

FUZZY SETS AND THEIR APPLICATION TO CLUSTERING AND TRAINING

The CRC Press

International Series on Computational Intelligence

Series Editor L.C. Jain, Ph.D., M.E., B.E. (Hons), Fellow I.E. (Australia)

L.C. Jain, R.P. Johnson, Y. Takefuji, and L.A. Zadeh Knowledge-Based intelligent Techniques in Industry

L.C. Jain and C.W. de Silva Intelligent Adaptive Control: Industrial Applications in the Applied Computational intelligence Set

L.C. Jain and N.M. Martin Fusion of Neural Networks, Fuzzy Systems, and Genetic Algorithms: Industrial Applications

H.-N. Teodorescu, A. Kandel, and L.C. Jain Fuzzy and Neuro-Fuzzy Systems in Medicine

C.L. Karr and L.M. Freeman Industrial Applications of Genetic Algorithms

L.C. Jain and B. Lazzerini Knowledge-Based Intelligent Techniques in Character Recognition

L.C. Jain and V. Vemuri Industrial Applications of Neural Networks

H.-N. Teodorescu, A. Kandel, and L.C. Jain Soft Computing in Human-Related Sciences

B. Lazzerini, D. Dumitrescu, L.C. Jain, and A. Dumitrescu Evolutionary Computing and Applications

B. Lazzerini, D. Dumitrescu, and L.C. Jain Fuzzy Sets and Their Application to Clustering and Training

L.C. Jain, U. Halici, I. Hayashi, S.B. Lee, and S. Tsutsui Intelligent Biometric Techniques in Fingerprint and Face Recognition

Z. Chen

Computational Intelligence for Decision Support

L.C. Jain

Evolution of Engineering and Information Systems and Their Applications

H.-N. Teodorescu and A. Kandel Dynamic Fuzzy Systems and Chaos Applications

L. Medsker and L.C. Jain Recurrent Neural Networks: Design and Applications

L.C. Jain and A.M. Fanelli Recent Advances in Artifical Neural Networks: Design and Applications

M. Russo and L.C. Jain Fuzzy Learning and Applications

J. Liu and J. Wu Multiagent Robotic Systems

M. Kennedy, R. Rovatti, and G. Setti Chaotic Electronics in Telecommunications

H.-N. Teodorescu and L.C. Jain Intelligent Systems and Techniques in Rehabilitation Engineering

I. Baturone, A. Barriga, C. Jimenez-Fernandez, D. Lopez, and S. Sanchez-Solano Microelectronics Design of Fuzzy Logic-Based Systems

T. Nishida Dynamic Knowledge Interaction

C.L. Karr Practical Applications of Computational Intelligence for Adaptive Control

Ricardo Salem Zebulum, Marco Aurélio C. Pacheco, and Marley Maria B.R. Vellasco Evolutionary Electronics: Automatic Design of Electronic Circuit and Systems by Genetic Algorithms

FUZZY SETS AND THEIR APPLICATION TO CLUSTERING AND TRAINING

University of Cluj-Napoca

University of Pisa

L.C. Jain

University of South Australia

CRC Press Boca Raton London New York Washington, D.C.

Library of Congress Cataloging-in-Publication Data

Dumitrescu, D.(Dimitru), 1949---Fuzzy sets and their application to clustering and training / D. Dumitrescu, B. Lazzerini, L. C. Jain. p. cm. Includes bibliographical references and index. ISBN 0-8493-0589 (alk. paper) 1. Fuzzy sets. 2. Cluster analysis. I. Lazzerini, Beatrice, 1953--- II. Jain, L. C. (Laxmi Chandra), 1926--- III. Title. QA248.5. D86 2000 511.3'22---dc21 99-088763 CIP

This book contains information obtained from authentic and highly regarded sources. Reprinted material is quoted with permission, and sources are indicated. A wide variety of references are listed. Reasonable efforts have been made to publish reliable data and information, but the authors and the publisher cannot assume responsibility for the validity of all materials or for the consequences of their use.

Neither this book nor any part may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, microfilming, and recording, or by any information storage or retrieval system, without prior permission in writing from the publisher.

The consent of CRC Press LLC does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific permission must be obtained in writing from CRC Press LLC for such copying.

Direct all inquiries to CRC Press LLC, 2000 N.W. Corporate Blvd., Boca Raton, Florida 33431.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation, without intent to infringe.

Visit the CRC Press Web site at www.crcpress.com

© 2000 by CRC Press LLC

No claim to original U.S. Government works International Standard Book Number 0-8493-0589-6 Library of Congress Card Number 99-088763

To my mother and in memory of my father Dan-Dumitru Dumitrescu

To our families and all of our students

Beatrice Lazzerini Lakhmi Jain

Acknowledgments

Our thanks are due to our families and all persons who helped us to accomplish the work concerning this book.

We are particularly grateful to all the active researchers in the field of Fuzzy Set Theory and its applications, who sent us copies of their papers.

We also thank Geta Bonda for her kind help in preparing the manuscript.

Preface

Fuzzy Set Theory (FST) and its underlying fuzzy logic represent one of the most significant scientific and cultural paradigms emerging in the second half of this century.

This paradigm has a definite 'postmodern' flavour as it represents an alternative to the positivist view of the world.

FST paradigm imposed itself on the scientific community who became aware that common sense concepts and approximate reasoning (mainly based on simple, intuitive rules) have a great theoretical and technological potential and an important explanatory power.

It became evident that many parts of natural and artificial reality may adequately be described in terms that tolerate the ambiguity and imprecision specific to the reality itself.

These approximate descriptions may be sufficient for many practical purposes. A 'complete', rigorous description of complex systems is usually impossible or too costly.

It also became manifest that traditional descriptions of complex systems are sometimes possible only at the cost of over-simplification.

On the other hand, the human mind and natural languages can perfectly cope with ambiguity and imprecision.

FST significantly enlarged the frames of the mathematical approach to incorporate imprecise concept descriptions and imprecise (or approximate) reasoning, and to treat them in a definitely rigorous manner. Reality usually has an intrinsic, non-probabilistic ambiguity. If we want to remove this ambiguity we have to resort to over-simplified descriptions.

On one hand, the grid of traditional mathematics and scientific concepts may be too coarse or too restrictive. On the other hand, a complete and exact description of a system could have prohibitive cost, be difficult to manage, or even be useless due to its complexity. Further, predictive or control results based on such description might not be obtained in real time.

It is important to observe that ambiguity, vagueness and imprecision represent only one side of FST. Many important theoretical models and useful applications have been obtained by taking only this aspect into account.

The dual aspect of ambiguity-tolerating reasoning is the nuanced reasoning. With FST we became aware that in order to describe reality plausibly we have to bypass the strong, brittle Yes-No dichotomy.

FST represents a useful set theoretical model of multi-valued logics. Multi-valued logics and FST cross-fertilize each other. Moreover, some multi-valued logics are now considered as special cases of fuzzy logic (in the wide sense).

Clustering is the very first application of FST. The reason for this is that fuzzy clustering does not require very sophisticated conceptual or mathematical tools.

On the other hand, fuzzy clusters represent natural models of fuzzy concepts. We may speak, for instance, about the class of useful books in a library, or the class of clever students in a school, and so on.

Fuzzy classes (or clusters) are the simplest and most natural examples of fuzzy set.

Moreover, it is evident that most real-world classes are fuzzy rather than crisp.

Goals of the book

The main goals of the book are:

- (i) to offer a general, comprehensive introduction to Fuzzy Set Theory with a special emphasis on the notions and results needed for training and clustering purposes;
- (*ii*) to give an adequate and unitary mathematical framework for fuzzy classification and clustering;
- (*iii*) to provide a general methodology to develop fuzzy training and classification methods;
- (*iv*) to provide a general method to obtain a large variety of fuzzy clustering algorithms;
- (v) to offer a comprehensive introduction to the fields of fuzzy learning classifiers and fuzzy clustering;
- (vi) to present some basic fuzzy clustering algorithms treated in a unified manner;
- (vii) to present a hierarchical fuzzy clustering method able to detect hierarchically organized cluster structures without any *a priori* knowledge of the optimal number of clusters in the data set.

Structure of the book

The book is structured in four parts.

Part I (Chapters 1-6) describes fundamental aspects of Fuzzy Set Theory. This part is intended to offer an introduction, both simple and self-contained, to mathematical notions and results concerning fuzzy sets, fuzzy partitions and related concepts. *Part II* (Chapters 7-8) is dedicated to fuzzy learning machines (fuzzy classifiers) able to learn from fuzzy data. Fuzzy learning classifiers may use the outputs of a fuzzy clustering algorithm as training sets.

Some basic training algorithms are described and their convergence properties are investigated.

Part III (Chapters 9-16) deals with fuzzy partitional prototype-based clustering. The main topics within this part concern fuzzy clustering with point and linear prototypes, adaptive clustering, validity functionals and convergence properties of clustering procedures.

Part IV (Chapters 17-19) is dedicated to fuzzy discriminant analysis and fuzzy hierarchical clustering.

The content of each chapter is now briefly described.

Chapter 1 contains the basic notions about fuzzy sets. The framework is that of triangular norms (t-norms) and conorms (t-conorms), and their generators. Several families of t-norms and t-conorms are considered. Various definitions of union, intersection and complement operations are considered.

The ordinal sum-based method to obtain new t-norms and t-conorms is addressed.

An axiomatic definition of complementation operator is given and some of its instances are taken into account.

Chapter 2 explores the properties of set operations induced by various operators, particularly T_o, S_o and T_{∞}, S_{∞} .

A particular attention is paid to the equivalence between the concepts of binary fuzzy partitions and fuzzy partition of unity (Ruspini's early definition of fuzzy partition).

It is proved that the two concepts are completely equivalent if and only if the set operations are induced by T_{∞} and S_{∞} .

The notion of fuzzy *n*-partition, for n > 2, is investigated. Other topics of this chapter are:

- (i) refinement relation for fuzzy partitions;
- (ii) algebraic join of two fuzzy partitions.

The algebraic structure of the family L(X) of the fuzzy sets on a fixed universe X is studied in *Chapter 3*. The key concepts are those of partially ordered set, lattice, residuated lattice and multi-valued algebra (MV-algebra). It is emphasized that T_{∞} , S_{∞} seem to be suitable to define set operations for fuzzy sets, whereas T_o , S_o are suitable to describe the order relation on L(X).

The framework of MV-algebras makes clear the non-competitive relationship of the pairs (T_o, S_o) and (T_∞, S_∞) , and their different meanings and specific roles.

Residuated lattices also represent a powerful algebraic tool for characterizing fuzzy sets and their underlying logic.

The notion of a basic triple is considered. Roughly speaking, (T, S, C) is a basic triple if C is a complement operation, T and S are C-dual and S and C have the same generator. The use of basic triples in defining set operations ensures a deep coherence of the resulting fuzzy set theory.

The connection of the notions of basic triple and residuated implication is investigated. In this respect, a matching operator is defined. A basic triple and a matching operator can generate a residuated lattice via a residuated implication.

Chapter 4 begins with a presentation of the metric concepts for fuzzy sets. There are several definitions of distance between fuzzy sets. The definition used in this chapter is not the standard one. We preferred it both for its being a natural extension of the classical notion and for its fitness to clustering and training purposes.

The other topics of this chapter are:

- (i) distance between fuzzy points;
- (ii) diameter of a fuzzy set;
- (iii) fuzzy ball;
- (iv) bounded fuzzy set;
- (v) distance in a fuzzy class.

Chapter 5 deals with the notions of entropy and informational energy of fuzzy partitions. These notions are based on a suitable concept of fuzzy measures.

Let us suppose the atoms of a fuzzy partition P describe the outcomes of an experiment. The entropy of the fuzzy partition P measures the information obtained (or the uncertainty removed) by performing the experiment associated with this fuzzy partition.

Chapter 6 is devoted to the characterization of fuzzy sets using fuzziness and nonfuzziness measures. These measures give a global characterization of the uncertainty/certainty associated with a fuzzy description of a situation, experiment, etc. Some particular fuzziness and nonfuzziness measures for fuzzy sets defined on finite or infinite universes are considered.

Several correlation coefficients of fuzzy sets are also taken into account.

Fuzzy learning classifiers, considered in *Chapter 7*, may deal with data that are either erroneous or containing atypical points. This kind of classifiers are robust and may cope with the non-separability of the training sets.

Chapter 7 proposes a new paradigm for fuzzy neural network training. Within this paradigm, classifiers able to learn fuzzy training classes may be considered. A fuzzy perceptron is considered as an example of this paradigm. The convergence of the fuzzy perceptron training procedure is studied.

A robust variant of the fuzzy perceptron is considered.

Several generalizations of the fuzzy perceptron model are also taken into account. The fuzzy pocket (FP) algorithm is such a generalization. FP algorithm is able to obtain an approximate separation hyperplane in the case of arbitrary non-separable training classes.

Chapter 8 is dedicated to fuzzy training procedures based on squared error criterion functions.

A fuzzy relaxation algorithm is derived. Some variants of this algorithm are also considered.

Other training procedures considered in this chapter are fuzzy relatives of some well-known classical learning algorithms. These procedures are: Fuzzy MSE method, Fuzzy Widrow-Hoff algorithm and several variants of Fuzzy Ho-Kashyap algorithm.

The convergence properties of the fuzzy training algorithms presented in this chapter are studied. Most of the models and algorithms in Part II are original.

The main idea in *Chapter* 9 is that the sub-cluster structure of a fuzzy class may also contain some important useful clustering information. To detect this structure a well-known alternating optimization method is applied to a squared error objective function. The objective function is not guessed, but it is derived using a general method based on the local distance with respect to a fuzzy set.

A Generalized Fuzzy n-Means (GFNM) algorithm for detecting the sub-cluster structure of a fuzzy class is derived.

In order to detect unequal size clusters correctly, the use of several adaptive distances is proposed. A modified GFNM algorithm is considered. Other topics in this chapter are:

- (i) data normalization using mean and variance of fuzzy classes;
- (*ii*) use of local distances for clustering purposes within the GFNM algorithm.

In *Chapter 10*, the infinite family of (G)FNM algorithms is considered. The limit properties of this family are given.

Other topics in this chapter are:

- (i) reformulated version of the (G)FNM algorithm;
- (*ii*) clustering with L_p metric;
- (iii) clustering with set prototypes.

Chapter 11 mainly concerns the detection of linear (sub)clusters of a fuzzy class. Two clustering methods are considered. They are alternating optimization and principal component analysis of a fuzzy class. In *Chapter 12* various families of adaptive fuzzy clustering algorithms are considered. These standard families are generalized to detect the cluster substructure of a fuzzy class.

Prototype-based partitional clustering algorithms are used. Some algorithms adopt a variable metric inducing matrix.

The main algorithms in this chapter are:

- (i) adaptive FNM;
- (ii) shell algorithms;
- (iii) adaptive fuzzy n-shells algorithms.

In *Chapter 13*, other algorithms to detect spherical, elliptical or planar shaped clusters are considered. Several variants of these algorithms are presented. These algorithms use modified distance functions like:

- (i) distance generated by an unconstrained distance-inducing matrix (AFNSU family of algorithms);
- (ii) algebraic distance;
- (*iii*) exponential distance.

The main classes of algorithms are:

- (i) AFNSU family;
- (ii) ellipsoidal shell-clustering;
- (iii) fuzzy maximum likelihood;
- (*iv*) Gath-Geva algorithm;
- (v) robust fuzzy clustering algorithms.

The cluster validity problem is addressed in *Chapter 14*. To detect the optimal cluster number, validity functionals are used. Validity functionals give a numerical expression of the quality of a fuzzy partition. The intuitive idea is that a good fuzzy partition is not a very fuzzy one.

In this chapter, some well-known validity functionals, like partition coefficient and classification entropy, are considered.

Using mean and variance, standardized and normalized versions of these functionals are defined. Other validity functionals studied in this chapter are coupling coefficient and proportion exponent.

In *Chapter 15*, a wide range of validity functionals are considered. These functionals are based on various principles. Some of them represent uniform data validity functionals. Most of them are geometric validity functionals that intend to reflect the actual structure of the data set.

Geometric functionals are also related to the cluster shapes. Examples of geometric validity functionals are:

- (i) fuzzy partition density;
- (ii) fuzzy partition volume;
- (iii) class inertia;
- (iv) separation index.

Other geometric functionals include class prototypes and data set points.

Convergence of the FNM fuzzy clustering algorithms using point prototypes is studied in *Chapter 16*.

Both local and global convergence properties are studied. Some wellknown convergence results for FNM are considered. These results still remain valid for the GFNM algorithm.

The convergence theorems considered in this chapter may represent the framework for a general convergence theory for prototype-based partitional fuzzy clustering algorithms. Part IV contains an original approach to fuzzy discriminant analysis and hierarchical clustering.

Chapter 17 introduces fuzzy scatter matrices and Fisher discriminant vector for two fuzzy classes. Discriminant axes for n > 2 fuzzy classes are analyzed. Some fuzzy scattering criteria are considered for clustering purposes.

The classical optimization methods seem not to be suitable to optimize the obtained objective functions. Evolutionary algorithms (particularly genetic algorithms) are suggested as an ideal tool to optimize the scatter objective functions.

Chapter 18 addresses the problem of fuzzy hierarchical clustering. Hierarchical clustering methods may detect the built-in hierarchical structure in a data set and also detect the optimal cluster number in a given data set.

A divisive method to detect a fuzzy cluster hierarchy is proposed. At each decomposition level, only 'real' clusters are retained. The obtained hierarchy is binary and the method is sufficiently flexible and robust. It may deal with arbitrary cluster structures. Each node in the decomposition tree corresponds to a fuzzy class. For each such node, a fuzzy one-level algorithm to detect the fuzzy partition of the corresponding fuzzy class is used.

The quality of each binary fuzzy partition is measured by its *polarization degree*. Using the entropy of a fuzzy partition a stability degree of a fuzzy hierarchy is proposed.

A hierarchical clustering procedure using structural, entropy-based information is also considered.

Chapter 19 addresses the problem of simultaneous clustering (SC). The aim of SC is to find simultaneously a fuzzy partition of the data set and a fuzzy partition of the characteristics (features) describing the data samples. The two fuzzy partitions have to be mutually relevant.

The problem of simultaneous clustering has a wide range of practical applications. It is also important for data mining, data reduction techniques and for classifier design for large data sets.

An algorithm for simultaneously detecting one-level fuzzy cluster struc-

tures of data and of the corresponding features is proposed. This algorithm is then used to obtain a simultaneous hierarchical clustering structure. It is noteworthy that both algorithms are intrinsically fuzzy, i.e., they do not allow hard versions.

The book contains an extensive unified treatment of fuzzy sets, fuzzy clustering and fuzzy training models.

The book is intended for those who are interested in intelligent computation models and, in particular, in pattern recognition, data mining, clustering and classifier design. It may also be used as an introduction to basic concepts of fuzzy sets, fuzzy clustering and supervised fuzzy training. The book may be useful for scientists from various fields (such as chemistry, physics, biology, economics, and engineering) interested in data analysis.

The book may also be used as a textbook in a one-semester postgraduate course in pattern recognition and fuzzy technology.

Contents

Ι	Ba	asic a	spects of fuzzy set theory	1
1	Fuz	zy Set	S	3
	1.1	Introd	luction	3
	1.2	Fuzzy	sets and fuzzy points	4
		1.2.1	Basic definitions	4
		1.2.2	Fuzzy points. Level sets of a fuzzy set	6
		1.2.3	Fuzzy points and the inclusion relation	8
	1.3	Axion	ns for operations on fuzzy sets	9
		1.3.1	Basic requirements for set operators	9
		1.3.2	Axioms for the set operators	12
	1.4	Triang	gular norms and conorms	14
		1.4.1	Definition of <i>t</i> -norms. Archimedean <i>t</i> -norms	14
		1.4.2	Definition of <i>t</i> -conorms. Archimedean <i>t</i> -conorms	16
		1.4.3	Pseudo-inverse and additive generators	17
		1.4.4	Frank's fundamental family of <i>t</i> -norms and <i>t</i> -conorms	19
		1.4.5	Other families of t-norms and t-conorms	21
		1.4.6	Relationship between Frank's family and other families	22

		1.4.7	Partial order relation for <i>t</i> -norms	
			and t -conorms	24
	1.5	Ordin	al sums	26
		1.5.1	Definition of ordinal sums	27
		1.5.2	Basic results on ordinal sums	28
		1.5.3	Frank's theorems	29
	1.6	Min a	nd max operators for intersection and union	30
		1.6.1	Set operations with min and max $\ldots \ldots \ldots$	30
		1.6.2	Results on the unicity of min and max operators	31
	1.7	Fuzzy	complement	33
		1.7.1	Axiomatic definition of fuzzy complement	33
		1.7.2	Generator of a complement	35
		1.7.3	Examples of complements and their generators	36
		1.7.4	C-duality	38
		1.7.5	Equilibrium point of a complement	40
			1.7.5.1 Equilibrium point	40
			1.7.5.2 Dual point	41
		Refere	ences and bibliography	43
2	Pro and	perties fuzzy	s of fuzzy set operations. Disjointness partitions	47
	2.1	Introd	uction	47
	2.2	Prope	rties of fuzzy set operations	48
		2.2.1	Properties of set operations induced by T_o, S_o	48
		2.2.2	Properties of set operations induced by T_{∞}, S_{∞}	51

		2.2.3	Set operations induced by arbitrary connectives T, S	54				
	2.3	Disjoi	nt fuzzy sets and binary fuzzy partitions	58				
		2.3.1	Disjointness of two fuzzy sets and binary partition concept	58				
		2.3.2	Uniqueness of T_∞ and S_∞	60				
		2.3.3	Uniqueness of T_{∞}, S_{∞} and N	65				
		2.3.4	Fuzzy partitions and Ruspini's condition	67				
	2.4	Disjoir of fuzz	nt families. Disjoint sequences zy sets	70				
	2.5	Fuzzy	<i>n</i> -partitions of fuzzy sets	72				
	2.6	Refine fuzzy	ment relation for partitions	73				
		2.6.1	Refinement relation	73				
		2.6.2	Properties of refinement relation	77				
	2.7	Algebr	raic join of fuzzy partitions	78				
		2.7.1	Algebraic join and refinement relation	78				
		2.7.2	Algebraic join and supremum	80				
		Refere	ences and bibliography	85				
3	Alg	ebraic	properties of the families of fuzzy sets	87				
	3.1	Introd	uction	87				
	3.2	Posets	and lattices	88				
	3.3	Lattic	e structure of $L(X)$	90				
	3.4	MV-a	lgebras	91				
		3.4.1	Definition of an MV -algebra	91				
		3.4.2	Examples of MV -algebras $\ldots \ldots \ldots \ldots$	93				
		3.4.3	(T_o, S_o) versus (T_∞, S_∞)	94				
	3.5	Residu	lated lattices	95				

		3.5.1	Residuated lattice concept
		3.5.2	Examples of residuated lattices
	3.6	Regul	ar basic triples
	3.7	Match	ning operator as residuated implication \ldots \ldots 102
		3.7.1	Matching operator
		3.7.2	Matching operator as a residuated implication
		3.7.3	Residuated lattice generated by a regular basic triple
	3.8	Some	concluding remarks
		Refere	ences and bibliography
4	Met	tric co	ncepts for fuzzy sets 111
	4.1	Introd	uction
	4.2	Basic	notions
		4.2.1	Distance between classical sets
		4.2.2	Distance between fuzzy sets 113
			4.2.2.1 Definition of distance between fuzzy sets113
			4.2.2.2 Examples of distances between fuzzy sets
		4.2.3	Distance between fuzzy points
	4.3	Diame	eter of a fuzzy set
		4.3.1	Diameter definition
		4.3.2	Diameter properties
	4.4	Fuzzy	ball
		4.4.1	Fuzzy ball with fuzzy point center
		4.4.2	Fuzzy ball properties
		4.4.3	Bounded fuzzy sets

		4.4.4	Fuzzy ball with crisp center \ldots	129
		4.4.5	Metric concepts using Hausdorff-Pompeiu metric	129
	4.5	Distan	ce with respect to a fuzzy class	129
		4.5.1	Distance in a fuzzy class	130
		4.5.2	Extended distance	130
		Referen	nces and bibliography	133
5	Ent: fuzz	ropy an y parti	nd informational energy of finite itions	135
	5.1	Introdu	uction	135
	5.2	Entrop	y of a complete system of fuzzy events	136
		5.2.1	Fuzzy measure	136
		5.2.2	Independent events	138
		5.2.3	Entropy of a complete system of fuzzy events .	139
		5.2.4	Two examples of fuzzy measure spaces \ldots .	140
	5.3	Entrop	y and conditional entropy of a fuzzy partition $\$.	142
		5.3.1	Definition of entropy	142
		5.3.2	Conditional entropy	143
		5.3.3	Entropy of independent fuzzy partitions	145
	5.4	Proper	ties of fuzzy partition entropy	149
		5.4.1	Basic properties	149
		5.4.2	Algebraic join of fuzzy partitions	151
		5.4.3	Refinement relation and entropy of fuzzy partitions	153
		5.4.4	Simple inequality properties	158
	5.5	Inform	ational energy of fuzzy partitions	159
		5.5.1	Definition of informational energy	159
		5.5.2	Properties of informational energy	159

	5.6	Condi	tional inf	ormational energy	163
		5.6.1	Definitio	on of conditional energy	163
		5.6.2	Basic p	roperties of conditional energy	164
		5.6.3	Conditio	onal energy and refinement relation	167
	5.7	Inforn by a s	national e ubadditiv	nergy induced æ measure	172
		5.7.1	Subaddi	tive fuzzy measure	172
		5.7.2	m_1 -indu	ced informational energy	174
		Refere	ences and	bibliography	175
6	Fuz	ziness	and non	fuzziness measures	177
	6.1	Introd	uction .		177
	6.2	Measu	res of fuz	ziness	177
		6.2.1	The con	cept of fuzziness measure	177
			6.2.1.1	Sharpness relation	178
			6.2.1.2	Fuzziness measure	179
		6.2.2	Entropy	of a fuzzy set \ldots	180
			6.2.2.1	Lattice operations and valuation \ldots	180
			6.2.2.2	Normalized entropy	182
		6.2.3	Other fu	zziness measures	182
			6.2.3.1	Fuzziness measures induced by a function	182
			6.2.3.2	Fuzziness measures induced by a family of functions	183
			6.2.3.3	Fuzziness measures induced by distance	184
		6.2.4	Yager's Polariza	fuzziness measure. tion relation	185
		6.2.5	Other di	stance-based measures of fuzziness	187
			6.2.5.1	Distance from complement	187

			6.2.5.2 Fuzziness measures
		6.2.6	Fuzziness measures for fuzzy sets on infinite universe
	6.3	Nonfu	zziness measures
		6.3.1	Notion of nonfuzziness
		6.3.2	Informational energy of a fuzzy set 192
		6.3.3	Other nonfuzziness measures
		6.3.4	A different approach
		6.3.5	Polarization measures
	6.4	Correl	ation between fuzzy sets
		6.4.1	Correlation coefficient
		6.4.2	Retarded correlation
		6.4.3	Total correlation
	6.5	Other	approaches
		Refere	nces and bibliography 201
Π	\mathbf{S}_{1}	uperv	vised fuzzy learning classifiers 203
7	Fuzz	zy neu	ral classifiers. Fuzzy perceptron algorithm
	\mathbf{and}	some	relatives 205
	7.1	Introd	uction
	7.2	Superv	vised and unsupervised training classifiers 207
		7.2.1	Supervised versus unsupervised learning 207
		7.2.2	Linearly separable (hard) classes
		7.2.3	Data normalization
		7.2.3	Data normalization2097.2.3.1Augmented vectors210
		7.2.3	Data normalization2097.2.3.1Augmented vectors2107.2.3.2Sign normalization211

7.3	Linear	rly separa	ble fuzzy classes		•	213
	7.3.1	Separati	on condition for fuzzy classes			213
	7.3.2	Non-sep	aration degree of fuzzy classes			215
7.4	Separa	ation degr	ee of fuzzy classes			217
	7.4.1	Definitio	on of separation degree	•		217
	7.4.2	Example	es			217
		7.4.2.1	Example 1			217
		7.4.2.2	Example 2		•	218
		7.4.2.3	Example 3			218
		7.4.2.4	Example 4			219
	7.4.3	Separati	on degree and linear separability \ldots			219
7.5	Fuzzy	perceptro	n algorithm			221
	7.5.1	Data not	rmalization			221
	7.5.2	Misclass	ified vectors			223
	7.5.3	Objectiv	e function			223
	7.5.4	Correctio	on rule			225
		7.5.4.1	Batch correction rule			225
		7.5.4.2	On-line correction rule \ldots .			226
	7.5.5	Training	procedure for fuzzy perceptron $\ $.		•	227
	7.5.6	Crisp de	cision regions			228
	7.5.7	Robust f	uzzy perceptron algorithm			228
	7.5.8	Generali	zed fuzzy perceptron algorithm			229
		7.5.8.1	Separation condition and sign normalization			229
		7.5.8.2	Correction rule			230
		7.5.8.3	Robust GFP			231
7.6	Hybrid	ł fuzzy lea	arning			231
	7.6.1	Building	fuzzy training classes by clustering			231
		•				

		7.6.2	Hierarch	ical learning	232					
	7.7	Conve	rgence of	the fuzzy perceptron algorithm	233					
	7.8	Fuzzy	perceptro	on of Keller and Hunt	237					
		7.8.1	Members	ship assignment	237					
		7.8.2	Correctio	on rule	238					
	7.9	Fuzzy	pocket al	$\operatorname{gorithm}$	240					
		7.9.1	Pocket a	lgorithm	240					
		7.9.2	Correctio	on rule	241					
		7.9.3	Robust f	uzzy pocket algorithm	241					
	7.10	Other	perceptro	n-like approaches	242					
		7.10.1	Eliminat for non-s	ion of points responsible reparation	242					
		7.10.2	Possibilis	stic perceptron	242					
			7.10.2.1	Possibilistic binary partition	243					
			7.10.2.2	Correction rule	244					
		7.10.3	Lenart's	approach	244					
		Refere	nces and l	bibliography	245					
8	Fuzz	y lear	ning algo	orithms using squared						
	crite	erion f	unction		247					
	8.1	Introd	uction		247					
	8.2	Fuzzy	relaxation	1	248					
		8.2.1	Criterion	function	248					
			8.2.1.1	Separation condition $\ldots \ldots \ldots \ldots$	248					
			8.2.1.2	$Classification\ error\ \ldots\ \ldots\ \ldots\ \ldots\ \ldots$	249					
			8.2.1.3	Actual objective function $\ldots \ldots \ldots$	250					
		8.2.2	Fuzzy rel	laxation algorithm	251					
		8.2.3	Variants	of fuzzy relaxation algorithm	252					

	8.2.4	Geometrical interpretation of fuzzy relaxation algorithm	54
	8.2.5	Convergence of fuzzy relaxation procedure 25	5
	8.2.6	Generalized fuzzy relaxation for <i>b</i> -separability	68
8.3	Fuzzy	minimum square error method	9
	8.3.1	Objective function	9
	8.3.2	FMSE solution	1
	8.3.3	Another expression of FMSE solution 26	1
8.4	Fuzzy	Widrow-Hoff algorithm	2
	8.4.1	Off-line procedure	2
	8.4.2	On-line procedure	3
	8.4.3	Fuzzy Delta Rule and its convergence 26	4
8.5	Fuzzy	Ho-Kashyap procedure	5
	8.5.1	Fuzzy Ho-Kashyap learning rule	5
		8.5.1.1 Optimal separation vector	5
		8.5.1.2 Another expression of optimal separation vector	7
		8.5.1.3 Fuzzy Ho-Kashyap correction rules 26	8
	8.5.2	Fuzzy Ho-Kashyap basic algorithm 26	9
	8.5.3	Complete version of the fuzzy Ho-Kashyap algorithm	0
	8.5.4	A simplified variant of the fuzzy Ho-Kashyap algorithm	1
8.6	Some	concluding remarks on fuzzy learning	3
	Refere	ences and bibliography	5

III		One-level fuzzy partitional prototype-based clustering				
9	On of	ne-level clustering. Cluster substructure a fuzzy class				
	9.1	Introd	luction	. 279		
	9.2	Cluste	er substructure of a fuzzy class. Point prototypes	280		
		9.2.1	The mean of a fuzzy class	. 282		
		9.2.2	Criterion function for clustering	. 284		
		9.2.3	Alternating optimization technique	. 286		
	9.3	Gener	alized Fuzzy <i>n</i> -Means algorithm	. 291		
		9.3.1	Basic GFNM algorithm	. 291		
		9.3.2	The clustering procedure	. 293		
		9.3.3	Hyperboloid approximation	. 294		
		9.3.4	Fuzzy <i>n</i> -Means algorithm	294		
		9.3.5	Hard <i>n</i> -Means algorithm	295		
		9.3.6	Shape of clusters detected by GFNM	295		
	9.4	9.4 Adaptive distance for detecting unequal size clusters		296		
		9.4.1	Equal membership surface	296		
		9.4.2	Diameter-induced normalization	298		
		9.4.3	Normalized solution	299		
9.5 GFNM algorithm with adaptive distances		A algorithm with adaptive ces	. 300			
		9.5.1	Diameter-induced adaptive distances	300		
		9.5.2	On-line use of adaptive distances	302		
		9.5.3	Radius-induced adaptive distances	303		
	9.6	Data	normalization	. 304		
		9.6.1	Mean and variance of a fuzzy class	. 304		

		9.6.2 Normalization using mean and variance	306
	9.7	Local metric induced by a fuzzy class	306
	9.8	Local distances for GFNM algorithm	308
		References and bibliography	309
10	Oth	er one-level clustering methods	313
	10.1	$Introduction \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	313
	10.2	Clustering with L_p metrics $\ldots \ldots \ldots \ldots \ldots \ldots$	314
	10.3	Fuzzy clustering with set prototypes	315
		10.3.1 Criterion function	316
		10.3.2 Clustering algorithm	318
	10.4	Family of Fuzzy <i>n</i> -Means criterion functions	319
		10.4.1 Infinite family of FNM algorithms	319
		10.4.2 Limit properties of FNM family	321
		10.4.3 Infinite family of GFNM algorithms	322
	10.5	Criterion reformulation	322
	10. 6	Reformulated Generalized Fuzzy <i>n</i> -Means criterion function	325
		References and bibliography	329
11	Line	ear cluster detection	331
	11.1	$Introduction\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\$	331
	11.2	Detection of linear sub-clusters	331
		11.2.1 Criterion function	332
		11.2.2 Optimal fuzzy partition	334
		11.2.3 Optimal prototypes	335
		11.2.4 GFNL algorithm	341
	11.3	Clusters with a degree of linearity	343

CONTENTS	

	11.4	Princi	pal components of a fuzzy class	345
		11.4.1	Principal directions detection	345
		11.4.2	Principal components and clustering	349
	11.5	Cluste protot	ring with linear varieties ypes	350
		11.5.1	Objective function	351
		11.5.2	Optimal fuzzy partitions and prototypes	352
		Refere	nces and bibliography	355
12	Ada	ptive a	algorithms for one-level fuzzy clustering	357
	12.1	Introd	uction	357
	12.2	Adapti	ive Fuzzy n -Means algorithms $\ldots \ldots \ldots \ldots$	358
		12.2.1	Adaptive metric	358
		12.2.2	Optimal fuzzy partition and prototypes	359
		12.2.3	Optimal distance inducing matrices. Adaptive norm theorem	361
		12.2.4	Adaptive FNM algorithm	364
	12.3	Shells	clustering algorithms	366
		12.3.1	Criterion function of the FNS algorithm	367
		12.3.2	Minimization of the criterion function	369
			12.3.2.1 Optimal fuzzy partition	369
			12.3.2.2 Equation of optimal prototypes	370
		12.3.3	FNS algorithm	372
		12.3.4	Generalized FNS algorithm	373
		12.3.5	Modified distances	374
		12.3.6	Hard <i>n</i> -Shells algorithm. Implementation issues and convergence of FNS algorithm	374
	12.4	Adapti	ive <i>n</i> -shells clustering	37 5

		12.4.1	Criterion function	75
		12.4.2	Optimal fuzzy partitions and prototypes 37	76
			12.4.2.1 Optimal partition	7
			12.4.2.2 Optimal prototypes	7
		12.4.3	Adaptive norms	78
	12.5	Adapt	ive Fuzzy <i>n</i> -Shells and its variants	31
		12.5.1	AFNS algorithm	81
		12.5.2	Generalized AFNS and Hard AFNS 38	84
		12.5.3	Implementation issues	34
		12.5.4	Convergence and repair of AFNS	5
		12.5.5	Simplified AFNS algorithm	6
		12.5.6	Infinite AFNS family	6
		Refere	nces and bibliography	9
13	Adv	anced	adaptive algorithms 39	1
13	Adv 13.1	anced Introd	adaptive algorithms 39	1 1
13	Adv 13.1 13.2	anced Introdu Adapti	adaptive algorithms 39 uction	1
13	Adv 13.1 13.2	anced Introdu Adapti uncons	adaptive algorithms 39 uction	1 01
13	Adv 13.1 13.2	anced Introdu Adapti uncons 13.2.1	adaptive algorithms39uction	1 01 02 02
13	Adv 13.1 13.2	anced Introdu Adapti uncons 13.2.1 13.2.2	adaptive algorithms39uction	1 1 2 2 3
13	Adv 13.1 13.2	anced Introdu Adapti uncons 13.2.1 13.2.2 13.2.3	adaptive algorithms39uction $\dots \dots $	1 01 02 02 03 04
13	Adv 13.1 13.2 13.3	anced Introde Adapti uncons 13.2.1 13.2.2 13.2.3 Modifi	adaptive algorithms39uction $\dots \dots $	1 01 02 02 03 04 06
13	Adv 13.1 13.2 13.3	anced Introdu Adapti uncons 13.2.1 13.2.2 13.2.3 Modifi 13.3.1	adaptive algorithms39uction	1 12 12 12 13 14 16 16
13	Adv 13.1 13.2 13.3	anced Introdu Adapti uncons 13.2.1 13.2.2 13.2.3 Modifi 13.3.1 13.3.2	adaptive algorithms39uction	1 12 12 12 13 14 16 16 18
13	Adv 13.1 13.2 13.3	anced Introd Adapti uncons 13.2.1 13.2.2 13.2.3 Modifi 13.3.1 13.3.2 13.3.3	adaptive algorithms39uction39ive n-shells algorithm:strained M_i 39Optimal prototypes39AFNSU1 algorithm39Infinite AFNSU algorithms family39ed AFNSU algorithm39Optimal fuzzy partition39Optimal prototypes and shape-inducing matrices39AFNSU2 algorithm39	1 2 2 3 4 6 8 9
13	Adv 13.1 13.2	anced Introd Adapti uncons 13.2.1 13.2.2 13.2.3 Modifi 13.3.1 13.3.2 13.3.3 13.3.4	adaptive algorithms39uction 39 ive n-shells algorithm:strained M_i 39 Optimal prototypes 39 AFNSU1 algorithm 39 Infinite AFNSU algorithms family 39 ed AFNSU algorithm 39 Optimal fuzzy partition 39 Optimal prototypes and shape-inducing matrices 39 AFNSU2 algorithm 39 Optimal prototypes and shape-inducing matrices 39 AFNSU2 algorithm 39	1 12 12 12 13 14 16 16 18 19 10

.

13.4	1.1 Algebra	ic distance 40
13.4	.2 Modified	d Hard Spherical Shell algorithm 40
	13.4.2.1	Objective function and optimal prototypes 400
	13.4.2.2	MHSNS algorithm 400
13.5 Moo	dified Fuzzy	Spherical <i>n</i> -Shells algorithm 40 ^o
13.5	5.1 Objectiv	ve function
13.5	.2 Optimal	l prototypes
13.5	.3 Optimal	fuzzy partition. MFSNS algorithm 410
13.5	.4 Infinite	MFSNS family 41
	13.5.4.1	Objective function 41
	13.5.4.2	Optimal memberships 412
	13.5.4.3	Substructure of a fuzzy class 413
13.6 Oth	er shell-clus	tering algorithms
13.6	.1 FNQS a	lgorithm
13.6	.2 Exact F	NQS algorithm 414
13.6	.3 Fuzzy n	Plano-Quadric Shell Algorithm 416
13.6	.4 Ellipsoid	al shell-clustering algorithm 416
13.7 Fuz:	zy Maximur	n Likelihood Estimation 417
13.7	.1 Fuzzy co	ovariance and <i>a priori</i> probability 418
13.7	7.2 Exponer probabil	ntial distance and <i>a posteriori</i> ity
13.7	.3 FMLE a	lgorithm
13.8 Gen	eralized FM	ILE clustering procedure 42
13.8	.1 Generali	zed FMLE clustering
	13.8.1.1	A priori probability 42
	13.8.1.2	Optimal membership degrees 422
13.8	.2 Generali	ized FMLE algorithm 423

	13.9	Gath-Geva clustering algorithm
		13.9.1 Initial prototypes
		13.9.2 Gath-Geva algorithm
		13.9.3 Partition quality
		13.9.4 Modified FMLE and Gath-Geva algorithms 428
	13.10	0 Robust algorithms
		References and bibliography 431
14	Clus	ster validity 435
	14.1	Introduction
	14.2	Partition coefficient
		14.2.1 Definition of the partition coefficient 437
		14.2.2 Properties of the partition coefficient 438
	14.3	Partition coefficient relatives
		14.3.1 Coupling coefficient
		14.3.2 Generalized partition coefficient
	14.4	Use of the partition coefficient
	14.5	Classification entropy
		14.5.1 Definition of classification entropy 450
		14.5.2 Properties of classification entropy 451
		14.5.3 Use of the classification entropy
	14.6	Mean and variance of validity functionals C and E 452
		14.6.1 Basic notations
		14.6.2 Two auxiliary statistics
		14.6.3 Mean and variance of classification entropy 455
		14.6.4 Mean and variance of partition coefficient 455
	14.7	Normalization and standardization of C and E 457
		14.7.1 Normalization

			14.7.1.1	Normalization of validity functionals		457
			14.7.1.2	Another normalization of C		458
		14.7.2	Clusterir	ng using validity functionals		459
		14.7.3	Standard	lization		459
			14.7.3.1	Mean and variance of C' and E'		459
			14.7.3.2	Mean and variance of C''		461
			14.7.3.3	Standardization of C and E		463
	14.8	Propor	tion expo	nent		464
		14.8.1	Definitio	n of proportion exponent		464
		14.8.2	Propertie	es of proportion exponent		465
	14.9	Propor	tion expo	nent as a clustering quality measure .		467
		Referen	nces and l	bibliography		471
15	Adv	anced	cluster v	alidity functionals		473
	15.1	Introdu	uction			473
	15.2	Uniform	m data fu	nctionals		474
		15.2.1	Definition	n of UDF	•	474
		15.2.2	Extended	I FNM procedure	•	475
			15.2.2.1	Objective function		475
			15.2.2.2	Optimal prototypes		476
			15.2.2.3	Optimal membership degrees and extended FNM algorithm		477
		15.2.3	Inverse q	uality function	•	477
		15.2.4	Function	Φ		478
		15.2.5	A UDF.			479
						170
		15.2.6	A family	of UDF	•	413
	15.3	15.2.6 Geome	A family tric cluste	of UDF	•	481

	15.3.2	Volume	of the fuzzy partition	483
	15.3.3	Alternat Partition	e definition of average density. 1 density	484
	15.3.4	<i>c</i> -density function	of a fuzzy class and related	486
	15.3.5	Within c	lass inertia functionals	488
		15.3.5.1	WCI validity functional	488
		15.3.5.2	Modified WCI functional	490
	15.3.6	Separatio	on index	491
		15.3.6.1	Separation index of a fuzzy partition .	49 1
		15.3.6.2	Modified separation index	492
		15.3.6.3	S and S^* as validity functionals	49 2
15.4	Validit prototy	y function ypes and (nals including class data points	492
	15.4.1	Xie-Beni	cluster validity measure	493
		15.4.1.1	Xie-Beni index	493
		15.4.1.2	Extended Xie-Beni index	494
	15.4. 2	Generaliz validity f	zations of Xie-Beni functional	495
	15.4.3	Fukuyam	a-Sugeno cluster validity measure	496
		15.4.3.1	Fukuyama-Sugeno validity function	496
		15.4.3.2	Interpretation of FS_m using scatter matrices	497
	15.4.4	Modifed	Fukuyama-Sugeno index	500
	15.4.5	Generali	zed MFS	503
	15.4.6	Araki-No measure	omura-Wakami cluster validity	504
		15.4.6.1	Davies and Bouldin validity measure .	504
		15.4.6.2	ANW validity measure	505

	15.5	Validity functionals for shell-type clusters	506
		15.5.1 Validity functionals based on cluster inertia \therefore	506
		15.5.2 Validity measures based on hypervolume and density	508
	15.6	Cluster height	510
		References and bibliography	511
16	Con	vergence of fuzzy clustering algorithms	515
	16.1	Introduction	515
	16.2	Feasible and improving directions	516
	16.3	Global convergence results	517
		16.3.1 Reformulated GFNM	517
		16.3.2 Zangwill's theorem	521
		16.3.3 Global convergence of GFNM procedure	523
	16.4	Local convergence result for GFNM	525
	16.5	Local minimum solutions	526
		References and bibliography	529
IV	/ F h	Fuzzy discriminant analysis and hierarchical fuzzy clustering 5	31
17	Fuzz clus	zy discriminant analysis and related tering criteria	533
	17.1	Introduction	533
	17.2	Fuzzy scatter matrices for two classes	534
		17.2.1 Within-class scatter matrix	534
		17.2.2 Between-class scatter matrix	536
	17.3	Linear discriminant for fuzzy classes	537

		17.3.1	Fisher discriminant vector for fuzzy classes	537
		17.3.2	Characterization of Fisher discriminant	538
	17.4	Fuzzy	scatter matrices for $n > 2$ classes	540
		17.4.1	Within-class scatter matrix	541
		17.4.2	Between-class and total scatter matrices	542
		17.4.3	Relationship between fuzzy scatter matrices $\ . \ .$	543
	17.5	Detect	ing discriminant axes for $n > 2$ fuzzy classes \therefore	545
		17.5.1	Projections on discriminant axes	545
		17.5.2	Scatter (variance) of a fuzzy class	
			w.r.t. an eigenvector	547
		17.5.3	Objective function for detecting discriminant axes	549
	176	Fuggy	scattoring criteria for clustering	550
	17.0	1 UZZY 1		000
		Referen	nces and bibliography	555
18	Fuz2	y hier	archical clustering	557
18	Fuzz 18.1	y hier Introdu	archical clustering	557 557
18	Fuzz 18.1 18.2	z y hier Introdu Fuzzy I	archical clustering uction	557 557 559
18	Fuzz 18.1 18.2	zy hier Introdu Fuzzy 1 18.2.1	archical clustering uction	557 557 559 559
18	Fuzz 18.1 18.2	y hier Introdu Fuzzy 18.2.1 18.2.2	archical clustering action	557 557 559 559 560
18	Fuzz 18.1 18.2 18.3	zy hier Introdu Fuzzy 1 18.2.1 18.2.2 Polariz	archical clustering action	557 559 559 560 562
18	Fuzz 18.1 18.2 18.3 18.4	Ey hier Introdu Fuzzy 1 18.2.1 18.2.2 Polariz Polariz	archical clustering uction . hierarchy . Notion of fuzzy hierarchy . Isomorphic fuzzy hierarchies . ation of a fuzzy partition . ation relation .	557 559 559 560 562 563
18	Fuzz 18.1 18.2 18.3 18.4	The second secon	archical clustering uction . hierarchy . Notion of fuzzy hierarchy . Isomorphic fuzzy hierarchies . ation of a fuzzy partition . Basic definitions and properties .	557 559 559 560 562 563 563
18	Fuzz 18.1 18.2 18.3 18.4	zy hier Introdu Fuzzy 1 18.2.1 18.2.2 Polariz Polariz 18.4.1 18.4.2	archical clustering uction . hierarchy . Notion of fuzzy hierarchy . Isomorphic fuzzy hierarchies . ation of a fuzzy partition . Basic definitions and properties . Generalization of polarization relation .	557 559 559 560 562 563 563 563
18	Fuzz 18.1 18.2 18.3 18.4 18.5	y hier Introdu Fuzzy 1 18.2.1 18.2.2 Polariz Polariz 18.4.1 18.4.2 Polariz	archical clustering uction . hierarchy . Notion of fuzzy hierarchy . Isomorphic fuzzy hierarchies . ation of a fuzzy partition . Basic definitions and properties . Generalization of polarization relation .	557 559 559 560 562 563 563 565 565
18	Fuzz 18.1 18.2 18.3 18.4 18.5	zy hier Introdu Fuzzy 1 18.2.1 18.2.2 Polariz 18.4.1 18.4.2 Polariz 18.5.1	archical clustering uction hierarchy Notion of fuzzy hierarchy Isomorphic fuzzy hierarchies ation of a fuzzy partition ation relation Basic definitions and properties Generalization of polarization relation ation degree Axiomatic definition of polarization degree	5557 559 559 560 562 563 563 565 565 565
18	Fuzz 18.1 18.2 18.3 18.4 18.5	zy hier Introdu Fuzzy 1 18.2.1 18.2.2 Polariz 18.4.1 18.4.2 Polariz 18.5.1 18.5.2	archical clustering uction hierarchy Notion of fuzzy hierarchy Isomorphic fuzzy hierarchies ation of a fuzzy partition ation relation Basic definitions and properties Generalization of polarization relation ation degree Axiomatic definition of polarization degrees Examples of polarization degrees	557 559 559 560 562 563 563 565 565 566 566

			18.5.2.2	Polarization	degree R_2		 	 571
			18.5.2.3	Polarization	degree R_3		 	 572
		18.5.3	Numerica	l examples			 	 575
			18.5.3.1	Example 1 .			 	 575
			18.5.3.2	Example 2 .			 	 576
			18.5.3.3	Example 3.			 	 577
	18.6	Fuzzy	divisive hi	erarchical clu	istering .		 	 578
		18.6.1	Hierarchie	cal procedure	e		 	 578
		18.6.2	BFDH alg	gorithm			 	 579
		18.6.3	Properties	s of BFDH å	lgorithm .		 	 581
		18.6.4	Polarizati	on of a fuzzy	hierarchy		 	 581
		18.6.5	Flexible c	lassification	procedure		 	 583
]	18.7	Stabili	ty of a fuz:	zy hierarchy			 	 584
		18.7.1	Fuzzy me	asure for clu	stering pu	rposes		 584
		18.7.2	Entropy o	of a hierarchy	vlevel		 	 585
		18.7.3	Entropy a	and terminat	ion	• • • •	 	 587
		18.7.4	Stability of	coefficient .		•••	 	 587
		18.7.5	Stable fuz	zy hierarchy		• • •	 	 589
		18.7.6	Structura	l information	n of a fuzzy	v class		 590
]	8.8	Entrop	y-based hi	erarchical cl	ustering .	•••	 	 591
		18.8.1	Hierarchie	cal strategy		•••	 	 592
		18.8.2	Clustering	g algorithm		• • •	 	 592
		18.8.3	An altern	ative hierarc	hical strat	egy .	 	 593
]	18.9	Hierar	chical aggl	omerative cl	ustering .		 	 597
		Refere	nces and b	ibliography			 • •	 599
19]	Fuzz	y sim	ıltaneous	clustering				601
]	19.1	Introd	uction				 	 601

19.2	Simult	aneous clustering
19. 3	One-le	vel simultaneous clustering
	19.3.1	Modified characteristics 603
	19.3.2	Objective function
	19.3.3	Optimal memberships and prototypes 605
	19.3.4	A more sophisticated clustering procedure 606
19.4	Hierar	chical simultaneous clustering 606
	19.4.1	Generalized cross-clustering procedure 607
		19.4.1.1 Clustering method 607
		19.4.1.2 Characteristic memberships 608
		19.4.1.3 Object memberships 608
		19.4.1.4 Termination condition 609
	19.4.2	Hierarchical clustering
	19.4.3	Class pairing
	Referen	nces and bibliography 613

Index

615

Part I

Basic aspects of fuzzy set theory

Chapter 1

Fuzzy Sets

1.1 Introduction

Fuzzy sets represent a suitable mathematical tool for the modeling of imprecision and vagueness. In general, vagueness is associated with the difficulty of making precise affirmations about a certain domain. On the other hand, in fuzzy set theory, the strong alternative yes - no is indefinitely nuanced. From this point of view, fuzzy set theory is not only a theory dealing with ambiguity and vagueness. It is also a theory of the nuance reasoning. Pascal's *l'esprit de finesse* and *l'esprit géométrique* are jointed in this theory.

In this chapter, some basic notions and results in fuzzy set theory are presented.

The set operations are introduced using the general formalism of triangular norms (t-norms) and triangular conorms (t-conorms) as is developed in the theory of probabilistic metric spaces. Some families of t-norms and t-conorms and their relationships are considered. The additive generators of t-norms and t-conorms are defined.

The method of ordinal sums to construct new t-norms (t-conorms) from a given family of t-norms (t-conorms) is presented.

The use of *t*-norms and *t*-conorms connects fuzzy set theory with the algebraic theory of semigroups.

The solutions of an important functional equation arising from information theory may be characterized using the concept of ordinal sum (Frank's theorem). Frank's theorem will be used in chapter 2 to prove the uniqueness of the pair (T_{∞}, S_{∞}) .

Other topics of this chapter are:

- conditions for the uniqueness of the standard set connectives T_o, S_o ;
- axiomatic definition of fuzzy complement;
- generator of a fuzzy complement;
- C-dual connectives;
- equilibrium and dual point of a complement.

1.2 Fuzzy sets and fuzzy points

1.2.1 Basic definitions

Definition

Let X be a non-empty set considered to be the universe of discourse. A fuzzy set is a pair (X, A), where $A : X \to I$ and I = [0, 1]. A is called the membership function.

Remark

In what follows we will consider a fixed universe X. Therefore we may identify a fuzzy set with its membership function.

The family of all fuzzy sets on the universe X will be denoted by L(X). Thus

$$L(X) = \{A \mid A : X \to I\}.$$

The notion of fuzzy set has been introduced by L.A. Zadeh (see [43]).

A(x) is the membership degree of x to A. It may also be interpreted as the plausibility degree of the affirmation 'x belongs to A'. If A(x) = 0, x is 'definitely not in A' and if A(x) = 1, x is 'definitely in A'. The intermediate cases are 'fuzzy'.

Definition

The fuzzy set A is called *non-ambiguous* (or *crisp*) if $A(x) \in \{0, 1\}$.

Remark

The characteristic function of every classical set is thus a non-ambiguous fuzzy set.

Definition

The *empty set* \emptyset is defined as

$$\emptyset(x) = 0, \quad \forall x \in X.$$

Definition

If A is from L(X), the *complement* of A is the fuzzy set \overline{A} defined as

$$\tilde{A}(x) = 1 - A(x), \quad \forall x \in X.$$

Remark

The complement of \emptyset is the fuzzy set 1_X . In what follows we will also denote 1_X by X.

Let A and B be fuzzy sets on X.

The equality between A and B on X is determined by the usual equality of mappings, i.e.,

$$A = B \iff A(x) = B(x), \quad \forall x \in X.$$

Definition

The *inclusion* relation between fuzzy sets is defined pointwise, i.e., we have

$$A \subseteq B \iff A(x) \le B(x), \quad \forall x \in X.$$

Definition

The *product* of the fuzzy sets A, B is the fuzzy set AB defined by

$$(AB)(x) = A(x) \cdot B(x), \quad \forall x \in X.$$

Definition

The difference of A and B is the fuzzy set A - B defined by

$$(A - B)(x) = \max \left(A(x) - B(x), 0 \right), \quad \forall x \in X.$$

1.2.2 Fuzzy points. Level sets of a fuzzy set

Definition

Let $t \in [0,1]$ and A be a fuzzy set on X. We define the *t*-level (or *t*-cut) of A as the ordinary set

$$A^t = \{ x \in X \mid A(x) \ge t \}.$$

The strong t-level (or strong t-cut) of A is defined by

$$A^{t^*} = \{ x \in X \mid A(x) > t \}.$$

Definition

The support of a fuzzy set A on X, denoted supp A, is the ordinary subset of X given by

supp
$$A = \{x \in X \mid A(x) > 0\}.$$

Definition

A fuzzy set on X is called a *fuzzy point*, or a *fuzzy singleton*, if and only if it takes the value 0 for all points in X except one.

Remarks

- (i) A fuzzy set is a fuzzy point if and only if its support reduces to a point in X.
- (ii) A fuzzy point is completely determined by its support, say $\{y\}$, and its value b at y. We will use the notation f_y^b for this fuzzy point.

Thus we have

$$f_y^b(x) = \begin{cases} b, & \text{if } x = y \\ 0, & \text{if } x \neq y \end{cases}$$

for every x in X.

A fuzzy singleton f_y^b belongs to a fuzzy set A if and only if $f_y^b(x) \leq A(x)$, for each x in X. We denote this membership relation between a fuzzy singleton and a fuzzy set by $f_y^b \in A$.

Remark

 $f_y^b \in A$ if and only if $b \leq A(y)$.

Definition

A fuzzy point f_x^a is called *crisp* if and only if a = 1.

1.2.3 Fuzzy points and the inclusion relation

The relation between fuzzy points and the inclusion of fuzzy sets is given by the following proposition.

Proposition

Let A and B be two fuzzy sets on X. Then we have

(i) $A \subseteq B$ if and only if the implication

$$f_x^a \in A \Rightarrow f_x^a \in B$$

holds for each fuzzy point f_x^a that belongs to A.

(ii) A = B if and only if the equivalence

$$f_x^a \in A \iff f_x^a \in B$$

holds for each fuzzy point f_x^a on X.

Proof.

(i) Let us consider $A \subseteq B$. For each fuzzy point f_x^a that belongs to A we have $a \leq A(x) \leq B(x)$. Thus f_x^a belongs to B. Conversely, let x be an arbitrary point in X and let us assume that

$$f_x^a \in A \Rightarrow f_x^a \in B.$$

It follows that

$$a \le A(x) \Rightarrow a \le B(x),$$

i.e.,

$$A(x) \leq B(x), \quad \forall x \in X$$

and thus $A \subseteq B$.

(*ii*) It is obvious. \Box

1.3 Axioms for operations on fuzzy sets

1.3.1 Basic requirements for set operators

The intersection and the union of two fuzzy sets may be defined by using two functions $F, G : I \times I \rightarrow I$. The set operations may be defined pointwise as follows:

$$(A \cap B)(x) = F(A(x), B(x)), \quad \forall x \in X,$$

$$(A \cup B)(x) = G(A(x), B(x)), \quad \forall x \in X.$$

Fuzzy set operations must satisfy some natural requirements. These requirements are listed below.

- (i) The operations induced by F and G must reduce to crisp (usual) set operations when the sets are non-ambiguous.
- (ii) The fuzzy set operations must satisfy the boundary conditions:

 $A \cap X = A,$ $A \cap \emptyset = \emptyset,$ $A \cup X = X,$ $A \cup \emptyset = A.$

- (*iii*) The set operations must be associative and commutative. The associativity allows us to extend the operations of fuzzy sets to more than two sets.
- (iv) The functions F and G must be monotone with respect to both variables.
- (v) The fuzzy set operations must satisfy standard De Morgan laws:

$$\overline{A \cap B} = \overline{A} \cup \overline{B},$$

$$\overline{A \cup B} = \overline{A} \cap \overline{B}.$$

Remark

From condition (i) we obtain:

$$F(1,1) = 1,$$

$$F(0,0) = F(0,1)$$

$$= F(1,0)$$

$$= 0,$$

$$G(0,0) = 0,$$

$$G(0,1) = G(1,0)$$

$$= G(1,1)$$

$$= 1$$

From condition (ii) we have

$$F(a, 1) = a,$$

 $F(a, 0) = 0, \quad \forall a \in I,$
 $G(a, 1) = 1,$
 $G(a, 0) = a, \quad \forall a \in I.$

Conditions (v) may be written

$$1 - F(A(x), B(x)) = G(1 - A(x), 1 - B(x)),$$

and

$$1 - G(A(x), B(x)) = F(1 - A(x), 1 - B(x)),$$

for every x from X.

It follows that the functions F and G satisfy the requirements:

$$F(a,b) = 1 - G(1-a, 1-b),$$

$$G(a,b) = 1 - F(1-a, 1-b),$$

for every a, b in [0,1].

It is easy to see that the last two conditions are equivalent.

1.3.2 Axioms for the set operators

Now we are able to give the axioms for the set operators of the fuzzy sets. The minimal requirements are given by the following list of axioms.

Axiom 1

$$F(1,1) = 1,$$

$$F(0,0) = F(0,1)$$

$$= F(1,0)$$

$$= 0,$$

$$\begin{array}{rcl} G(0,0) &=& 0, \\ G(0,1) &=& G(1,0) \\ &=& G(1,1) \\ &=& 1. \end{array}$$

- .

Axiom 2

$$F(a, 1) = a,$$

 $F(a, 0) = 0, \quad \forall a \in I,$
 $G(a, 1) = 1,$
 $G(a, 0) = a, \quad \forall a \in I.$

Axiom 3 Commutativity:

$$F(a,b) = F(b,a), \quad \forall a, b \in I,$$

$$G(a,b) = G(b,a), \quad \forall a, b \in I.$$

Axiom 4 Associativity:

$$\begin{array}{lll} F\left(\,F(a,b),c\,\right) &=& F\left(\,a,F(b,c)\,\right)\,, \ \, \forall a,b,c\in I\,, \\ \\ G\left(\,G(a,b),c\,\right) &=& G\left(\,a,G(b,c)\,\right)\,, \ \, \forall a,b,c\in I\,. \end{array}$$

Axiom 5 Monotony:

$$a \le a', \ b \le b' \Rightarrow F(a,b) \le F(a',b'),$$

 $a \le a', \ b \le b' \Rightarrow G(a,b) \le G(a',b'),$

where a, b, a', b' are from I.

Axiom 6 De Morgan law:

$$F(a,b) = 1 - G(1 - a, 1 - b), \quad \forall a, b \in I.$$

Remark

These axioms suggest us to consider for F a triangular norm (t-norm) and for G a triangular conorm (t-conorm).

We recall that *t*-norms have been introduced in the context of probabilistic metric spaces.

1.4 Triangular norms and conorms

In this section, we will recall some basic properties of *t*-norms and *t*-conorms. These properties will be very useful to develop a theory of fuzzy sets.

Triangular norms have been studied extensively by Schweizer and Sklar [34], Ling [27], Kimberling [24], Frank [16] and others.

1.4.1 Definition of *t*-norms. Archimedean *t*-norms

Definition

A t-norm is a two-argument function

$$T: I \times I \to I$$

fulfilling the axioms:

(i) T(a, 1) = a, $\forall a \in I$ (boundary condition),

- (ii) $T(a,b) \leq T(u,v)$ if $a \leq u, b \leq v$ (monotony),
- (*iii*) T(a, b) = T(b, a) (commutativity),
- (iv) T(T(a, b), c) = T(a, T(b, c)) (associativity).

Remarks

(1) From axioms (i) and (ii) we have

$$0 \le T(0,a) \le T(0,1) = 0,$$

and thus

$$T(0, a) = T(a, 0) = 0, \quad \forall a \in I.$$

From these two axioms also one gets

$$T(a,a) \leq T(a,1) = a, \quad \forall a \in I.$$

- (2) It is easy to see that the pair (I, T) is an Abelian semigroup with unity.
- (3) If " \leq " is the natural order relation on I, then the triple (I, T, \leq) is an Abelian ordered semigroup with unity.

Definition

A t-norm T is said to be Archimedean if it fulfills the condition

$$T(a,a) < a, \quad \forall a \in (0,1).$$

Remark

The *t*-norm T is Archimedean if and only if T has no interior idempotents. This means that there exists no $a \in (0, 1)$ for which

$$T(a,a) = a.$$

1.4.2 Definition of *t*-conorms. Archimedean *t*-conorms

Definition

Let T be a t-norm. The two-place function

$$S: I \times I \to I$$

defined by

$$S(a, b) = 1 - T(1 - a, 1 - b), \quad \forall a, b \in I,$$

is called a t-conorm (or the dual of T).

Remarks

(α) If S is a t-conorm then S is monotone, commutative, associative and

$$S(a,0)=a.$$

 (β) We also have

$$S(a,1)=1$$

and for every $a \in I$

$$S(a,a) \ge a.$$

Definition

A t-conorm S is called Archimedean if and only if it fulfills the condition

$$S(a,a) > a, \quad \forall a \in (0,1).$$

Remark

If T is an Archimedean t-norm then its dual t-conorm is also Archimedean.

Concerning Archimedean t-norms and t-conorms, in the next section we will give two representation theorems.

1.4.3 Pseudo-inverse and additive generators

Definition

Let f be a continuous and strictly decreasing function $f: [u, v] \rightarrow [0, \infty]$.

The pseudo-inverse of f is the function $f^{(-1)}: [0,\infty] \to [u,v]$, defined by

CHAPTER 1

$$f^{(-1)}(x) = \begin{cases} v, & \text{if } x \in [0, f(v)] \\ f^{-1}(x), & \text{if } x \in (f(v), f(u)) \\ u, & \text{if } x \in [f(u), \infty], \end{cases}$$

where f^{-1} is the ordinary inverse of f.

Theorem (Ling, 1965) [27]

A function $T: I \times I \to I$ is an Archimedean *t*-norm if and only if there exists a continuous and strictly decreasing function $f: [0, 1] \to [0, \infty]$, with f(1) = 0, such that T may be represented as

$$T(a,b) = f^{(-1)}(f(a) + f(b)) \quad \forall a, b \in [0,1].$$

Moreover, T is *strict*, i.e., is strictly decreasing in (0,1), if and only if $f(0) = +\infty$.

For Archimedean *t*-conorms we have an analogous result given by the following theorem.

Theorem [27]

A function $S: I \times I \to I$ is an Archimedean *t*-conorm if and only if there exists a continuous and strictly increasing function $g: [0,1] \to [0,\infty]$, with g(0) = 0, such that S may be represented as

$$S(a,b) = g^{(-1)} \left(g(a) + g(b) \right), \quad \forall a, b \in [0,1].$$

Moreover, S is *strict*, i.e., is strictly increasing in (0,1), if and only if $g(1) = +\infty$.

A strictly decreasing continuous function f that satisfies the condition

$$T(a,b) = f^{(-1)}(f(a) + f(b))$$

is called an *additive generator* of T.

Remark

An additive generator of T is unique except for a positive factor, i.e., if f is an additive generator of T then af, a > 0, is also an additive generator.

We may now reformulate Ling's theorem concerning Archimedean *t*-norms as follows.

Theorem

A function $T: I \times I \rightarrow I$ is an Archimedean *t*-norm if and only if T admits an additive generator.

Definition

A strictly increasing continuous function g, with g(0) = 0, is an additive generator of the *t*-conorm S if and only if

$$S(a,b) = g^{(-1)} (g(a) + g(b)), \quad \forall a, b \in [0,1].$$

Example

The generator of t-conorm S_{∞} is the identity function on [0,1].

1.4.4 Frank's fundamental family of *t*-norms and *t*-conorms

The most interesting *t*-norms and *t*-conorms are listed below:

$$T_o(x, y) = \min(x, y),$$

 $S_o(x, y) = \max(x, y),$
 $T_1(x, y) = xy,$
 $S_1(x, y) = x + y - xy,$
 $T_{\infty}(x, y) = \max(x + y - 1, 0),$
 $S_{\infty}(x, y) = \min(x + y, 1),$

$$T_s(x,y) = \log_s \left(1 + \frac{(s^x - 1)(s^y - 1)}{s - 1} \right), \ s > 0, \ s \neq 1,$$

$$S_s(x,y) = 1 - \log_s \left(1 + \frac{(s^{1-x} - 1)(s^{1-y} - 1)}{s - 1} \right), \ s > 0, \ s \neq 1.$$

Remark

The families T_s and S_s , $0 \le s \le \infty$, are considered in [16].

Proposition

The previous t-norms form a single family in the sense that

$$T_o = \lim_{s \to 0, s > 0} T_s,$$

and

$$T_i = \lim_{s \to i} T_s, \quad i = 1, \infty.$$

For the proof see [16].

Remarks

- (i) A similar result holds for the *t*-conorms of the family $\{S_s \mid s \ge 0\}$.
- (ii) It is easy to see that T_o is not Archimedean and T_{∞} as well as T_s , $0 < s < \infty$, are Archimedean.

1.4.5 Other families of *t*-norms and *t*-conorms

Some other examples of families of *t*-norms and related dual *t*-conorms are reported below.

Yager [41] :

$$T_p^1(x,y) = 1 - \min\left[1, ((1-x)^p + (1-y)^p)^{1/p}\right],$$

$$S_p^1(x,y) = \min\left(1, (x^p + y^p)^{1/p}\right), \quad p > 0.$$

Hamacher [19], [20]:

$$T_a^2(x,y) = \frac{xy}{a+(1-a)(x+y-xy)},$$
$$S_a^2(x,y) = \frac{(a-2)xy+x+y}{1+(a-1)xy}, a > 0.$$

Schweizer and Sklar [36]:

$$T_r^3(x,y) = \left[\max\left(0, x^r + y^r - 1\right)\right]^{1/r},$$

$$S_r^3(x,y) = 1 - [\max(0,(1-x)^r + (1-y)^r - 1)]^{1/r}, \ r \neq 0.$$

Sugeno [39]:

$$T_b^4(x,y) = \max[0, (1+b)(x+y-1) - bxy],$$

$$S_b^4(x,y) = \min(1, x + y + bxy), \ b > -1.$$

Dubois and Prade [10]:

$$T_c^5(x,y) = \frac{xy}{\max(x,y,c)},$$

$$S_c^5(x,y) = rac{x+y-xy-\min(x,y,1-c)}{1-\min(x,y,1-c)}, \ c \in (0,1).$$

1.4.6 Relationship between Frank's family and other families

Let us consider the *t*-norm T_w defined as: