation 3.261 for 
n1 = 1, n2 = 1 and n1 = 1, n2 = 2, respectively. In the 
case that the nanowire is much wider (y-direction) 
than it is thick (x-direction), the quantum confine-
ment is most severe in the x-direction. Because in this 
case Ly >> Lx, the n2 levels form a staircase of small 
steps in the widely separated sub-bands correspond-
ing to the various values for n1. Thus, confinement 
that is different in the x and y directions splits each 
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FIGURE 3.132 75-nm-wide quantum wires etched in 
a GaAs/AlxGa1-xAs heterojunction. The confinement of 
electrons in the x- and y-directions quantizes the electron 
energy into a set of discrete energies. The confinement in 
the x-direction is much stronger than in the y-direction.
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sub-band further up into a set of more narrowly 
spaced sub-bands.

In Figure 3.133 we show band structure and den-
sity of states for a quantum wire with a square cross 
section; similar to the situation in quantum wells, 
sub-bands are formed, but in quantum wires with a 
rectangular cross-section multiple sub-bands form 

at each eigenvalue E(nx,ny), spread out as 
2k
m

z
2

e
*2 .

Fermi Surface of Quantum Wires  Whereas Fermi 
surfaces in 3D and 2D electronic structures consist 
of a sphere and a circle, respectively, the Fermi sur-
face of a strictly 1D electronic structure consists of 

just two points at +kF and –kF or dk = 2kF (where 

kF is the Fermi wave vector) or n1D = 2kF . This 

unusual Fermi surface has some pretty significant 
consequences. In 1981, Hiroyuki Sakaki predicted 
that ideal 1D electrons moving at the Fermi level in 
quantum wires would require very large momentum 
changes (Δk = 2kF) to undergo any scattering. The 
result is that electron scattering is strongly forbid-
den. This is a consequence of the fact that in one 
dimension, electrons can scatter only in one of two 
directions: forward and 180° backward. With this 
large reduction in scattering, electrons should 
achieve excellent transport properties (e.g., very 
high mobility). 

Density of States Function for Quantum Wires For 
calculating the density of states for a quantum wire, 

we use the same approach we took for the 3D and 
2D cases. The k-state has now a length l of 2π/L, and 
we must find the number of k-states lying in a length 
of k + dk. The wire length difference, l, is given by:

 l 2  (3.262)

The factor of two appears because the wave number 
could be either positive or negative, corresponding 
to the two directions along the wire.

The resulting density of states per unit length of 
1D k-space is obtained by multiplying by 2 for spin 
degeneracy and dividing by 2π/L:
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To obtain the density of states in terms of the energy 
[G(E)1D], we use again the relation between E and k, 

derived earlier as k
2

1
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 (Equation 3.150) 

and differentiate the latter expression with respect 
to energy:
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The density of energy states G(E)1D, the number of 
allowed states between E and E + dE, per unit energy 
and unit length (divide by L) is then obtained using 
the chain rule:
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 (3.264)

This is in sharp contrast with the behavior of a 3D 
electron gas where G(E)3D goes to zero at low ener-
gies, and two dimensions, where G(E)2D steps up to 
a constant value at the bottom of each 2D sub-band. 
Remembering that the group velocity is given as: 

 v
k

g
d
d

 (3.101)

which we found may also be written as:
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k
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 or more generally  E(
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g ) (3.202)
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FIGURE 3.133 Band structure and density of states for a 
quantum wire with a square cross-section.4
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we can rewrite Equation 3.264 now also in terms of 
the group velocity as: 

 G(E) dE
2d dE

d
dE
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g

k
k

2 2
1

(
 (3.265)

Thus, for a 1D system the density of states is 
inversely proportional to the velocity! We will use 
this expression in vg when we derive the expression 
for the current through a nanowire. We will learn 
that in a nanowire the current is constant and pro-
portional to the velocity and density of states (see 
further below Equation 3.269). If we add electrons to 
the nanowire, they initially fill only the lowest of the 
levels, say level (1,1) in Figure 3.133. As the energy is 
increased and remains less than level (1,2), the lateral 
motion remains frozen, and the increase in energy 
is transferred into motion along the length of the 
wire. The density of states in this level will then take 
the form predicted by Equation 3.265. However, in 
most situations the Fermi energy of the electrons in 
the wire is several times larger than the average spac-
ing between the lateral energy levels in Figure 3.133, 
so several of these levels will be occupied, and each 
of these levels defines a corresponding 1D sub-band. 
The density of states within each sub-band is 1D, but 
the total density of states is obtained by summing 
over all sub-bands n. The summing over the individ-
ual sub-bands can be formulated mathematically as:
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m

L
1

E EID
e
*

2
n

1
1
2

1
2

n
 (3.266)

L is the unit step function (same as H in Equation 
3.255). The density of states of a quantum wire 

diverges as 
1

1
2

E En

 at each sub-band threshold 

and has the inverse energy dependence E−1/2 com-
pared with the E1/2 dependence of a 3D electron gas 
(bulk semiconductor). The DOS of a quantum wire 
obviously has a more pronounced structure than 
does a 2D well, with a large number of sub-bands, 
each one starting as a peak. An immediate manifes-
tation of a large G(E)1D at the bottom of each sub-
band is again an increase of the strength of optical 
transitions or oscillator strength as compared with 
3D and 2D electronic structures. 

In Figure 3.134 we summarize the characteristics 
of a 1D density of state function G(E)1D. The axis of 
the rectangular wire is again in the z-direction, and 
quantization is in the x- and y-directions. The peaks 
show the calculated density of states of a quantum 
wire over a range of energies where several different 
sub-bands become occupied. For comparison, the 
solid line shows the monotonic variation of the den-
sity of states expected for a 3D system.

Electronic Conductivity of Quantum Wires Ohm’s 
law for macroscopic systems is given by V = IR, 
and in terms of conductance σ this is equivalent to 
σ = J/E (Equation 2.2). From the previous sections, 
we know that only electrons close to the Fermi 
level contribute to the conductance. From Bloch’s 
theorem, we also recall that in an ideal periodic 
potential, electrons propagate without any scatter-
ing—and thus no resistance at all—but that electron 
propagation in real materials does involve scatter-
ing. The origin of such scattering can be any source 
of disorder that disturbs the perfect symmetry of 
the lattice. Examples include defects and impurities, 
scattering from other electrons, and lattice vibrations 
(phonons). Because an electric current constitutes a 
movement of those “bumbling” electrons under an 
electric field, one expects that with nanostructures 
featuring dimensions comparable with the funda-
mental size of the electron, electrical properties 
will be strongly influenced by quantum-mechanical 
transport effects. 

Each of the discrete peaks in the density of states 
(DOS) in Figure 3.134 is caused by the filling of a 
new lateral sub-band. The peaks in the density of 
states functions at those energies where the differ-
ent sub-bands begin to fill are called criticalities or 
Van Hove singularities. These singularities (sharp 
peaks) in the density of states function lead to sharp 

G(E)1D

E12
E11

E00
Eg Enm

Eg

E

Ex,y

FIGURE 3.134 The density of states function for a rectan-
gular quantum wire. The solid black curve is that of a free 
electron.


