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Preface 

Three distinct stages may be defined in the structural design of buildings: 

1. selection of the structural solution and assessment of the dimensions of 
the main elements; 

2. detailed computation of stresses and displacements; 
3. checking of the main results. 

Note that computerized analysis suits only stage 2, whereas approximate 
methods have to be used for stages 1 and 3; this points out the exceptional 
importance of approximate methods in structural design. 

This book deals with the most difficult problem arising in the design of 
multi-storey buildings and similar structures: the effect of horizontal forces, 
mainly seismic loads and similar loads such as wind pressure. In fact, the 
general stability of a structure capable of resisting horizontal forces is also 
ensured for vertical loads; possible accidents are generally only local. Unfortu
nately, the most difficult task is to define clearly the concept of approximate 
methods. Their reverse, the accurate methods, also elude definition: in order to 
apply them, several simplifying assumptions are required. Hence we are ob
liged to accept a rather vague definition: an approximate method in structural 
analysis is a method that permits the assessment of stresses or displacements in 
a much shorter time than the commonly used design methods. 

We shall refer in the following to two different types of approximate 
methods: (1) methods designed to determine the stresses and displacements of 
a given structure by using substitute structures; (2) methods based on 'global 
parameters' (seismic coefficients, total area of structural walls, etc.). The advent 
of computerized structural analysis and, in particular, of finite element pro
grams, has opened up vast possibilities for a fundamental reappraisal of exist
ing approximate methods, including a more accurate definition of their scope 
and limits. We have taken advantage of these possibilities, have examined 
several 'classical' approximate methods, and have proposed a number of new 
techniques intended to complement the existing ones. 

This book is the result of many years spent in structural design and teach
ing. One of its main sources is a course in structural dynamics taught by 
Professor P. Mazilu at the Institute of Civil Engineering of Bucharest, Romania, 
which the author was privileged to attend. 

The target audience of the book is first of all design engineers, but it should 
be of use for non-specialist engineers too; it is assumed that it will serve also as 
a teaching aid for undergraduate students as well as for advanced high-rise 
buildings courses. It is hoped, by citing Mozart (toute proportion gardee), that 
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'here and there are sections that only connoisseurs will enjoy, but these sec
tions have been written so that even a layman will have to enjoy them, albeit 
without knowing it.' 

Adrian S. Scarlat 

ACKNOWLEDGEMENT 

The author is especially grateful to Professor A. Rutenberg for his careful 
screening of the manuscript and for suggesting valuable improvements. 



1 Multi-storey building frames 

1.1 Introduction 

In this chapter we propose to assess the bending moments and the deflections 
of a multi-storey building frame acted upon by lateral forces (Figure l.la), by 
using approximate methods. 

As will be shown in the next section (1.2), the approximate analysis of this 
frame may be performed on a 'substitute' (equivalent) one-bay, symmetrical 
frame (Figure L1 b). Therefore we shall deal mainly with this latter frame, as a 
first step in analysing the actual multi-storey, multi-bay frame. 

In our analysis, we assume several hypotheses aimed at simplifying the 
computation. These are as follows. 

• It is assumed that all the horizontal loads are concentrated at floor levels. 
• The effect of the shear forces (V) on the deformations is neglected. This 

hypothesis is acceptable as long as we deal with the usual systems of bars. 
The analysis of structural walls, where this effect is important, will be 
dealt with separately (Chapter 2). 

• The effect of axial forces (N) on the deformations is neglected. This hypo
thesis, too is acceptable as long as the total length of the multi-bay 
frame (L) is not small with respect to its total height (H). In most practical 
cases this assumption is justified. We point out, in order to be consistent, 
that we also have to neglect the effect of axial forces in the analysis of the 
substitute frame. This means that we have to assume cross-sectional areas 

n 1 
I 

'(. I 

i I 

3 
I 

1 
I Me.,. 2 I 

1=G ,. '" 
,,. ,.,. ,,. 

t/'-o,~--- L ---......,f'J 
(a) (b) (c) 

Figure 1.1 
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A--> oo (independently of the ratio L/ H). Consequently, the asymmetrical 
load of Figure l.lb may be replaced by the anti-symmetrical load shown 
in Figure 1.1 c. 

In the following, we shall deal mainly with columns fixed in the foundations. 
The case of pin-supported frames will be considered separately (section 1.2.4). 
The effect of soil deformability is dealt with separately, too (section 1.3.3). 

1.2 Multi-storey, one-bay frames 

1.2.1 GENERAL APPROACH 

The approximate analysis of multi-storey, one-bay, symmetrical frames subjec
ted to horizontal loads is performed by one of the following procedures: 

1. the zero moment point procedure; 
2. the continuum procedure (replacement of the beams by a continuous 

medium). This latter technique is only suitable for multi-storey frames 
with a large degree of uniformity. 

In the case of very irregular substitute frames (from the aspect of both ge
ometry and rigidity), it is advisable to perform the analysis by computer (the 
'approximation' will stem from the conversion of the substitute frame to the 
actual one). We have to assume in this case, too, that the effect of axial forces is 
negligible (by assuming A--> oo ). 

1.2.2 THE ZERO MOMENT POINT (ZMP) PROCEDURE 

Let us consider the one-bay symmetrical frame shown in Figure 1.2. It is 
assumed that we know the position of the point where the moment diagram M 
intersects the column's axis (zero moment point, ZMP), i.e. the height h0 . The 
problem becomes statically determinate: 

V h0 
Mbott=-2-; 

V(h 0 - h) 
Mtop= 2 (1.1) 

where V represents the sum of horizontal forces above the given column. 
The position of ZMP may be defined by the ratio 

h0 1 e = - = -,------,-----,---
h 1- (Mtop/ M bolt) 

(Mbou and M,op have the same sign if they tension the same fibre). 
It therefore follows: 

Veh 
Mbott=2 

(1.2a) 
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Figure 1.2 

(a) (b) 

Figure 1.3 

- V(l-s)h 
Mtop= 2 (1.2b) 

For a frame of given geometry and for a given storey i, s depends mainly on 
the ratio 

(1.3) 

where kb; =I b/ /; kc; = Ic/ h; and I b(l J are moments of inertia of beam i (column 
i). We note that in most practical cases the ratio v lies between 0.1 and 5. 

The type of loading has some effect on the position of ZMP, but we may 
safely neglect this effect and assume that for any laterally distributed load 
ZMP is invariant. 

Figure 1.3 presents diagrams for two extreme situations. Figure 1.3a shows 
extremely stiff beams (v---+ oo ), where ZMP lies at the mid-height of each storey 
(s = 0·5). Figure 1.3b illustrates extremely flexible beams (v---+ 0); the diagram of 
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bending moments M is of the cantilever type. In the case of stiff beams 
ZMP lies within the given storey. In the case of flexible beams ZMP may be 
positioned above the given storey. 

We shall now determine the approximate position of ZMP by referring to 
two cases: uniform and non-uniform frames. 

(a) Uniform frames 

Uniform frames have equal heights, I c =constant and I b constant at each storey. 
Analyses were performed for n = 6, 10 and 15 storeys subjected to uniform 

and inverted triangular loads (Figure 1.4); for each type of frame and loading, eight 
ratios v = kb/kc were considered: 0·01, 0·1, 0·5, 1, 2, 5, 10, 1000 (a total of 48 cases). 

Ratios e were computed at three levels: s1 eG (at the ground floor), s2 (one 
floor above) and em (at the mid-height of the structure). The ratio e at the top 
floor is not significant, as the corresponding moments are usually very small. 

Average curves for e versus v are shown in Figure 1.5 for e1 = eG, e2 and em: 

• eG is close to 0.5-0.6 for v > 2 and greater than 1 for v < 0.2. 
• em remains close to 0.5 for v > 0.5. 

1.5 
1.'14.. 
1.3 
1.2 
1.1 
·t 

0.9' 
0.8 
0.7 
0.6 
0.5 

e 

....... 
-...... 

""" 
"' -...... -..--fm -- _, ____ 

~""--.. 

"""" 
l.r~ -~-

--- -
0 ~ 0.1 0.2 0.3 0.4 0. 5 

J 
~ H=nh 

J 
Figure 1.4 

±=t 

~ 

2 3 4 5 

Figure 1.5 

--
10 v 
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We note that even for reinforced concrete structures the column reinforcement 
is usually uniform along the height of the storey. In cases where em i= 0.5 (either 
em> 0.5 or em< 0.5), the maximum moment is greater than the moment we 
have computed on the assumption that em= 0.5. 

Therefore, in design it is advisable to consider the bending moments around 
the mid-height of the frame, increased by 10-20% with respect to the moments 
based on em = 0.5. 

e2 lies between e0 and em; for v = 0.1-0.3, e2 varies between 0·5 and 0·9. 
For ratios v < 0.1, the spread of results is too wide to permit a reasonable 

average value to be accepted. In such cases, it is more convenient to relate the 
maximum moment acting on the columns (Mmax above the foundations) direc
tly to the maximum moment acting on a cantilever (Meant), due to loads F /2; 
see Figure 1.6. 

From the frames we have analysed we obtain: 

V = kbj kc = 0·001 
0·01 
0·1 

0·8-0·9 } 
0-4-0·6 

0·15-0·3 
(1.4) 

We note that even for very flexible beams (v = 0·01) the effect of the beams 
remains significant (it ensures a decrease of the maximum moments acting on 
the columns by "'50% with respect to the cantilever moments). 

(b) Non-uniform frames 

The position of ZMP for several cases of 10-storey frames has been examined. 
The results are as follows. 

• The moments of inertia of the columns vary along the height of the frame 
(Figure 1.7), the beams having constant moments of inertia (various ratios 
v between 0.1 and 10 have been considered). The computations show that, 

Figure 1.6 



6 Multi-storey building frames 

Figure 1.7 

if we denote 

(1.5) 

then we may use the curves shown in Figure 1.5. 
• The height of the ground floor (hd is greater than the height of the 

remaining floors (h): see Figure 1.8. The moment of inertia is assumed 
constant (I c), so that keG= I cl ha < kc =I cl h. Ground-floor heights 
h0 = 1.5 h-2 h have been taken into account. 

Ratios v between 0·1 and 10 have been checked. 
The results show that we may use the curves of Figure 1.5 on condition that 

for ~;0 , we refer to 

kb I b/ I 
Va=-=--

kcG I cG/ ha 
( 1.6) 

for ~> 2 , we refer to 

( 1.7) 

More accurate results may be obtained in this latter case by using the continu
um approach (see section 1.2.3). 

In the case of variable heights and moments of inertia, the results obtained 
by the ZMP procedure are only reliable for the ground floor. 
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w 
Figure 1.8 

D Numerical example 1.1 

Consider the uniform one-bay, 10-storey frame shown in Figure 1.9, loaded by horizon
tal identical concentrated loads F =I kN. Jc =I, i.e. kc = 0·333. Assume /b = 1·333, i.e. 
kb = 1·333/4 = 0·333; \' = kbj kc = J. 

The accurate moments are shown in Figure 1.9b (within the brackets). To compute 
the same moments approximately, we use the curves given in Figure 1.5: v =I, 
eG = 0·66, e2 = 0·53, em= 0·50. The corresponding moments are shown in Figure 1.9b 
(outside the brackets). 

For instance, at the ground floor: 

I 1o 10 
Mbott =- IF· eG· hG =- x 0·66 x 3·0 = 9.9kNm (accurate: 9·5 kNm). 

2 1 2 

M,op = -~ IF-(1-eG)·hG =- (
10

) X 0·34 X 3·0 =- 5·1 kNm 
2 1 2 

(accurate: - 5·5 kN m). 

By assuming a different ratio, v = kb/kc = 0·1, the accurate moments are as shown in 
Figure 1.9c. From the curves in Figure 1.5, eG = I· 30, e2 = 0·88; em is uncertain. The 
approximate moments are shown outside the brackets. 

At the ground floor: 

10 
M=-x 1·30x3·0=19·5kNm (accurate: 18·9kNm) 

2 

10 
M = -- x (I - 1·3) x 3·0 = 4·5 kN m (accurate: 4·5 kN m) 

2 
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If we refer to the cantilever moment: 

yielding: 

10 
Meant =2 X 3·0 X (1 +2+ ··· + 10)=82·5 

Mmax 18·9 
--=-=0·23 
Meant 82·5 

Similar cases are shown in Figure 1.9d-f, but for an inverted triangular load: the same 
ratios vas considered in the first case (uniformly distributed loads) have been assumed. 

Referring to the cantilever moment: 

(
3·0) Meant= 2 x(1·1+2·2+···+10·10)=577-5 

yielding: 

D Numerical example 1.2 

Mmax 111 --=--=0·19 
Meant 577·5 

0 

The frame shown in Figure 1.10 has variable heights, as well as variable moments of 
inertia. The approximate moments for the ground floor only are computed as follows. 

k 1·2/3·0 
Va = kbo = 1·5/4·5 = 1·2 

Co 

From Figure 1·5: £0 = 0·63 

10 
Mbott = 

2 
x 0·63 x 4·5 = 14·2 kN m (accurate: 14·1) 

10 
M = -- x 0·37 x 4·5 = -8·3kNm (accurate: -8-4) 0 top 2 

1.2.3 CONTINUUM APPROACH 

This procedure is based on replacing the beams of the one-bay, multi-storey 
building frame by a continuous medium. It yields satisfactory results provided 
the frame is uniform, or nearly uniform: i.e. identical moments of inertia of 
columns, Ic; identical moments of inertia of beams, Ib (except the top slab, 
where I~= I b/2); and not very different heights of columns (hJ hi= 2/3 ... 3/2). 

Let us consider a completely uniform frame subjected to a laterally distrib
uted load of intensity Px (Figure 1.11a). The beams are replaced by a continu
ous medium formed by an infinite number of very thin horizontal laminae at 
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1kN /c 
-+ 

1~ 

1~ 

u Accurate 

/=3.0 

Figure 1.10 

Approximate 

distances dx, having the moment of inertia (Figure 1.11 b): 

1~ = /bdx 
h (1.8) 

By using the flexibility method, we may formulate the differential equation of 
compatibility of displacements and subsequently determine the couples C act
ing on the columns at each floor (Figure 1.11c). 

For a uniformly distributed load: 

L.F 
p=-

H 
(1.9) 

we obtain (Csonka, 1962a): 

( 
P) . h(r:xh) [0 h( . h ] phxi ci = (1.2 • sm 2 . ·cos o:xJ- sm (r:xxJ + -2-

(i= 1,2, ... ,11-1) (1.10) 

( 
p ) [ . (r:xh) (r:xh) J ph

2 
ctop= 2r:x2 . 0 smh 2 -cosh 2 + 1 +16 



where: 

O=sinh(aH)-aH (r H 20 = 1) (1.10) 
cosh(aH) 10r > ' a · 

We note that the coordinates X; originate at the top. 
Each column is now acted upon by the couples C; and the given loads 

p/2 kN m -l, i.e. ph/2 kN at each joint, except the top joint, where ph/4 and 
Ctop are acting (Figure 1.11c). The problem is statically determinate, and we 
may compute the bending moments.: 

M M.=_____}J_j+M 
I 2 C; 

2 

h M px; 
w ere P, =T; 

(1.11) 

(1.11) 

In the case of a different height at ground floor (ha i= h), the corresponding 
couple to be considered is (Figure 1.11d) 

Cbott = ( 2~ 2} { O[sinh (ax8)- sinh (axT)] - (cosh(ax8)- cosh(axT)} 

p(x~- xi) 
+ 4 

The results in this case are not very accurate. 

( 1.12) 

In fact, we may use the results obtained for the uniformly distributed loads 
p (namely, the positions of the ZMPs) for an approximate analysis of the frame 
subjected to any lateral distributed load by assuming that the ZMPs are the 
same. 
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As such, we solve the problem in two stages. 

1. We determine the positions of the ZMP at each storey as for a uniformly 
distributed load. 

2. We compute for the given loa? the bending moments acting on the 
columns corresponding to the ZMPs obtained in stage 1. 

An alternative procedure has been proposed, where the differential equation of 
compatibility of displacements is replaced by a difference equation. This pro
cedure entails an excessive volume of computations and requires a very high 
degree of precision. It is therefore seldom used in design. 

D Numerical example 1.3 

Let us refer to the frame shown in Figure 1.12 (a nearly uniform frame): n = 1 0; 
I= 3·0m; h = 3·0m; hG = 4·5m; H = 31·5m; Ib/Ic = 1·5. 

1·0 
p =- = 0·333 kNm- 1 (or: F; = 1 kN; Flop= 0·5kN; Fbon = 1·25kN). 

3·0 

a= ( 
6x 1·5 )= 1· 

1x3x2 ' 
0= 1 

( 
P) . (IX) 0 . h phx; C; = IX 2 . smh 2 . [ ·cosh(iXx;)- sm (ax;)] + -

2
- = · ·· 

= 0·709· [cosh(IXx;}- sinh(IXX;)] + 0·5 X; 

i=2 X;= 24m C;= 11·99kNm 

3 21 10-49 
4 18 8·99 
5 15 7·50 
6 12 6·00 
7 9 4·50 
8 6 3·00 
9 3 1·53 

( 
p ) [ (ah) J p·hz Clop= 

2
a2 · Osinh "2 -cosh(ah/2)+ 1 +!6 

(
0·333) 0·333 X 32 

= 
2

x 12 ·(lx2·1293-2·3524+1)+ 
16 

=0.32kNm 

Cboll = c:z} {8·[sinh(1XXB)- Sinh(axT)J- (cosh(ax8)- COSh(:XXT)) 

p(x~ -xi) 
+ 4 
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p 
0.75 

1.85 
3 

4.85 
6.75 

12 
9.35 

15.35 
<q 18.75 .... 22.85 C') 

p = 0.333 kN m-1 27 

36.75 

48 

60.75 

1.25 k 71.42 
82.69 

f·O mJ. lc = 1 Mp/2 Me 
/b=0.5 

-0.32 {-0.50) .f.. -6.7 (-9.4) 
0.43 (0.25) 0.573 9.0(6.4) 

-1.10 (--1.30) -14.8 (-16.5) 
1.13 (0.90) 0.507 15.2 (13.5) 

-1.85 (-2.00) -21.1 (-22.7) 
1.90 (1.70) 0.507 21.7 (20) 

-2.60 (-2.80) -26.7 (-28.2) 
2.65 (2.50) 0.505 27.3 (25.8) 

-3.35 (-3.40) -31.6 (-32.9) 
3.40 (3.30) 0.504 32.1 (30.9) 

-4.10 (-4.30) -35.8 (-36.8) 
4.15 (4.00) 0.503 36.2 (35.2) 
-4.84 (-5.00) -39.1 (-40) 
4.91 (4.70) 0.504 39.7 (38.7) 
--5.58 (-5.80) -41.7 (-42.6) 
5.67 (5.40) 0.504 42.3(41.4) 
-6.32 (-6.80) -43 (-45.5) 
6.58 (6.00) 0.510 44.7 (42.2) 
-10.67 (-9.80) -65.6 (-59.9) 

0.514 

M M 

Figure 1.12 
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4·5 
x8 = 27 +2= 29·25m; 

3·0 
XT= 27-

2 
= 25·5m 

Chon= ( 0 " 33~) X {I X [sinh(! X 29·25)- Sinh(! X 25·5)] 
2 X J 

0·333(29·252 - 25·52) 
-(cosh(lx29·25)-cosh(lx25·5)}+ 

4 
~0+17·10 

= 17·10kNm 

0·333xf 
M(P/2)= 4 ; 

From the diagram Mi we deduce the ratios 1:. 

By considering the same frame loaded with inverted triangular forces and taking 
into account the ratios 1:, we determine the final moments (Mi = 2:i1 F~:h/2). The 
accurate values are given within the brackets and the approximate ones outside the 
brackets. 0 

1.2.4 PIN-SUPPORTED FRAMES 

Multi-storey building frames with pinned supports are seldom used in design, 
especially if the columns are of reinforced concrete. The actual supports are 
elastic, but designers usually consider them as fixed. If we want to take into 
account the elasticity of the supports against rotation in the frame of an 
approximate analysis we have to perform two separate analyses, the first by 
considering fixed supports (Figure 1.13a) and the second by considering pin
ned supports (Figure 1.13b), and then interpolate the results. In the case of 
slender frames, the effect of the high vertical reactions will further increase the 
deflections (see section 1.3.3). 

The pin-supported frame has two important features. 

• Its reactions are statically determinate (the assumption of the axial in
deformability of the beams allows the replacement of the actual loads F 
with pairs of anti-symmetrical loads F /2 and leads to anti-symmetrical 
reactions). As a result (Figure 1.14): 

• Very flexible beams (v = kb/kc-+0) bring the structure close to a mechanism 
and excessive deflections are to be expected. The corresponding moment 
diagram is shown in Figure 1.15a; it is noteworthy that its shape is similar 
to the shape of a moment diagram of a frame obtained by superimposing 
a series of three-hinged frames (Figure 1.15b). 
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(a) (b) (c) 
Elastically fixed supports 

Figure 1.13 

Figure 1.14 

(a) (b) 

Figure 1.15 


