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Preface

Fuzzy Set Theory (FST) and its underlying fuzzy logic represent one
of the most significant scientific and cultural paradigms emerging in
the second half of this century.

This paradigm has a definite ‘postmodern’ flavour as it represents an
alternative to the positivist view of the world.

FST paradigm imposed itself on the scientific community who be-
came aware that common sense concepts and approximate reasoning
(mainly based on simple, intuitive rules) have a great theoretical and
technological potential and an important explanatory power.

It became evident that many parts of natural and artificial reality
may adequately be described in terms that tolerate the ambiguity and
imprecision specific to the reality itself.

These approximate descriptions may be sufficient for many practical
purposes. A ‘complete’, rigorous description of complex systems is
usually impossible or too costly.

It also became manifest that traditional descriptions of complex sys-
tems are sometimes possible only at the cost of over-simplification.

On the other hand, the human mind and natural languages can per-
fectly cope with ambiguity and imprecision.

FST significantly enlarged the frames of the mathematical approach to
incorporate imprecise concept descriptions and imprecise (or approx-
imate) reasoning, and to treat them in a definitely rigorous manner.
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Reality usually has an intrinsic, non-probabilistic ambiguity. If we
want to remove this ambiguity we have to resort to over-simplified
descriptions.

On one hand, the grid of traditional mathematics and scientific con-
cepts may be too coarse or too restrictive. On the other hand, a com-
plete and exact description of a system could have prohibitive cost, be
difficult to manage, or even be useless due to its complexity. Further,
predictive or control results based on such description might not be
obtained in real time.

It is important to observe that ambiguity, vagueness and imprecision
represent only one side of FST. Many important theoretical models
and useful applications have been obtained by taking only this aspect
into account.

The dual aspect of ambiguity-tolerating reasoning is the nuanced rea-
soning. With FST we became aware that in order to describe reality
plausibly we have to bypass the strong, brittle Yes-No dichotomy.

FST represents a useful set theoretical model of multi-valued logics.
Multi-valued logics and FST cross-fertilize each other. Moreover, some
multi-valued logics are now considered as special cases of fuzzy logic
(in the wide sense).

Clustering is the very first application of FST. The reason for this is
that fuzzy clustering does not require very sophisticated conceptual
or mathematical tools.

On the other hand, fuzzy clusters represent natural models of fuzzy
concepts. We may speak, for instance, about the class of useful books
in a library, or the class of clever students in a school, and so on.

Fuzzy classes (or clusters) are the simplest and most natural examples
of fuzzy set.

Moreover, it is evident that most real-world classes are fuzzy rather
than crisp.
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Goals of the book

The main goals of the book are:

(®)

to offer a general, comprehensive introduction to Fuzzy Set The-
ory with a special emphasis on the notions and results needed
for training and clustering purposes;

to give an adequate and unitary mathematical framework for
fuzzy classification and clustering;

to provide a general methodology to develop fuzzy training and
classification methods;

to provide a general method to obtain a large variety of fuzzy
clustering algorithms;

to offer a comprehensive introduction to the fields of fuzzy learn-
ing classifiers and fuzzy clustering;

to present some basic fuzzy clustering algorithms treated in a
unified manner;

to present a hierarchical fuzzy clustering method able to detetct
hierarchically organized cluster structures without any a prior:
knowledge of the optimal number of clusters in the data set.

Structure of the book

The book is structured in four parts.

Part I (Chapters 1-6) describes fundamental aspects of Fuzzy Set The-
ory. This part is intended to offer an introduction, both simple and
self-contained, to mathematical notions and results concerning fuzzy
sets, fuzzy partitions and related concepts.
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Part IT (Chapters 7-8) is dedicated to fuzzy learning machines (fuzzy
classifiers) able to learn from fuzzy data. Fuzzy learning classifiers
may use the outputs of a fuzzy clustering algorithm as training sets.

~ Some basic training algorithms are described and their convergence
properties are investigated.

Part IIT (Chapters 9-16) deals with fuzzy partitional prototype-based
clustering. The main topics within this part concern fuzzy clustering
with point and linear prototypes, adaptive clustering, validity func-
tionals and convergence properties of clustering procedures.

Part IV (Chapters 17-19) is dedicated to fuzzy discriminant analysis
and fuzzy hierarchical clustering.

The content of each chapter is now briefly described.

Chapter 1 contains the basic notions about fuzzy sets. The frame-
work is that of triangular norms (t-norms) and conorms (t-conorms),
and their generators. Several families of ¢-norms and ¢-conorms are
considered. Various definitions of union, intersection and complement
operations are considered.

The ordinal sum-based method to obtain new t-norms and ¢t-conorms
is addressed.

An axiomatic definition of complementation operator is given and
some of its instances are taken into account.

Chapter 2 explores the properties of set operations induced by various
operators, particularly 7;, S, and T, Seo-

A particular attention is paid to the equivalence between the concepts
of binary fuzzy partitions and fuzzy partition of unity (Ruspini’s early
definition of fuzzy partition).

It is proved that the two concepts are completely equivalent if and
only if the set operations are induced by T, and S.

The notion of fuzzy n-partition, for n > 2, is investigated. Other
topics of this chapter are:

(7) refinement relation for fuzzy partitions;

(é%) algebraic join of two fuzzy partitions.
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The algebraic structure of the family L(X) of the fuzzy sets on a
fixed universe X is studied in Chapter 3. The key concepts are those
of partially ordered set, lattice, residuated lattice and multi-valued
algebra (MV-algebra). It is emphasized that Tw, Se Seem to be
suitable to define set operations for fuzzy sets, whereas T,, S, are
suitable to describe the order relation on L(X).

The framework of MV -algebras makes clear the non-competitive rela-
tionship of the pairs (T,, S,) and (Tw, Sxo), and their different mean-
ings and specific roles.

Residuated lattices also represent a powerful algebraic tool for char-
acterizing fuzzy sets and their underlying logic.

The notion of a basic triple is considered. Roughly speaking, (T, S, C)
is a basic triple if C is a complement operation, 7" and S are C-dual
and S and C have the same generator. The use of basic triples in
defining set operations ensures a deep coherence of the resulting fuzzy
set theory. '

The connection of the notions of basic triple and residuated implica-
tion is investigated. In this respect, a matching operator is defined. A
basic triple and a matching operator can generate a residuated lattice
via a residuated implication.

Chapter / begins with a presentation of the metric concepts for fuzzy
sets. There are several definitions of distance between fuzzy sets. The
definition used in this chapter is not the standard one. We preferred
it both for its being a natural extension of the classical notion and for
its fitness to clustering and training purposes.

The other topics of this chapter are:
(i) distance between fuzzy points;
(i) diameter of a fuzzy set;

(#33) fuzzy ball;

(iv) bounded fuzzy set;

(v) distance in a fuzzy class.
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Chapter 5 deals with the notions of entropy and informational energy
of fuzzy partitions. These notions are based on a suitable concept of
fuzzy measures.

Let us suppose the atoms of a fuzzy partition P describe the outcomes
of an experiment. The entropy of the fuzzy partition P measures the
information obtained (or the uncertainty removed) by performing the
experiment associated with this fuzzy partition.

Chapter 6 is devoted to the characterization of fuzzy sets using fuzzi-
ness and nonfuzziness measures. These measures give a global char-
acterization of the uncertainty/certainty associated with a fuzzy de-
scription of a situation, experiment, etc. Some particular fuzziness
and nonfuzziness measures for fuzzy sets defined on finite or infinite
universes are considered.

Several correlation coeflicients of fuzzy sets are also taken into account.

Fuzzy learning classifiers, considered in Chapter 7, may deal with data
that are either erroneous or containing atypical points. This kind of
classifiers are robust and may cope with the non-separability of the
training sets. ‘

Chapter 7 proposes a new paradigm for fuzzy neural network training.
Within this paradigm, classifiers able to learn fuzzy training classes
may be considered. A fuzzy perceptron is considered as an example
of this paradigm. The convergence of the fuzzy perceptron training
procedure is studied.

A robust variant of the fuzzy perceptron is considered.

Several generalizations of the fuzzy perceptron model are also taken
into account. The fuzzy pocket (FP) algorithm is such a general-
ization. FP algorithm is able to obtain an approximate separation
hyperplane in the case of arbitrary non-separable training classes.

Chapter 8 is dedicated to fuzzy training procedures based on squared
error criterion functions.

A fuzzy relaxation algorithm is derived. Some variants of this algo-
rithm are also considered.

Other training procedures considered in this chapter are fuzzy relatives
of some well-known classical learning algorithms. These procedures
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are: Fuzzy MSE method, Fuzzy Widrow-Hoff algorithm and several
variants of Fuzzy Ho-Kashyap algorithm.

The convergence properties of the fuzzy training algorithms presented
in this chapter are studied. Most of the models and algorithms in Part
11 are original.

The main idea in Chapter 9 is that the sub-cluster structure of a fuzzy
class may also contain some important useful clustering information.
To detect this structure a well-known alternating optimization method
is applied to a squared error objective function. The objective function
is not guessed, but it is derived using a general method based on the
local distance with respect to a fuzzy set.

A Generalized Fuzzy n-Means (GFNM) algorithm for detecting the
sub-cluster structure of a fuzzy class is derived.

In order to detect unequal size clusters correctly, the use of several
adaptive distances is proposed. A modified GFNM algorithm is con-
sidered. Other topics in this chapter are:

(7) data normalization using mean and variance of fuzzy classes;

(i1) use of local distances for clustering purposes within the GFNM
algorithm.

In Chapter 10, the infinite family of (G)FNM algorithms is considered.
The limit properties of this family are given.

Other topics in this chapter are:

(i) reformulated version of the (G)FNM algorithm;

(1) clustering with L, metric;
(#i5) clustering with set prototypes.
Chapter 11 mainly concerns the detection of linear (sub)clusters of
a fuzzy class. Two clustering methods are considered. They are al-

ternating optimization and principal component analysis of a fuzzy
class.
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In Chapter 12 various families of adaptive fuzzy clustering algorithms
are considered. These standard families are generalized to detect the
cluster substructure of a fuzzy class.

Prototype-based partitional clustering algorithms are used. Some al-
gorithms adopt a variable metric inducing matrix.

The main algorithms in this chapter are:
(i) adaptive FNM,;
(1) shell algorithms;

(#43) adaptive fuzzy n-shells algorithms.

In Chapter 13, other algorithms to detect spherical, elliptical or planar
shaped clusters are considered. Several variants of these algorithms
are presented. These algorithms use modified distance functions like:

(¢) distance generated by an unconstrained distance-inducing ma-
trix (AFNSU family of algorithms);

(it) algebraic distance;

(#4%) exponential distance.
The main classes of algorithms are:

(i) AFNSU family;

(%) ellipsoidal shell-clustering;
(#49) fuzzy maximum likelihood;
(iv) Gath-Geva algorithm;

(v) robust fuzzy clustering algorithms.
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The cluster validity problem is addressed in Chapter 14. To detect the
optimal cluster number, validity functionals are used. Validity func-
tionals give a numerical expression of the quality of a fuzzy partition.
The intuitive idea is that a good fuzzy partition is not a very fuzzy
one.

In this chapter, some well-known validity functionals, like partition
coefficient and classification entropy, are considered.

Using mean and variance, standardized and normalized versions of
these functionals are defined. Other validity functionals studied in
this chapter are coupling coefficient and proportion exponent.

In Chapter 15, a wide range of validity functionals are considered.
These functionals are based on various principles. Some of them rep-
resent uniform data validity functionals. Most of them are geometric
validity functionals that intend to reflect the actual structure of the

data set.

Geometric functionals are also related to the cluster shapes. Examples
of geometric validity functionals are:

(i) fuzzy partition density;
(#) fuzzy partition volume;
(438) class inertia;

(iv) separation index.

Other geometric functionals include class prototypes and data set
points.

Convergence of the FNM fuzzy clustering algorithms using point pro-
totypes is studied in Chapter 16.

Both local and global convergence properties are studied. Some well-
known convergence results for FNM are considered. These results still
remain valid for the GFNM algorithm.

The convergence theorems considered in this chapter may represent
the framework for a general convergence theory for prototype-based
partitional fuzzy clustering algorithms.
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Part 1V contains an original approach to fuzzy discriminant analysis
and hierarchical clustering.

Chapter 17 introduces fuzzy scatter matrices and Fisher discriminant
vector for two fuzzy classes. Discriminant axes for n > 2 fuzzy classes
are analyzed. Some fuzzy scattering criteria are considered for clus-
tering purposes.

The classical optimization methods seem not to be suitable to opti-
mize the obtained objective functions. Evolutionary algorithms (par-
ticularly genetic algorithms) are suggested as an ideal tool to optimize
the scatter objective functions.

Chapter 18 addresses the problem of fuzzy hierarchical clustering.
Hierarchical clustering methods may detect the built-in hierarchical
structure in a data set and also detect the optimal cluster number in
a given data set.

A divisive method to detect a fuzzy cluster hierarchy is proposed.
At each decomposition level, only ‘real’ clusters are retained. The
obtained hierarchy is binary and the method is sufficiently flexible
and robust. It may deal with arbitrary cluster structures. Each node
in the decomposition tree corresponds to a fuzzy class. For each such
node, a fuzzy one-level algorithm to detect the fuzzy partition of the
corresponding fuzzy class is used.

The quality of each binary fuzzy partition is measured by its polariza-
tion degree. Using the entropy of a fuzzy partition a stability degree
of a fuzzy hierarchy is proposed.

A hierarchical clustering procedure using structural, entropy-based
information is also considered.

Chapter 19 addresses the problem of simultaneous clustering (SC).
The aim of SC is to find simultaneously a fuzzy partition of the data
set and a fuzzy partition of the characteristics (features) describing the
data samples. The two fuzzy partitions have to be mutually relevant.

The problem of simultaneous clustering has a wide range of practical
applications. It is also important for data mining, data reduction
techniques and for classifier design for large data sets.

An algorithm for simultaneously detecting one-level fuzzy cluster struc-
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tures of data and of the corresponding features is proposed. This al-
gorithm is then used to obtain a simultaneous hierarchical clustering
structure. It is noteworthy that both algorithms are intrinsically fuzzy,
i.e., they do not allow hard versions.

The book contains an extensive unified treatment of fuzzy sets, fuzzy
clustering and fuzzy training models.

The book is intended for those who are interested in intelligent compu-
tation models and, in particular, in pattern recognition, data mining,
clustering and classifier design. It may also be used as an introduction
to basic concepts of fuzzy sets, fuzzy clustering and supervised fuzzy
training. The book may be useful for scientists from various fields
(such as chemistry, physics, biology, economics, and engineering) in-
terested in data analysis.

The book may also be used as a textbook in a one-semester postgrad-
uate course in pattern recognition and fuzzy technology.
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Chapter 1

Fuzzy Sets

1.1 Introduction

Fuzzy sets represent a suitable mathematical tool for the modeling of
imprecision and vagueness. In general, vagueness is associated with
the difficulty of making precise affirmnations about a certain domain.
On the other hand, in fuzzy set theory, the strong alternative yes - no
is indefinitely nuanced. From this point of view, fuzzy set theory is
not only a theory dealing with ambiguity and vagueness. It is also a
theory of the nuance reasoning. Pascal’s l’esprit de finesse and [’esprit
géométrique are jointed in this theory.

In this chapter, some basic notions and results in fuzzy set theory are
presented.

The set operations are introduced using the general formalism of tri-
angular norms (t-norms) and triangular conorms (¢-conorms) as is
developed in the theory of probabilistic metric spaces. Some families
of t-norms and t-conorms and their relationships are considered. The
additive generators of t-norms and t-conorms are defined.

The method of ordinal sums to construct new ¢-norms (t-conorms)
from a given family of t-norms (¢-conorms) is presented.

The use of t-norms and ¢-conorms connects fuzzy set theory with the
algebraic theory of semigroups.
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The solutions of an important functional equation arising from infor-
mation theory may be characterized using the concept of ordinal sum
(Frank’s theorem). Frank’s theorem will be used in chapter 2 to prove
the uniqueness of the pair (T, Soo)-

Other topics of this chapter are:

e conditions for the uniqueness of the standard set connectives
To, So;

axiomatic definition of fuzzy complement;

generator of a fuzzy complement;

C-dual connectives;

equilibrium and dual point of a complement.

1.2 Fuzzy sets and fuzzy points

1.2.1 Basic definitions

Definition

Let X be a non-empty set considered to be the universe of discourse.
A fuzzy set is a pair (X, A), where A: X — T and I = [0,1]. Ais
called the membership function.

Remark

In what follows we will consider a fixed universe X. Therefore we may
identify a fuzzy set with its membership function.

The family of all fuzzy sets on the universe X will be denoted by L(X).
Thus

LIX)={A|A: X > 1I}.
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The notion of fuzzy set has been introduced by L.A. Zadeh (see [43]).

A(z) is the membership degree of x to A. It may also be interpreted as
the plausibility degree of the affirmation ‘z belongs to A’. If A(z) =0,
z is ‘definitely not in A’ and if A(z) = 1, z is ‘definitely in A’. The
intermediate cases are ‘fuzzy’.

Definition

The fuzzy set A is called non-ambiguous (or crisp) if A(z) € {0,1}.

Remark

The characteristic function of every classical set is thus a non-ambigu-
ous fuzzy set.

Definition

The empty set @ is defined as

B(z) =0, Vze X.

Definition

If Ais from L(X), the complement of A is the fuzzy set A defined as

A(z) =1- A(z), VreX.

Remark

The complement of () is the fuzzy set 1x. In what follows we will also
denote 1x by X.

Let A and B be fuzzy sets on X.
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Definition
The equality between A and B on X is determined by the usual equal-
ity of mappings, i.e.,
A=B <= A(z)=B(z), Vze X.
Definition

The inclusion relation between fuzzy sets is defined pointwise, i.e., we
have .

ACB <= A(z) < B(z), Vze X.

Definition

The product of the fuzzy sets A, B is the fuzzy set AB defined by
(AB)(z) = A(z) - B(z), Vz € X.

Definition

The difference of A and B is the fuzzy set A — B defined by

(A — B)(z) = max (A(z) — B(z),0), Vz € X.

1.2.2 Fuzzy points. Level sets of a fuzzy set

Definition
Let ¢t € [0,1] and A be a fuzzy set on X. We define the t-level (or
t-cut) of A as the ordinary set
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At={ze X | Alz) >1).

Definition

The strong t-level (or strong t-cut) of A is defined by
A" = {r € X | A(z) > t}.

Definition

The support of a fuzzy set A on X, denoted supp A, is the ordinary
subset of X given by

supp A = {z € X | A(z) > 0}.

Definition

A fuzzy set on X is called a fuzzy point, or a fuzzy singleton, if and
only if it takes the value 0 for all points in X except one.

Remarks
(i) A fuzzy set is a fuzzy point if and only if its support reduces to
a point in X.

(#) A fuzzy point is completely determined by its support, say {y},
and its value b at y. We will use the notation f;’ for this fuzzy
point.

Thus we have

b, ifz=y
0, ifx#y

for every z in X.
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Definition

A fuzzy singleton f; belongs to a fuzzy set A if and only if
fo(z) < A(z), for each £ in X. We denote this membership relation
between a fuzzy singleton and a fuzzy set by f? € A.

Remark

fb € Aif and only if b < A(y).

Definition

A fuzzy point f? is called crisp if and only if a = 1.

1.2.3 Fuzzy points and the inclusion relation

The relation between fuzzy points and the inclusion of fuzzy sets is
given by the following proposition.

Proposition

Let A and B be two fuzzy sets on X. Then we have

(i) A C B if and only if the implication

ffeA=feeB

holds for each fuzzy point f2 that belongs to A.

(11) A = B if and only if the equivalence

fieA < fleB

holds for each fuzzy point f2 on X.
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Proof.

(7) Let us consider A C B. For each fuzzy point f2 that belongs to
A we have a < A(z) < B(z). Thus f2 belongs to B. Conversely,
let x be an arbitrary point in X and let us assume that

fie A= fieB.
It follows that
a < A(z) = a < B(x),
i.e.,

A(z) < B(z), Vze X

and thus A C B.

(#3) It is obvious. O

1.3 Axioms for operations on fuzzy sets

1.3.1 Basic requirements for set operators

The intersection and the union of two fuzzy sets may be defined by
using two functions F,G : I x I — I. The set operations may be
defined pointwise as follows:

(AN B)(z). = F(A(z), B(z)), Vz € X,

(AuB)(z) = G(A(z),B(z)), Vze X.
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Fuzzy set operations must satisfy some natural requirements. These
requirements are listed below.

(i) The operations induced by F' and G must reduce to crisp (usual)
set operations when the sets are non-ambiguous.

(ii) The fuzzy set operations must satisfy the boundary conditions:

ANX = A,
AnG = 0,
AUuX = X,
AU = A

(ii1) The set operations must be associative and commutative. The
associativity allows us to extend the operations of fuzzy sets to
more than two sets.

(iv) The functions F' and G must be monotone with respect to both
variables.

(v) The fuzzy set operations must satisfy standard De Morgan laws:

-
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Remark

From condition (i) we obtain:
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F(Q,1)

F(0,0)

G(0,0)

G(0,1)

From condition (iz) we have

Conditions (v) may be written

1 — F(A(z), B(z))
and
1 -G(A(z), B(x))

for every z from X.

0, Vacl,

= a, Vael

G(1 - A(z),1 - B(x)),

F(1 - A(z),1 — B(x)),

11
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It follows that the functions F' and G satisfy the requirements:

Fa,b) =1~ G(l —a,1—b),

G(a,b)=1— F(1—a,1-b),

for every a,b in [0,1].

It is easy to see that the last two conditions are equivalent.

1.3.2 Axioms for the set operators

Now we are able to give the axioms for the set operators of the fuzzy
sets. The minimal requirements are given by the following list of
axioms.

Axiom 1

F(1,1) = 1,
F(0,0) = F(0,1)
- FQ,
= 0,
G(0,0) = 0,
G(0,1) = G(1,0)
= G(1,1)
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Axiom 2

F(a,0) = 0, Va€el,

G(a,0) = a, Ya€el.

Axiom 3 Commutativity:

F(a,b) = F(b,a), Va,be I,

G(a,b) = G(b,a), Va,bel.

Axiom 4 Associativity:

F(F(a,b),c) = F(a,F(bc)), Va,bcel,
G (G(a,b),c) = G(a,G(b,c)), Va,bcel.
Axiom 5 Monotony:
a<d, b<V = F(ab)<F(d}),
a<d, b<¥ = Glab) <Gd,Vb),

where a, b,a', b are from I.
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Axiom 6 De Morgan law:
F(a,b)=1-G(1-a,1—-b), Va,bel.

Remark

These axioms suggest us to consider for F' a triangular norm (¢-norm)
and for G a triangular conorm (¢-conorm).

We recall that ¢t-norms have been introduced in the context of proba-
bilistic metric spaces.

1.4 Triangular norms and conorms

In this section, we will recall some basic properties of t-norms and
t-conorms. These properties will be very useful to develop a theory
of fuzzy sets.

Triangular norms have been studied extensively by Schweizer and
Sklar [34], Ling [27], Kimberling [24], Frank [16] and others.

1.4.1 Definition of t-norms. Archimedean
t-norms

Definition

A t-norm is a two-argument function

T:IxI—>1I

fulfilling the axioms:

(i) T(a,1) =a, Va €I (boundary condition),
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(i) T(a,b) < T(u,v) if a < u, b < v (monotony),
(#53) T(a,b) = T(b,a) (commutativity),

(iv) T (T(a,b),c) =T (a,T(b,c)) (associativity).

Remarks

(1) From axioms (i) and (i) we have

0<T(0,a) <T(0,1) =0,
and thus

T(0,a) =T(a,0) =0, Vae€ I

From these two axioms also one gets

T(a,a) <T(a,1) =a, Va€el.

(2) It is easy to see that the pair (I, T) is an Abelian semigroup with
unity.

(8) If “ <” is the natural order relation on I, then the triple (I, T, <)
is an Abelian ordered semigroup with unity.

Definition

A t-norm T is said to be Archimedean if it fulfills the condition

T(a,a) <a, Vac€ (0,1).
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Remark

The t-norm T is Archimedean if and only if T has no interior idem-
potents. This means that there exists no a € (0,1) for which

T(a,a) = a.

1.4.2 Definition of t-conorms. Archimedean
t-conorms

Definition

Let T be a t-norm. The two-place function

S:IxI—1T

defined by
S(a,b) =1-T(1—a,1-0b), Vabel,

is called a t-conorm (or the dual of T').

Remarks

(a) If S is a t-conorm then S is monotone, commutative, associative
and

S(a,0) = a.
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() We also have

S(a,1) =1

and for every a € I

S(a,a) > a.

Definition

A t-conorm S is called Archimedean if and only if it fulfills the condi-
tion

S(a,a) >a, Vae (0,1).

Remark

If T is an Archimedean ¢t-norm then its dual £-conorm is also Archime-
dean.

Concerning Archimedean t-norms and ¢-conorms, in the next section
we will give two representation theorems.

1.4.3 Pseudo-inverse and additive generators

Definition

Let f be a continuous and strictly decreasing function
£ [u,v] = [0, 00].

The pseudo-inverse of f is the function f(-V : [0, c0] — [u,v], defined
by
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v, if z € [0, f(v)]
f@) =4 f (@), ifz e (fv), f(u)
u, if z € [f(u), 00|,

where f~! is the ordinary inverse of f.

Theorem (Ling, 1965) [27]

A function T : I x I — I is an Archimedean t-norm if and only if there
exists a continuous and strictly decreasing function f : [0, 1] — [0, o0],
with f(1) = 0, such that T may be represented as

T(a,b) = ) (f(a) + f(B) Va,be [0,1].

Moreover, T is strict, i.e., is strictly decreasing in (0,1), if and only if
f(0) = +o0.

For Archimedean t-conorms we have an analogous result given by the
following theorem.

Theorem [27]

A function S : I x I — I is an Archimedean t-conorm if and only if
there exists a continuous and strictly increasing function
g : [0,1] — [0,00], with g(0) = 0, such that S may be represented
as

S(a,b) = g™V (g(a) + g(b)), Va,be [0,1].

Moreover, S is strict, i.e., is strictly increasing in (0,1), if and only if
9(1) = +oo.
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Definition

A strictly decreasing continuous function f that satisfies the condition

T(a,b) = fV(f(a) + £ (b))
is called an additive generator of T.

Remark

An additive generator of T' is unique except for a positive factor, i.e.,
if f is an additive generator of T then af, a > 0, is also an additive
generator.

We may now reformulate Ling’s theorem concerning Archimedean ¢-
norms as follows.

Theorem

A function T : I x I — I is an Archimedean t-norm if and only if T
admits an additive generator.

Definition

A strictly increasing continuous function g, with g(0) = 0, is an addi-
tive generator of the t-conorm S if and only if

S(a,b) = "V (g(a) + g(b)), Va,be€[0,1].
Example

The generator of t-conorm Sy, is the identity function on [0,1].

1.4.4 Frank’s fundamental family of {-norms
and {-conorms

The most interesting t-norms and ¢-conorms are listed below:
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To(z,y) = min(z, y),

So(z,y) = max(z,y),

Ti(z,y) = zy,

Si(z,y) =z +y -z,
Too(z,y) = max{z +y — 1,0),
Seo(2,y) = min(z +y,1),

(s*—1)(s¥~-1)
s—1

Ts(x,y):logs(1+ ),s>0,s¢1,

(st = 1)(s' v -1)
s—1

Ss(a:,y)=1—logs<1+ ),s>(],s;é1.

Remark

The families T, and Sy, 0 < s < 00, are considered in [16].

Proposition

The previous t-norms form a single family in the sense that

T,= lim T,

§—0,5>0

and
T, =1limT,, i=1,00.
§—1

For the proof see [16].
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Remarks

(1) A similar result holds for the t¢-conorms of the family

{Ss | s > 0}.

(#9) It is easy to see that 7, is not Archimedean and T, as well as Ty,
0 < s < 00, are Archimedean.

1.4.5 Other families of {-norms and ¢{-conorms

Some other examples of families of t-norms and related dual ¢t-conorms
are reported below,

Yager [41] :

Tpl(:r,y) = 1 — min [1, (1-z)?+ (1 - y)p)l/p] ’
S;(:r, y) = min (1, (zP + yP)llp) . p>0.

Hamacher [19], [20]:

Ty
a+(1—-a)(z+y-—zy)

TX(z,y) =

-dzy+z+y
% U .
2(z,y) @Dz > *0
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Schweizer and Sklar [36]:

T3(z,y) = [max(0,z" +y" — ],

S¥z,y) = 1-[max(0,(1-z)"+ (1 —y) =", r#£0.

Sugeno [39]:

THz,y) = max[0,(1+b)(z+y—1)— bay],

Sp(z,y) = min(l,z+y +bzy), b> —1.

Dubois and Prade [10]:

zy
TS S ;A
- (@) max(z,y, c)’
5 z+y — zy — min(z,y,1 - c)
Sc(x7y) , CE (0,1)

1 — min(z,y,1 — ¢)

1.4.6 Relationship between Frank’s family
and other families

Let us consider the t-norm T,, defined as:



