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Preface 

The International Federation for Information Processing (IFIP) working group 7.2 Conference on 
Control and Shape Optimization was held at Scuola Normale Superiore di Pisa, Italy. The 
meeting was sponsored by Scuola Normale Superiore di Pisa and CNR Gruppo Nazionale di 
Analisi Funzionale. The purpose of the workshop was to exchange ideas between the group 
working on control theory and the group working on shape optimization. It was part of an 
ongoing collaboration between Scuola Normale Superiore di Pisa and the Centre de Recherche 
en Mathématiques Appliquées de l'Ecole des Mines de Paris. 

Optimization and control theory are recurrent themes in the modeling of real-life systems 
from many areas: real-time systems, material sciences, lifting profiles, thermal testing, elastic 
shells, and biodynamics. The Hamilton-Jacobi approach is beginning to play a major role in 
solving concrete problems where active control is needed, while shape optimization is the tool of 
choice for passive control problems. The challenge is to bring these two approaches together 
(e.g., the optimal location of actuators/sensors for tracking improvement, the best shape of a plate 
for enhancing the stabilizing control). We hope this volume will stimulate further research. 

We would like to thank all contributors and Mrs. Caterina D'Elia, at Scuola Normale, for 
their efforts on behalf of the conference. 

Guiseppe Da Prato 
Jean-Paul Zolésio 
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Shape Control of a Hydrodynamic Wake 
JEAN-CHRISTOPHE AGUILAR, ECOLE DES MINES DE PARIS, CENTRE DE MATHÉMATIQUES AP-

PLIQUÉES, B.P.207, 06904 SOPHIA ANTIPOLIS, FRANCE 

JEAN PAUL ZOLESIO, CNRS-INLN, 1361 ROUTE DES LUCIOLES, 06560 VALBONNE, FRANCE 

ABSTRACT. This paper propounds a shape variational formulation of a hydro-
dynamic free interface which appears behind a three dimensional lifting profile. 
We prove the existence of an optimal wake under Density Perimeter constraints. 
We derive from this formulation the standard equilibrium condition in the clas
sical case where this interface is a regular surface. 

1. INTRODUCTION 

We consider a "hydrodynamicaly well profiled" body B. B has a uniform sta
tionary velocity UOQ. A thin viscous boundary layer is developed around B and in 
that study we neglect it, in the sense that we consider that the shape B coincide 
with the shape of the body augmented by its boundary layer, according with the 
classical boundary layer theory. Then we consider a sliding condition , U.n = 0 on 
Q = dB (V being the stationary speed of the fluid). Nevertheless, we cannot com
pletely neglect the vorticity in that flow in view of the modeling of the lifting effect. 
It is classical in engineering to consider the vorticity of the flow as being supported 
by a piece of surface S in addition to Q. 5 is called the wake. We assume the 
flow is governed by Euler's equations in Q \ 5, Q being the outer domain and S is 
said "in equilibrium" when the resulting jump of pressure [p] across S is zero. The 
objective of that paper is to solve that free boundary problem whose solution is the 
couple (U = V</>, S) with <j> 6 H1(Q\S). We develop a new variational formulation 
on the variables U and S. We introduce an energy J£(S) in the form 

J£(S) = min / ( V + I I Vy I2 +i.Vy)dx 

and the analysis of the optimality condition for Je (S) makes use of the shape analysis 
technics. In order to insure the existence of £, we introduce a surface tension a > 0 
via a surface energy for S which is represented by the use of the Density Perimeter 
which is the adapted perimeter concept for this kind of shape variational problem. 

2. DEFINITIONS AND MAIN PROPERTIES 

B is a bounded domain in MN (N > 2) with boundary Q. The fluid will occupy 
the outer domain. More precisely, we consider a "large" bounded domain D with 
B C D and dD being lipschitzian. The fluid occupies the domain Q = D\B. The 
boundary of Q is made of two connected components Q and dD. 

The stationary speed field U of the fluid in the domain Ü is assumed irrotational 
in Q \ S where S is a closed subset in Q with zero measure and empty interior. 
Our modeling is assuming that the body Q is "well profiled" in such a way that the 
support of the curl{U) will be in S U Q. In this fist paper, we neglect boundary 
layer effect in the neighborhood of S U Q. For each closed set S in fi, we consider 
the Sobolev space Hl(Q \ S). The open set fi \ 5 is non smooth and H1^ \ S) is 
defined as 

Hl(Q \S) = {ye L2(n \ 5), Vy e L2(fi \ 5; 1RN)} 
In the case where S is contained in a smooth orientable surface E, the traces of any 
element y are defined on both sides of E and may be different functions in H* (E). 
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2 Aguilar and Zolésio 

In that case, we shall denote by [y] the jump of y through the surface E. Of course, 
H1^ \ S) in not a subspace of H1^), but we have Hl(Q) C H1^ \ S) for any 
closed set 5 in lì. For any y in Hl(Q), we have [y\ = 0 on S. Prom irrotationality 
assumption, we have U \n\s= V0 in Ù \ S for some scalar potential </> in H1 (Q, \ S). 

That <i> defines an element <j)° of L2(Q,) as S has a zero measure. That ele
ment (j)° defines a distribution over ft, <j>° € £>;(ffc), and we consider its gradi
ent V(j>° e V'{0). In fact, as 4>° is uniquely associated to </>, the restriction of 
the distribution V^°, element of V,(ü;MN)i to the open set H \ S is V<£ and 
V(^°) = (V0)° + fi where /z = 7s(M™) i s a measure, /x E V°'(n\RN), sup
ported by 5. We take U = (V0)° = V(<^°) — jz. In such a situation, we get 
curl(U) = cw/((V<£)°) — curl(ß). The distribution citrZ/x is supported by 5 (as 
was ji), the restriction to ft \ S of curl((V<t>)°) is zero (as curIV = 0) so that 
curl((V(t>)°) = /x is a distribution of order one supported by S. Finally, we get 
curl U = rs(n A V r [0]) and divU = -yS(lf^l) 

^ Q 

FIGURE 1. Fluid domain 

3. REDUCTION TO A BOUNDED DOMAIN CONTAINED IN D 

We introduce the perturbation velocity potential (f so that U = Woo («+(V(£>)°) in fì , 
£̂ 00 = * W ; <t>M = Uoa(xM + ^ M ) w i t n X M = < OM,i > ^ 3 and (p e H1^ \ S) 

More precisely, we consider a "large" bounded domain D with B C D and 3D 
being lipschitzian. 
So, when D is large enough the perturbation speed will be zero out of D. 
The fluid occupies the domain D, = D\B. The boundary of Q is made of two 
connected components Q and 3D. 

4. WEAKLY COMPRESSIBLE FLOW 

In order to insure the uniformity of the classical Poincaré constant in the non 
smooth domains fi \ 5, we introduce a zero order term in the energy leading to a 
weakly compressible condition controlled by e. Given e > 0, we consider the energy 
functional 

/S „2 , 1 I r7„. |2 *S\s(ff) = Ja qv1 + % I Vy |a +t.Vy)<fcc 

The minimizer (/? of that functional over HZ"1 (lì \ 5) is the solution of the weak 
problem 

(4.1) V2/€iJ1(fi\5), / (e(py + V(p.Vy + i.Vy)dx = 0 
Jn\s 
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So that, performing by part, we can see that the problem takes the following 
form 

A(p = eip in f] 
dtp 
-J- = -i.n on Q U 5 + U 5 " 
on 

if = 0 on dD 

3D 

FIGURE 2. Bounded fluid domain 

We have the following estimates 

Lemma 1. 

Iiv^ll L*(n\s;mN) -AT, < i n i 2 

Proof, with y = (f in 4.1, 

/ | V(f |2 dx < f \i\ \Vtp\dx 
Jn\s JQ\S 

< f \V<P\ Jn\s 
dx 

< 

D 

Lemma 2. 

v£|MU»<n) < | n | * 
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Proof, with y = (p in (4.1), 

(Ve|l¥>IU»(n\s))2 = - | | V ^ | | 2
L 2 ( n v ? ) - y i.Vipdx 

< J I V(f I dx 
Jn\s 

\n\Uf \v?\2dx)ì 
JQ\S 

Jn\s 

< i n i 

D 

Lemma 3. 

Proof. 

D 

||A(p||L2(fAs) < Vc l « | * 

< \/£ I fi 12 with lemma 2 

In view of that last estimate, we see that div(U \n\s) = ^oo A(£ goes to zero 
with e. Then, the flow is almost incompressible. 

In the case where 5 is a smooth surface, we would get, denoting by n the normal 
field on S and performing by part on (4.1). 

-%± = -Z- = -i.n on S 
on on 

For each closed set S in f£, (p(Q \ S) denoting the solution of problem (4.1), we 
consider the energy functional, for given e > 0, 

US) = min E*QSS(y) 
» € H x ( n \ S ) 

Lemma 4. 

Je{S) = - \ ( (e^(n \ 5 )+ | Vp(fì \ S) |2) dx 
fa\s 

Proof, with y = ip in (4.1), 

Je(S) = \ [ < i, V(/?(0 \S)> dx = \<i, [ Vcp(ü \S)> dx> 
Jn\s z JQ\S 

D 

Lemma 5. 
o > Je(s) > - | n | 

Proof. 

J«(5) = -i(e |Mli» ( n ) + ||Vv»||i,(n) 

with lemma 1 and lemma 2 D 
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5. DEFORMATIONS OF THE DOMAINS 

ForanyFeC°( [0 ,T[ ; iR N ) 

V = 0 on Q U dD 

we consider the flow mapping Tt(V) : X \—► x(t,X) 
With x{t,X) solution to the system of ordinary differential equations 

±x(t,X)=V(tix(t,X)) 
x{OìX) = X 

We know from [3] that Tt is a diffeomorphism from D\B onto itself. 

6. OPTIMAL WAKE EXISTENCE 

We consider now the extremality of the functional J£. The energy associated to 
S is related to its length. We choose here the density perimeter P7(5) for a given 
7 > 0 which could be related to a surface tension concept, see [1]. 

Py,H(S)^ sup[^P+H(s)] 
£€(0,7) i e 

Sc= \jB(x,e) 
xes 

The main properties of P1ÌH are 

Proposition 1. 

Proposition 2. 

Proposition 3. 

n n ^ ü => P 7 H(dQ) < liminf P 7 H(dÜn) 

ün^ü =* nn
c-^n 

PliH(dfl) < oo => meas(dü) = 0 

Hc is the Hausdorff topology. 

dHd (ili, fì2) = sup | dQl (x) - dn2 (x) \ 
xeMN 

where d^(x) = inf \\x — y\\ 

dHc(niin2)=dHd(nc
1,nc

2) 
Bf (Resp. Boo) is a closed set in Q (Resp. dD) with n — 1 dimensional Hausdorff 

measure | Bf \nn-i=\ B^ | ^»- i= 0. The admissible family of closed sets S is chosen 
as 

S0 = {S = S, meas{S) = 0, S D Bf U £«, , # (5 ) = 1} 

Where 5 is the closure of 5 in MN and #(5) is the number of connected com
ponents of S. 

Proposi t ion 4. VM > 0, <S0
M = {£ G <S0 I PyG^) < M} equipped with the 

Hausdorff metric is a compact metric space. 



6 Aguilar and Zolésio 

Proof. Prom [1] we know that given a sequence Sn in «So with P1{Sn) < M there 
exists a subsequence still denoted by Sn such that Sn—>S in Hausdorff metric where 
S is a closed set in Q. Moreover xn\sn —> Xn\s m L2(Q). So that meas(S) = 0. 
Also, we know ([2]) that # is lower semi continuous for the Hausdorff topology then 
# £ < 1 but as Sn D BfU B^ we get S D Bf U B^ then 5 is non empty and then 
#(S) = 1. Finally P1 is lower semi continuous ([1]), then P1{S) < M D 

Given a > 0, we consider the optimality problem 

(6.1) Min {J£(S) + a P1(S) | S G «S0} 

Theo rem 1. For each e > 0, the problem (6.1) has optimal solutions in the family 
S0. 

Before showing this theorem, we need the following result 

L e m m a 6. J£ is lower semi continuous on SQ1 

Proof. Let 5 n - ^ 5 , let (pn = (p(il \ Sn). Prom Lemma (1) and (2), 

ll(V¥>n)°|U»(n) < \n\i 

ll(¥>n)°IU»(n) < ^ l « l 

Then, after extraction of subsequences 

(V<pJ° - / weakly in L2(<7; MN) 
(</\J° -^ 9 weakly in L2(ft) 

From the Hausdorff convergence of Sn to S, we get: Let ip G V{Q \ 5), 3n^ = 
n(d(S,K)), where K = supplì. Such that n > n^ implies ^ G V(ü \ Sn) then, we 
see easily that / |n \s= v ( 0 |n\s) W e s e t ¥> = 9 |n\s so t h a t <P € Ä" 1 ^ \ 5) 

On the other hand, we have 

Je{Sn) = \ < i,V(pn > dx = \ J < *,(V<pn)° > drr 
z Jn\sn

 z Jsi 
Which converges, as n —► oo, to 

-<iìf>dx = - <i,f>dx = - <iìV(p> dx> Je(S) 
1 JQ Z Jn\s z Jn\s 

D 

Proof, [of the theorem] Let Sn be a minimizing sequence for problem (6.1). We 
assume J£(Sn) + a P1(Sn) monotonically decreasing to the infimum as n —► 0. 
Then 

J£(Sn) + a P 7 (5 n ) < Je(Si) + (J P7(5i) = a 

(rP1{Sn) < a — J£(Sn) then, form lemma 5 

(6.2) P~r(Sn)<M = -(a+\n\) 
o~ 

Prom proposition 4, we can assume that Sn —► S in Hausdorff metric with 
S G «S0. Prom [1] we know that P1 is lower semi continuous on «So and, as J£ is semi 
continuous inferiorly, the result classically derives. D 
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7. Viscous WAKE 

The perimeter P7(5) can be considered as a viscous term associated to 5. We 
can take in account a more general contribution of the viscous effect. In the flow 
in ft \ S, we can neglect the viscosity but it is not reasonable on S because of the 
jump of the speed flow through S. Then, we can not neglect a viscous effect and 
we chose a classical term in the following form: 

MS) + J(* + v\\[yT(p(s)]\\2)dr 

8. NECESSARY OPTIMALITY CONDITION 

8.1. The smooth case. We assume that the optimal wake S is smooth enough. 
Then, using shape sensitivity analysis, we derive the shape gradient of the energy 
J£(S). We perturb S using a one parameter family of transformation Tt mapping 
Ü on itself, du onto <9Q, with Tt{Bf) = Bf and Tt(£oo) = #oo 

Je(S) = min £o\cG/) 

so that the wake equilibrium problem (6.1) take the following shape variational form 

(8-1} ¥Ì^ve^s)
E^{y) + aP^S)) 

We apply the results concerning the derivative of a Minimum with respect to a 
parameter 5 [4]. For a given s > 0, we set Ss = TS(V)(S) 

Lemma 7. The family So is stable under transformations TS(V): 

W , Va, Ss e S0 

Proof. Tt : D —► D is a smooth one to one transformation then | Ss |= 0, # (5 a ) = 
# 5 , Ss is closed D 

Lemma 8. The elements of the Sobolev space are transported by Ta(V): 

2/ei?1(n\5s) <=> z = y o Ts{V)eH\n\s) 
Then, problem (8.1) lead to the extremization of the functional 

(8.2) Je(Ss) = z € m i n ^ 2 $ \ s . ( * ° Ts(V)~l) 

We set 
F(s,z) = E!lxs(zoTs(V)-1) 

f(s) = MS.) 
and we make use of the 

Theorem 2. Let K be a compact set, F : [0, r] x K —► M a differentiable mapping 
and let f(t) = min{F(£,t/) | y E K}. Denote by K* the subset of K of elements </? 
which realize minimum at t=0. 
f is side differentiable at t = 0 and 

m + I ) . „Mzffl 
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In order to apply that result, we need to reduce the minimum to a compact set 
K. This derives from the coercivity of E^x s 
Effectively, we have 

Eh\s(y) > l\\y\\h{n) + \\\^y\\hw-\^\" llv</lUw) 
> | l l2 / l l 2 / / i ( f i \5)- |^ l è l|Vy|U»(n\s) 

> i\\y\\2HHn\s) 

as soon as \\y\\H*{n\s) > 7 I n l* = M 

then ||y||Hi(n\5) > M implies E^s(y) > ± | ft |> 0 

But the minimum J£(SS) being negative, in the minimization problem (8.2) 
H1 (0 \ S) can be replaced by 

K={yeH1(Ü\S) I |M|<M} 
K is weakly compact in H1(Q\S) 

Lemma 9. The Eulerian derivative of the domain functional J£(S) in the direction 
of the vector field V acting on S is 

Proof. 

we make use of: 

d_ 
dt 

dJe{S- V) = J [^|V^|2 + Vip.i + E-v2}V.ndT 

(f hviipoTf^dx)^ = ['v<p.V(-V<p.V)dz + l\l\Vip\2ÌV.ndT 
Jnt

 z Jn Js z 

= j Vv.VAp dx- j [j£v<p].V dT + / i [ |Vp| 2 ]Kn dT 

= f [V<p.yj i.n dT + / ^[|V(^|2]F.n d r 

and 

| ( ^ v^orr1).»^),^ = | ( ^ dtv^rr1!)^)^ 

= / div(-Vip.Vi) dx + [div(<pi)]V.n dT 
Jn Js 

= f [ - V<p.V]i.n dT + / [\7(p.i] V.n dY 
Js Js 

then 
f\0) = j[±\V<p\2 + V<p.%iV.ndr 

D 

We get now the necessary optimality condition. 

Proposition 5. Let S be a minimizer for the problem (6.1). Then the pressure is 
defined on both sides of S and is given by the Bernoulli's equation. Moreover, its 
jump across S is zero. 

\p] = 0 on S 
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Proof. On the optimal wake, 

j \\\Vv\2+Vy.Ü00 + £-V
2]V.ndT = Q, V V 

Considering the following Bernoulli's equation on both sides of S, 

htf-u^+e^ + l + g z ^ 
2 p p 

(Po = Pz=ois the atmospheric pressure) 

in term of speed perturbation potential, this expression turns to be: 

<4( iW| 2 + V„.t + \H?) + V- + gz = ^on S 
2 2 p p 

which permits to conclude. D 

8.2. The non smooth case. In general, S could be non smooth (as up to now 
we have derive no smoothness results on 5). The same shape sensitivity analysis 
can be performed but avoiding any boundary integral on 5. Then, taking volume 
integrals, we give now the necessary condition which will be a relaxed formulation 
of the previous one. 

Proposition 6. 

dJ£(S; V) = / div{{\ | Vip |2 +V^.z + ^<p2) V} dx 
JQ\S 2 2 

Proof. Using the two following propositions 7 and 8. □ 

Proposition 7. 

- § ( / hv^oT-^dx)^^ \ f div(\V^\2V)dx 

- / div(V.VipV(p)dx 
Jn\s 

Before showing this proposition, we need the two following lemmas 

Lemma 10. 

/ < e(V)V<p, V(p>dx= / div(V.V(p V<p)- < D2<pV<p, V > 
Jn\s Jn\s 

Proof. 

/ diVj di<pdj(p dx = -Vj di(di<pdj<p) + di{Vj(dnpdj<p)} dx 
Jn\s Jn\s 

= / - < V, Vip > Aip- < D2<p Vip, V > +div(V.Vip Vip) dx 
Jn\s 

D 

Lemma 11. 

/ \divV \Vip\2dx = f - < D2ipVip, V > + \div(\V<p>\2V) dx 
Jn\s 2 Jn\s 2 

file:///divV
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Proof. 

f divV \Vp\2dx = f -V.V(\Vy\2)dx + div(\V<p\2) V}dx 
Jn\s JQ\S 

Where V.V(\V<p\2) =< 2D2ipVy, V > 
D 

Proof, [of the proposition 7] 

ft(Jn s \\V{voTrl)\2dx)u=0 = | ( jf s \ K'DTr^'DTr1?* > det(DTt) dx)Um0 

< {\ld divV(0) - e{V(0))}Vip, V<p > dx J n\s 2 

And concluding with lemmas 10 and 11. D 

Proposition 8. 
d_ 
dt 

Proof. 
d 

I V{ipoTf1).idx)\t=0 = / div(V<p.i V)+ div(V.V<p Vy)dx 
jQt Jn\s Jn\s 

( / V&oT-^.idx)^ = J <-DV*(0)Vipìi> + <V(p1i>divV(0)dx 

div(V(p.i V)- < D2(p i, V > dx L n\s 

/ div(V.V(p i)+ < D2<p Vyi> dx 
Jn\s 

di 
ßn\s Jn\s 
/ div(X/<p.i V)+ I div(V.Vy> Vcp)dx 

Jn\s Jn\s 
D 
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On Some Inverse Geometrical Problems 

S. Andrieux EDF-DER-MMN, Clamart, France 
A. Ben Abda M. Jaou ENIT, LAMAP, Tunis, and Institut Préparatoire aux Etudes 
Scientifiques et Techniques, La Marsa, Tunisia 

I Introduction 
Recent efforts have focused on an industrial process : Nondestructive thermal testing of materials. 
They are generated by a growing interest in the detection and location of structural internal flaws. 
These methods give rise to a class of identification problems : Inverse geometrical problems defined 
by overspecified data. 
These kind of problems are posed as follows : Consider a material occupying a domain Q. in IRn, n > 
2. and let F be the unknown geometry. 
One wishes to determine T by injecting a heat flux <X> (or a current flux in the case of electrical 
testing) across dQ. and measuring the temperature f (or the voltage) on an open subset of dQ. : M. 
The temperature field u satisfies the steady state heat conduction problem : 

-Äu = 0 in Qp 
r)u 
T- = $ o n 3Qp 

u = 0 and O = 0 

Thus the problem is to know if F can be determined by one choice of the heat flux O (and the 
corresponding measurement f). 
The determination of F consists in seeking the solution of three questions. 

1) The uniqueness : Does O (and f) uniquely determine the unknown F. 
2) The stability : Because of the error in measurements and in view of numerical treatments 

one has to study the variation of the geometry with respect to a variation of the measurement. 
3) The inversion process : The goal of the problem is the determination of the unknown 

geometry by finding an inversion process which can be explicit or iterative. 

The uniqueness question has been widely studied by many authors for different kind of geometrical 
flaws. In the case of inclusions [13] proved that when the inclusion D is a priori known to be a convex 
polyhedron , the shape and the location of D are determined by one measurement only. In the case 
where the unknown F is a part of the outer part of d£l, one heat flux with its correspondant 
measurement, suffices to determine F [5]. 
In the case of a buried insulated crack [14] showed that two specific current fluxes together with 
correspondant voltage suffice to determine the crack. Furthermore, they proved that this result is 
the best one possible. This result was extended in the case of a family of n cracks [9 ], it was proved 
that a family of n+1 fluxes with their corresponding voltage suffices to establish the uniqueness 
result. Recently [2] improved this result showing that two specific fluxes suffice (and are necessary) 
to establish the identifiability. 
Notice that in all these works the crucial step towards the identifiability result rests on the 
knowledge of the shape of the level lines and therefore one can point out the bidimensional 
character of the proofs. It is shown here that in the case of a crack with a known emerging point on 
the boundary, one specific heat flux (or current flux) with the corresponding temperature field (or 
voltage) suffice to determine the crack . 
The second question (the stability) can be viewed as the continuity of the mapping that associates 
the geometry to the data. 

11 
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For that purpose, and in the cases of unknown boundaries as well as in the case of segment cracks 
with an emerging point on the boundary, compact metric spaces of admissible geometries are 
constructed. The stability result is derived from the uniqueness theorems and the continuity of the 
direct problems.The method given in[8] for inclusions is followed to reach this result. 
A more precise stability result of Bellout-Friedman type[8] is also obtained : We prove that the 
mapping that associates the geometry to the data is locally lipshitzian. This result is optimal. 
Notice that the stability can be interpreted as the variation of the geometry with respect to the 
variation of the measurements, which suggests the main tool used : The domain derivative theory 
[16]. 
The last section of this presentation is devoted to numerical treatments. The identification process 
is based on the minimisation of an error functional initially introduced by Kohn and Vogelius in the 
case of parameter identification. 
In this work, this functional is interpreted in the case of line segment cracks identification. Notice 
that this method can be applied to more general inverse geometrical problems[4]. 

I Uniqueness results 

As pointed out earlier, this work is concerned by inverse geometrical problems defined by Laplacian 

equation and corresponding to overdetermined data. In this case these data correspond to the trace / 
chi 

of the solution on M , and to its normal derivative & =JL— . To establish the uniqueness result one 

has to answer to the following question : 

Does the pair(<2>,/) uniquely determine the unknown geometry? 

To prove the uniqueness, one has to compare two harmonic functions, defined in two different 

domains and having the same Cauchy data on M : The main tool towards the result is the Holmgren 

uniqueness theorem. This tool has been widely used in this kind of problems : In the case of an a 
2 a priori known convex polyhedron by Friedman and Isakov[13], in the case of C ' inclusions by 

2 
Bellout and Friedman[8] , in the case of C cracks in Friedman and Vogelius[14] and Bryan and 

Vogelius[9]. 

This section is devoted to uniqueness results concerning inverse geometrical problems. Two kinds of 

inverse geometrical problems are studied : the problem of the identification of inaccessible smooth 

boundary which is supposed to be islated (this kind of problems can be incoutered in thermal testing 
2 

of composite materials). The second problem is the identification of a C crack with an a priori 

known emerging point on the boundary. 

II.1 Case of a smooth boundary 

Let Q be an open simply connected set of IRn with a C*'* boundary dQ . 
r& , M and r a partition of dQ . M is supposed to be C^. r designates the inaccessible part 
of dQ . 
D e n o t e by Q p the open set ß . O n d Q p a flux <P ;<2> d 0 is imposed 

(\-\Q<P = 0). Furthermore one supposes that supp & c r& . 
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Consider the direct problem corresponding to an unknown isolated part of the boundary : 

(1) 

0 on dQ r \ r (2) 

0 on F (3) 
(ILI) < 

( - Au = 0 in Q p 

^-= O on dQ p \F 
dn J 

du 
dn 

ILO u = ° (4) 

THEOREM 
let Fi and F^ be two possible C^'l boundaries to identify , Fj and ^ having the 
same endpoints . 
Hj designates the solution of (II.1) for F = Fj i = 1, 2. 

iful\M = u2\M then rl = r2 

Proof : 
The proof is achieved into two steps : 
Stepl 
let w =ui - «2 ; then w satisfies the following Cauchy problem : 

f - A w = 0 in Q p - n ü p2 
w = 0 onM 
dw 

v dn 
By the unique continuation theorem : 

0 onM 

And therefore : 

Step2 

w = 0 dans Qp-i n &pp 

dui dü2 
ul = u2 e t Yn~ = ~dn~ S U r d ( ß rl n Ü r2 > 

Consider now the open set : 0 = Qp* u Qpj \&Fi n &F? Suppose that 0 is non empty 
and let 0^ be one connected componant of 0. 

n 

Figure 1 
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dOJ is constituted from parts of i*^ and f .̂ Suppose for instance that 0^ c . ß j ^ \ Qp^ . 
One has dOj n T2 c: d (Qp-, n Op~ ) and therefore : 

dui dii2 
ul ~ u2 e t ~~ä = ~3 s u r dOl n ^2 (where n designates the outer normal to 

Therefore u^ extends «2 across dO^ n ^ and then 

du 2 du 2 
dn ~ dn 

du i 
Since dOJ n T2 is a smooth part of ß j - - , - 5 — is continuous across dOj n ^ , it follows 

tha t : 
du-i 

- ^ — = 0 on aOi n To dn 1 z 

That is,*/^ is on 0^ a solution of the following problem: 
- A ui = 0 in 0} 

du 2 
-^ = 0 on dOi n T 7 
dn 1 ± 

du 7 
-^ = 0 on dO<t n T? 
dn £ z 

and therefore w^ = cte on Qp~ by the unique continuation theorem. This is in contradiction 
w i t h 0 d O . That is 02 = 0 and it follows that 0=0. 

Remark: 

The same result is proven when the inaccessible boundary is supposed to satisfy a boundary 

condition of Signorini type, the proof is based on the same ideas. [10] 

II.2 Case of a crack initiated at the boundary 

The body occupies a simply connected domain, one supposes that Q contains exactly one cracker 
which has a known emerging point S on the boundarydQ(a crack is a C non selfintersecting 
curve)d£2. dQ is parametr ized by the arclength s with S as origin. 
Consider P,Q,R 3 points of dQ, such that : 

0<s(R)<s(Q)<s(P) 
and the flux 0 given by : 

0 = 

1 
\RQ\ 
\PR\ 
0 

onRQ 

onQP 

elsewhere 

The corresponding direct problem is therefore given by : 
r -Au0 = 0 in Q\ G 
du . 

{ll.D dn 
du_o 

dn 

= 0 

= 0 

0 n d Q 

and one supposes the temperature u0 being measured on a curve M (mes(M) > 0) 
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THEOREM 

Let a and a' be two C curves modelising two cracks having S as an end-point .One supposes 

that these two cracks lead to the same measurement on M, for the flux<E> defined previously 

, then a = o'. 

Proof : 
Let «0-be the solution corresponding to a crack a having S.as an endpoint.M^e }fi(Q\a)f 

Denote by % the vector VuG; % is divergence free in L^(Q\o)f by the trace 
t h e o r e m x G has a normal trace on the two sides of G; T0-.n+ and T^-II". 
but 

VuG.n+ = VuG.n~ = 0 on cr 

and therefore 
TG.n+ - tG.n~ = 0 on a 

n o w V. % = 0 inQ, in the sense of distributions, therefore there exists a function coG e 
H 2 f ß ; such that : 

/ d CO rr dco n 

*o --(Wo)1 - ^ sf-> 
X| and X2 designates the cartesian coordinates. 
coa is uniquely determined up to a constant. 

Furthermore, one has : 
d CO n i 

- S - = -(VCOQ)-1 . n = 0- ond Q 

That is coG satisfies 
co ~ - Kn on o. 

■ A co a = 0 in Q\o 

o ~ IX a 
co G = <p ond Q 

and coG e H*(Q) (because coG is continuous across a ) 
For o' one has also : 

- A co G> - 0 in Q \ a ' 
co G ' - K (j ' on o' 
co G > = cp on d Q 

Denote by co the field co = co G - co G > 
co is harmonic in Q\(a u a') , and satisfies : 

co = 0 onM 

and -, - -(VcOfj)-1- . % + (V coG' )-L . r = %G>. r - rG . T =0 on M 

Since uG and uG' have the same trace on M. 
It comes that co = 0 , in the exterior connected component Q\(a u a') , denoted byQe . 
By the specific choice made of cp ( that is of the flux 0 ), cp (S) is the minimum of cp ,and cp is 
constant on the arc PR ofdß and is equal to (p (S) . 
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Figure 2 

Suppose now that o~ando~' do not coincide, then there exists z e o'\o (ou o\o'). z an interior 
point offA o" where the minimum of (ù0 is achieved( the minimum of (ùa is exactly the 
minimum of cp ) and therefore coG = cte, this is in contradiction whith the hypothesis & è 0. 

♦ 

III-STABILITY 
HI.l Statement 
In this section the problems (II. 1) and (II.2)) are reconsidered. In these two cases the overspecified 
data are supposed to be accessible on an open set M of the boundary dQ. Since the 
measurements are given by experiments, they usually are subjected to errors. The goal of this section 
is to study the stability of the inverse geometrical problems under consideration, that is, roughly 
speaking to study if small perturbation in measurements lead to a geometry in the vicinity of the 
actual geometry. 
To formalize this idea, consider: 
r a d a set of admissible geometries (lcracks or smooth boundaries) the operator r\ defined for a fixed 
identifying flux & . 

i i : r a d ^ L 2 ( M ) 
r^f=u r | M 

By the previous section, the operator n is injective, consider the mapping (for simplicity also 
called r|). 

n : rad ->TI( rad) 
r ^ f = u r IM 

r\ is therefore invertible. The stability will be established if one proves the continuity of Tf*. 
Sor a d , as well as ( Lr(M)) has to be equipped with an appropriate topology. 
The main resultts of this section are a global "weak " stability result, that is the continuity of the 
operator T| ■*■ the methods followed here to perform these results walk for the smooth unknown 
boundary problem as well as the line segment crack one. For the reader convenience, this section 
focuses on the line segment crack problem. The results are completely shown in this case. 

III.2. "Weak" stability results 
One can see that the compactness of the set of unknown geometries and the uniqueness result lead to 
the stability. This seems to be general : It was proved for buried cracks in [14], for monotone 
inclusions in [1]. The next theorem is devoted to this kind of result in the case of straight cracks 
having an apriori known endpoint on the boundary. 
The set Z is chosen to be compact for the Hausdorff metric : 

d(a,a' ) = S( M a x Mm , | x - y l ) v x e a y e a 
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( L2(M)) is equipped with the L2- norm. And consider : 
r t : I ->r|(Z) 

a ^ f = u G |M 

Theorem : 
The operator r\~l is continuous 

Proof : 
2 

Let a n , a e 2 such that the corresponding data iQ -> fQ in L (M) 

By compactness, aR has a subsequence a /^converging t o a e X 
Then fa -» f̂  (stability of the direct problem) and therefore f~ = f up(n) u ° ° 
By the uniqueness result G = a 
Then a = a is the unique adherence value of Gn and d (a n ,a)-> 0. ♦ 

Remark : the same result occurs in the case of an unknown smooth boundary. 

Notice that since the set of admissible cracks has been chosen compact, the previous theorem 
establishes actually that r|~l has a modulos of continuity [11]. That is there exists an increasing 
mapping (p : 

(p:lR+->m+ 

(p continuous in 0 and cp(0) = 0 
and l f a - f a J L 2 ( M ) < c p ( d ( a , a ' ) ) 
The goal of the next section is to have more information on (p, that is to "quantify" the continuity of 
T | - l . Actually, one proves that (p is locally lipschitzian. Since the stability is estimating the 
deviation of the geometry in terms of the deviation of the measurements. This, suggests the tool to 
use to perform the local stability result : the domain derivative. 

III.2. Local lipschitzian stability 
III.2. 1 Domain derivative 
The method followed to establish the results concerning the domain derivative is based on the 
results of Murat and Simon [ 16]. 
Consider a family of diffeomorphims F, mapping ß \ ö \ onto Q \a. The open 
s e t s ß \ ö \ are coisen in such a way that o~i belong Z,. As in [ 16] , are chosen as perturbations 
of the identity : 

Fh = Id + h 6 

For h "small" enough, F^ is a set of diffeomorphisms. 6 e W '°°(Q,\G) and 6 = 0 on dQ. 
The next proposition gives the lagrangian first derivation of the solution of (I) with respect to a 
variation of the domain. 

Proposition 
h 1 

The scalar fild ua defined on Q\a,hasin H ( Q\o), the asymptotic expansion: 

un = u +HU1 .in Hl( Q\o) 
uh O 
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where u is the solution of (I), u is the solution of the problem: 

Vu1,Vv 
Q\G 

Vv € H1^) 

j^Vu^Vo-j^Vu^Vvìdivo 

Proof : 
The proof of this result is similar of the one given in [12] in the case of elasticity. ♦ 

By this particular choice of F^ , one has : 

' V / ' M = IM<*-"'M='"c*0 V " ' M 
Then in ordre to prove a local stability result, it suffices to prove that u cannot vanish all over M . 

III.2.2 Stability with respect to a length variation 
Let a be a line segment crack with S as an endpoint denote by F the end point of a belonging to CI and 

G^ a line set cracks Gh C (S,F). Such that | a n | = (1+h) I G I. 
((S,F) line crossing S and F) IGI denote the length of G. 

Theorem 
Let / , (respectively) be the trace of the solution of (I) in ß \o" t (respectively in ü\o) 
Under the assumption : 
(H) the singularity coefficient of u at F (a= [S,F]) is different of 0 
one has : 

r if*-fi n lim ; >0 

h->0 h 

To prove this theorem, one needs some preliminary results. 

PRELIMINARY RESULTS 
The next result relates the derivative with respect to the crack length of the potential energy to the 
domain derivative of the heat field u a . 
Recall that in the case of an insulated crack the solution u a is know to be composed by a somooth 

g 
part u and a singular part [15] 


