
partial differential equation methods in control and shape analysis

edited by
Giuseppe Da Prato
Jean-Paul Zolésio

partial differential equation
 methods in control and
 shape analysis

PURE AND APPLIED MATHEMATICS

A Program of Monographs, Textbooks, and Lecture Notes

EXECUTIVE EDITORS

Earl J. Taft
Rutgers University
New Brunswick, New Jersey
Zuhair Nashed
University of Delaware
Newark, Delaware

EDITORIAL BOARD

M. S. Baouendi
University of California, San Diego
Jane Cronin Rutgers University
Jack K. Hale
Georgia Institute of Technology
S. Kobayashi
University of California,
Berkeley
Marvin Marcus
University of California,
Santa Barbara
W. S. Massey
Yale University
Anil Nerode
Cornell University
Donald Passman
University of Wisconsin, Madison
Fred S. Roberts
Rutgers University
Gian-Carlo Rota
Massachusetts Institute of Technology
David L. Russell Virginia Polytechnic Institute and State University
Walter Schempp Universität Siegen

Mark Teply
University of Wisconsin, Milwaukee

LECTURE NOTES IN PURE AND APPLIED MATHEMATICS

1. N. Jacobson, Exceptional Lie Algebras
2. L. $-\AA$. Lindahl and F. Poulsen, Thin Sets in Harmonic Analysis
3. I. Satake, Classification Theory of Semi-Simple Algebraic Groups
4. F. Hirzebruch, W. D. Newmann, and S. S. Koh, Differentiable Manifolds and Quadratic Forms
5. 6. Chavel, Riemannian Symmetric Spaces of Rank One
1. R. B. Burckel, Characterization of $C(X)$ Among Its Subalgebras
2. B. R. McDonald, A. R. Magid, and K. C. Smith, Ring Theory: Proceedings of the Oklahoma Conference
3. Y.-T. Siu, Techniques of Extension on Analytic Objects
4. S. R. Caradus, W. E. Pfaffenberger, and B. Yood, Calkin Algebras and Algebras of Operators on Banach Spaces
5. E. O. Roxin, P.-T. Liu, and R. L. Sternberg, Differential Games and Control Theory
6. M. Orzech and C. Small, The Brauer Group of Commutative Rings
7. S. Thomier, Topology and Its Applications
8. J. M. Lopez and K. A. Ross, Sidon Sets
9. W. W. Comfort and S. Negrepontis, Continuous Pseudometrics
10. K. McKennon and J. M. Robertson, Locally Convex Spaces
11. M. Carmeli and S. Malin, Representations of the Rotation and Lorentz Groups: An Introduction
12. G. B. Seligman, Rational Methods in Lie Algebras
13. D. G. de Figueiredo, Functional Analysis: Proceedings of the Brazilian Mathematical Society Symposium
14. L. Cesari, R. Kannan, and J. D. Schuur, Nonlinear Functional Analysis and Differential Equations: Proceedings of the Michigan State University Conference
15. J. J. Schäffer, Geometry of Spheres in Normed Spaces
16. K. Yano and M. Kon, Anti-Invariant Submanifolds
17. W. V. Vasconcelos, The Rings of Dimension Two
18. R. E. Chandler, Hausdorff Compactifications
19. S. P. Franklin and B. V. S. Thomas, Topology: Proceedings of the Memphis State University Conference
20. S. K. Jain, Ring Theory: Proceedings of the Ohio University Conference
21. B. R. McDonald and R. A. Morris, Ring Theory II: Proceedings of the Second Oklahoma Conference
22. R. B. Mura and A. Rhemtulla, Orderable Groups
23. J. R. Graef, Stability of Dynamical Systems: Theory and Applications
24. H.-C. Wang, Homogeneous Branch Algebras
25. E. O. Roxin, P.-T. Liu, and R. L. Sternberg, Differential Games and Control Theory II
26. R. D. Porter, Introduction to Fibre Bundles
27. M. Altman, Contractors and Contractor Directions Theory and Applications
28. J. S. Golan, Decomposition and Dimension in Module Categories
29. G. Fairweather, Finite Element Galerkin Methods for Differential Equations
30. J. D. Sally, Numbers of Generators of Ideais in Local Rings
31. S. S. Miller, Complex Analysis: Proceedings of the S.U.N.Y. Brockport Conference
32. R. Gordon, Representation Theory of Algebras: Proceedings of the Philadelphia Conference
33. M. Goto and F. D. Grosshans, Semisimple Lie Algebras
34. A. I. Arruda, N. C. A. da Costa, and R. Chuaqui, Mathematical Logic: Proceedings of the First Brazilian Conference
35. F. Van Oystaeyen, Ring Theory: Proceedings of the 1977 Antwerp Conference
36. F. Van Oystaeyen and A. Verschoren, Reflectors and Localization: Application to Sheaf Theory
37. M. Satyanarayana, Positively Ordered Semigroups
38. D. L Russell, Mathematics of Finite-Dimensional Control Systems
39. P.-T. Liu and E. Roxin, Differential Games and Control Theory III: Proceedings of the Third Kingston Conference, Part A
40. A. Geramita and J. Seberry, Orthogonal Designs: Quadratic Forms and Hadamard Matrices
41. J. Cigler, V. Losert, and P. Michor, Banach Modules and Functors on Categories of Banach Spaces
42. P.-T. Liu and J. G. Sutinen, Control Theory in Mathematical Economics: Proceedings of the Third Kingston Conference, Part B
43. C. Byrnes, Partial Differential Equations and Geometry
44. G. Klambauer, Problems and Propositions in Analysis
45. J. Knopfmacher, Analytic Arithmetic of Algebraic Function Fields
46. F. Van Oystaeyen, Ring Theory: Proceedings of the 1978 Antwerp Conference
47. B. Kadem, Binary Time Series
48. J. Barros-Neto and R. A. Artino, Hypoelliptic Boundary-Value Problems
49. R. L. Sternberg, A. J. Kalinowski, and J. S. Papadakis, Nonlinear Partial Differential Equations in Engineering and Applied Science
50. B. R. McDonald, Ring Theory and Algebra III: Proceedings of the Third Oklahoma Conference
51. J. S. Golan, Structure Sheaves Over a Noncommutative Ring
52. T. V. Narayana, J. G. Williams, and R. M. Mathsen, Combinatorics, Representation Theory and Statistical Methods in Groups: YOUNG DAY Proceedings
53. T. A. Burton, Modeling and Differential Equations in Biology
54. K. H. Kim and F. W. Roush, Introduction to Mathematical Consensus Theory
55. J. Banas and K. Goebel, Measures of Noncompactness in Banach Spaces
56. O. A. Nielson, Direct Integral Theory
57. J. E. Smith, G. O. Kenny, and R. N. Ball, Ordered Groups: Proceedings of the Boise State Conference
58. J. Cronin, Mathematics of Cell Electrophysiology
59. J. W. Brewer, Power Series Over Commutative Rings
60. P. K. Kamthan and M. Gupta, Sequence Spaces and Series
61. T. G. McLaugh/in, Regressive Sets and the Theory of Isols
62. T. L. Herdman, S. M. Rankin III, and H. W. Stech, Integral and Functional Differential Equations
63. R. Draper, Commutative Aigebra: Analytic Methods
64. W. G. McKay and J. Patera, Tables of Dimensions, Indices, and Branching Rules for Representations of Simple Lie Algebras
65. R. L. Devaney and Z. H. Nitecki, Classical Mechanics and Dynamical Systems
66. J. Van Geel, Places and Valuations in Noncommutative Ring Theory
67. C. Faith, Injective Modules and Injective Quotient Rings
68. A. Fiacco, Mathematical Programming with Data Perturbations I
69. P. Schultz, C. Praeger, and R. Sullivan, Algebraic Structures and Applications: Proceedings of the First Western Australian Conference on Algebra
70. L Bican, T. Kepka, and P. Nemec, Rings, Modules, and Preradicals
71. D. C. Kay and M. Breen, Convexity and Related Combinatorial Geometry: Proceedings of the Second University of Oklahoma Conference
72. P. Fletcher and W. F. Lindgren, Quasi-Uniform Spaces
73. C.-C. Yang, Factorization Theory of Meromorphic Functions
74. O. Taussky, Ternary Quadratic Forms and Norms
75. S. P. Singh and J. H. Burry, Nonlinear Analysis and Applications
76. K. B. Hannsgen, T. L. Herdman, H. W. Stech, and R. L. Wheeler, Volterra and Functional Differential Equations
77. N. L. Johnson, M. J. Kallaher, and C. T. Long, Finite Geometries: Proceedings of a Conference in Honor of T. G. Ostrom
78. G. I. Zapata, Functional Analysis, Holomorphy, and Approximation Theory
79. S. Greco and G. Valla, Commutative Algebra: Proceedings of the Trento Conference
80. A. V. Fiacco, Mathematical Programming with Data Perturbations II
81. J.-B. Hiriart-Urruty, W. Oettli, and J. Stoer, Optimization: Theory and Algorithms
82. A. Figa Talamanca and M. A. Picardello, Harmonic Analysis on Free Groups
83. M. Harada, Factor Categories with Applications to Direct Decomposition of Modules
84. V. I. Istrătescu, Strict Convexity and Complex Strict Convexity
85. V. Lakshmikantham, Trends in Theory and Practice of Nonlinear Differential Equations
86. H. L. Manocha and J. B. Srivastava, Algebra and Its Applications
87. D. V. Chudnovsky and G. V. Chudnovsky, Classical and Quantum Models and Arithmetic Problems
88. J. W. Longley, Least Squares Computations Using Orthogonalization Methods
89. L. P. de Alcantara, Mathematical Logic and Formal Systems
90. C. E. Aull, Rings of Continuous Functions
91. R. Chuaqui, Analysis, Geometry, and Probability
92. L. Fuchs and L. Salce, Modules Over Valuation Domains
93. P. Fischer and W. R. Smith, Chaos, Fractals, and Dynamics
94. W. B. Powell and C. Tsinakis, Ordered Algebraic Structures
95. G. M. Rassias and T. M. Rassias, Differential Geometry, Calculus of Variations, and Their Applications
96. R.-E. Hoffmann and K. H. Hofmann, Continuous Lattices and Their Applications
97. J. H. Lightbourne III and S. M. Rankin III, Physical Mathematics and Nonlinear Partial Differential Equations
98. C. A. Baker and L. M. Batten, Finite Geometrics
99. J. W. Brewer, J. W. Bunce, and F. S. Van Vleck, Linear Systems Over Commutative Rings
100. C. McCrory and T. Shifrin, Geometry and Topology: Manifolds, Varieties, and Knots
101. D. W. Kueker, E. G. K. Lopez-Escobar, and C. H. Smith, Mathematical Logic and Theoretical Computer Science
102. B.-L. Lin and S. Simons, Nonlinear and Convex Analysis: Proceedings in Honor of Ky Fan
103. S. J. Lee, Operator Methods for Optimal Control Problems
104. V. Lakshmikantham, Nonlinear Analysis and Applications
105. S. F. McCormick, Multigrid Methods: Theory, Applications, and Supercomputing
106. M. C. Tangora, Computers in Algebra
107. D. V. Chudnovsky and G. V. Chudnovsky, Search Theory: Some Recent Developments
108. D. V. Chudnovsky and R. D. Jenks, Computer Algebra
109. M. C. Tangora, Computers in Geometry and Topology
110. P. Nelson, V. Faber, T. A. Manteuffel, D. L. Seth, and A. B. White, Jr., Transport Theory, Invariant Imbedding, and Integral Equations: Proceedings in Honor of G. M. Wing's 65th Birthday
111. P. Clément, S. Invernizzi, E. Mitidieri, and I. I. Vrabie, Semigroup Theory and Applications
112. J. Vinuesa, Orthogonal Polynomials and Their Applications: Proceedings of the International Congress
113. C. M. Dafermos, G. Ladas, and G. Papanicolaou, Differential Equations: Proceedings of the EQUADIFF Conference
114. E. O. Roxin, Modern Optimal Control: A Conference in Honor of Solomon Lefschetz and Joseph P. Lasalle
115. J. C. Diaz, Mathematics for Large Scale Computing
116. P. S. MilojeviX, Nonlinear Functional Analysis
117. C. Sadosky, Analysis and Partial Differential Equations: A Collection of Papers Dedicated to Mischa Cotlar
118. R. M. Shortt, General Topology and Applications: Proceedings of the 1988 Northeast Conference
119. R. Wong, Asymptotic and Computational Analysis: Conference in Honor of Frank W. J. Olver's 65th Birthday
120. D. V. Chudnovsky and R. D. Jenks, Computers in Mathematics
121. W. D. Wallis, H. Shen, W. Wei, and L. Zhu, Combinatorial Designs and Applications
122. S. Elaydi, Differential Equations: Stability and Control
123. G. Chen, E. B. Lee, W. Littman, and L. Markus, Distributed Parameter Control Systems: New Trends and Applications
124. W. N. Everitt, Inequalities: Fifty Years On from Hardy, Littlewood and Pólya
125. H. G. Kaper and M. Garbey, Asymptotic Analysis and the Numerical Solution of Partial Differential Equations
126. O. Arino, D. E. Axelrod, and M. Kimmel, Mathematical Population Dynamics: Proceedings of the Second International Conference
127. S. Coen, Geometry and Complex Variables
128. J. A. Goldstein, F. Kappel, and W. Schappacher, Differential Equations with Applications in Biology, Physics, and Engineering
129. S. J. Andima, R. Kopperman, P. R. Misra, J. Z. Reichman, and A. R. Todd, General Topology and Applications
130. P Clément, E. Mitidieri, B. de Pagter, Semigroup Theory and Evolution Equations: The Second international Conference
131. K. Jarosz, Function Spaces
132. J. M. Bayod, N. De Grande-De Kimpe, and J. Martinez-Maurica, p-adic Functional Analysis
133. G. A. Anastassiou, Approximation Theory: Proceedings of the Sixth Southeastern Approximation Theorists Annual Conference
134. R. S. Rees, Graphs, Matrices, and Designs: Festschrift in Honor of Norman J. Pullman
135. G. Abrams, J. Haefner, and K. M. Rangaswamy, Methods in Module Theory
136. G. L. Mullen and P. J.-S. Shiue, Finite Fields, Coding Theory, and Advances in Communications and Computing
137. M. C. Joshi and A. V. Balakrishnan, Mathematical Theory of Control: Proceedings of the International Conference
138. G. Komatsu and Y. Sakane, Complex Geometry: Proceedings of the Osaka International Con ference
139. I. J. Bakelman, Geometric Analysis and Nonlinear Partial Differential Equations
140. T. Mabuchi and S. Mukai, Einstein Metrics and Yang-Mills Connections: Proceedings of the 27th Taniguchi International Symposium
141. L. Fuchs and R. Göbel, Abelian Groups: Proceedings of the 1991 Curac̣ao Conference
142. A. D. Pollington and W. Moran, Number Theory with an Emphasis on the Markoff Spectrum
143. G. Dore, A. Favini, E. Obrecht, and A. Venni, Differential Equations in Banach Spaces
144. T. West, Continuum Theory and Dynamical Systems
145. K. D. Bierstedt, A. Pietsch, W. Ruess, and D. Vogt, Functional Analysis
146. K. G. Fischer, P. Loustaunau, J. Shapiro, E. L. Green, and D. Farkas, Computational Algebra
147. K. D. Elworthy, W. N. Everitt, and E. B. Lee, Differential Equations, Dynamical Systems, and Control Science
148. P.-J. Cahen, D. L. Costa, M. Fontana, and S.-E. Kabbaj, Commutative Ring Theory
149. S. C. Cooper and W. J. Thron, Continued Fractions and Orthogonal Functions: Theory and Applications
150. P. Clément and G. Lumer, Evolution Equations, Control Theory, and Biomathematics
151. M. Gyl/enberg and L. Persson, Analysis, Algebra, and Computers in Mathematical Research: Proceedings of the Twenty-First Nordic Congress of Mathematicians
152. W. O. Bray, P. S. Milojevič and Č. V. Stanojevič, Fourier Analysis: Analytic and Geometric Aspects
153. J. Bergen and S. Montgomery, Advances in Hopf Algebras
154. A. R. Magid, Rings, Extensions, and Cohomology
155. N. H. Pavel, Optimal Control of Differential Equations
156. M. Ikawa, Spectral and Scattering Theory: Proceedings of the Taniguchi International Workshop
157. X. Liu and D. Siegel, Comparison Methods and Stability Theory
158. J.-P. Zolésio, Boundary Control and Variation
159. M. Kǐižek, P. Neittaanmäki, and R. Stenberg, Finite Element Methods: Fifty Years of the Courant Element
160. G. Da Prato and L. Tubaro, Control of Partial Differential Equations
161. E. Ballico, Projective Geometry with Applications
162. M. Costabel, M. Dauge, and S. Nicaise, Boundary Value Problems and Integral Equations in Nonsmooth Domains
163. G. Ferreyra, G. R. Goldstein, and F. Neubrander, Evolution Equations
164. S. Huggett, Twistor Theory
165. H. Cook, W. T. Ingram, K. T. Kuperberg, A. Lelek, and P. Minc, Continua: With the Houston Problem Book
166. D. F. Anderson and D. E. Dobbs, Zero-Dimensional Commutative Rings
167. K. Jarosz, Function Spaces: The Second Conference
168. V. Ancona, E. Ballico, and A. Si/va, Complex Analysis and Geometry
169. E. Casas, Control of Partial Differential Equations and Applications
170. N. Kalton, E. Saab, and S. Montgomery-Smith, Interaction Between Functional Analysis, Harmonic Analysis, and Probability
171. Z. Deng, Z. Liang, G. Lu, and S. Ruan, Differential Equations and Control Theory
172. P. Marcellini, G. Talenti, and E. Vesentini, Partial Differential Equations and Applications: Collected Papers in Honor of Carlo Pucci
173. A. Kartsatos, Theory and Applications of Nonlinear Operators of Accretive and Monotone Type
174. M. Maruyama, Moduli of Vector Bundles
175. A. Ursini and P. Aglianò, Logic and Algebra
176. X. H. Cao, S. X. Liu, K. P. Shum, and C. C. Yang, Rings, Groups, and Algebras
177. D. Arnold and R. M. Rangaswamy, Abelian Groups and Modules
178. S. R. Chakravarthy and A. S. Alfa, Matrix-Analytic Methods in Stochastic Models
179. J. E. Andersen, J. Dupont, H. Pedersen, and A. Swann, Geometry and Physics
180. P.-J. Cahen, M. Fontana, E. Houston, and S.-E. Kabbaj, Commutative Ring Theory: Proceedings of the II International Conference
181. J. A. Goldstein, N. E. Gretsky, and J. J. Uhl, Jr., Stochastic Processes and Functional Analysis
182. A. Sorbi, Complexity, Logic, and Recursion Theory
183. G. Da Prato and J.-P. Zolésio, Partial Differential Equation Methods in Control and Shape Analysis

partial differential equation methods in control and shape analysis

edited by

Giuseppe Da Prato

Scuola Normale Superiore
Pisa, Italy
Jean-Paul Zolésio
Institut Non Linéaire de Nice Centre National de la Recherche Scientifique and Centre de Mathématiques Appliquées
École des Mines de Paris
Sophia Antipolis, France

CRC Press
Taylor \& Francis Group
Boca Raton London New York

CRC Press
Taylor \& Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742
First issued in hardback 2017
© 1997 by Taylor \& Francis Group, LLC
CRC Press is an imprint of Taylor \& Francis Group, an Informa business
No claim to original U.S. Government works
ISBN 13: 978-1-138-41323-8 (hbk)
ISBN 13: 978-0-8247-9837-6 (pbk)
This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www. copyright.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe.

Visit the Taylor \& Francis Web site at
http://www.taylorandfrancis.com
and the CRC Press Web site at
http://www.crcpress.com

Library of Congress Cataloging-in-Publication Data

Partial differential equation methods in control and shape analysis / edited by G. Da Prato and J.-P. Zolésio.

p. cm. (Lecture notes in pure and applied mathematics ; v. 188)

ISBN 0-8247-9837-6 (alk. paper)

1. Shape theory (Topology)-Congresses. 2. Control theory-

Congresses. 3. Differential equations, Partial-Congresses.
I. Da Prato, Giuseppe. II. Zolésio, J.-P. III. Series.

QA612.7.P37 1997
629.8'312-dc21

Preface

The International Federation for Information Processing (IFIP) working group 7.2 Conference on Control and Shape Optimization was held at Scuola Normale Superiore di Pisa, Italy. The meeting was sponsored by Scuola Normale Superiore di Pisa and CNR Gruppo Nazionale di Analisi Funzionale. The purpose of the workshop was to exchange ideas between the group working on control theory and the group working on shape optimization. It was part of an ongoing collaboration between Scuola Normale Superiore di Pisa and the Centre de Recherche en Mathématiques Appliquées de l'Ecole des Mines de Paris.

Optimization and control theory are recurrent themes in the modeling of real-life systems from many areas: real-time systems, material sciences, lifting profiles, thermal testing, elastic shells, and biodynamics. The Hamilton-Jacobi approach is beginning to play a major role in solving concrete problems where active control is needed, while shape optimization is the tool of choice for passive control problems. The challenge is to bring these two approaches together (e.g., the optimal location of actuators/sensors for tracking improvement, the best shape of a plate for enhancing the stabilizing control). We hope this volume will stimulate further research.

We would like to thank all contributors and Mrs. Caterina D'Elia, at Scuola Normale, for their efforts on behalf of the conference.

Guiseppe Da Prato
Jean-Paul Zolésio

Contents

Preface iii
Contributors vii
Shape Control of a Hydrodynamic Wake 1
Jean-Christophe Aguilar and Jean-Paul Zolésio
On Some Inverse Geometrical Problems 11
S. Andrieux, A. Ben Abda, and M. Jaoua
A Viscosity Solutions Approach to Some Asymptotic Problems in Optimal Control 29
F. Bagagiolo, M. Bardi, and I. Capuzzo Dolcetta
Homogenization and Continuous Dependence for Dirichlet
Problems in L^{1} 41
Lucio Boccardo
A Remark on Regularization of the Wave Equation with
Boundary Input 53
Francesca Bucci
A Pontryagin's Principle for Boundary Control Problems of Quasilinear Elliptic Equations 63
Eduardo Casas
Computation of Shape Gradients for Mixed Finite Element Formulation 77
Michel C. Delfour, Zoubida Mghazli, and Jean-Paul Zolésio
On a Geometrical Bang-Bang Principle for Some Compliance Problems 95
Michel C. Delfour and Jean-Paul Zolésio
Shape Derivative for the Laplace-Beltrami Equation 111
Fabrice Desaint and Jean-Paul Zolésio
An Energy Principle for a Free Boundary Problem for Navier-Stokes Equations 133
Raja Dziri and Jean-Paul Zolésio
Dynamic Programming Techniques in the Approximation of Optimal Stopping Time Problems in Hilbert Spaces 153
Roberto Ferretti
Strong Solutions for Kolmogorov Equation in Hilbert Spaces 163
Fausto Gozzi
Sufficient Conditions for Dirichlet Boundary Control Problems of Parabolic Type 189
Fausto Gozzi and Maria Elisabetta Tessitore
Shape Hessian for a Nondifferentiable Variational Free Boundary Problem 205
Y. Guido and J. P. ZolésioCarleman Estimates and Exact Boundary Controllability for a Systemof Coupled, Nonconservative Second-Order Hyperbolic Equations215Irena Lasiecka and Roberto Triggiani
Static and Dynamic Behavior of a Fluid-Shell System 245
Jean-Paul Marmorat and Jean-Paul Zolésio
Inf-Sup Conditions for an Elliptic Operator in the Spaces $W_{0}^{1, p} W_{0}^{1, q}$ Approximated with Lagrange Finite Element 259
Jérome Pousin
Numerical Method for Shape Identification Problems 275
Jean Roche and Jan Sokolowski
Partial Regularity of Weak Solutions to Certain Parabolic Equations 285
Giulia Sargenti and Vincenzo Vespri
Local Regularity Properties of the Minimum Time Function 293
Carlo Sinestrari
Some Remarks on the Detectability Condition for Stochastic Systems 309Gianmario Tessitore
Suboptimal Shape of a Plate Stretched by Planar Forces 321
Piero Villaggio and Jean-Paul Zolésio

Contributors

Jean-Christophe Aguilar Ecole des Mines de Paris, Centre de Mathématiques Appliquées, Sophia Antipolis, France
S. Andrieux EDF-DER-MMN, Clamart, France
F. Bagagiolo Università di Trento, Povo (Trento), Italy
M. Bardi Università di Padova, Padova, Italy
A. Ben Abda ENIT, LAMAP, Tunis, and Institut Préparatoire aux Études Scientifiques et Techniques, La Marsa, Tunisia

Lucio Boccardo Universitá di Roma I, Rome, Italy
Francesca Bucci Università di Modena, Modena, Italy
Eduardo Casas ETSI Caminos - Universidad de Cantabria, Santander, Spain
Michel C. Delfour Université de Montréal, Montréal, Québec, Canada
F. R. Desaint CNRS-Institut Non-Linéaire de Nice, Sophia Antipolis, France
I. Capuzzo Dolcetta Università di Roma "La Sapienza," Rome, Italy

Raja Dziri École des Mines de Paris, Centre de Mathématiques Appliquées, Sophia Antipolis, France
Roberto Ferretti Seconda Università di Roma "Tor Vergata," Rome, Italy
Fausto Gozzi Università di Pisa, Pisa, Italy
Y. Guido CMA, ENSMP, Sophia Antipolis, France
M. Jaoua ENIT, LAMAP, Tunis, and Institut Préparatoire aux Études Scientifiques et Techniques, La Marsa, Tunisia
Irena Lasiecka University of Virginia, Charlottesville, Virginia
Jean-Paul Marmorat CMA-EMP, Sophia Antipolis, France
Zoubida Mghazli Université Ibn Tofail, Kénitra, Morocco
J. Pousin Swiss Federal Institute of Technology, Lausanne, Switzerland, and INSA LYON, Laboratoire Modélisation et Calcul Scientifique, URA-CNRS, Villeurbanne, France

Jean R. Roche Université de Nancy 1, URA -CNRS, Vandoeuvre-Les-Nancy. France
Giulia Sargenti Università di Roma "La Sapienza," Rome, Italy
Carlo Sinestrari Università di Roma "Tor Vergata," Rome, Italy

Jan Sokolowski Université de Nancy I, URA-CNRS, Vandoeuvre-Les Nancy, France, and Systems Research Institute of the Polish Academy of Sciences, Warsaw, Poland

Gianmario Tessitore Università degli Studi "G. Sansone," Florence, Italy
Maria Elisabetta Tessitore Università di Roma "La Sapienza," Rome, Italy
Roberto Triggiani University of Virginia, Charlottesville, Virginia
Vincenzo Vespri Università dell'Aquila, Coppito (AQ), Italy
P. Villaggio Università di Pisa, Pisa, Italy

Jean-Paul Zolésio Institut Non Linéare de Nice, CNRS, Sophia Antipolis, France, and Centre de Mathematiques Appliquées, INRIA-ENSMP, Sophia Antipolis, France

partial differential equation methods in control and shape analysis

Shape Control of a Hydrodynamic Wake

Jean-Christophe AGUILAR, Ecole des Mines de Paris, Centre de Mathématiques Appliquées, B.P.207, 06904 Sophia Antipolis, France

Jean Paul Zolesio, cnrs-inln, 1361 Route des Lucioles, 06560 Valbonne, France
Abstract. This paper propounds a shape variational formulation of a hydrodynamic free interface which appears behind a three dimensional lifting profile. We prove the existence of an optimal wake under Density Perimeter constraints. We derive from this formulation the standard equilibrium condition in the classical case where this interface is a regular surface.

1. Introduction

We consider a "hydrodynamicaly well profiled" body $B . B$ has a uniform stationary velocity U_{∞}. A thin viscous boundary layer is developed around B and in that study we neglect it, in the sense that we consider that the shape B coincide with the shape of the body augmented by its boundary layer, according with the classical boundary layer theory. Then we consider a sliding condition, $U . n=0$ on $Q=\partial B$ (V being the stationary speed of the fluid). Nevertheless, we cannot completely neglect the vorticity in that flow in view of the modeling of the lifting effect. It is classical in engineering to consider the vorticity of the flow as being supported by a piece of surface S in addition to Q. S is called the wake. We assume the flow is governed by Euler's equations in $\Omega \backslash S, \Omega$ being the outer domain and S is said "in equilibrium" when the resulting jump of pressure $\llbracket p \rrbracket$ across S is zero. The objective of that paper is to solve that free boundary problem whose solution is the couple ($U=\nabla \phi, S$) with $\phi \in H^{1}(\Omega \backslash S)$. We develop a new variational formulation on the variables U and S. We introduce an energy $J_{\varepsilon}(S)$ in the form

$$
J_{\varepsilon}(S)=\min _{y \in H^{1}(\Omega \backslash S)} \int_{\Omega \backslash S}\left(\frac{\varepsilon}{2} y^{2}+\frac{1}{2}|\nabla y|^{2}+i . \nabla y\right) d x
$$

and the analysis of the optimality condition for $J_{\varepsilon}(S)$ makes use of the shape analysis technics. In order to insure the existence of S, we introduce a surface tension $\sigma>0$ via a surface energy for S which is represented by the use of the Density Perimeter which is the adapted perimeter concept for this kind of shape variational problem.

2. Definitions and main properties

B is a bounded domain in $\mathbb{R}^{N}(N \geq 2)$ with boundary Q. The fluid will occupy the outer domain. More precisely, we consider a "large" bounded domain D with $\bar{B} \subset D$ and ∂D being lipschitzian. The fluid occupies the domain $\Omega=D \backslash \bar{B}$. The boundary of Ω is made of two connected components Q and ∂D.

The stationary speed field U of the fluid in the domain Ω is assumed irrotational in $\Omega \backslash S$ where S is a closed subset in Ω with zero measure and empty interior. Our modeling is assuming that the body Q is "well profiled" in such a way that the support of the $\operatorname{curl}(U)$ will be in $S \cup Q$. In this fist paper, we neglect boundary layer effect in the neighborhood of $S \cup Q$. For each closed set S in Ω, we consider the Sobolev space $H^{1}(\Omega \backslash S)$. The open set $\Omega \backslash S$ is non smooth and $H^{1}(\Omega \backslash S)$ is defined as

$$
H^{1}(\Omega \backslash S)=\left\{y \in L^{2}(\Omega \backslash S), \nabla y \in L^{2}\left(\Omega \backslash S ; \mathbb{R}^{N}\right)\right\}
$$

In the case where S is contained in a smooth orientable surface Σ, the traces of any element y are defined on both sides of Σ and may be different functions in $H^{\frac{1}{2}}(\Sigma)$.

In that case, we shall denote by $\llbracket y \rrbracket$ the jump of y through the surface Σ. Of course, $H^{1}(\Omega \backslash S)$ in not a subspace of $H^{1}(\Omega)$, but we have $H^{1}(\Omega) \subset H^{1}(\Omega \backslash S)$ for any closed set S in Ω. For any y in $H^{1}(\Omega)$, we have $\llbracket y \rrbracket=0$ on S. From irrotationality assumption, we have $\left.U\right|_{\Omega \backslash S}=\nabla \phi$ in $\Omega \backslash S$ for some scalar potential ϕ in $H^{1}(\Omega \backslash S)$.

That ϕ defines an element ϕ° of $L^{2}(\Omega)$ as S has a zero measure. That element ϕ° defines a distribution over $\Omega, \phi^{\circ} \in \mathcal{D}^{\prime}(\Omega)$, and we consider its gradient $\nabla \phi^{o} \in \mathcal{D}^{\prime}(\Omega)$. In fact, as ϕ° is uniquely associated to ϕ, the restriction of the distribution $\nabla \phi^{o}$, element of $\mathcal{D}^{\prime}\left(\Omega ; \mathbb{R}^{N}\right)$, to the open set $\Omega \backslash S$ is $\nabla \phi$ and $\nabla\left(\phi^{0}\right)=(\nabla \phi)^{0}+\mu$ where $\mu=\gamma_{S}^{*}(\llbracket \phi \rrbracket \vec{n})$ is a measure, $\mu \in \mathcal{D}^{\circ \prime}\left(\Omega ; \mathbb{R}^{N}\right)$, supported by S. We take $U=(\nabla \phi)^{0}=\nabla\left(\phi^{\circ}\right)-\mu$. In such a situation, we get $\operatorname{curl}(U)=\operatorname{curl}\left((\nabla \phi)^{0}\right)-\operatorname{curl}(\mu)$. The distribution $\operatorname{curl} \mu$ is supported by S (as was μ), the restriction to $\Omega \backslash S$ of $\operatorname{curl}\left((\nabla \phi)^{\circ}\right)$ is zero (as $\operatorname{curl} \nabla=0$) so that $\operatorname{curl}\left((\nabla \phi)^{\circ}\right)=\mu$ is a distribution of order one supported by S. Finally, we get $\operatorname{curl} U=\gamma_{S}^{*}\left(\vec{n} \wedge \nabla_{\Gamma} \llbracket \phi \rrbracket\right)$ and $\operatorname{div} U=\gamma_{S}^{*}\left(\llbracket \frac{\partial \phi}{\partial n} \rrbracket\right)$

Figure 1. Fluid domain

3. Reduction to a bounded domain contained in D

We introduce the perturbation velocity potential φ so that $U=u_{\infty}\left(i+(\nabla \varphi)^{\circ}\right)$ in Ω, $U_{\infty}=u_{\infty} i ; \quad \phi_{M}=u_{\infty}\left(x_{M}+\varphi_{M}\right)$ with $x_{M}=\langle O M, i\rangle_{\mathbb{R}^{3}}$ and $\varphi \in H^{1}(\Omega \backslash S)$

More precisely, we consider a "large" bounded domain D with $\bar{B} \subset D$ and ∂D being lipschitzian.
So, when D is large enough the perturbation speed will be zero out of D.
The fluid occupies the domain $\Omega=D \backslash \bar{B}$. The boundary of Ω is made of two connected components Q and ∂D.

4. Weakly Compressible flow

In order to insure the uniformity of the classical Poincare constant in the non smooth domains $\Omega \backslash S$, we introduce a zero order term in the energy leading to a weakly compressible condition controlled by ε. Given $\varepsilon>0$, we consider the energy functional

$$
E_{\Omega \backslash S}^{\varepsilon}(y)=\int_{\Omega \backslash S}\left(\frac{\varepsilon}{2} y^{2}+\frac{1}{2}|\nabla y|^{2}+i \cdot \nabla y\right) d x
$$

The minimizer φ of that functional over $H^{1}(\Omega \backslash S)$ is the solution of the weak problem

$$
\begin{equation*}
\forall y \in H^{1}(\Omega \backslash S), \int_{\Omega \backslash S}(\varepsilon \varphi y+\nabla \varphi \cdot \nabla y+i . \nabla y) d x=0 \tag{4.1}
\end{equation*}
$$

So that, performing by part, we can see that the problem takes the following form

$$
\left\{\begin{array}{cc}
\Delta \varphi=\varepsilon \varphi & \text { in } \Omega \\
\frac{\partial \varphi}{\partial n}=-i . n & \text { on } Q \cup S^{+} \cup S^{-} \\
\varphi=0 & \text { on } \partial D
\end{array}\right.
$$

∂D

Figure 2. Bounded fluid domain

We have the following estimates

Lemma 1.

$$
\|\nabla \varphi\|_{L^{2}\left(\Omega \mid s ; \mathbb{R}^{N}\right)} \leq|\Omega|^{\frac{1}{2}}
$$

Proof. with $y=\varphi$ in 4.1,

$$
\begin{aligned}
\int_{\Omega \backslash S}|\nabla \varphi|^{2} d x & \leq \int_{\Omega \backslash S}|i||\nabla \varphi| d x \\
& \leq \int_{\Omega \backslash S}|\nabla \varphi| d x \\
& \leq|\Omega|^{\frac{1}{2}}\left(\int_{\Omega \backslash S}|\nabla \varphi|^{2} d x\right)^{\frac{1}{2}}
\end{aligned}
$$

Lemma 2.

$$
\sqrt{\varepsilon}\|\varphi\|_{L^{2}(\Omega)} \leq|\Omega|^{\frac{1}{2}}
$$

Proof. with $y=\varphi$ in (4.1),

$$
\begin{aligned}
\left(\sqrt{\varepsilon}\|\varphi\|_{L^{2}(\Omega \backslash S)}\right)^{2} & =-\|\nabla \varphi\|_{L^{2}(\Omega \backslash S)}^{2}-\int_{\Omega} i . \nabla \varphi d x \\
& \leq \int_{\Omega \backslash S}|\nabla \varphi| d x \\
& \leq|\Omega|^{\frac{1}{2}}\left(\int_{\Omega \backslash S}|\nabla \varphi|^{2} d x\right)^{\frac{1}{2}} \\
& \leq|\Omega|
\end{aligned}
$$

Lemma 3.

$$
\|\Delta \varphi\|_{L^{2}(\Omega \backslash S)} \leq \sqrt{\varepsilon}|\Omega|^{\frac{1}{2}}
$$

Proof.

$$
\begin{aligned}
\|\Delta \varphi\|_{L^{2}(\Omega \backslash S)} & =\varepsilon\|\varphi\|_{L^{2}(\Omega \backslash S)} \\
& \leq \sqrt{\varepsilon}|\Omega|^{\frac{1}{2}} \text { with lemma } 2
\end{aligned}
$$

In view of that last estimate, we see that $\operatorname{div}\left(\left.U\right|_{\Omega \backslash S}\right)=u_{\infty} \Delta \varphi$ goes to zero with ε. Then, the flow is almost incompressible.

In the case where S is a smooth surface, we would get, denoting by \vec{n} the normal field on S and performing by part on (4.1).

$$
\frac{\partial \varphi_{+}}{\partial n}=\frac{\partial \varphi_{-}}{\partial n}=-i . n \text { on } S
$$

For each closed set S in $\Omega, \varphi(\Omega \backslash S)$ denoting the solution of problem (4.1), we consider the energy functional, for given $\varepsilon>0$,

$$
J_{\varepsilon}(S)=\min _{y \in H^{1}(\Omega \backslash S)} E_{\Omega \backslash S}^{\varepsilon}(y)
$$

Lemma 4.

$$
J_{\varepsilon}(S)=-\frac{1}{2} \int_{\Omega \backslash S}\left(\varepsilon \varphi^{2}(\Omega \backslash S)+|\nabla \varphi(\Omega \backslash S)|^{2}\right) d x
$$

Proof. with $y=\varphi$ in (4.1),

$$
J_{\varepsilon}(S)=\frac{1}{2} \int_{\Omega \backslash S}<i, \nabla \varphi(\Omega \backslash S)>d x=\frac{1}{2}<i, \int_{\Omega \backslash S} \nabla \varphi(\Omega \backslash S)>d x>
$$

Lemma 5.

$$
0 \geq J_{\varepsilon}(S) \geq-|\Omega|
$$

Proof.

$$
J_{\varepsilon}(S)=-\frac{1}{2}\left(\varepsilon\|\varphi\|_{L^{2}(\Omega)}^{2}+\|\nabla \varphi\|_{L^{2}(\Omega)}^{2}\right)
$$

with lemma 1 and lemma 2

5. Deformations of the domains

For any $V \in C^{0}\left(\left[0, \tau\left[; \mathbb{R}^{N}\right)\right.\right.$

$$
V=0 \text { on } Q \cup \partial D
$$

we consider the flow mapping $T_{t}(V): X \mapsto x(t, X)$
With $x(t, X)$ solution to the system of ordinary differential equations

$$
\left\{\begin{array}{l}
\frac{d}{d t} x(t, X)=V(t, x(t, X)) \\
x(0, X)=X
\end{array}\right.
$$

We know from [3] that T_{t} is a diffeomorphism from $D \backslash \bar{B}$ onto itself.

6. Optimal wake existence

We consider now the extremality of the functional J_{ε}. The energy associated to S is related to its length. We choose here the density perimeter $P_{\gamma}(S)$ for a given $\gamma>0$ which could be related to a surface tension concept, see [1].

$$
\begin{gathered}
P_{\gamma, H}(S) \stackrel{\text { def }}{=} \sup _{\varepsilon \in(0, \gamma)}\left[\frac{m\left(S^{\varepsilon}\right)}{2 \varepsilon}+H(\varepsilon)\right] \\
S^{\varepsilon}=\bigcup_{x \in S} B(x, \varepsilon)
\end{gathered}
$$

The main properties of $P_{\gamma, H}$ are

Proposition 1.

$$
\Omega_{n} \xrightarrow{H^{c}} \Omega \Rightarrow P_{\gamma, H}(\partial \Omega) \leq \liminf _{n \rightarrow+\infty} P_{\gamma, H}\left(\partial \Omega_{n}\right)
$$

Proposition 2.

$$
\Omega_{n} \xrightarrow{H^{c}} \Omega \Rightarrow \Omega_{n} \xrightarrow{\text { char }} \Omega
$$

Proposition 3.

$$
P_{\gamma, H}(\partial \Omega)<\infty \Rightarrow \operatorname{meas}(\partial \Omega)=0
$$

H^{c} is the Hausdorff topology.

$$
d_{H^{d}}\left(\Omega_{1}, \Omega_{2}\right)=\sup _{x \in \mathbb{R}^{N}}\left|d_{\Omega_{1}}(x)-d_{\Omega_{2}}(x)\right|
$$

where $d_{\Omega_{1}}(x)=\inf _{y \in \Omega_{1}}\|x-y\|$

$$
d_{H^{c}}\left(\Omega_{1}, \Omega_{2}\right)=d_{H^{d}}\left(\Omega_{1}^{c}, \Omega_{2}^{c}\right)
$$

B_{f} (Resp. B_{∞}) is a closed set in Q (Resp. ∂D) with $n-1$ dimensional Hausdorff measure $\left|B_{f}\right|_{\mathcal{H}^{n-1}}=\left|B_{\infty}\right|_{\mathcal{H}^{n-1}}=0$. The admissible family of closed sets S is chosen as

$$
\mathcal{S}_{0}=\left\{S=\bar{S}, \operatorname{meas}(S)=0, \bar{S} \supset B_{f} \cup B_{\infty}, \#(S)=1\right\}
$$

Where \bar{S} is the closure of S in \mathbb{R}^{N} and $\#(S)$ is the number of connected components of S.

Proposition 4. $\forall M>0, \mathcal{S}_{0}^{M}=\left\{S \in \mathcal{S}_{0} \mid P_{\gamma}(S) \leq M\right\}$ equipped with the Hausdorff metric is a compact metric space.

Proof. From [1] we know that given a sequence S_{n} in S_{0} with $P_{\gamma}\left(S_{n}\right) \leq M$ there exists a subsequence still denoted by S_{n} such that $S_{n} \xrightarrow{H} S$ in Hausdorff metric where S is a closed set in Ω. Moreover $\chi_{\Omega \backslash S_{n}} \longrightarrow \chi_{\Omega \backslash S}$ in $L^{2}(\Omega)$. So that meas $(S)=0$. Also, we know ([2]) that \# is lower semi continuous for the Hausdorff topology then $\# S \leq 1$ but as $S_{n} \supset B_{f} \cup B_{\infty}$ we get $S \supset B_{f} \cup B_{\infty}$ then S is non empty and then $\#(S)=1$. Finally P_{γ} is lower semi continuous ([1]), then $P_{\gamma}(S) \leq M$

Given $\sigma>0$, we consider the optimality problem

$$
\begin{equation*}
\operatorname{Min}\left\{J_{\varepsilon}(S)+\sigma P_{\gamma}(S) \mid S \in \mathcal{S}_{0}\right\} \tag{6.1}
\end{equation*}
$$

Theorem 1. For each $\varepsilon>0$, the problem (6.1) has optimal solutions in the family \mathcal{S}_{0}.

Before showing this theorem, we need the following result
Lemma 6. J_{ε} is lower semi continuous on \mathcal{S}_{0}^{M}
Proof. Let $S_{n} \xrightarrow{H} S$, let $\varphi_{n}=\varphi\left(\Omega \backslash S_{n}\right)$. From Lemma (1) and (2),

$$
\begin{aligned}
\left\|\left(\nabla \varphi_{n}\right)^{o}\right\|_{L^{2}(\Omega)} & \leq|\Omega|^{\frac{1}{2}} \\
\left\|\left(\varphi_{n}\right)^{o}\right\|_{L^{2}(\Omega)} & \leq \frac{1}{\sqrt{\varepsilon}}|\Omega|
\end{aligned}
$$

Then, after extraction of subsequences

$$
\begin{array}{cll}
\left(\nabla \varphi_{n}\right)^{o}-f & \text { weakly in } & L^{2}\left(\Omega ; \mathbb{R}^{N}\right) \\
\left(\varphi_{n}\right)^{\circ}-g & \text { weakly in } & L^{2}(\Omega)
\end{array}
$$

From the Hausdorff convergence of S_{n} to S, we get: Let $\psi \in \mathcal{D}(\Omega \backslash S), \exists n_{\psi}=$ $n(d(S, K))$, where $K=\operatorname{supp} \psi$. Such that $n \geq n_{\psi}$ implies $\psi \in \mathcal{D}\left(\Omega \backslash S_{n}\right)$ then, we see easily that $\left.f\right|_{\Omega \backslash S}=\nabla\left(\left.g\right|_{\Omega \backslash S}\right)$ We set $\varphi=\left.g\right|_{\Omega \backslash S}$ so that $\varphi \in H^{1}(\Omega \backslash S)$

On the other hand, we have

$$
J_{\varepsilon}\left(S_{n}\right)=\frac{1}{2} \int_{\Omega \backslash S_{n}}<i, \nabla \varphi_{n}>d x=\frac{1}{2} \int_{\Omega}<i,\left(\nabla \varphi_{n}\right)^{o}>d x
$$

Which converges, as $n \longrightarrow \infty$, to

$$
\left.\frac{1}{2} \int_{\Omega}<i, f\right\rangle d x=\frac{1}{2} \int_{\Omega \backslash S}\langle i, f\rangle d x=\frac{1}{2} \int_{\Omega \backslash S}\langle i, \nabla \varphi\rangle d x \geq J_{\varepsilon}(S)
$$

Proof. [of the theorem] Let S_{n} be a minimizing sequence for problem (6.1). We assume $J_{\varepsilon}\left(S_{n}\right)+\sigma P_{\gamma}\left(S_{n}\right)$ monotonically decreasing to the infimum as $n \longrightarrow 0$. Then

$$
J_{\varepsilon}\left(S_{n}\right)+\sigma P_{\gamma}\left(S_{n}\right) \leq J_{\varepsilon}\left(S_{1}\right)+\sigma P_{\gamma}\left(S_{1}\right)=a
$$

$\sigma P_{\gamma}\left(S_{n}\right) \leq a-J_{\varepsilon}\left(S_{n}\right)$ then, form lemma 5

$$
\begin{equation*}
P_{\gamma}\left(S_{n}\right) \leq M=\frac{1}{\sigma}(a+|\Omega|) \tag{6.2}
\end{equation*}
$$

From proposition 4, we can assume that $S_{n} \longrightarrow S$ in Hausdorff metric with $S \in \mathcal{S}_{0}$. From [1] we know that P_{γ} is lower semi continuous on \mathcal{S}_{0} and, as J_{ε} is semi continuous inferiorly, the result classically derives.

7. Viscous wake

The perimeter $P_{\gamma}(S)$ can be considered as a viscous term associated to S. We can take in account a more general contribution of the viscous effect. In the flow in $\Omega \backslash S$, we can neglect the viscosity but it is not reasonable on S because of the jump of the speed flow through S. Then, we can not neglect a viscous effect and we chose a classical term in the following form:

$$
J_{\epsilon}(S)+\int_{S}\left(\sigma+\nu \|\left[\nabla_{\Gamma} \varphi(S) \rrbracket \|^{2}\right) d \Gamma\right.
$$

8. Necessary optimality condition

8.1. The smooth case. We assume that the optimal wake S is smooth enough. Then, using shape sensitivity analysis, we derive the shape gradient of the energy $J_{\epsilon}(S)$. We perturb S using a one parameter family of transformation T_{t} mapping Ω on itself, $\partial \Omega$ onto $\partial \Omega$, with $T_{t}\left(B_{f}\right)=B_{f}$ and $T_{t}\left(B_{\infty}\right)=B_{\infty}$

$$
J_{\varepsilon}(S)=\min _{y \in H^{1}(\Omega \backslash S)} E_{\Omega \backslash S}^{\varepsilon}(y)
$$

so that the wake equilibrium problem (6.1) take the following shape variational form

$$
\begin{equation*}
\min _{S \in \mathcal{S}_{0}}\left(\min _{y \in H^{1}(\Omega \backslash S)} E_{\Omega \backslash S}^{\in}(y)+\sigma P_{\gamma}(S)\right) \tag{8.1}
\end{equation*}
$$

We apply the results concerning the derivative of a Minimum with respect to a parameter s [4]. For a given $s>0$, we set $S_{s}=T_{s}(V)(S)$

Lemma 7. The family \mathcal{S}_{0} is stable under transformations $T_{s}(V)$:

$$
\forall V, \forall s, S_{s} \in \mathcal{S}_{0}
$$

Proof. $T_{t}: D \longrightarrow D$ is a smooth one to one transformation then $\left|S_{s}\right|=0, \#\left(S_{s}\right)=$ $\# S, S_{s}$ is closed

Lemma 8. The elements of the Sobolev space are transported by $T_{s}(V)$:

$$
y \in H^{1}\left(\Omega \backslash S_{s}\right) \Longleftrightarrow z=y \circ T_{s}(V) \in H^{1}(\Omega \backslash S)
$$

Then, problem (8.1) lead to the extremization of the functional

$$
\begin{equation*}
J_{\varepsilon}\left(S_{s}\right)=\min _{z \in H^{1}(\Omega \backslash S)} E_{\Omega \backslash S_{s}}^{\varepsilon}\left(z \circ T_{s}(V)^{-1}\right) \tag{8.2}
\end{equation*}
$$

We set

$$
\begin{gathered}
F(s, z)=E_{\Omega \backslash S}^{\varepsilon}\left(z \circ T_{s}(V)^{-1}\right) \\
f(s)=J_{\varepsilon}\left(S_{s}\right)
\end{gathered}
$$

and we make use of the
Theorem 2. Let K be a compact set, $F:[0, \tau] \times K \rightarrow \mathbb{R}$ a differentiable mapping and let $f(t)=\min \{F(t, y) \mid y \in K\}$. Denote by K^{*} the subset of K of elements φ which realize minimum at $t=0$.
f is side differentiable at $t=0$ and

$$
\begin{aligned}
f^{\prime}(0,+1) & =\lim _{t \downarrow 0} \frac{f(t)-f(0)}{t} \\
& =\min \left\{\left.\frac{\partial}{\partial t} F(0, \varphi) \right\rvert\, \varphi \in K^{*}\right\}
\end{aligned}
$$

In order to apply that result, we need to reduce the minimum to a compact set K. This derives from the coercivity of $E_{\Omega \backslash S}^{\varepsilon}$
Effectively, we have

$$
\begin{aligned}
E_{\Omega \backslash S}^{\varepsilon}(y) & \geq \frac{\varepsilon}{2}\|y\|_{L^{2}(\Omega)}^{2}+\frac{1}{2}\|\nabla y\|_{L^{2}(\Omega)}^{2}-|\Omega|^{\frac{1}{2}}\|\nabla y\|_{L^{2}(\Omega \backslash S)} \\
& \geq \frac{\varepsilon}{2}\|y\|_{H^{1}(\Omega \backslash S)}^{2}-|\Omega|^{\frac{1}{2}}\|\nabla y\|_{L^{2}(\Omega \backslash S)} \\
& \geq \frac{\varepsilon}{4}\|y\|_{H^{1}(\Omega \backslash S)}^{2}
\end{aligned}
$$

as soon as $\|y\|_{H^{1}(\Omega \backslash S)} \geq \frac{4}{\varepsilon}|\Omega|^{\frac{1}{2}}=M$
then $\|y\|_{H^{1}(\Omega \backslash S)} \geq M$ implies $E_{\Omega \backslash S}^{\varepsilon}(y) \geq \frac{4}{\varepsilon}|\Omega| \geq 0$
But the minimum $J_{\varepsilon}\left(S_{s}\right)$ being negative, in the minimization problem (8.2) $H^{1}(\Omega \backslash S)$ can be replaced by

$$
K=\left\{y \in H^{1}(\Omega \backslash S) \mid\|y\| \leq M\right\}
$$

K is weakly compact in $H^{1}(\Omega \backslash S)$
Lemma 9. The Eulerian derivative of the domain functional $J_{\varepsilon}(S)$ in the direction of the vector field V acting on S is

$$
d J_{\varepsilon}(S ; V)=\int_{S}\left\lceil\frac{1}{2}|\nabla \varphi|^{2}+\nabla \varphi \cdot i+\frac{\varepsilon}{2} \varphi^{2} \rrbracket V \cdot n d \Gamma\right.
$$

Proof.

$$
f(t)=\int_{\Omega_{t}} \frac{1}{2}\left|\nabla\left(\varphi o T_{t}^{-1}\right)\right|^{2}+\nabla\left(\varphi o T_{t}^{-1}\right) \cdot i d x
$$

we make use of:

$$
\begin{aligned}
\frac{\partial}{\partial t}\left(\int_{\Omega_{t}} \frac{1}{2}\left|\nabla\left(\varphi o T_{t}^{-1}\right)\right|^{2} d x\right)_{\left.\right|_{t=0}} & =\int_{\Omega} \nabla \varphi \cdot \nabla(-\nabla \varphi \cdot V) d x+\int_{S} \frac{1}{2} \llbracket|\nabla \varphi|^{2} \rrbracket V . n d \Gamma \\
& =\int_{\Omega} \nabla \varphi \cdot V \Delta \varphi d x-\int_{S} \llbracket \frac{\partial \varphi}{\partial n} \nabla \varphi \rrbracket . V d \Gamma+\int_{S} \frac{1}{2} \llbracket|\nabla \varphi|^{2} \rrbracket V . n d \Gamma \\
& =\int_{S} \llbracket \nabla \varphi \cdot V \rrbracket i . n d \Gamma+\int_{S} \frac{1}{2} \llbracket|\nabla \varphi|^{2} \rrbracket V . n d \Gamma
\end{aligned}
$$

and

$$
\begin{aligned}
\frac{\partial}{\partial t}\left(\int_{\Omega_{t}} \nabla\left(\varphi o T_{t}^{-1}\right) \cdot i d x\right)_{\left.\right|_{t=0}} & =\frac{\partial}{\partial t}\left(\int_{\Omega_{t}} d i v\left(\varphi o T_{t}^{-1} i\right) d x\right)_{\left.\right|_{t=0}} \\
& =\int_{\Omega} d i v(-\nabla \varphi . V i) d x+\int_{S} \llbracket \operatorname{div}(\varphi i) \rrbracket V . n d \Gamma \\
& =\int_{S} \llbracket-\nabla \varphi . V \rrbracket i . n d \Gamma+\int_{S} \llbracket \nabla \varphi . i \rrbracket V . n d \Gamma
\end{aligned}
$$

then

$$
f^{\prime}(0)=\int_{S} \llbracket \frac{1}{2}|\nabla \varphi|^{2}+\nabla \varphi \cdot i \rrbracket V \cdot n d \Gamma
$$

We get now the necessary optimality condition.
Proposition 5. Let S be a minimizer for the problem (6.1). Then the pressure is defined on both sides of S and is given by the Bernoulli's equation. Moreover, its jump across S is zero.

$$
\llbracket p \rrbracket=0 \text { on } S
$$

Proof. On the optimal wake,

$$
\int_{S} \llbracket \frac{1}{2}|\nabla \varphi|^{2}+\nabla \varphi \cdot \vec{U}_{\infty}+\frac{\varepsilon}{2} \varphi^{2} \rrbracket V \cdot n d \Gamma=0, \quad \forall V
$$

Considering the following Bernoulli's equation on both sides of S,

$$
\frac{1}{2}\left(U^{2}-u_{\infty}^{2}+\varepsilon \phi^{2}\right)+\frac{p}{\rho}+g z=\frac{p_{0}}{\rho}
$$

$$
\text { (} p_{0}=p_{z=0} \text { is the atmospheric pressure) }
$$

in term of speed perturbation potential, this expression turns to be:

$$
u_{\infty}^{2}\left(\frac{1}{2}|\nabla \varphi|^{2}+\nabla \varphi \cdot i+\frac{\varepsilon}{2} \varphi^{2}\right)+\frac{p}{\rho}+g z=\frac{p_{0}}{\rho} \text { on } S
$$

which permits to conclude.
8.2. The non smooth case. In general, S could be non smooth (as up to now we have derive no smoothness results on S). The same shape sensitivity analysis can be performed but avoiding any boundary integral on S. Then, taking volume integrals, we give now the necessary condition which will be a relaxed formulation of the previous one.

Proposition 6.

$$
d J_{\varepsilon}(S ; V)=\int_{\Omega \backslash S} \operatorname{div}\left\{\left(\frac{1}{2}|\nabla \varphi|^{2}+\nabla \varphi \cdot i+\frac{\varepsilon}{2} \varphi^{2}\right) V\right\} d x
$$

Proof. Using the two following propositions 7 and 8.

Proposition 7.

$$
\begin{aligned}
\frac{\partial}{\partial t}\left(\int_{\Omega \backslash S_{t}} \frac{1}{2}\left|\nabla\left(\varphi o T_{t}^{-1}\right)\right|^{2} d x\right)_{\left.\right|_{t=0}=}= & \frac{1}{2} \int_{\Omega \backslash S} \operatorname{div}\left(|\nabla \varphi|^{2} V\right) d x \\
& -\int_{\Omega \backslash S} \operatorname{div}(V . \nabla \varphi \nabla \varphi) d x
\end{aligned}
$$

Before showing this proposition, we need the two following lemmas

Lemma 10.

$$
\int_{\Omega \backslash S}<\epsilon(V) \nabla \varphi, \nabla \varphi>d x=\int_{\Omega \backslash S} \operatorname{div}(V . \nabla \varphi \nabla \varphi)-<D^{2} \varphi \nabla \varphi, V>d x
$$

Proof.

$$
\begin{aligned}
\int_{\Omega \backslash S} \partial_{i} V_{j} \partial_{i} \varphi \partial_{j} \varphi d x & =\int_{\Omega \backslash S}-V_{j} \partial_{i}\left(\partial_{i} \varphi \partial_{j} \varphi\right)+\partial_{i}\left\{V_{j}\left(\partial_{i} \varphi \partial_{j} \varphi\right)\right\} d x \\
& =\int_{\Omega \backslash S}-<V, \nabla \varphi>\Delta \varphi-<D^{2} \varphi \nabla \varphi, V>+\operatorname{div}(V . \nabla \varphi \nabla \varphi) d x
\end{aligned}
$$

Lemma 11.

$$
\int_{\Omega \backslash S} \frac{1}{2} d i v V|\nabla \varphi|^{2} d x=\int_{\Omega \backslash S}-<D^{2} \varphi \nabla \varphi, V>+\frac{1}{2} \operatorname{div}\left(|\nabla \varphi|^{2} V\right) d x
$$

Proof.

$$
\begin{gathered}
\left.\int_{\Omega \backslash S} \operatorname{div} V|\nabla \varphi|^{2} d x=\int_{\Omega \backslash S}-V \cdot \nabla\left(|\nabla \varphi|^{2}\right) d x+\operatorname{div}\left(|\nabla \varphi|^{2}\right) V\right\} d x \\
\text { Where } \quad V \cdot \nabla\left(|\nabla \varphi|^{2}\right)=<2 D^{2} \varphi \nabla \varphi, V>
\end{gathered}
$$

Proof. [of the proposition 7]

$$
\begin{aligned}
\frac{\partial}{\partial t}\left(\int_{\Omega \backslash S_{t}} \frac{1}{2}\left|\nabla\left(\varphi o T_{t}^{-1}\right)\right|^{2} d x\right)_{\left.\right|_{t=0}} & =\frac{\partial}{\partial t}\left(\int_{\Omega \backslash S} \frac{1}{2}<^{*} D T_{t}^{-1} \nabla \varphi,^{*} D T_{t}^{-1} \nabla \varphi>\operatorname{det}\left(D T_{t}\right) d x\right)_{\left.\right|_{t=0}} \\
& =\int_{\Omega \backslash S}<\left\{\frac{1}{2} I_{d} \operatorname{div} V(0)-\epsilon(V(0))\right\} \nabla \varphi, \nabla \varphi>d x
\end{aligned}
$$

And concluding with lemmas 10 and 11.
Proposition 8.

$$
\frac{\partial}{\partial t}\left(\int_{\Omega_{t}} \nabla\left(\varphi o T_{t}^{-1}\right) . i d x\right)_{\left.\right|_{t=0}}=\int_{\Omega \backslash S} \operatorname{div}(\nabla \varphi . i V)+\int_{\Omega \backslash S} \operatorname{div}(V . \nabla \varphi \nabla \varphi) d x
$$

Proof.

$$
\begin{aligned}
\frac{\partial}{\partial t}\left(\int_{\Omega_{t}} \nabla\left(\varphi o T_{t}^{-1}\right) \cdot i d x\right)_{\left.\right|_{t=0}}= & \int_{\Omega \backslash S}<-D V^{*}(0) \nabla \varphi, i>+<\nabla \varphi, i>d i v V(0) d x \\
= & \int_{\Omega \backslash S} \operatorname{div}(\nabla \varphi \cdot i V)-<D^{2} \varphi i, V>d x \\
& -\int_{\Omega \backslash S} \operatorname{div}(V . \nabla \varphi i)+<D^{2} \varphi V, i>d x \\
= & \int_{\Omega \backslash S} \operatorname{div}(\nabla \varphi \cdot i V)+\int_{\Omega \backslash S} \operatorname{div}(V . \nabla \varphi \nabla \varphi) d x
\end{aligned}
$$

References

1. D. BUCUR and J.P. ZOLESIO, Pseudo courbure dans l'optimisation de forme, C.R. Acad. Sci. Paris tome 320, Serie I, 1995.
2. M. DELFOUR and J.P. ZOLESIO, Shape Analysis via Oriented Distance Functions, Journal of Functional Analysis, 1994.
3. J. SOKOLOWSKI and J.P. ZOLESIO, Introduction to Shape Optimisation: Shape sensitivity analysis, Computational Mathematics, vol. 16, Springer-Verlag, New York, Berlin, Heidelberg, 1992.
4. J.P. ZOLESIO, The material derivative (or speed) method for shape optimization, E.J. Haug and J.Cea, Sijthoff and Noordhoff, Alphen aan den Rijn, 1981, pp 1089-1151.

Jean-Christophe AGUILAR, Ecole des Mines de Paris, Centre de Mathématiques Appliquées, B.P. 207,06904 Sophia Antipolis, France

Jean Paul ZOLESIO, CNRS-INLN, 1361 Route des Lucioles, 06560 Valbonne, France

On Some Inverse Geometrical Problems

S. Andrieux EDF-DER-MMN, Clamart, France

A. Ben Abda M. Jaou ENIT, LAMAP, Tunis, and Institut Préparatoire aux Études Scientifiques et Techniques, La Marsa, Tunisia

I Introduction

Recent efforts have focused on an industrial process : Nondestructive thermal testing of materials. They are generated by a growing interest in the detection and location of structural internal flaws.
These methods give rise to a class of identification problems : Inverse geometrical problems defined by overspecified data.
These kind of problems are posed as follows : Consider a material occupying a domain Ω in $I R^{n}, n \geq$ 2 . and let Γ be the unknown geometry.
One wishes to determine Γ by injecting a heat flux Φ (or a current flux in the case of electrical testing) across $\partial \Omega$ and measuring the temperature f (or the voltage) on an open subset of $\partial \Omega: \mathrm{M}$.
The temperature field u satisfies the steady state heat conduction problem:

$$
\left.\begin{array}{c}
\left\{\begin{array}{l}
-\Delta u=0 \text { in } \Omega \Gamma \\
\frac{\partial u}{\partial n}=\Phi \text { on } \partial \Omega_{\Gamma}
\end{array}\right. \\
\left(\int_{\partial \Omega_{\Gamma}} u=0 \text { and } \int_{\partial \Omega_{\Gamma}} \Phi=0\right.
\end{array}\right)
$$

Thus the problem is to know if Γ can be determined by one choice of the heat flux Φ (and the corresponding measurement f).
The determination of Γ consists in seeking the solution of three questions.

1) The uniqueness : Does Φ (and f) uniquely determine the unknown Γ.
2) The stability : Because of the error in measurements and in view of numerical treatments one has to study the variation of the geometry with respect to a variation of the measurement.
3) The inversion process : The goal of the problem is the determination of the unknown geometry by finding an inversion process which can be explicit or iterative.

The uniqueness question has been widely studied by many authors for different kind of geometrical flaws. In the case of inclusions [13] proved that when the inclusion D is a priori known to be a convex polyhedron, the shape and the location of D are determined by one measurement only. In the case where the unknown Γ is a part of the outer part of $\partial \Omega$, one heat flux with its correspondant measurement, suffices to determine Γ [5].
In the case of a buried insulated crack [14] showed that two specific current fluxes together with correspondant voltage suffice to determine the crack. Furthermore, they proved that this result is the best one possible. This result was extended in the case of a family of n cracks [9], it was proved that a family of $n+1$ fluxes with their corresponding voltage suffices to establish the uniqueness result. Recently [2] improved this result showing that two specific fluxes suffice (and are necessary) to establish the identifiability.
Notice that in all these works the crucial step towards the identifiability result rests on the knowledge of the shape of the level lines and therefore one can point out the bidimensional character of the proofs. It is shown here that in the case of a crack with a known emerging point on the boundary, one specific heat flux (or current flux) with the corresponding temperature field (or voltage) suffice to determine the crack.
The second question (the stability) can be viewed as the continuity of the mapping that associates the geometry to the data.

For that purpose, and in the cases of unknown boundaries as well as in the case of segment cracks with an emerging point on the boundary, compact metric spaces of admissible geometries are constructed. The stability result is derived from the uniqueness theorems and the continuity of the direct problems. The method given in[8] for inclusions is followed to reach this result.
A more precise stability result of Bellout-Friedman type[8] is also obtained: We prove that the mapping that associates the geometry to the data is locally lipshitzian. This result is optimal. Notice that the stability can be interpreted as the variation of the geometry with respect to the variation of the measurements, which suggests the main tool used : The domain derivative theory [16].
The last section of this presentation is devoted to numerical treatments. The identification process is based on the minimisation of an error functional initially introduced by Kohn and Vogelius in the case of parameter identification.
In this work, this functional is interpreted in the case of line segment cracks identification. Notice that this method can be applied to more general inverse geometrical problems[4].

I Uniqueness results

As pointed out earlier, this work is concerned by inverse geometrical problems defined by Laplacian equation and corresponding to overdetermined data. In this case these data correspond to the trace f of the solution on M, and to its normal derivative $\Phi=\frac{\partial u}{\partial n}$. To establish the uniqueness result one has to answer to the following question:
Does the pair (Φ, f) uniquely determine the unknown geometry?
To prove the uniqueness, one has to compare two harmonic functions, defined in two different domains and having the same Cauchy data on M : The main tool towards the result is the Holmgren uniqueness theorem. This tool has been widely used in this kind of problems: In the case of an a priori known convex polyhedron by Friedman and Isakov[13], in the case of $C^{2, \alpha}$ inclusions by Bellout and Friedman[8], in the case of C^{2} cracks in Friedman and Vogelius[14] and Bryan and Vogelius[9].
This section is devoted to uniqueness results concerning inverse geometrical problems. Two kinds of inverse geometrical problems are studied : the problem of the identification of inaccessible smooth boundary which is supposed to be islated (this kind of problems can be incoutered in thermal testing of composite materials). The second problem is the identification of a C^{2} crack with an a priori known emerging point on the boundary.

II. 1 Case of a smooth boundary

Let Ω be an open simply connected set of $I R^{n}$ with a $C^{1,1}$ boundary $\partial \Omega$.
Γ_{Φ}, M and Γ a partition of $\partial \Omega . M$ is supposed to be $\mathbf{C}^{2} . \Gamma$ designates the inaccessible part of $\partial \Omega$.
Denote by $\Omega \Gamma$ the open set Ω. On $\partial \Omega \Gamma$ a flux $\Phi ; \Phi \equiv 0$ is imposed $\left(\int_{\partial \Omega} \Phi=0\right)$. Furthermore one supposes that supp $\Phi \subset \Gamma \Phi$.

Consider the direct problem corresponding to an unknown isolated part of the boundary :
(II.1) $\quad \begin{cases}-\Delta u=0 & \text { in } \Omega \Gamma \\ \frac{\partial u}{\partial n}=\Phi & \text { on } \partial \Omega \Gamma \backslash \Gamma \\ \frac{\partial u}{\partial n}=0 & \text { on } \Gamma \\ \int_{\partial \Omega} u=0 & \end{cases}$

THEOREM

let Γ_{1} and Γ_{2} be two possible $C^{\mathbf{1}, 1}$ boundaries to identify, Γ_{1} and Γ_{2} having the same endpoints .
u_{i} designates the solution of (II.1) for $\Gamma=\Gamma_{i} \quad i=1,2$.
if $u_{1 \mid M}=u_{2 \mid M}$ then $\Gamma_{1}=\Gamma_{2}$
Proof:
The proof is achieved into two steps :
Step 1
let $w=u_{1}-u_{2}$; then w satisfies the following Cauchy problem :

$$
\begin{cases}-\Delta w=0 & \text { in } \Omega_{1} \cap \Omega_{1} \cap \Gamma_{2} \\ w=0 \text { on } M & \\ \frac{\partial w}{\partial n}=0 & \text { on } M\end{cases}
$$

By the unique continuation theorem :

$$
\mathbf{w} \equiv 0 \text { dans } \Omega \Gamma_{1} \cap \Omega \Gamma_{2}
$$

And therefore:

$$
u_{1}=u_{2} \text { et } \frac{\partial u_{1}}{\partial n}=\frac{\partial u_{2}}{\partial n} \operatorname{sur} \partial\left(\Omega \Gamma_{1} \cap \Omega \Gamma_{2}\right)
$$

Step2
Consider now the open set : $0=\Omega_{\Gamma_{1}} \cup \Omega_{\Gamma_{2}} \backslash \Omega_{\Gamma_{1}} \cap \Omega_{\Gamma_{2}}$ Suppose that 0 is non empty and let 0_{1} be one connected componant of 0 .

Figure 1
$\partial 0_{1}$ is constituted from parts of Γ_{1} and Γ_{2}. Suppose for instance that $0_{1} \subseteq \Omega_{\Gamma_{1}} \backslash \Omega_{\Gamma_{2}}$. One has $\partial 0_{1} \cap \Gamma_{2} \subseteq \partial\left(\Omega_{\Gamma_{1}} \cap \Omega_{\Gamma_{2}}\right)$ and therefore :
$u_{1}=u_{2}$ et $\frac{\partial u_{1}}{\partial n}=\frac{\partial u_{2}}{\partial n}$ sur $\partial 0_{1} \cap \Gamma_{2}$ (where n designates the outer normal to $\left.\Omega_{\Gamma_{2}}\right)$

Therefore u_{1} extends u_{2} across $\partial 0_{1} \cap \Gamma_{2}$ and then

$$
\frac{\partial u_{1}}{\partial n}=\frac{\partial u_{2}}{\partial n}
$$

Since $\partial 0_{1} \cap \Gamma_{2}$ is a smooth part of $\Omega_{\Gamma_{1}}, \frac{\partial u_{1}}{\partial n}$ is continuous across $\partial 0_{1} \cap \Gamma_{2}$, it follows that:

$$
\frac{\partial u_{1}}{\partial n}=0 \text { on } \partial 0_{1} \cap \Gamma_{2}
$$

That is,u_{1} is on 0_{1} a solution of the following problem:

$$
\begin{cases}-\Delta u_{1}=0 & \text { in } 0_{1} \\ \frac{\partial u_{1}}{\partial n}=0 & \text { on } \partial 0_{1} \cap \Gamma_{1} \\ \frac{\partial u_{1}}{\partial n}=0 & \text { on } \partial 0_{1} \cap \Gamma_{2}\end{cases}
$$

and therefore $u_{1}=$ cte on $\Omega_{\Gamma_{1}}$ by the unique continuation theorem. This is in contradiction with $\Phi \equiv 0$. That is $0_{1}=\varnothing$ and it follows that $0=\varnothing$.

Remark:
The same result is proven when the inaccessible boundary is supposed to satisfy a boundary condition of Signorini type, the proof is based on the same ideas. [10]

II. 2 Case of a crack initiated at the boundary

The body occupies a simply connected domain, one supposes that Ω contains exactly one crack σ which has a known emerging point S on the boundary $\partial \Omega$ (a crack is a C^{2} non selfintersecting curve) $\partial \Omega . \partial \Omega$ is parametrized by the arclength s with S as origin.
Consider P,Q,R 3 points of $\partial \Omega$, such that :

$$
0<s(R)<s(Q)<s(P)
$$

and the flux Φ given by :

$$
\Phi=\left\{\begin{array}{cl}
1 & \text { on } R Q \\
-\frac{|R Q|}{|P R|} & \text { on } Q P \\
0 & \text { elsewhere }
\end{array}\right.
$$

The corresponding direct problem is therefore given by :

$$
\begin{cases}-\Delta u_{\sigma}=0 & \text { in } \Omega \backslash \sigma \tag{II.2}\\ \frac{\partial u_{\sigma}}{\partial n}=\Phi & \text { on } \partial \Omega \\ \frac{\partial u_{\sigma}}{\partial n}=0 & \text { on } \sigma\end{cases}
$$

and one supposes the temperature u_{σ} being measured on a curve M (mes $(M)>0$)

THEOREM

Let σ and σ^{\prime} be two C^{2} curves modelising two cracks having S as an endpoint. One supposes that these two cracks lead to the same measurement on M, for the flux Φ defined previously , then $\sigma=\sigma^{\prime}$.

Proof:
Let u_{σ} be the solution corresponding to a crack σ having S.as an endpoint. $u_{\sigma} \in H^{1}(\Omega \backslash \sigma)$, Denote by τ_{σ} the vector $\nabla u_{\sigma} ; \tau_{\sigma}$ is divergence free in $L^{2}(\Omega \backslash \sigma)$, by the trace theorem τ_{σ} has a normal trace on the two sides of $\sigma ; \tau_{\sigma \cdot \mathrm{n}^{+}}$and $\tau_{\sigma \cdot \mathrm{n}^{-}}$. but

$$
\nabla u_{\sigma} \cdot \boldsymbol{n}^{+}=\nabla u_{\sigma} \cdot \boldsymbol{n}^{-}=0 \text { on } \sigma
$$

and therefore

$$
\tau_{\sigma \cdot n^{+}}=\tau_{\sigma \cdot n^{-}}=0 \quad \text { on } \sigma
$$

now $\nabla . \tau_{\sigma}=0$ in Ω, in the sense of distributions, therefore there exists a function $\omega_{\sigma} \in$ $H^{1}(\Omega)$ such that:

$$
\left.\tau_{\sigma}=-\left(\nabla \omega_{\sigma}\right)^{\perp}=\frac{\partial \omega_{\sigma}}{\partial x_{2}}, \frac{\partial \omega_{\sigma}}{\partial x_{1}}\right)
$$

x_{1} and x_{2} designates the cartesian coordinates.
ω_{σ} is uniquely determined up to a constant.
Furthermore, one has :

$$
\begin{array}{r}
\frac{\partial \omega \sigma}{\partial \tau}=-(\nabla \omega \sigma)^{\perp} \cdot n=\Phi \text { on } \partial \Omega \\
\omega \sigma=K_{\sigma} \text { on } \sigma .
\end{array}
$$

That is ω_{σ} satisfies :

$$
\left\{\begin{array}{cll}
-\Delta \omega \sigma=0 & \text { in } \Omega \backslash \sigma \\
\omega \sigma=K \sigma & \text { on } \sigma & \\
\omega \sigma=\varphi & \text { on } \partial & \Omega
\end{array}\right.
$$

and $\omega_{\sigma} \in \mathrm{H}^{1}(\Omega)$ (because ω_{σ} is continuous across σ)
For σ^{\prime} one has also :

$$
\left\{\begin{array}{c}
-\Delta \omega \sigma^{\prime}=0 \text { in } \Omega \backslash \sigma^{\prime} \\
\omega \sigma^{\prime}=K \sigma^{\prime} \\
\omega \sigma^{\prime}=\varphi \text { on on } \sigma^{\prime} \\
\hline \text { on } \Omega
\end{array}\right.
$$

Denote by ω the field

$$
\omega=\omega_{\sigma}-\omega_{\sigma^{\prime}}
$$

ω is harmonic in $\Omega \backslash\left(\sigma \cup \sigma^{\prime}\right)$, and satisfies :

$$
\omega \equiv 0 \quad \text { on } M
$$

and $\frac{\partial \omega}{\partial n}=-\left(\nabla \omega_{\sigma^{\prime}}\right)^{\perp} \cdot \tau+\left(\nabla \omega_{\sigma^{\prime}}\right)^{\perp} \cdot \tau=\tau_{\sigma^{\prime}} \cdot \tau-\tau_{\sigma} \cdot \tau=0 \quad$ on M
Since u_{σ} and $u_{\sigma^{\prime}}$ have the same trace on M.
It comes that $\omega \equiv 0$, in the exterior connected component $\Omega \backslash\left(\sigma \cup \sigma^{\prime}\right)$, denoted by $\Omega_{\mathcal{e}}$. By the specific choice made of φ (that is of the flux Φ), $\varphi(S)$ is the minimum of φ, and φ is constant on the arc PR of $\partial \Omega$ and is equal to $\varphi(S)$.

Suppose now that σ and σ^{\prime} do not coincide, then there exists $z \in \sigma^{\prime} \backslash \sigma$ (ou $\sigma \backslash \sigma^{\prime}$). z an interior point of $\Omega \backslash \sigma$ where the minimum of ω_{σ} is achieved(the minimum of ω_{σ} is exactly the minimum of φ) and therefore $\omega_{\sigma} \equiv c t e$, this is in contradiction whith the hypothesis $\boldsymbol{\Phi} \equiv \mathbf{0}$.

III-STABILITY

III. 1 Statement

In this section the problems (II.1) and (II.2)) are reconsidered. In these two cases the overspecified data are supposed to be accessible on an open set \mathbf{M} of the boundary $\partial \Omega$. Since the measurements are given by experiments, they usually are subjected to errors. The goal of this section is to study the stability of the inverse geometrical problems under consideration, that is, roughly speaking to study if small perturbation in measurements lead to a geometry in the vicinity of the actual geometry.
To formalize this idea, consider:
$\Gamma_{\text {ad }}$ a set of admissible geometries (lcracks or smooth boundaries) the operator η defined for a fixed identifying flux Φ.

$$
\begin{aligned}
\eta: \Gamma_{\mathrm{ad}} & \rightarrow \mathrm{~L}^{2}(\mathrm{M}) \\
\Gamma \rightarrow \mathrm{f} & =\mathrm{u}_{\Gamma} \quad \mathrm{M}
\end{aligned}
$$

By the previous section, the operator η is injective, consider the mapping (for simplicity also called η).

$$
\begin{aligned}
\eta: \Gamma_{\mathrm{ad}} & \rightarrow \eta\left(\Gamma_{\mathrm{ad}}\right) \\
\Gamma & \rightarrow \mathrm{f}=\mathrm{u}_{\mathrm{u}} \mid \mathrm{M}
\end{aligned}
$$

η is therefore invertible. The stability will be established if one proves the continuity of η^{-1}.
So Γ_{ad}, as well as ($\mathrm{L}^{2}(\mathrm{M})$) has to be equipped with an appropriate topology.
The main resultts of this section are a global "weak " stability result, that is the continuity of the operator η^{-1} the methods followed here to perform these results walk for the smooth unknown boundary problem as well as the line segment crack one. For the reader convenience, this section focuses on the line segment crack problem. The results are completely shown in this case.

III.2. "Weak" stability results

One can see that the compactness of the set of unknown geometries and the uniqueness result lead to the stability. This seems to be general : It was proved for buried cracks in [14], for monotone inclusions in [1]. The next theorem is devoted to this kind of result in the case of straight cracks having an apriori known endpoint on the boundary.
The set Σ is chosen to be compact for the Hausdorff metric :

$$
d\left(\sigma, \sigma^{\prime}\right)=\left(\begin{array}{ll}
\operatorname{Max}_{x \in \sigma} & \operatorname{Min} \\
y \in \sigma^{\prime}
\end{array}\right)
$$

($L^{2}(M)$) is equipped with the L^{2} - norm. And consider :

$$
\begin{aligned}
& \eta: \Sigma \rightarrow \eta(\Sigma) \\
& \sigma \rightarrow f=\mathfrak{u}_{\sigma} \mid \mathrm{M}
\end{aligned}
$$

Theorem:
The operator η^{-1} is continuous
Proof:
Let $\sigma_{n}, \sigma \in \Sigma$ such that the corresponding data $f_{\sigma_{n}} \rightarrow f_{\sigma}$ in $L^{2}(M)$
By compactness, σ_{n} has a subsequence $\sigma_{\mathrm{p}(\mathrm{n})}$ converging to $\tilde{\sigma} \in \Sigma$
Then $f_{\sigma_{p(n)}} \rightarrow \mathrm{f}_{\tilde{\sigma}}$ (stability of the direct problem) and therefore $\mathrm{f}_{\tilde{\sigma}}=\mathrm{f}_{\sigma}$
By the uniqueness result $\tilde{\sigma}=\sigma$
Then $\sigma=\tilde{\sigma}$ is the unique adherence value of σ_{n} and $d\left(\sigma_{n}, \sigma\right) \rightarrow 0$.
Remark : the same result occurs in the case of an unknown smooth boundary.
Notice that since the set of admissible cracks has been chosen compact, the previous theorem establishes actually that η^{-1} has a modulos of continuity [11]. That is there exists an increasing mapping φ :

$$
\varphi: \overline{\mathrm{IR}}^{+} \rightarrow \overline{\mathrm{IR}}^{+}
$$

φ continuous in 0 and $\varphi(0)=0$
and $\quad I_{\mathrm{f}_{\sigma}}-\mathrm{f}_{\sigma^{\prime} \mathrm{L}} \mathrm{l}^{2}(\mathrm{M}) \leq \varphi\left(\mathrm{d}\left(\sigma, \sigma^{\prime}\right)\right)$
The goal of the next section is to have more information on φ, that is to "quantify" the continuity of η^{-1}. Actually, one proves that φ is locally lipschitzian. Since the stability is estimating the deviation of the geometry in terms of the deviation of the measurements. This, suggests the tool to use to perform the local stability result : the domain derivative.

III.2. Local lipschitzian stability

III.2. 1 Domain derivative

The method followed to establish the results concerning the domain derivative is based on the results of Murat and Simon [16].
Consider a family of diffeomorphims F_{h} mapping $\quad \Omega \backslash \sigma_{h}$ onto $\Omega \backslash \sigma$. The open sets $\Omega \backslash \sigma_{h}$ are coisen in such a way that σ_{h} belong Σ. As in [16], are chosen as perturbations of the identity :

$$
F_{h}=I d+h \theta
$$

For h "small" enough, \boldsymbol{F}_{h} is a set of diffeomorphisms. $\theta \in \mathrm{W}^{1, \infty}(\Omega \backslash \sigma)$ and $\theta \equiv 0$ on $\partial \Omega$. The next proposition gives the lagrangian first derivation of the solution of (I) with respect to a variation of the domain.

Proposition

The scalar fild ${ }_{u_{\sigma}}^{h}$ defined on $\Omega \backslash \sigma$, has in $H^{1}(\Omega \backslash \sigma)$, the asymptotic expansion:

$$
u_{\sigma_{h}}^{h}=u_{\sigma}^{0}+h u^{1} \cdot \text { in } H^{1}(\Omega \backslash \sigma)
$$

where u_{σ}^{0} is the solution of (I), u^{1} is the solution of the problem:

$$
\begin{aligned}
& \int_{\Omega \backslash \sigma} \nabla u^{1}, \nabla v=\int_{\Omega \backslash \sigma}\left(\frac{\partial \theta}{\partial M}+\frac{\partial \theta}{\partial M}\right) \nabla u_{\sigma^{\prime}} \nabla v-\int_{\Omega}\left(\nabla u_{\sigma^{\prime}} \nabla v\right) d i v \sigma \\
& \forall v \in H^{1}(\Omega)
\end{aligned}
$$

Proof:
The proof of this result is similar of the one given in [12] in the case of elasticity.
By this particular choice of F_{h}, one has:

$$
\left|f_{h}-f\right|_{M}=\left|u_{\sigma h}-u\right|_{M}=\left|u_{\sigma h} o F_{h}-u\right|_{M}
$$

Then in ordre to prove a local stability result, it suffices to prove that u^{1} cannot vanish all over M.

III.2.2 Stability with respect to a length variation

Let σ be a line segment crack with S as an endpoint denote by F the end point of σ belonging to Ω and σ_{h} a line set cracks $\sigma_{h} \subset(S, F)$. Such that $\left|\sigma_{\mathrm{n}}\right|=(1+\mathrm{h})|\sigma|$.
((S, F) line crossing S and F) $|\sigma|$ denote the length of σ.

Theorem

Let f_{h} (respectively) be the trace of the solution of (I) in $\Omega \backslash \sigma_{h}$ (respectively in $\Omega \backslash \sigma$) Under the assumption :
(\boldsymbol{H}) the singularity coefficient of u_{σ} at $F(\sigma=[S, F])$ is different of 0 one has:

$$
\lim _{h \rightarrow 0} \frac{\left|f_{h}-f\right|}{h}>0
$$

To prove this theorem, one needs some preliminary results.

PRELIMINARY RESULTS

The next result relates the derivative with respect to the crack length of the potential energy to the domain derivative of the heat field u_{σ}.
Recall that in the case of an insulated crack the solution u_{σ} is know to be composed by a somooth part u_{σ}^{s} and a singular part [15]

