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Preface 

Flexural-torsional buckling is a mode of structural failure in which one or more 
members of a frame suddenly deflect and twist out of the plane of loading. 
Because flexural-torsional buckling reduces the load-carrying capacity of the 
structure, designers must prevent it either by providing additional bracing, or by 
using larger members. 

From the 1930s, the subject of flexural-torsional buckling has been dealt with 
in S.P. Timoshenko's widely used textbook Theory of Elastic Stability, last 
published (with J.M. Gere) in 1961, and later in F. Blelch's Buckling Strength of 
Metal Structures, published in 1952. These cover a wide range of structural 
stability topics, and so their coverage of flexural-torsional buckling is limited to a 
few chapters. 

These books were both written before the advent of the electronic digital 
computer in the 1950s, and the subsequent explosion in published research on the 
subject. Consequently, more recent treatments of stability theory have been more 
limited either in their scope or in their depth. Strangely, there have been few, if 
any, recent books published which provide thorough treatments of flexural-
torsional buckling. 

This book is intended to provide both an up-to-date treatment of modern 
methods of analysing flexural-torsional buckling, and also to provide sufficiently 
detailed summaries of knowledge on flexural-torsional buckling that it can be 
used as a source book by both designers and researchers. 

I t may also be used for teaching purposes as a text or reference book. In 
advanced level undergraduate courses, the teacher will want to simplify and edit 
the material given. Such a course may introduce the theory of structural stability 
given in Chapter 2, and the hand and computer methods of analysis dealt with in 
Chapters 3 and 4. Subsequent material on column, beam, and beam-column 
buckling may be selected from Chapters 5, 7 and 11, and on design against 
flexural-torsional buckling from Chapter 15. 

For normal level post-graduate courses, these topics may be presented in 
greater detail, and expanded with material on restrained buckling from Chap
ters 6,8,9,10 and 12, and possibly with a treatment of inelastic buckling based on 
Chapter 14. For advanced courses, these topics would be studied more thorough
ly, while additional topics may be introduced from Chapters 13 and 16. 

It is not often these days that a researcher is allowed to develop a fascination for 
a subject and spend the amount of time on it that I have on flexural-torsional 
buckling, and I count myself as being privileged in this regard. My first introduc
tion to the subject was through a Structures Honours course given to me as an 
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undergraduate by the late J.W. Roderick in 1955. As a masters research student, a 
topic on the flexural-torsional buckling of beam-columns was suggested to me by 
one of my co-students, P.G. Lowe, and my work on this, which was supervised by 
Roderick, confirmed my interest in the subject. In early 1961 my curiosity on the 
lateral buckling of beams was stimulated by the British Standard BS 449:1959. 
This led me into work for the Standards Association of Australia for the 
development of an Australian code for the design of steel structures, and into my 
doctoral study of the flexural-torsional buckling of frame structures, again 
supervised by Roderick. 

In 19681 had the good fortune to spend a study leave at Washington University 
with T.V. Galambos, who inspired me with his own fascination for the subject. In 
the early 1970s, I learnt much with J.M. Anderson, S. Kitipornchai, P. Vacharajit-
tiphan, S.T. Woolcock, T. Poowannachaikul and B.R. Mutton, an exceptional 
group of graduate students at the University of Sydney. My good fortune 
continued in 1974-75, when I spend another study leave, this time at the 
University of Sheffield where I collaborated with D.A. Nethercot. In the 1980s, I 
again had a number of outstanding students, M.A. Bradford, P.E. Cuk and J.P. 
Papangelis, while two of my colleagues at the University of Sydney, G.J. Hancock 
and N.L . Ings, collaborated with me on flexural-torsional buckling research, as 
did M.A. Bradford and S. Bild as post-doctoral fellows, and later Y.L. Pi. 

In the early 1970s I began teaching the same Structures Honours course that 
Roderick taught me in 1955, and also a post-graduate course on Structural 
Stability. I gave a related stability course at the University of Alberta in 1985. The 
stimulus of preparing and developing these courses and of challenging and 
reacting to my students has done much to extend my own understanding of the 
subject, as well as to give me a broad outline for this book. 

M y studies of flexural-torsional buckling have not been limited to research, 
and my work for nearly 30 years with the Standards Association of Australia on 
the preparation of codes for the design of steel structures has given me a keen 
appreciation of the need to translate research findings on flexural-torsional 
buckling into forms that are easily understood and used by designers. 

I have been greatly influenced in the preparation of this book by my teaching 
and research experiences in Australia at the University of Sydney, in the USA at 
Washington University, in the U K at the University of Sheffield, and in Canada 
at the University of Alberta. While a significant proportion of the material in this 
book has been developed by me and my colleagues and students, much of it is not 
original, but has been gathered from many sources. Unfortunately, it is very 
difficult or even impossible to acknowledge all individual sources, and so the 
references given in this book are restricted to those which the general reader may 
wish to consult for further information. 

I would like to thank the School of Civil and Mining Engineering of the 
University of Sydney for the facilities that it has made available to assist in the 
preparation of this book. The manuscript was expertly typed by Jean Whittle and 
Cynthia Bautista, and the diagrams prepared by Ron Brew and K i m Pham. 
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Many valuable comments and suggestions were made by my colleagues and 
students at the University of Sydney, especially by KJ.R. Rasmussen. 

Finally, I wish to acknowledge the unfailing help and support of my wife, Sally, 
without whom the writing of this book would not have been possible. 

Nicholas Trahair 
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Units and conversion factors 

Units 

While most expressions and equations used in this book are arranged so that they 
are non-dimensional, there are a number of exceptions. In almost all of these, SI 
units are used which are derived from the basic units of kilogram (kg) for mass, 
metre (m) for length, and second (s) for time. 

The SI unit of force is the newton (N), which is the force which causes a mass of 
1 kg to have an acceleration of 1 m/s 2. The acceleration due to gravity is 9.807 
m/s 2 approximately, and so the weight of a mass of 1 kg is 9.807 N . 

The SI unit of stress is the pascal (Pa), which is the average stress exerted by a 
force of 1 N on an area of 1 m 2 . The pascal is too small to be convenient in 
structural engineering, and it is common practice to use either the megapascal 
(1 MPa = 106 Pa) or the identical newton per square millimetre (1 N / m m 2 — 
106 Pa). The megapascal (MPa) is used generally in this book. 

Table of conversion factors 

To Imperial (British) Units To SI units 

1kg — 0.068 53 slug 1 slug _ 14.59 kg 
1 m = 3.281 ft 1 ft — 0.304 8 m 

= 39.37 in. 1 in. 0.025 4 m 
1 mm = 0.003 281 ft 1 ft = 304.8 mm 

= 0.039 37 in. 1 in. = 25.4 mm 
1 N = 0.224 8 lb 1 lb = 4.448 N 
1 k N = 0.224 8 kip 1 kip = 4.448 k N 

= 0.100 36 ton 1 ton 9.964 k N 
1 MPa* + 0.145 0 kip/in. 2(ksi) 1 k ip / in . 2 + = 6.895 MPa 

= 0.064 75 ton/in. 2 1 ton/in. 2 = 15.44 MPa 
1 kNm = 0.737 6 kip ft 1 kip ft 1.356 kNm 

= 0.329 3 ton ft 1 ton ft = 3.037 kNm 

*1 M P a = 1 N / m m 2 . 
f There are a few dimensionally inconsistent equations used in this book which arise because a 
numerical value (in MPa or kip/ in . 2 ) is substituted for the Young's modulus of elasticity E while the 
yield stress FY remains algebraic. The value of the yield stress F Y used in these equations should 
therefore be expressed in either MPa or kip/ in . 2 , whichever is appropriate. Care should be used in 
converting these equations from SI to Imperial units, or vice versa. 
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Glossary of terms 

Arch A member curved in the plane of loading. 
Beam A member which supports transverse loads or moments only. 
Beam-column A member which supports transverse loads or moments which 

cause bending and axial loads which cause compression. 
Beam-tie A member which supports transverse loads or moments which cause 

bending and axial loads which cause tension. 
Brace A secondary member which prevents or restrains deflection or twist 

rotation of a main member. 
Braced beam A beam with a number of cross-sections braced against lateral 

deflection and twist rotation. 
Buckling A mode of failure in which there is a sudden deformation in a 

direction or plane normal to that of the loads or moments acting. 
Cantilever A member with an end which is unrestrained against lateral 

deflection and twist rotation. 
Capacity factor A factor used to multiply the nominal capacity to obtain the 

design capacity. 
Column A member which supports axial compression loads. 
Conservation of energy A principle describing the conditions under which a 

structure and its loads may deform without any change in the total energy of the 
system. 

Continuous beam A beam which is continuous over one or more supports. 
Design capacity The capacity of the structure or element to resist the design 

loads. Obtained as the product of the nominal capacity and the capacity factor. 
Design load The combination of factored nominal loads which the structure is 

required to resist. 
Distortion A mode of deformation in which the cross-section of a member 

changes shape. 
Effective length The length of an equivalent simply supported member which 

has the same elastic buckling load as the actual member. 
Elastic behaviour Deformations without yielding. 
Energy method A method of buckling analysis based on the principle of 

conservation of energy. 
Finite element analysis A computer method of numerical analysis in which a 

complete structure is divided into a number of elements of finite size. 
First-order analysis Elastic linear analysis in which equilibrium is formulated 
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for the undeformed position of the structure, so that the moments caused by 
products of the loads and deflections are ignored. 

First-yield moment The value of the bending moment which nominally causes 
the first yield of a cross-section. 

Flexural-torsional buckling A mode of buckling in which a member deflects 
and twists. 

Frame A skeletal structure consisting of a number of members connected 
together at joints. 

Frame buckling A mode of buckling in which all the members of a frame 
participate. 

Geometrical imperfections Initial crookedness or twist. 
Inelastic behaviour Deformations accompanied by yielding. 
In-plane behaviour The behaviour of a member which deforms only in the 

plane of the applied loads. 
Lateral buckling Flexural-torsional buckling of beams. 
Limit states design A method of design in which the performance of the 

structure is assessed by comparison with a number of limiting conditions of 
usefulness. The most common conditions are the strength limit state and the 
serviceability limit state. 

Load and resistance factor design The limit states method of design in which 
the factored (reduced) resistance is compared with the factored (increased) loads. 

Load factor A factor used to multiply a nominal load to obtain part of the 
design load. 

Local buckling A mode of buckling which occurs locally (rather than gen
erally) in a thin plate element of a member. 

Member One-dimensional structural element which supports transverse or 
longitudinal loads or moments. 

Member buckling A mode of buckling involving the complete length of a 
member. 

Nominal capacity Capacity of a member or structure computed using the 
formulations of a design code or specification. 

Nominal load Load magnitude determined from a loading code or specifica
tion. 

Non-uniform torsion The general state of torsion in which the twist of the 
member varies non-uniformly. 

Out-of-plane buckling The buckling of a member out of the plane of loading. 
Plastic analysis A method of analysis in which the ultimate strength of a 

structure is computed by considering the conditions for which there are sufficient 
plastic hinges to transform the structure into a mechanism. 

Plastic hinge A fully yielded cross-section of a member which allows the 
member portions on either side to rotate under constant moment (the plastic 
moment). 

Plastic moment The value of the bending moment which will cause a section to 
become fully yielded. 

Post-buckling behaviour Behaviour after buckling. 
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Potential energy Energy associated with height of a gravitational load above a 
datum. 

Pre-buckling behaviour Behaviour before buckling. 
Purlin A horizontal member between main beams which supports roof sheet

ing. 
Reduced modulus The modulus of elasticity used to predict the buckling of 

inelastic members under constant applied load, so called because it is reduced 
below the elastic modulus. 

Residual stresses The stresses in an unloaded member caused by uneven 
cooling after rolling, flame cutting, or welding. 

Resistance Capacity. 
Restraint An element which restrains the deflection or twisting of a member. 
Second-order analysis Non-linear analysis in which equilibrium is formulated 

for the deformed position of the structure, so that the moments caused by 
products of the loads and deflections are included. 

Shear centre The point in the cross-section of a beam through which the 
resultant transverse force must act if the beam is not to twist. 

Shear modulus The initial modulus of elasticity for shear stresses. 
Squash load The value of the compressive axial load which will cause yielding 

throughout a short member. 
Strain energy Energy associated with the straining of a structure. 
Strain-hardening A stress-strain state which occurs at stresses which are 

greater than the yield stress. 
Strength limit state The state of collapse or loss of structural integrity. 
Tangent modulus The slope of the inelastic stress-strain curve which is used to 

predict the buckling of inelastic members under increasing load. 
Total potential The sum of the strain energy of a structure and the potential 

energy of the gravitational loads acting on it. 
Uniform torque That part of the total torque which is associated with the rate 

of change of the angle of twist rotation of the member. 
Uniform torsion The special state of torsion in which the twist of the member 

varies linearly. 
Virtual work A principle used to assess whether a structure is in an equilibrium 

position. 
Warping A mode of deformation in which plane cross-sections do not remain 

plane. 
Warping torque The other part of the total torque (than the uniform torque), 

which only occurs during non-uniform torsion, and which is associated with 
changes in the warping of the cross-sections. 

Work Energy transferred during the movement of a force. 
Yield stress The average stress during yielding when significant straining takes 

place. Usually, the minimum yield stress in tension specified for the particular 
steel. 

Young's modulus The initial modulus of elasticity for normal stresses. 



Principal notation 

The following is the principal notation used in this book. Usually, only one 
meaning is assigned to each symbol, but in those cases where more meanings than 
one are possible, then the correct one will be evident from the context in which it is 
used. 

A Cross-sectional area 
[^L3> C^Q] Matrices for linear and quadratic potential energy contribu

tions of {q} 
[^LQ ]> C^QQ] Matrices for linear and quadratic potential energy contribu

tions of {g} 
B Flange width, or 

Bimoment 
[ £ J Matrix for in-plane generalized strains 
[#L], [_BQ] Matrices for linear and quadratic generalized strains 
[ £ u ] , [ B v ] Matrices for out-of-plane generalized strains 
C b c Moment gradient factor for beam-columns (equation 11.31) 
C m Moment gradient factor for beam-columns (equation 14.55) 
[ C ] Matrix for out-of-plane nodal deformations 
[ C J Matrix for in-plane nodal deformations 
D Overall depth of cross-section 
{D} Vector of restraint point shear centre deformations 
[ D ] Generalized elasticity matrix 
[ D J In-plane generalized elasticity matrix 
[ D u ] Out-of-plane generalized elasticity matrix 
[ D v ] Generalized initial stress matrix 
E Young's modulus of elasticity 
Er Reduced modulus of elasticity 
Es Strain-hardening modulus of elasticity 
Et Tangent modulus of elasticity 
FT Translational restraint force 
F u Ultimate tensile strength 
FY Yield stress 
G Shear modulus of elasticity 
GA, GB Relative stiffnesses of beam restraints at ends A, B 
G s Strain-hardening shear modulus of elasticity 
G t Tangent shear modulus of elasticity 
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[G] Global stability matrix 
[ G e ] Transformed element stability matrix 
7 B , / T Second moments of area of bottom and top flanges 
I e Second moment of area of elastic core 
I P Polar second moment of area = (Ix + Iy)/A 
I P x Section property = jAy(x2 + y2)dA 
J w Warping section constant 
I x , I y Second moments of area about the x, y axes 
I y c Second moment of area of compression flange 
J Torsion section constant 
K Torsion parameter = ^]{n2EIW/GJL2) 
K Beam parameter = j(n2 EIyh2/4GJL2) 
[ K ] Global out-of-plane stiffness matrix 
[ X e ] Transformed element out-of-plane stiffness matrix 
[ X J Global in-plane stiffness matrix 
[-Kit] Global in-plane tangent stiffness matrix 
L Length of member 
L e Effective length 
L R Length of restraining segment 
M Moment, or 

Concentrated mass 
M * Design bending moment 
M B , M T Bottom and top flange minor axis end moments 
M b Nominal member moment capacity 
M d Distortion moment 
M E Elastic buckling moment 
M f Flange moment 
M , Inelastic buckling moment 
M L Limiting moment at first yield 
M m Maximum value of Mx 

MP Full plastic moment 
M R j c , M R > „ MRz Bending and torsional restraint moments 
M s Nominal section moment capacity 
M u Uniform torque, or 

Ultimate moment capacity, or 
Unbraced buckling moment 

M u 0 Ultimate moment capacity for uniform bending 
M w Warping torque 
Mx, My Bending moments about x, y axes 
M Y Moment at nominal first yield 
Myz Uniform bending buckling moment = ^/{PyGJ(\ + K2)} 
Mz Torque about the longitudinal axis 
[ M ] Out-of-plane matrix of powers of zjU or 

Mass matrix 
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[ M J In-plane matrix of powers of z/L 
TV Axial tension force 
[AT] Matrix relating {u, v, w, (p}T to {3} 
LNQl [JVJ Matrices relating { 0 * } T , {0} to {8} 
[ N J Matrix relating {<D} to {8} 
P Axial compression force 
P* Design axial compression force 
PE Elastic buckling load 
PF Failure load 
Pl Inelastic buckling load 
Pr Reduced modulus buckling load 
P s Strain-hardening buckling load 
Pt Tangent modulus buckling load, or 

Nominal tension capacity 
P u Ultimate axial force capacity 
Px9 Py Column flexural buckling loads = n2 EIJL2, n2 EIy/L2 

PY Squash load 
Pz Column torsional buckling load = (GJ + n2 EIw/L2)/rl 
Q Concentrated load 
QE Elastic buckling load 
{Qi} In-plane global nodal forces 
QY Load at nominal first yield 

Value of Q for elastic buckling with rigid torsional support 
restraints 

R Radius of curvature 
{R} Vector of discrete restraint actions 
[ 5 ] Matrix of cross-section coordinates of P 
T Flange thickness 
[ T e ] Out-of-plane transformation matrix 
[7 ] e ] In-plane transformation matrix 
U Strain energy 
U9V, W Deflections in global X,Y9 Z directions 
Ue Element out-of-plane strain energy 
Ufh Flange bending strain energy 
U{ In-plane strain energy 
UR Discrete restraint strain energy 
UT Total potential 
Ut Uniform torsion strain energy 
V Potential energy, or 

Shear force, or 
Volume 

Ve Element out-of-plane potential energy 
Vx In-plane potential energy 
Vy Shear force in y direction 
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Work done, or 
Wagner stress resultant 
Global axes 
Elastic section moduli about x,y axes 
Vector of four powers of z/L 
Vector of two powers of z/L 
Load distance along beam 
Distance from shear centre 
Vector of coefficients of powers of z 
Width of thin rectangular element, or 
Distributed bimoment per unit length 
Depth of narrow rectangular section 
Vector of shear centre deformations 
Translational restraint force per unit length 
Element stability matrix 
Distance between flange centroids 
Effective length factor 
Load height effective length factor 
Minor axis bending effective length factor 
Warping effective length factor 
Element out-of-plane stiffness matrix 
Element in-plane stiffness matrix 
Element in-plane tangent stiffness matrix 
Moment factor 
Bending and torsional restraining moments per unit length 
Uniform torque per unit length 
Warping torque per unit length 
Integer 
Load per unit length 
Value of q for an unrestrained beam 
Element in-plane distributed loads 
Radii of gyration about x,y axes 
= (Ix + Iy)IA 
= r2 + y2 

= r2

0 + x2

0 + y2 

Vector of continuous restraint actions 
Distance along section mid-thickness line, or 
Distance between discrete restraints, or 
Distance along curved shear centre axis 
Thickness of thin-walled section, or 
Thickness of web, or 
Time 
Distance from mid-thickness surface 
Shear centre deflection in X direction 
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Buckling component of u 
Bottom and top flange deflections in X direction 
Initial crookedness 
Deflections of P in X, Y, Z directions 
Vector of deformations 
Shear centre deflection in Y direction 
Buckling component of v 
In-plane nodal deflections of cross section 
= WQ-G)c(t)f 

Buckling component of w 
Value of Wp at centroid 
Shear centre deflection in Z direction 
Principal centroidal axes 
Coordinates of centre of buckling rotation 
Coordinates of shear centre 
Distances of discrete rotational restraints from centroid 
Distances of continuous rotational restraints from centroid 
Distances of discrete translational restraints from centroid 
Distances of continuous translational restraints from centroid 
Distance to centroid 
Distance of concentrated load from centroid 
Distance of distributed load from centroid 
Longitudinal axis through centroid 
Angle, or 
Beam torsional stiffness 
Stiffness of critical segment 
Limiting value of stiffness 
Buckling factor for beams 
Stiffnesses of flange minor axis rotational end restraint, or 
Stiffness of restraining segment 

R z Stiffnesses of discrete bending and torsional restraints 
z Stiffnesses of continuous bending and torsional restraints 

Slenderness reduction factor 
Stiffnesses of discrete translational restraints 
Stiffnesses of continuous translational restraints 
Stiffness of discrete warping restraint 
Stiffness of continuous warping restraints 
Discrete restraint stiffness matrix 
Continuous restraint stiffness matrix 
Ratio of end moments 
Monosymmetry section constant = IPx/Ix — 2y0 

Major and minor axis end restraint parameters 
Shear strain, or 
End moment coefficient 
Stiffness factor for moment distribution 
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yM Stiffness factor for restraints at far end 
y P Shear strain at P 
yy Load height factor for continuously restrained beams 

(equation 8.25) 
ya Restraint factor for continuously restrained beams 

(equation 8.24) 
3, Sx, 3y Central or end deflections 
S0 Initial central crookedness 
{A} Global out-of-plane nodal deformations 
{ A J Global in-plane nodal deformations 
{3e} Element out-of-plane nodal deformations 
{(5 ie} Element in-plane nodal deformations 
e Normal strain, or 

Dimensionless distance of load from centroid 
8 P Normal strain at P 
er Residual strain = oJE 
es Strain-hardening strain 
£Y Yield strain 
{e} Generalized strain vector 
{£j} Generalized in-plane strain vector 
{eu} Generalized stiffness strain vector 
{ev} Generalized stability strain vector 
rj Crookedness parameter, or 

Coefficient of viscosity 
6 Rotation 
80 Initial central twist rotation 
6d Distortional twist rotation of flange 
9f Warping rotation of flange 
9X, 9y, 0Z Rotations about global X,Y,Z axes 
k Curvature 
/ Buckling load factor 
Xc Zero interaction buckling load factor of critical segment 
/ n Zero interaction buckling load factor of nth segment 
/ R Zero interaction buckling load factor of restraining segment 
fi =J(P/EIX) 
v Poisson's ratio 
p Density, or 

p0 Perpendicular distance from shear centre 
a Normal stress 
cra Allowable working stress 
crm Maximum normal stress 
GX Residual stress 
dp Normal stress at P 



x x i v Principal notation 

Warping normal stress 

M Generalized out-of-plane stress vector 

W Generalized in-plane stress vector 
T Shear stress 
T p Shear stress at P 
<D Rotation about global Z axis 
</> Twist rotation, or 

Capacity factor 
Buckling component of cj) 

<t>0 Initial twist 
Q Nature frequency of vibrations 
CO Section warping function 



1 Introduction 

1.1 General 

Thin-walled structural members may fail in a flexural-torsional buckling mode, 
in which the member suddenly deflects laterally and twists out of the plane of 
loading. This form of buckling may occur in a member which has low lateral 
bending and torsional stiffnesses compared with its stiffness in the plane of 
loading. 

The most common form of flexural-torsional buckling is for I-section beams 
which are loaded in the planes of their webs, but which buckle by deflecting 
laterally and twisting, as shown in Figures 1.1 and 1.2a. Flexural-torsional 
buckling may also occur in concentrically loaded columns. This can be regarded 
as a general case, of which flexural buckling without twisting is one limiting 
example (Figure 1.2b). Some columns may buckle torsionally without bending 
(Figure 1.2c), which is the other limiting example of the flexural-torsional buck
ling of columns. Beam-columns bent in a plane of symmetry may also buckle in a 
flexural-torsional mode. 

Flexural-torsional buckling is not confined to individual members, but also 
occurs in rigid-jointed structures, where continuity of rotations between adjacent 
members causes them to interact during buckling. 

Flexural-torsional buckling is a primary consideration in the design of steel 
structures, as it may reduce the load-carrying capaci ty. Unless it is prevented by 
using either sufficient bracing or members which have adequate flexural and 
torsional stiffnesses, then larger members must be used to avoid premature 
failure. The determination of these larger members will be dominated by 
considerations of flexural-torsional buckling. 

This chapter provides an introduction to flexural-torsional buckling. An 
historical survey is made in section 1.2, which is followed by general reviews of 
structural behaviour in section 1.3, of buckling in section 1.4, and of design 
against buckling in section 1.5. 

Chapter 2 provides a general treatment of buckling with particular reference to 
flexural-torsional buckling, while Chapters 3 and 4 present hand and computer 
methods of predicting elastic flexural-torsional buckling. 

The buckling of individual columns, beams, and beam-columns is described in 
Chapters 5-9 and 11, while the buckling of continuous beams, frames, and arches 
(Figure 1.3) and rings is discussed in Chapters 10, 12, and 13. 

Inelastic buckling is dealt with in Chapter 14, while the use of flexural-torsional 
buckling predictions in the determination of design strength is described in 
Chapter 15. A number of special topics are briefly discussed in Chapter 16. 



(a) Flexural-Torsional (b) Flexural 

Figure 1.2 Forms of member buckling. 

(c) Torsional 
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(a) Cont inuous Beam (b) P o r t a l F r a m e (c) A r c h 

Figure 1.3 Some structural forms. 

1.2 Historical development 

1.2.1 E L A S T I C B U C K L I N G T H E O R Y 

The initial theoretical research into elastic flexural-torsional buckling was pre
ceded by Euler's 1759 treatise [1] on column flexural buckling (Figure 1.4a), 
which gave the first analytical method of predicting the reduced strengths of 
slender columns, and by Saint-Venant's 1855 memoir [2] on uniform torsion 
(Figure 1.4b), which gave the first reliable description of the twisting response of 
members to torsion. 

However, it was not until 1899 that the first treatments were published of 
flexural-torsional buckling by Michell [3] and Prandtl [4 ] , who considered the 
lateral buckling of beams of narrow rectangular cross-section. Their work was 
extended in 1905 by Timoshenko [5,6] to include the effects of warping torsion in 
I-section beams. 

Subsequent work in 1929 by Wagner [7] and later work by others led to the 
development of a general theory of flexural-torsional buckling, as stated by 

(a) Euler Buckling (b) St. Venanf Torsion 

Figure 1.4 Euler buckling and St Venant torsion. 
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Timoshenko [8] and Vlasov [9] , and incorporated in the textbooks of 
Timoshenko [10] and Bleich [11]. 

Specific studies of flexural-torsional buckling were made by many researchers, 
but prior to the 1960s, these were limited by the necessity to make extensive 
calculations by hand. Some of these are included in the 1960 survey by Lee [12]. 

This situation changed dramatically with the advent of the modern digital 
computer, and the 1960s saw an explosion in the amount of published research. 
As a result, the focus of research moved from the flexural-torsional buckling of 
isolated members under various loading conditions to the effects of end restraints 
exerted on a member of a rigid-jointed frame as a result of its continuity with 
adjacent members. Many of these studies are summarized in the 1971 survey of 
the Column Research Committee of Japan [13]. 

The extension of the general finite element method of structural analysis [14] 
to flexural-torsional buckling problems by Barsoum and Gallagher in 1970 [15] 
saw a further change, in that it was no longer necessary to publish comprehensive 
results of elastic flexural-torsional buckling studies, since almost any particular 
situation could now be analysed using a general purpose computer program. This 
development is similar to that which occurred in the in-plane analysis of plane 
rigid-jointed frames, in which the tabulations of solutions used in the 1930s were 
replaced by general purpose plane frame computer analysis programs. 

Many of the developments of the theory of flexural-torsional buckling have 
been made by extensions of the previously accepted theories, as expressed either 
by the differential equations of elastic bending and torsion or by the energy 
equation for buckling. Not all of these extensions have received general accept
ance, and so a number of attempts have been made through the 1980s to produce 
a generally acceptable theory of flexural-torsional buckling. This book includes 
such a general theory which is based on the use of the second-order relationships 
between the deformations and strains that take place during bending and torsion, 
the concept of the total potential, and the principles of virtual work and 
equilibrium, and of conservation of energy during buckling. This approach has 
been used, for example, to re-examine the flexural-torsional buckling of arches, 
early studies of which were reported by Vlasov [9] and Timoshenko [10]. 

1.2.2 S T R E N G T H A N D D E S I G N OF STEEL S T R U C T U R E S 

While the historical development of knowledge of flexural-torsional buckling 
undoubtedly was initiated by the need to prevent premature failure of steel 
structures in this mode, this is not well documented. It seems likely, however, that 
early design procedures for preventing the lateral buckling of steel beams 
followed and were closely related to those used for preventing the flexural failure 
of columns. 

The need to be able to design against flexural-torsional buckling was the 
catalyst for the development of a theory for flexural-torsional buckling which 
would allow the successful prediction of failure. Early theoretical research was 
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into the elastic buckling of perfectly straight members, some of which was verified 
experimentally. However, the very straight and slender members used for these 
experiments were unrepresentative of the real steel beams used in practice, tests of 
which showed that their strengths were reduced below those predicted solely by 
elastic buckling theory. 

Theoretical research therefore extended from the elastic buckling of straight 
members to study the influences of crookedness, yielding, and residual stresses on 
the strengths of real steel beams, and to determine how to incorporate these into 
the procedures used in design. These developments tended to follow behind the 
corresponding developments from the elastic flexural buckling theory to the 
strengths of real steel columns. Early research on the inelastic lateral buckling of 
steel beams was carried out by Neal [16] and Galambos [17]. Flint [18] was one 
of the early researchers studying the effects of initial crookedness and twist [19] 
on the lateral buckling of beams and beam-columns. 

Some of the early well-documented experiments on the lateral buckling of real 
steel beams were carried out by Hechtman, Hattrap, Styer, and Tiedmann [20]. 
Fukumoto and Kubo [21-23] reviewed and produced a data base of the 
experimental studies prior to 1977 on the lateral buckling of real steel beams. 

Early rules foi designing steel beams against lateral buckling were generally 
transpositions of rules for designing columns against flexural buckling, with 
perhaps the first proposal based on flexural-torsional buckling being made in 
1924 by Timoshenko [24]. The first modern treatment was probably given by 
Kerensky, Flint and Brown [25] as the basis for the British Standard 
BS153-1958 [26]. More recently, most countries have or are transforming their 
design standards into the limit states format [27]. Current design criteria are 
reviewed in [28-30]. 

1.3 Structural behaviour 

1.3.1 E L A S T I C B E H A V I O U R 

1.3.1.1 Linear behaviour 

The simplest and most widely used model of the behaviour of a structure under 
static loads assumes that all of the deformations are proportional to the magni
tude of the load set acting on the structure, so that the relation between load and 
response is linear, as shown by Curve 1 in Figure 1.5. 

For this linear model to be valid, the material itself must have a linear 
relationship between stress and strain. Such a material is usually described as 
elastic. (Strictly, elastic means perfect recovery on unloading, so that an elastic 
material may be non-linear. However, most elastic materials are linear.) Most 
structural steels are linear, at least for stresses less than the yield stress F Y , 
as shown in Figure 1.6, while many other structural materials are regarded as 
being linear over most of the range of working load. 
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Load 

D e f o r m a t i o n 

Figure 1.5 Structural behaviour. 

S t r e s s 4 

0 C Y e s S t r a i n 

Figure 1.6 Idealized stress-strain relation for structural steel. 

The structure itself must also behave linearly for the linear model to be valid. 
No structure is truly linear, but many are approximately so, provided the 
deflections are small. 

The modern popularity of the linear elastic model of structural behaviour 
arises from the widespread availability of computer programs for linear elastic 
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analysis [31]. These allow the deflections of the structure under load to be 
assessed for serviceability design under the working loads, and the member end 
actions to be approximated for strength design. 

1.3.1.2 Non-linear behaviour 

The linear elastic model of itself does not allow the strength of the structure to be 
assessed. For this purpose it is necessary to know of any material and structural 
non-linearities before the real behaviour of the structure and its maximum 
load-carrying capacity can be approximated. 

Structural non-linearities cause the deformation response of the structure to 
load to become non-linear as shown by Curve 2 in Figure 1.5, even when the 
material remains linear. The most common structural non-linearities are asso
ciated with additional moments caused by the products of the loads and the 
transverse deflections of the structure or member as shown in Figure 1.7. Such 
effects are allowed for when equilibrium is formulated for the deformed 
geometry of the structure under load [32,33], instead of the unloaded position, 
and so these non-linearities are usually described as being geometric, or second-
order. 

Geometric non-linearities may cause the load-deformation behaviour of an 
indefinitely elastic structure to asymptote towards a limit, as shown by Curve 2 in 

Frame loading and de f iec f ion Bending moments 

H 

L 
(a) F i r s t - O r d e r Analys is 

Figure 1.7 First-order analysis and second-order behaviour. 
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Figure 1.5. This limit (Curve 3 in Figure 1.5) is the elastic buckling load of the 
structure. Real structural behaviour will depart from this asymptotic behaviour 
when the material becomes non-linear as shown by Curve 4 in Figure 1.5, and a 
maximum load capacity will usually be reached, after which the load capacity will 
decrease. 

The elastic buckling behaviour of a structure can be regarded as the limit of the 
elastic non-linear behaviour. In elastic buckling, the primary or pre-buckling 
response of the structure is in a different direction to the buckling response. For 
example, the pre-buckling response of the compression member shown in 
Figure 1.4a is due to longitudinal shortening w, while the buckling response is one 
of transverse bending deflections v. Thus the buckling response v remains zero 
until the buckling load Px is reached, when the buckling response may initiate 
and continue indefinitely. For the buckling response to remain zero until the 
buckling load is reached, there must be no real or equivalent loads which would 
cause a primary response in the buckling direction. 

A structure such as a concentrically loaded column or a beam loaded in the 
plane of the web may exhibit a real load-deformation response which differs only 
slightly from the idealized buckling response, in that the response in the buckling 
direction remains small until the buckling load is approached. Examples include 
straight concentrically loaded columns with small transverse loads, and columns 
with initial crookednesses which cause small transverse bending effects. For such 
members, the elastic buckling load may provide a quite accurate assessment of 
the strength, especially for slender members, for which small transverse loads or 
crookednesses are less important. 

After the buckling load is reached, the post-buckling load-deformation curve 
may remain constant, or may rise or fall. This is caused by changes in the member 
stiffness that occur during buckling, which may lead to redistributions of the 
actions through the structure. Large deformations, for which there are gross 
changes in the chord lengths of some members and their rotations, may also affect 
the post-buckling behaviour. 

1.3.2 I N E L A S T I C B E H A V I O U R 

1.3.2.1 Inelastic materials 

All structural steels have a limited range over which the stress-strain behaviour is 
linear. Normal structural steels exhibit a horizontal yield plateau once the yield 
stress FY has been reached, as shown in Figure 1.6, followed by a slowly rising 
strain-hardening region. Cold-formed and stainless steels and aluminium all 
exhibit stress-strain curves which are rounded after a limit of proportionality is 
reached, as shown in Figure 1.8. 

1.3.2.2 Inelastic stress distribution 

The actual stress distribution at a member cross-section depends on the geometry 
of the section, its structural actions, the material stress-strain curve, and the 
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Figure 1.8 Stress-strain curve of cold reduced steel sheet. 

0.08 

residual stresses present before loading, such as those caused by the method of 
manufacture of the member. 

When the stresses are low so that the member remains elastic, the stress 
distributions caused by axial force and bending actions are linear, as shown in 
Figure 1.9. Under bending actions, the maximum stresses occur at the extreme 
fibres, and when these reach the yield stress, a redistribution of the stresses 
commences. Useful structural limits (in the absence of local buckling effects) for 
structural steel members are provided by the moment M P or axial force PY at 
which the cross-section becomes fully plastic. 

The presence of residual stresses such as those caused by uneven cooling after 
hot-rolling or welding causes early initiation of yield, and generally affects the 
inelastic stress distribution. Because such residual stress distributions must be 
self-equilibrating so that they have zero axial force and bending actions in the 
unloaded member, they have no effect on the section full plastic capacities M P 

and PY. 

1.3.2.3 Inelastic members and structures 

Inelastic effects on the behaviour of members and structures subject to buckling 
are best described separately in terms of their effects on the pre-buckling 
behaviour, on the buckling behaviour, and on the non-linear behaviour of 
members with geometrical imperfections such as initial crookedness or twist. 
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Figure 1.9 Moment-curvature relationships for steel beams. 

Inelastic effects change the distributions of the bending moment, and to a lesser 
extent of the axial force, in an indeterminate structure before buckling. Since 
buckling depends on the pre-buckling distributions of these actions, these 
inelastic effects may be important. 

Inelastic effects also increase the deflections. When there are significant 
geometric non-linear effects in the pre-buckling regime resulting from the pre-
buckling deflections of the structure, these non-linear effects may be increased by 
additional deflections caused by inelastic behaviour. The advanced analysis of 
structures which accounts for geometric and material non-linearities including 
the effects of geometrical imperfections and residual stresses is described in [ 34 ] . 

While inelastic behaviour affects the buckling actions as described above, it 
also reduces the buckling resistance below the corresponding elastic resistance. 
Yielding causes local reductions in the cross-section stiffness which when ag
gregated over the complete member or structure may substantially reduce its 
buckling resistance. For example, one simple model of the inelastic flexural 
buckling of columns ignores the stiffness of any yielded regions of the column, so 
that its buckling resistance is based only on the regions of the column which 
remain elastic. 

Inelastic behaviour also affects the strength of a member with small geometri
cal imperfections such as initial crookedness and twist. While the member 
remains elastic, its load-deformation behaviour asymptotes towards the elastic 
buckling behaviour of a perfectly straight member, as shown in Figure 1.5. The 
actual behaviour departs from this when the member first yields, and a maximum 
load is reached which is less than the elastic buckling load. This maximum load, 
which depends on the inelastic material properties, is sometimes approximated 
by the load at first yield. 
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1.4 Buckling 

1.4.1 G E N E R A L 

Buckling has already been described as the behaviour in which a structure or a 
structural element suddenly deforms in a (buckling) plane different to the original 
(pre-buckling) plane of loading and response. Member buckling (Figure 1.1) 
involves a single member, and may occur in flexural, torsional, or flexural-
torsional modes. The half wave length of the buckle is of the same order as the 
member length. 

Buckling may involve all the members of a frame, with interactions between 
the individual members. The buckle half wave length may be of the same order as 
a member length, or may be of the order of the frame size. 

On the other hand, local buckling (Figure 1.10) usually takes place over a short 
length of a member of the same order as the cross-section width or depth. 
Distortional buckling (Figure 1.11) lies between member and local buckling, and 
is usually of a half wave length intermediate between the member and the 
cross-section dimensions. 

These various forms of buckling are described in more detail in the following 
sub-sections. 

Figure 1.10 Local buckling of an I-section column. 
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Figure 1.11 D i s to r t iona l b u c k l i n g of a channel section co lumn. 

1.4.2 F L E X U R A L B U C K L I N G 

Flexural buckling of a member (Figures 1.2b and 1.4a) may involve transverse 
displacements u or v of the member cross-sections, and is resisted by the flexural 
rigidity EIy or EIX of the member. I t occurs when the second-order moments 
caused by the product of the axial compression force P with the displace
ments u or v are equal everywhere to the internal bending resistances EIyd2u/dz2 

or —EIxd2v/dz2. Flexural buckling can be regarded as a limiting case of 
flexural-torsional buckling. 

Flexural buckling may involve a single member, a group of members, or a 
complete frame. In braced frames, buckling is usually concentrated near one 
member, which is directly restrained by interactions with the adjacent 
members, and indirectly by the more remote members. In unbraced multi-storey 
structures, buckling occurs at one storey, and involves all the columns of that 
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storey, which are restrained by the beams and columns of the adjacent storeys. 
Other unbraced frames may buckle in modes which directly involve many or all 
of the members. 

1.4.3 T O R S I O N A L B U C K L I N G 

Torsional buckling (Figure 1.2c) of a member involves twist rotations (p of the 
member cross-sections, and is resisted by the torsional rigidity GJ and the 
warping rigidity £ 7 W . It occurs when second-order torques Pr^dcp/dz caused by 
the axial compression force P and the twist d<p/dz are equal everywhere to the 
sum of the internal torsion resistances GJ d(p/dz and — £/ w d 3 c/>/dz 3 . Torsional 
buckling can be regarded as a limiting case of flexural-torsional buckling. 

Torsional buckling may also occur in complete frames. Often the buckling 
resistance of these is dominated by the flexure of the individual members, as for 
example in tower frames whose horizontal cross-sections rotate. 

1.4.4 F L E X U R A L - T O R S I O N A L B U C K L I N G 

Flexural-torsional buckling, which is the subject of this book, involves both 
displacements u, v and twist rotations </>, and is therefore resisted by combinations 
of the bending resistances EIyd2u/dz and — EIxd2v/dz2 and the torsional resis
tances GJdcj)/dz2 and — £/ w d 3 ( />/dz 3 . 

While doubly symmetric columns whose centroidal and shear centre axes 
coincide buckle in either a flexural or a torsional mode, monosymmetric and 
asymmetric section columns may buckle in flexural-torsional modes. In these 
cases, the separation of the centroidal and shear centre axes causes these axes to 
become skew during buckling, so that the axial compression force acting along 
the centroidal axis has transverse components which create torques acting about 
the shear centre axis. 

The flexural-torsional buckling of beams (Figures 1.1, 1.2a) involves lateral 
displacements u out of the plane of bending and twist rotations 0. In this 
case, the twist rotations <fi cause the applied moments to have components acting 
out of the original plane of bending, while the lateral rotations du/dz cause the 
applied moments to have torque components about the axis of twist through the 
shear centre. 

Beam-columns bent in a plane of symmetry may also buckle in flexural-
torsional modes which combine those of columns and beams. 

Flexural-torsional buckling may occur in frames (Figure 1.3b), where there are 
interactions between the adjacent members during buckling. In continuous or 
braced beams (Figure 1.3a), one span or segment is usually the most critical, and 
is restrained by the adjacent spans or segments. In three-dimensional frames, the 
members in each primary load-carrying plane interact during out-of-plane 
flexural-torsional buckling, and may be restrained by transverse members be
tween adjacent primary frames. 
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Arches loaded in their plane (Figure 1.3c) may also buckle in a flexural-
torsional mode by deflecting out of the plane and twisting. 

1.4.5 L O C A L B U C K L I N G 

Local buckling of a thin plate element (of thickness t) of a structural member 
involves deflections of the plate out of its original plane, as shown in Figure 1.10. 
Local buckling is resisted by the plate flexural rigidity £ t 3 / 12 ( l — v 2), and occurs 
when the second-order actions caused by the in-plane compressions and the 
out-of-plane deflections are equal everywhere to the internal resistances of the 
plate element to bending and twisting. 

Local buckling is usually concentrated near one particular cross-section of a 
member where the in-plane compressions of the plate elements are greatest, 
although multiple local buckles may occur in members whose stresses are 
constant along the member length. The half wave length of the buckle is of the 
order of the plate width. Local bucking effects may reduce the resistance of a 
member to flexural-torsional buckling. 

Local buckling may occur in plate and shell structures, as well as in the 
structural members used in frame structures. Examples of plate structures 
include stiffened plate girders and rectangular and trapezoidal tanks, while 
shell structures include cylindrical and spherical containment structures. These 
may buckle locally in the more highly stressed regions, as well as in a more 
global fashion, involving larger regions of the structure. 

1.4.6 D I S T O R T I O N A L B U C K L I N G 

Distortional buckling (Figure 1.11) describes a buckling mode intermediate 
between those of local and member buckling. In member buckling, the cross-
section is assumed not to distort and buckling involves the whole member length, 
while local buckling involves relative displacements of the component plates over 
a short length of the member. 

Distortional buckling often involves web flexure and corresponding rotations 
of the flanges which vary slowly along the member length, as shown in Figure 
1.11. Distortional effects may reduce the flexural-torsional buckling resistances of 
thin-web beams. 

1.5 Design against buckling 

Methods of designing against flexural-torsional buckling are essentially of two 
types. For the first type, buckling is avoided, and the member's in-plane capacity 
is fully utilized. One way of achieving this is to use sections which are not 
susceptible to buckling. For example, closed sections have very much higher 
torsional rigidities GJ and higher flexural rigidities EIy than corresponding open 
I-section members, and rarely buckle in a flexural-torsional mode. Less effective 


