


FUZZY SETS 
AND THEIR 

APPliCATION TO 
ClUSTERING AND 

TRAINING 



The CRC Press 

International Series on 
computationallntellioence 
Series Editor 
L.C. Jain, Ph.D., I.E., B.E. (HODS), Fellow I.E. (Aistrall8) 
L.C. Jain. R.P. Johnson, Y. Takefuji, and L.A. Zadeh 
lnowlldllt-llllldlnteiiDent 1.._.111 lnllusll'll 

L C. Jain and C. W. de Silva 
lntlllaent ldapllve Contnl, lndllslrlallllllcadorllln lhe 
IJPIId COmPUIIUOIIIIInt .... nee &et 

L.C. Jain and N.M. Martin 
fUsiOa of Nlll'alllltworb, fUD:J SVSttms, and GenetiC llaorttluns, 
lnduslrlaiiPDIICadens 

H.-N. Teodorescu, A. Kandel, and L.C. Jain 
Funv and IIIUnt-FIIllV SVSIIIRI In MIIIIICine 

C.L. Karr and L.M. Freeman 
IAdllslrlaiiPDIICaUens or a.eac lklortlhms 

L.C. Jain and B. Lazzerini 
Knowledlt-Basld lnlllktlnt Teehnl_..ln Character Racoanluon 

L.C. Jain and V. Vemuri 
IAdllslllaiiPDIICadens of llfaalllltworb 

H.-N. Teodorescu, A. Kandel, and L.C. Jain 
Son Compudnaln lllmln-lllllated Sciences 

B. Lazzerini, D. Dumitrescu, L.C. Jain, and A. Dumitrescu 
EvUIUIIOOarv COmPUIInl and IPPIICIUOns 

B. Lazzerini, D. Dumitrescu, and L.C. Jain 
Funv Sets and Tbalr IPPIIcadon 10 Clusterlnl and Tralnlna 

L.C. Jain, U. Halici, I. Hayashi, S.B. Lee, and S. Tsutsui 
lntellaent BIOmetrtc Tecbnlqua In Flnaerprlntand Fa RecoaniUOn 

Z Chen 
COmputallonallnlllllalnee for Declsl• SUpport 

L.C. Jain 
EvotuU. of Enalneerlna and lntormallon Svstlllll and Tbelr IPPIIcallens 



H.-N. Teodorescu and A. Kandel 
DJnamiC FUZZJ SYstems and Chaos Applications 

L Medsker and L.C. Jain 
llecunent NIJUI'II Jtt1W8rb, Deslgl •d APPDcallons 

LC. Jain and A.M. Fanelli 
ll8cenl Advances In Altlllcll Neural fiiiW81U: 11111111 •d APPIGidons 

M. Russo and L.C. Jain 
fUZZJ lnmlnland IPPIIcadons 

J. Liu and J. Wu 
Mulllllent loblllle SYstems 

M. Kennedy, R. Ravalli, and G. Setli 
Cbatllle llecbonlclln TelecommiiiiCIUOIII 

H.-N. Teodorescu and L.C. Jain 
lntelltlent SYstems and Teclmllllll In Reh8bllltallon Emdntlettng 

I. Baturone, A. Barriga, C. Jimenez-Fernandez. D. Lopez. and S. Sanchez-Solano 
lllerllllebollla Design II FIIZZJ lGIIC-Basld SJslems 

T. Nishida 
DJnamiC ..........,.lntiii'ICIIIn 

C.L. Karr 
PrlciiCIIIPPIICIIIInl ol COIIIDUiallolllllnllllltllna lor Allalllln COntrol 

Ricardo Salem Zebulum, Marco Aurelio C. Pacheco, and Marley Maria B.R. Vellasco 
l'llllllllllllar Eleclr8nll:s: Auhlllllc ..._ .. Ellcmlnlc Clralll_. ....._ bl Blnlllt ......._ 



http://taylorandfrancis.com


FUZZY SETS 
AND THEIR 

APPLICATION TO 
ClUSTERING AND 

TRAINING 

D. Dumitrescu 
University of C/uj-Napoca 

B. Lazzerini 
University of Pisa 

L.C. Jain 
University of South Australia 

CRC Press 
Boca Raton London New York Washington, D.C. 



Library of Congress Cataloging-in-Publication Data 

Dumitrescu, D.(Dimitru), 1949-
Fuzzy sets and their application to clustering and training I D. Dumitrescu, B. 

Lazzerini, L. C. Jain. 
p. em. 

Includes bibliographical references and index.. 
ISBN 0-8493-0589 (alk. paper) 
I. Fuzzy sets. 2. Cluster analysis. I. Lazzerini, Beatrice, 1953- II. Jain, L. C. (Lax.mi 
Chandra), 1926-111. Title. 

QA248.5 .D86 2000 
511.3'22-dc21 99-088763 

CIP 

This book contains information obtained from authentic and highly regarded sources. Reprinted material 
is quoted with permission, and sources are indicated. A wide variety of references are listed. Reasonable 
efforts have been made to publish reliable data and information, but the authors and the publisher cannot 
assume responsibility for the validity of all materials or for the consequences of their use. 

Neither this book nor any part may be reproduced or transmitted in any form or by any means, electronic 
or mechanical, including photocopying, microfilming, and recording, or by any information storage or 
retrieval system, without prior permission in writing from the publisher. 

The consent of CRC Press LLC does not ex.tend to copying for general distribution, for promotion, for 
creating new works, or for resale. Specific permission must be obtained in writing from CRC Press LLC 
for such copying. 

Direct all inquiries to CRC Press LLC, 2000 N.W. Corporate Blvd., Boca Raton, Florida 33431. 

li:'ademark Notice: Product or corporate names may be trademarks or registered trademarks, and are 
used only for identification and ex. planation, without intent to infringe. 

Visit the CRC Press Web site at www.crcpress.com 

© 2000 by CRC Press LLC 

No claim to original U.S. Government works 
International Standard Book Number 0-8493-0589-6 

Library of Congress Card Number 99-088763 



To my mother and in memory of my father 
Dan-Dumitru Dumitrescu 

To our families and all of our students 
Beatrice Lazzerini 

Lakhmi Jain 



http://taylorandfrancis.com


Acknowledgments 

Our thanks are due to our families and all persons who helped us to 
accomplish the work concerning this book. 
We are particularly grateful to all the active researchers in the field 
of Fuzzy Set Theory and its applications, who sent us copies of their 
papers. 
We also thank Geta Banda for her kind help in preparing the manuscript. 



http://taylorandfrancis.com


Preface 

Fuzzy Set Theory (FST) and its underlying fuzzy logic represent one 
of the most significant scientific and cultural paradigms emerging in 
the second half of this century. 

This paradigm has a definite 'postmodern' flavour as it represents an 
alternative to the positivist view of the world. 
FST paradigm imposed itself on the scientific community who be-
came aware that common sense concepts and approximate reasoning 
(mainly based on simple, intuitive rules) have a great theoretical and 
technological potential and an important explanatory power. 
It became evident that many parts of natural and artificial reality 
may adequately be described in terms that tolerate the ambiguity and 
imprecision specific to the reality itself. 
These approximate descriptions may be sufficient for many practical 
purposes. A 'complete', rigorous description of complex systems is 
usually impossible or too costly. 
It also became manifest that traditional descriptions of complex sys-
tems are sometimes possible only at the cost of over-simplification. 
On the other hand, the human mind and natural languages can per-
fectly cope with ambiguity and imprecision. 
FST significantly enlarged the frames of the mathematical approach to 
incorporate imprecise concept descriptions and imprecise (or approx-
imate) reasoning, and to treat them in a definitely rigorous manner. 
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Reality usually has an intrinsic, non-probabilistic ambiguity. If we 
want to remove this ambiguity we have to resort to over-simplified 
descriptions. 

On one hand, the grid of traditional mathematics and scientific con-
cepts may be too coarse or too restrictive. On the other hand, a com-
plete and exact description of a system could have prohibitive cost, be 
difficult to manage, or even be useless due to its complexity. Further, 
predictive or control results based on such description might not be 
obtained in real time. 
It is important to observe that ambiguity, vagueness and imprecision 
represent only one side of FST. Many important theoretical models 
and useful applications have been obtained by taking only this aspect 
into account. 
The dual aspect of ambiguity-tolerating reasoning is the nuanced rea-
soning. With FST we became aware that in order to describe reality 
plausibly we have to bypass the strong, brittle Yes-No dichotomy. 

FST represents a useful set theoretical model of multi-valued logics. 
Multi-valued logics and FST cross-fertilize each other. Moreover, some 
multi-valued logics are now considered as special cases of fuzzy logic 
(in the wide sense). 
Clustering is the very first application of FST. The reason for this is 
that fuzzy clustering does not require very sophisticated conceptual 
or mathematical tools. 
On the other hand, fuzzy clusters represent natural models of fuzzy 
concepts. We may speak, for instance, about the class of useful books 
in a library, or the class of clever students in a school, and so on. 

Fuzzy classes (or clusters) are the simplest and most natural examples 
of fuzzy set. 
Moreover, it is evident that most real-world classes are fuzzy rather 
than crisp. 
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Goals of the book 

The main goals of the book are: 

( i) to offer a general, comprehensive introduction to Fuzzy Set The-
ory with a special emphasis on the notions and results needed 
for training and clustering purposes; 

( ii) to give an adequate and unitary mathematical framework for 
fuzzy classification and clustering; 

(iii) to provide a general methodology to develop fuzzy training and 
cla..<>sification methods; 

( iv) to provide a general method to obtain a large variety of fuzzy 
clustering algorithms; 

( v) to offer a comprehensive introduction to the fields of fuzzy learn-
ing classifiers and fuzzy clustering; 

(vi) to present some basic fuzzy clustering algorithms treated in a 
unified manner; 

(vii) to present a hierarchical fuzzy clustering method able to detetct 
hierarchically organized cluster structures without any a priori 
knowledge of the optimal number of clusters in the data set. 

Structure of the book 

The book is structured in four parts. 
Part I (Chapters 1-6) describes fundamental aspects of Fuzzy Set The-
ory. This part is intended to offer an introduction, both simple and 
self-contained, to mathematical notions and results concerning fuzzy 
sets, fuzzy partitions and related concepts. 
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Part II (Chapters 7-8) is dedicated to fuzzy learning machines (fuzzy 
classifiers) able to learn from fuzzy data. Fuzzy learning classifiers 
may use the outputs of a fuzzy clustering algorithm as training sets. 

Some basic training algorithms are described and their convergence 
properties are investigated. 
Part III (Chapters 9-16) deals with fuzzy partitional prototype-based 
clustering. The main topics within this part concern fuzzy clustering 
with point and linear prototypes, adaptive clustering, validity func-
tionals and convergence properties of clustering procedures. 
Part IV (Chapters 17-19) is dedicated to fuzzy discriminant analysis 
and fuzzy hierarchical clustering. 
The content of each chapter is now briefly described. 
Chapter 1 contains the basic notions about fuzzy sets. The frame-
work is that of triangular norms (t-norms) and conorms (t-conorms), 
and their generators. Several families of t-norms and t-conorms are 
considered. Various definitions of union, intersection and complement 
operations are considered. 
The ordinal sum-based method to obtain new t-norms and t-conorms 
is addressed. 
An axiomatic definition of complementation operator is given and 
some of its instances are taken into account. 
Chapter 2 explores the properties of set operations induced by various 
operators, particularly To, So and T00 , 800 • 

A particular attention is paid to the equivalence between the concepts 
of binary fuzzy partitions and fuzzy partition of unity (Ruspini's early 
definition of fuzzy partition). 

It is proved that the two concepts are completely equivalent if and 
only if the set operations are induced by T00 and 800 • 

The notion of fuzzy n-partition, for n > 2, is investigated. Other 
topics of this chapter are: 

( i) refinement relation for fuzzy partitions; 

( ii) algebraic join of two fuzzy partitions. 
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The algebraic structure of the family L(X) of the fuzzy sets on a 
fixed universe X is studied in Chapter 3. The key concepts are those 
of partially ordered set, lattice, residuated lattice and multi-valued 
algebra (MY-algebra). It is emphasized that T00 , 5 00 seem to be 
suitable to define set operations for fuzzy sets, whereas T0 , S0 are 
suitable to describe the order relation on L(X). 

The framework of MV -algebras makes clear the non-competitive rela-
tionship of the pairs (T0 , S0 ) and (T00 , 5 00), and their different mean-
ings and specific roles. 

Residuated lattices also represent a powerful algebraic tool for char-
acterizing fuzzy sets and their underlying logic. 
The notion of a basic triple is considered. Roughly speaking, (T, S, C) 
is a basic triple if C is a complement operation, T and S are C-dual 
and S and C have the same generator. The use of basic triples in 
defining set operations ensures a deep coherence of the resulting fuzzy 
set theory. 
The connection of the notions of basic triple and residuated implica-
tion is investigated. In this respect, a matching operator is defined. A 
basic triple and a matching operator can generate a residuated lattice 
via a residuated implication. 
Chapter 4 begins with a presentation of the metric concepts for fuzzy 
sets. There are several definitions of distance between fuzzy sets. The 
definition used in this chapter is not the standard one. We preferred 
it both for its being a natural extension of the classical notion and for 
its fitness to clustering and training purposes. 
The other topics of this chapter are: 

{ i) distance between fuzzy points; 

{ ii) diameter of a fuzzy set; 

(iii) fuzzy ball; 

( iv) bounded fuzzy set; 

( v) distance in a fuzzy class. 
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Chapter 5 deals with the notions of entropy and informational energy 
of fuzzy partitions. These notions are based on a suitable concept of 
fuzzy measures. 

Let us suppose the atoms of a fuzzy partition P describe the outcomes 
of an experiment. The entropy of the fuzzy partition P measures the 
information obtained (or the uncertainty removed) by performing the 
experiment associated with this fuzzy partition. 
Chapter 6 is devoted to the characterization of fuzzy sets using fuzzi-
ness and nonfuzziness measures. These measures give a global char-
acterization of the uncertainty /certainty associated with a fuzzy de-
scription of a situation, experiment, etc. Some particular fuzziness 
and nonfuzziness measures for fuzzy sets defined on finite or infinite 
universes are considered. 
Several correlation coefficients of fuzzy sets are also taken into account. 
Fuzzy learning classifiers, considered in Chapter 7, may deal with data 
that are either erroneous or containing atypical points. This kind of 
classifiers are robust and may cope with the non-separability of the 
training sets. 
Chapter 7 proposes a new paradigm for fuzzy neural network training. 
Within this paradigm, classifiers able to learn fuzzy training classes 
may be considered. A fuzzy perceptron is considered as an example 
of this paradigm. The convergence of the fuzzy perceptron training 
procedure is studied. 
A robust variant of the fuzzy perceptron is considered. 
Several generalizations of the fuzzy perceptron model are also taken 
into account. The fuzzy pocket (FP) algorithm is such a general-
ization. FP algorithm is able to obtain an approximate separation 
hyperplane in the case of arbitrary non-separable training classes. 
Chapter 8 is dedicated to fuzzy training procedures based on squared 
error criterion functions. 
A fuzzy relaxation algorithm is derived. Some variants of this algo-
rithm are also considered. 
Other training procedures considered in this chapter are fuzzy relatives 
of some well-known classical learning algorithms. These procedures 
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are: Fuzzy MSE method, Fuzzy Widrow-Hoff algorithm and several 
variants of Fuzzy Ho-Kashyap algorithm. 
The convergence properties of the fuzzy training algorithms presented 
in this chapter are studied. Most of the models and algorithms in Part 
II are original. 
The main idea in Chapter 9 is that the sub-cluster structure of a fuzzy 
class may also contain some important useful clustering information. 
To detect this structure a well-known alternating optimization method 
is applied to a squared error objective function. The objective function 
is not guessed, but it is derived using a general method based on the 
local distance with respect to a fuzzy set. 

A Generalized Fuzzy n-Means (GFNM) algorithm for detecting the 
sub-cluster structure of a fuzzy class is derived. 
In order to detect unequal size clusters correctly, the use of several 
adaptive distances is proposed. A modified GFNM algorithm is con-
sidered. Other topics in this chapter are: 

( i) data normalization using mean and variance of fuzzy classes; 

( ii) use of local distances for clustering purposes within the G FNM 
algorithm. 

In Chapter 10, the infinite family of (G)FNM algorithms is considered. 
The limit properties of this family are given. 
Other topics in this chapter are: 

( i) reformulated version of the ( G )FNM algorithm; 

( ii) clustering with Lp metric; 

(iii) clustering with set prototypes. 

Chapter 11 mainly concerns the detection of linear (sub)clusters of 
a fuzzy class. Two clustering methods are considered. They are al-
ternating optimization and principal component analysis of a fuzzy 
class. 



PREFACE 

In Chapter 12 various families of adaptive fuzzy clustering algorithms 
are considered. These standard families are generalized to detect the 
cluster substructure of a fuzzy class. 

Prototype-based partitional clustering algorithms are used. Some al-
gorithms adopt a variable metric inducing matrix. 

The main algorithms in this chapter are: 

( i) adaptive FNM; 

( ii) shell algorithms; 

(iii) adaptive fuzzy n-shells algorithms. 

In Chapter 13, other algorithms to detect spherical, elliptical or planar 
shaped clusters are considered. Several variants of these algorithms 
are presented. These algorithms use modified distance functions like: 

( i) distance generated by an unconstrained distance-inducing ma-
trix (AFNSU family of algorithms); 

( ii) algebraic distance; 

(iii) exponential distance. 

The main classes of algorithms are: 

( i) AFNSU family; 

( ii) ellipsoidal shell-clustering; 

(iii) fuzzy maximum likelihood; 

( iv) Gath-Geva algorithm; 

( v) robust fuzzy clustering algorithms. 
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The cluster validity problem is addressed in Chapter 14. To detect the 
optimal cluster number, validity functionals are used. Validity func-
tionals give a numerical expression of the quality of a fuzzy partition. 
The intuitive idea is that a good fuzzy partition is not a very fuzzy 
one. 
In this chapter, some well-known validity functionals, like partition 
coefficient and classification entropy, are considered. 
Using mean and variance, standardized and normalized versions of 
these functionals are defined. Other validity functionals studied in 
this chapter are coupling coefficient and proportion exponent. 

In Chapter 15, a wide range of validity functionals are considered. 
These functionals are based on various principles. Some of them rep-
resent uniform data validity functionals. Most of them are geometric 
validity functionals that intend to reflect the actual structure of the 
data set. 

Geometric functionals are also related to the cluster shapes. Examples 
of geometric validity functionals are: 

( i) fuzzy partition density; 

( ii) fuzzy partition volume; 

(iii) class inertia; 

( iv) separation index. 

Other geometric functionals include class prototypes and data set 
points. 
Convergence of the FNM fuzzy clustering algorithms using point pro-
totypes is studied in Chapter 16. 
Both local and global convergence properties are studied. Some well-
known convergence results for FNM are considered. These results still 
remain valid for the GFNM algorithm. 
The convergence theorems considered in this chapter may represent 
the framework for a general convergence theory for prototype-based 
partitional fuzzy clustering algorithms. 
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Part IV contains an original approach to fuzzy discriminant analysis 
and hierarchical clustering. 
Chapter 17 introduces fuzzy scatter matrices and Fisher discriminant 
vector for two fuzzy classes. Discriminant axes for n > 2 fuzzy classes 
are analyzed. Some fuzzy scattering criteria are considered for clus-
tering purposes. 

The classical optimization methods seem not to be suitable to opti-
mize the obtained objective functions. Evolutionary algorithms (par-
ticularly genetic algorithms) are suggested as an ideal tool to optimize 
the scatter objective functions. 
Chapter 18 addresses the problem of fuzzy hierarchical clustering. 
Hierarchical clustering methods may detect the built-in hierarchical 
structure in a data set and also detect the optimal cluster number in 
a given data set. 
A divisive method to detect a fuzzy cluster hierarchy is proposed. 
At each decomposition level, only 'real' clusters are retained. The 
obtained hierarchy is binary and the method is sufficiently flexible 
and robust. It may deal with arbitrary cluster structures. Each node 
in the decomposition tree corresponds to a fuzzy class. For each such 
node, a fuzzy one-level algorithm to detect the fuzzy partition of the 
corresponding fuzzy class is used. 
The quality of each binary fuzzy partition is measured by its polariza-
tion degree. Using the entropy of a fuzzy partition a stability degree 
of a fuzzy hierarchy is proposed. 
A hierarchical clustering procedure using structural, entropy-based 
information is also considered. 
Chapter 19 addresses the problem of simultaneous clustering (SC). 
The aim of SC is to find simultaneously a fuzzy partition of the data 
set and a fuzzy partition of the characteristics (features) describing the 
data samples. The two fuzzy partitions have to be mutually relevant. 
The problem of simultaneous clustering has a wide range of practical 
applications. It is also important for data mining, data reduction 
techniques and for classifier design for large data sets. 
An algorithm for simultaneously detecting one-level fuzzy cluster struc-
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tures of data and of the corresponding features is proposed. This al-
gorithm is then used to obtain a simultaneous hierarchical clustering 
structure. It is noteworthy that both algorithms are intrinsically fuzzy, 
i.e., they do not allow hard versions. 

The book contains an extensive unified treatment of fuzzy sets, fuzzy 
clustering and fuzzy training models. 
The book is intended for those who are interested in intelligent compu-
tation models and, in particular, in pattern recognition, data mining, 
clustering and classifier design. It may also be used as an introduction 
to basic concepts of fuzzy sets, fuzzy clustering and supervised fuzzy 
training. The book may be useful for scientists from various fields 
(such as chemistry, physics, biology, economics, and engineering) in-
terested in data analysis. 
The book may also be used as a textbook in a one-semester postgrad-
uate course in pattern recognition and fuzzy technology. 
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Chapter 1 

Fuzzy Sets 

1.1 Introduction 

Fuzzy sets represent a suitable mathematical tool for the modeling of 
imprecision and vagueness. In general, vagueness is a..<>sociated with 
the difficulty of making precise affirmations about a certain domain. 
On the other hand, in fuzzy set theory, the strong alternative yes - no 
is indefinitely nuanced. From this point of view, fuzzy set theory is 
not only a theory dealing with ambiguity and vagueness. It is also a 
theory of the nuance reasoning. Pascal's l'esprit de finesse and l'esprit 
geometrique are jointed in this theory. 
In this chapter, some basic notions and results in fuzzy set theory are 
presented. 

The set operations are introduced using the general formalism of tri-
angular norms (t-norms) and triangular conorms (t-conorms) as is 
developed in the theory of probabilistic metric spaces. Some families 
oft-norms and t-conorms and their relationships are considered. The 
additive generators of t-norms and t-conorms are defined. 
The method of ordinal sums to construct new t-norms (t-conorms) 
from a given family oft-norms (t-conorms) is presented. 
The use oft-norms and t-conorms connects fuzzy set theory with the 
algebraic theory of semigroups. 

3 
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The solutions of an important functional equation arising from infor-
mation theory may be characterized using the concept of ordinal sum 
(Frank's theorem). Frank's theorem will be used in chapter 2 to prove 
the uniqueness of the pair (T00 , 800 ). 

Other topics of this chapter are: 

• conditions for the uniqueness of the standard set connectives 
T0 , So; 

• axiomatic definition of fuzzy complement; 

• generator of a fuzzy complement; 

• C-dual connectives; 

• equilibrium and dual point of a complement. 

1.2 Fuzzy sets and fuzzy points 

1.2.1 Basic definitions 

Definition 

Let X be a non-empty set considered to be the universe of discourse. 
A fuzzy set is a pair (X, A), where A : X -+ I and I = [0, 1]. A is 
called the membership function. 

Remark 

In what follows we will consider a fixed universe X. Therefore we may 
identify a fuzzy set with its membership function. 
The family of all fuzzy sets on the universe X will be denoted by L(X). 
Thus 

L(X) ={A I A: X-+ I}. 



FUZZY SETS 5 

The notion of fuzzy set has been introduced by L.A. Zadeh (see [43]). 

A(x) is the membership degree of x to A. It may also be interpreted as 
the plausibility degree of the affirmation 'x belongs to A'. If A(x) = 0, 
x is 'definitely not in A' and if A(x) 1, xis 'definitely in A'. The 
intermediate cases are 'fuzzy'. 

Definition 

The fuzzy set A is called non-ambiguous (or crisp) if A(x) E {0, 1}. 

Remark 

The characteristic function of every classical set is thus a non-ambigu-
ous fuzzy set. 

Definition 

The empty set 0 is defined as 

0(x) = 0, Vx E X. 

Definition 

If A is from L(X), the complement of A is the fuzzy set A defined as 

A(x) = 1 - A(x), Vx EX. 

Remark 

The complement of 0 is the fuzzy set 1x. In what follows we will also 
denote 1x by X. 

Let A and B be fuzzy sets on X. 
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Definition 

The equality between A and B on X is determined by the usual equal-
ity of mappings, i.e., 

A= B ~ A(x) = B(x), 'Vx EX. 

Definition 

The inclusion relation between fuzzy sets is defined pointwise, i.e., we 
have 

A~ B ~ A(x) ::; B(x), 'Vx EX. 

Definition 

The product of the fuzzy sets A, B is the fuzzy set AB defined by 

(AB)(x) = A(x) · B(x), 'Vx EX. 

Definition 

The difference of A and B is the fuzzy set A - B defined by 

(A- B)(x) max (A(x) - B(x), 0), 'Vx E X. 

1.2.2 Fuzzy points. Level sets of a fuzzy set 

Definition 

Let t E [0, 1] and A be a fuzzy set on X. We define the t-level (or 
t-cut) of A as the ordinary set 
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At= {x EX I A(x) 2: t}. 

Definition 

The strong t-level (or strong t-cut) of A is defined by 

At• = {x EX I A(x) > t}. 

Definition 

The support of a fuzzy set A on X, denoted supp A, is the ordinary 
subset of X given by 

supp A= {x EX I A(x) > 0}. 

Definition 

A fuzzy set on X is called a fuzzy point, or a fuzzy singleton, if and 
only if it takes the value 0 for all points in X except one. 

Remarks 

( i) A fuzzy set is a fuzzy point if and only if its support reduces to 
a point in X. 

( ii) A fuzzy point is completely determined by its support, say {y }, 
and its value b at y. We will use the notation fi for this fuzzy 
point. 

Thus we have 

if X= y 

if X =F y 

for every x in X. 
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Definition 

A fuzzy singleton 1: belongs to a fuzzy set A if and only if 
f:(x) :$ A(x), for each x in X. We denote this membership relation 
between a fuzzy singleton and a fuzzy set by 1: E A. 

Remark 

1: E A if and only if b :$ A(y). 

Definition 

A fuzzy point J: is called crisp if and only if a = 1. 

1.2.3 Fuzzy points and the inclusion relation 

The relation between fuzzy points and the inclusion of fuzzy sets is 
given by the following proposition. 

Proposition 

Let A and B be two fuzzy sets on X. Then we have 

( i) A ~ B if and only if the implication 

holds for each fuzzy point J: that belongs to A. 

( ii) A B if and only if the equivalence 

J: E A {::=:;> J: E B 

holds for each fuzzy point J: on X. 
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Proof. 

( i) Let us consider A ~ B. For each fuzzy point J; that belongs to 
A we have a:::; A(x) :::; B(x). Thus J: belongs to B. Conversely, 
let x be an arbitrary point in X and let us assume that 

It follows that 

i.e., 

and thus A<;::: B. 

( ii) It is obvious. 0 

J: E A => J; E B. 

a:::; A(x) =>a:::; B(x), 

A(x) :::; B(x), \:/x EX 

1.3 Axioms for operations on fuzzy sets 

1.3.1 Basic requirements for set operators 

The intersection and the union of two fuzzy sets may be defined by 
using two functions F, G : I x I -+ I. The set operations may be 
defined pointwise as follows: 

(An B)(x). = F(A(x), B(x)), \:/x EX, 

(AU B)(x) = G(A(x), B(x)), Vx EX. 
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Fuzzy set operations must satisfy some natural requirements. These 
requirements are listed below. 

( i) The operations induced by F and G must reduce to crisp (usual) 
set operations when the sets are non-ambiguous. 

( ii) The fuzzy set operations must satisfy the boundary conditions: 

An X A, 
An0 0, 

AUX = X, 
Au0 A. 

(iii) The set operations must be associative and commutative. The 
associativity allows us to extend the operations of fuzzy sets to 
more than two sets. 

( iv) The functions F and G must be monotone with respect to both 
variables. 

( v) The fuzzy set operations must satisfy standard De Morgan laws: 

AUB AnB. 

Remark 

From condition ( i) we obtain: 
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F(1, 1) = 1, 

F(O, O) = F(O, 1) 
- F(l,O) 
= 0, 

G(O, 0) = 0, 

G(O, 1) = G(1, 0) 
= G(1,1) 
= 1. 

From condition ( ii) we have 

F(a, 1) = a, 
F(a, 0) = 0, "'a E J, 

G(a,1) = 1' 
G(a, 0) = a, "'a E J. 

Conditions ( v) may be written 

1- F(A(x), B(x)) = G(1- A(x), 1 B(x)), 

and 

1- G(A(x), B(x)) = F(1- A(x), 1 B(x)), 

for every x from X. 
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It follows that the functions F and G satisfy the requirements: 

F(a, b) = 1 - G(1 -a, 1 -b), 

G(a,b) = 1 F(1 a, 1- b), 

for every a, bin [0,1]. 
It is easy to see that the last two conditions are equivalent. 

1.3.2 Axioms for the set operators 

Now we are able to give the axioms for the set operators of the fuzzy 
sets. The minimal requirements are given by the following list of 
axioms. 

Axiom 1 

F(1, 1) = 1, 
F(O, 0) F(O, 1) 

= F(1, 0) 

= 0, 

G(O, 0) 0, 
G(O, 1) G{1, 0) 

= G(l, 1) 

= 1. 
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Axiom 2 

F(a, 1) = a, 
F(a, 0) 0, 't/a E I, 

G(a, 1) = 1, 
G(a, 0) a, 't/a E I. 

Axiom 3 Commutativity: 

F(a, b) - F(b, a), 't/a, bE I, 

G(a, b) G(b, a), 'tfa, b E I. 

Axiom 4 Associativity: 

F(F(a,b),c) F(a,F(b,c)), 'Va,b,cEI, 

G ( G(a, b), c) G (a, G(b, c)), 't/a, b, c E I. 

Axiom 5 Monotony: 

a~ a', b ~ b' =? F(a, b) ~ F(a', b'), 

a ~a', b ~ b' =? G(a, b) ~ G(a', b'), 

where a, b, a', b' are from I. 
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Axiom 6 De Morgan law: 

F(a,b) = 1- G(1- a, 1 b), \la,b E /. 

Remark 

These axioms suggest us to consider for F a triangular norm ( t-norm) 
and for G a triangular conorm (t-conorm). 

We recall that t-norms have been introduced in the context of proba-
bilistic metric spaces. 

1.4 Triangular norms and conorms 

In this section, we will recall some basic properties of t-norms and 
t-conorms. These properties will be very useful to develop a theory 
of fuzzy sets. 
Triangular norms have been studied extensively by Schweizer and 
Sklar [34], Ling [27], Kimberling [24], Frank [16] and others. 

1.4.1 Definition of t-norms. Archimedean 
t-norms 

Definition 

A t-norm is a two-argument function 

T:Ixl-71 

fulfilling the axioms: 

(i) T(a, 1) =a, \Ia E I (boundary condition), 
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(ii) T(a, b) ::; T(u, v) if a::; u, b::; v (monotony), 

(iii) T(a,b) = T(b,a) (commutativity), 

(iv) T (T(a, b), c)= T (a, T(b, c)) (associativity). 

Remarks 

( 1) From axioms ( i) and ( ii) we have 

0 ::; T(O, a) ::; T(O, 1) = 0, 

and thus 

T(O, a)= T(a, 0) 0, Va E /. 

From these two axioms also one gets 

T(a, a) ::; T(a, 1) a, Va E /. 
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(2) It is easy to see that the pair(/, T) is an Abelian semigroup with 
unity. 

(3) If"::;" is the natural order relation on I, then the triple(/, T, :::;) 
is an Abelian ordered semigroup with unity. 

Definition 

A t-norm T is said to be Archimedean if it fulfills the condition 

T(a, a) <a, Va E (0, 1). 
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Remark 

The t-norm T is Archimedean if and only if T has no interior idem-
potents. This means that there exists no a E (0, 1) for which 

T(a, a)= a. 

1.4.2 Definition of t-conorms. Archimedean 
t-conorms · 

Definition 

Let T be a t-norm. The two-place function 

S:Ixl---+1 

defined by 

S(a,b) = 1- T(1- a, 1- b), Va,b E I, 

is called a t-conorm (or the dual ofT). 

Remarks 

(a) If Sis a t-conorm then Sis monotone, commutative, associative 
and 

S(a, 0) =a. 
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(,6) We also have 

S(a, 1) = 1 

and for every a E I 

S(a, a) 2: a. 

Definition 

A t-conorm S is called Archimedean if and only if it fulfills the condi-
tion 

S(a, a) >a, \fa E (0, 1). 

Remark 

If T is an Archimedean t-norm then its dual t-conorm is also Archime-
dean. 

Concerning Archimedean t-norms and t-conorms, in the next section 
we will give two representation theorems. 

1.4.3 Pseudo-inverse and additive generators 

Definition 

Let f be a continuous and strictly decreasing function 
f : [u, v] -+ [0, oo]. 
The pseudo-inverse off is the function j(-l) : [0, oo] -+ [u, v], defined 
by 
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v, if X E [0, j(v)] 

j-1(x), if x E (J(v), j(u)) 

u, if x E [f(u), oo], 

where f-1 is the ordinary inverse of f. 

Theorem (Ling, 1965) [27] 

A function T : I x I -+ I is an Archimedean t-norm if and only if there 
exists a continuous and strictly decreasing function f : [0, 1]-+ [0, oo], 
with f (1) = 0, such that T may be represented as 

T(a, b) f(-1) (f(a) + f(b)) 'Va, bE [0, 1]. 

Moreover, Tis strict, i.e., is strictly decreasing in (0,1), if and only if 
f(O) = +oo. 

For Archimedean t-conorms we have an analogous result given by the 
following theorem. 

Theorem [27] 

A function S : I x I -+ I is an Archimedean t-conorm if and only if 
there exists a continuous and strictly increasing function 
g : [0, 1] -+ [0, oo], with g(O) = 0, such that S may be represented 
as 

S(a, b) = g(- 1) (g(a) + g(b)), 'Va, bE [0, 1]. 

Moreover, S is strict, i.e., is strictly increasing in (0,1), if and only if 
g(1) = +oo. 
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Definition 

A strictly decreasing continuous function f that satisfies the condition 

T(a, b) = f(-l) (J(a) + f(b)) 

is called an additive generator ofT. 

Remark 

An additive generator ofT is unique except for a positive factor, i.e., 
iff is an additive generator ofT then af, a > 0, is also an additive 
generator. 

We may now reformulate Ling's theorem concerning Archimedean t-
norms as follows. 

Theorem 

A function T : I x I -7 I is an Archimedean t-norm if and only if T 
admits an additive generator. 

Definition 

A strictly increasing continuous function g, with g(O) = 0, is an addi-
tive generator of the t-conorm S if and only if 

S(a, b) g(-ll (g(a) + g(b)), Va, bE [0, 1]. 

Example 

The generator of t-conorm S00 is the identity function on [0,1]. 

1.4.4 Frank's fundamental family oft-norms 
and t-conorms 

The most interesting t-norms and t-conorms are listed below: 
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T0 (x, y) = min(x, y), 

So(x, y) = max(x, y), 

r.(x, y) xy, 

S1(x,y) =X+ y- xy, 

T00 (x, y) = max(x + y- 1, 0), 

S00 (x, y) = min(x + y, 1), 

( 
( sx - 1 )( sY - 1) ) T9 (x, y) =logs 1 + 

8 1 
, s > 0, s =/= 1, 

CHAPTER I 

( 

( 1-x 1)( 1-y 1)) 
S8 (x, y) 1- logs 1 + 8 

-
8 

_ 
8

1 
- , s > 0, s =/= 1. 

Remark 

The families T8 and S8 , 0 :S s :S oo, are considered in [16]. 

Proposition 

The previous t-norms form a single family in the sense that 

and 

For the proof see [16]. 

~ = limT8 , i 1,oo. 
8-H 



FUZZY SETS 21 

Remarks 

( i) A similar result holds for the t-conorms of the family 
{Ss I S ~ 0}. 

( ii) It is easy to see that To is not Archimedean and T 00 as well as T5 , 

0 < s < oo, are Archimedean. 

1.4.5 Other families oft-norms and t-conorms 

Some other examples of families oft-norms and related dual t-eo norms 
are reported below. 

Yager [41]: 

1 -min [ 1, ((1- x)P + (1- y)P) 11P] , 

Hamacher [19], [20]: 

S~(x, y) 
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Schweizer and Sklar [36]: 

s;(x, y) = 1- [max (0, (1 xY + (1 YY 1)] 1/r' r ~ 0. 

Sugeno (39]: 

Tb4 (x, y) = max [0, (1 + b)(x + y 1)- bxy], 

st(x,y)- min(1,x+y+bxy), b> 1. 

Dubois and Prade [lOJ: 

xy 
= max(x, y, c)' 

S~(x,y) c E (0, 1). 

1.4.6 Relationship between Frank's family 
and other families 

Let us consider the t-norm Tw defined as: 


