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Preface to the 
fou rth ed ition 

The aim of this edition, as of those that preceded it, is to give 
civil engineers a concise presentation of theory and practice in 
the many branches of their profession. The book is primarily a 
first point of reference which, through its selective lists of 
references and bibliographies, will enable the user to study a 
subject in greater depth. However, it is also an important 
collection of state-of-the-art reports on design and construction 
practices in the UK and overseas. 

First published in 1951, the book was last revised in 1975. 
Although civil engineering is not normally regarded as involving 
fast-moving technologies, so many advances have occurred in 
the theory and practice of most branches of civil engineering 
during the past decade or so that the preparation of a fourth 
edition became essential. Some of these advances have taken the 
form of improvements in earlier practices, for example in 
surveying, geotechnics, water management, project manage- 
ment, underwater working, and the control and use of materials. 
Other radical changes have resulted from the evolving needs of 
clients for almost all forms of construction, maintenance and 
repair. Another major change has been the introduction of new 
national and Euro-codes based on limit state design covering 
most aspects of structural engineering. 

The fourth edition incorporates these advances and, at the 
same time, gives greater prominence to the special problems 
relating to work overseas, with differing client requirements and 
climatic conditions. 

As before, careful attention has been given to the needs of the 
different categories of readers. Students and graduates at the 
start of their careers need guidance on the practice of design and 
construction in many of the fields of civil engineering covered in 
Chapters 11 to 44. The engineer in mid-career will also find these 
chapters valuable as presentations of the state of the art by 
acknowledged experts in each field, in addition to the references 
and bibliographies they contain for deeper study of specific 
problems. Chapters 1 to l0 provide engineers, at all levels of 
development, with up-to-date 'lecture notes' on the basic theor- 
ies of civil engineering. 

Although the book was primarily prepared for civil engineers 
in the UK and elsewhere in the world, members of other 
professions involved in construction--architects, lawyers, 
mechanical engineers, insurers and clients--will also benefit by 
referring to it. 

I am most grateful to the authors who have contributed 
chapters. They are all engineers of considerable standing-- 
consultants, contractors, research workers or academics--who 
have devoted a substantial amount of time to presenting their 
expert knowledge and experience for the benefit of the profes- 
sion. 

L.S. Blake 
Bournemouth 

November 1988 
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M A T H E M A T I C S  

1.1 Algebra 

1.1.1 Powers and roots 
The following are true for all values of indices, whether positive, 
negative or fractional: 

a p X a q - - a  p+q 
( a p ) q =  a pq 

(a/b)p=aP/bp 
(ab)p = apb p 
a P / a  q ~ a p - q 

a - P = ( 1 / a ) p =  1/a p 
px /a=a t /p  

a °= 1 
6°=0 

1.1.2 Solutions of equations in one unknown 
1.1.2.1 Linear equations 

Generally ax  + b = 0 
of which there is one solution or root x = - b / a  

1.1.2.2 Quadratic equations 

Generally ax  2 + bx  + c = 0 
of which there are two solutions or roots 

- b r l z " / ( b 2 - 4 a c )  (1 1) 
x - -  

2a 

where, if b 2 > 4ac, the roots are real and unequal, b 2 = 4ac, the 
roots are real and equal, and b 2 < 4ac, the roots are conjugate 
complex. 

It is worth attempting to rearrange equations as, often, they can 
be put into a more familiar form simply by rearrangement, e.g.: 

ax  z" + bx"  + c = 0 

is a quadratic equation in x" 

while a/x  "~ + b / x +  c = 0  

is the quadratic cx 2 + bx  + a =  0 

e 3 1:3 " : I - ; -  1 
and the three roots, in terms/6)f y are: 

Mathematics 1/3 

y, = [A + B] 
Y2. ~ = [ -  (A + B)/2 • ~/ - 3(A - B)/2] 

and in terms of x the three roots are: 

b 
Xl'2"3=Yl'2'3-- 3 

1.1.2.4 Equations o f  higher degree 

Equations of degree higher than the second (quadratic equa- 
tions) are not solvable directly as the method of solving the 
cubic equation above shows. Generally recourse must be had to 
either graphical or numerical techniques. 

If the equation be of the form: 

r ( x ) = 0  

e.g. a.x" + a. ~.~ ~ . . .  + a 0 = 0  

then plot the graph of y = F(x) the values of x at which y = 0 are 
the roots or solutions to the equation. Frequently this graphical 
approach may be used fairly roughly (and therefore quickly) to 
obtain an estimate of a root. This estimate can then be improved 
by numerical means. For instance, values of F(x) may be 
calculated for values of x close to that given as a root by the 
graphical method. The difficulty (which is not serious for hand 
calculations) is guessing by how much to adjust x to get F(x)  
nearer to 0. 

1.1.3 Newton's method 
This is a method of step-by-step iteration in which an estimate 
of a root is refined. 

Suppose that a t is an approximation to a root of an equation 
then, for small q" 

F(a, + q) "" F(a,) + qF(at) 

So that if we assume (at + q) to be the better solution we are 
seeking, i.e.: 

F(a, + q) = 0 (1.2) 

then: 

1.1.2.3 Cubic equations 

Generally x 3 + bx  2 + cx  + d =  0 
If the substitution: x = y - b / 3  is made the equation 

becomes y3 + ey + f =  0 

where e = ( 3 c -  b2)/3 

and f =  (2b 3-  9be + 27d)/27 

now define 

A=E_f+  (f2 ~+~_ff) ] e  3 ,3 

- F(a,) 
q -  F ' (a , )  (1.3) 

and a 2 = a t + q is a second and better approximation. 
This is well illustrated by drawing a curve cutting the x-axis, 

assuming a value at of x near to the intersection to have been 
found, drawing the ordinate to the curve x = a t  and then 
constructing the tangent to the curve y = F(x) at the point x = a t. 

The point x =  a 2 where this tangent cuts the axis is plainly a 
better estimate of the intersection than is a t . 

This technique can be used successfully in automatic calcula- 
tion on a computer. The problem then becomes that of deter- 
mining when to stop the iteration process: 

a l ,  a 2 ,  a 3  . . . 
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which may be best done by stopping when the change between 
successive approximations,  a, and a.+ ~ becomes less than some 
small preset amount.  

Graphical  and numerical methods will generally be required 
to deal with transcendental equations al though in some cases it 
may be more convenient to find the intersections of  two graphs 
rather than try to compute  where a more complicated graph cuts 
an axis 

e.g. x - s i n x = 0  

is best solved by plotting: 

Thus, if we consider logarithms to base a we have the 
following results: 

a x = P is equivalent to log o P = x 

a ~ = a is equivalent to log o a =  1 

a ° = 1 is equivalent to log o 1 = 0 

So that using rules for powers given on page 1/3: 

If: a ' = P  and a ' = Q  

y = x  

and y = sin x 

to find the intersection which will give an estimate which can be 
refined numerically. 

then: P Q  = a ...... H 

so: log, P Q  = x + y = log o P + log o Q 

Similarly: log, ( P / Q ) =  log o P -  log a Q 

Also: P " = a " '  

1.1.4 Progressions so: log a P " =  n x  = n log~P 

(1) Arithmetic progressions in which the difference between 
consecutive terms is. a constant amount.  Thus, the terms 
may be: 

a, a + d ,  a +  2d,  a +  3 d .  . . 

The nth term is a +  ( n -  l)d and t h e s u m  to n terms, 

n 
S , =  ~ { 2 a + ( n -  1) d} (1.4) 

In computat ion,  it is generally convenient to use as base the 
number 10, i.e. in the expressions given above a =  10. However, 
in fundamental  work or integration natural  logarithms (also 
known as Napierian or hyperbolic logarithms) are generally 
used. These are logarithms to base e a transcendental number  
given approximately by: 

e = 2 . 7 1 8 2 8  (1.7) 

and whose definition can be taken as: 'The value of  the solution 
of the differential equation d y / d x = y  for x = 1.' 

(2) Geometrical progressions in which the ratio between con- 
secutive terms is a constant. Generally terms are: 

a, ar,  a r  2, a r  3 . . .  

The nth term is ar ~ ~ and the sum of n terms is: 

(Note the solution of  d y / d x = y  is y = e'.) 

1.1.6 Permutations and combinations 
If, in a sequence of  N events, the first can occur in nl ways, the 
second in n 2, etc. then the number  of ways in which the whole 
sequence can occur is: 

a(1 - r") 
S . -  1 - r  (1.5) 

If r is strictly smaller than 1 so . -  1 < r < l, then r" tends to zero 
as n becomes larger so that  for such geometric progressions we 
can find the 'sum to infinity' of the series: 

a 

S ~ -  1 - r  (1.6) 

The geometric mean of a set of  n numbers is the nth root of their 
product. 

If  we limit consideration to non-negative numbers then the 
arithmetic mean of  a set of  numbers will be greater than or equal 
to their geometric mean. 

n l n 2 n  3 . . .  n N 

1.1 .6 .1  P e r m u t a t i o n s  

The number  of permutat ions of n different things taken r at a 
time means the number  of ways in which r of these n things can 
be arranged in order .  This is denoted by: 

"Pr = n(n  - l)(n - 2) . . .  (n - r + 1) - 
( n - r ) !  (1.8) 

where n! = n ( n -  l ) ( n - 2 )  . . . .  3.2.1 is called factorial n. 
It is clear that: 

"Pn = n! 

and that: 

1.1.5 Logarithms 
Logarithms, which, short of calculating machinery of some 
form, are probably the greatest aid to computat ion are based on 
the properties of  indices. 

"P~ = n 

If, of n things taken r at a time p things, are to occupy fixed 
positions then the number of permutat ions is given by: 



" - p P r - p  (1.9) 

If  in the set of  n things, there are g groups each group containing 
n~, n 2 . . .  n s things which are identical then the number  of  
permutat ions of  all n things is: 

n~!n2! . . . ns! 

1.1.6.2 Combinations 

The number  of  combinations of  n different things, into groups 
o f t  things at a time is given by: 

"Ci - 
n! "Pr 

r!(n - r)! r! (1.1 O) 

It is impor tant  to note that, whereas in permutat ions  the order 
of  the things does matter, in combinat ions the order does not 
matter. F rom the general expression above, it is clear that: 

"Cn= 1 

" C l = n  (1.11) 

If, of  n different things taken r at a time p are always to be taken 
then the number  of  combinations is: 

" - ' C r - p  (1.12) 

If, of  n different things taken r at a time p are never to occur the 
number  of  combinat ions is: 

"-"Cr (1.13) 

Note that combinat ions from an increasing number  of  available 
things are related by: 

" + ~ C r = " C r + " C r -  1 (1.14) 

also "Cr = " C n -  r (1.15) 

1.1.7 The binomial theorem 
The general form of  expansion of  (x + a) ~ is given by: 

(x + a)" = "Cox ~ + "C I x "- I ar + "C2x ~- 2a2 . . .  (1.16) 

Alternatively this may be written as: 

( x + a ) " = x ~ + n x ~ - ' a +  n(l-.21) x~_2a2+ n ( n - 1 1 ) ( n -  2 ) . 2 . 3  x~- ~a3 

(1.17) 
It should be noted that the coefficients of  terms equidistant from 
the end are equal (since " C r = " C n -  r). 

1.2 Trigonometry 
The trigonometric funct ions  of  the angle a (see Figure 1.1) are 
defined as follows: 

sin a = y/r  cosec a = r/y 
cos a = x /r  sec a = r /x  
tan a = y / x  cot a = x / y  
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X s 

f 
~----X 

.--_x--Z / 

j /e 

Figure 1.1 Trigonometric functions 

These functions satisfy the following identities: 

sin2a + cos2a = 1 
1 + tan2a = sec2a 
1 + cot2a = cosec2a 

1.2.1 Positive and negative lines 
In tr igonometry,  lines are considered positive or negative 
according to their location relative to the coordinate axes xOx' ,  
yOy ' ,  (see Figure 1.2). 

+ 

m 

X 

V ° 

Figure 1.2 Positive and negative lines 

1.2.1.2 Positive lines 

Radial: any direction. 
Horizontal:  to right of  yOy' .  
Vertical: above xOx' .  

1.2.1.3 Negative lines 

Horizontal:  to left of  yOy ' .  
Vertical: below xOx' .  

1.2.2 Positive and negative angles 
Figure 1.3 shows the convention for signs in measuring angles. 
Angles are positive if the line OP revolves anti-clockwise from 
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O x  as in F i g u r e  1.3a a n d  a re  nega t ive  w h e n  O P  revolves  
c lockwise  f rom Ox.  

Signs o f  t r i g o n o m e t r i c a l  r a t ios  a re  s h o w n  in F i g u r e  1.4 a n d  in 
T a b l e  1.1. 

Y Y 

P 

t 

y '  / '  

F i g u r e  1.3 (a) Positive (b) negative angle 

Y I,' 

X' X 

y' y" 

(a) (b) 

Y y 

X" X 

y' y' 

(c) (d) 

Figure 1.4 (a) Angle in first quadrant; (b) angle in second 
quadrant; (c) angle in third quadrant; (d) angle in fourth quadrant 

1 . 2 . 3  T r i g o n o m e t r i c a l  r a t i o s  o f  p o s i t i v e  a n d  n e g a t i v e  
a n g l e s  

Table 1.1 

Quadrant 
Sign of ratio 

positive negative 

Firs t  sin 
COS 
t an  
c o s e c  
s e c  
c o t  

Second  sin 
c o s e c  

T h i r d  t an  
c o t  

F o u r t h  cos 
s e c  

COS 
s e c  
t an  
c o t  

sin 
c o s e c  
c o s  
s e c  

sin 
c o s e c  
t an  
c o t  

1 . 2 . 4  M e a s u r e m e n t  o f  a n g l e s  

1.2.4.1 English or sexagesimal method 

1 r igh t  ang le  = 90* (degrees)  
1" ( d e g r e e ) =  60'  (m inu t e s )  
1' ( m i n u t e )  = 60" ( s e c o n d s )  

Th i s  c o n v e n t i o n  is universa l .  

1.2.4.2 French or centesimal method 

This  spli ts  angles ,  degrees  a n d  m i n u t e s  in to  100th d iv is ions  b u t  
is no t  used  in prac t ice .  

1.2.4.3 The radian 

This  is a c o n s t a n t  a n g u l a r  m e a s u r e m e n t  equa l  to the  ang le  
s u b t e n d e d  a t  the  cen t r e  o f  a n y  circle by a n  a r c  equa l  in l eng th  to 
the  r a d i u s  o f  the  circle as s h o w n  in F i g u r e  1.5. 

n r a d i a n s  = 180" 
180 

I r a d i a n -  - 
/t 

180 
3.141 6 

- 57* 17' 44" a p p r o x i m a t e l y  

Table 1.2 

sin ( - a )  = - sin a 
cos  ( - a )  = cos  a 
s i n ( 9 0 * - a )  = c o s a  
cos ( 9 0 " - a )  = s i n e  
sin (90" .+a)  = c o s a  
cos (90 ° + a )  = - sin a 
s i n ( 1 8 0  ° - a ) =  s i n e  
cos (180 ° - a )  = - cos  a 
sin (180" + a) - - sin a 
cos ( 1 8 0 ° +  a )  = - cos  ct 

t a n  ( - a )  = - t a n  a 
co t  ( -  a )  = - co t  a 
t a n  ( 9 0 ° - a )  = co t  a 
co t  (90 ° - a )  = t a n a  
t a n  (90" + a )  = - co t  a 
co t  (90 ° + a )  = - t an  a 
t a n  (180" - a) = - tan a 
co t  (180" - a )  = - co t  a 
t a n  (180" + a) = tan a 
co t  (180" + a )  - co t  a 

sec ( - a )  = see a 
cosec  ( -  a )  = - cosec  a 
see (90" - a )  = cosec  a 
cosec  ( 9 0 " - a )  = sec a 
see (90" + a )  = - c o s e c  a 
cosec  (90" + a )  = see a 
sec ( 1 8 0 " -  a )  = - s e c  a 
cosec  (180 ° -  a )  = cosec  a 
sec ( 1 8 0 ° + a )  = - s e c  a 
cosec  (180" + a)  = - cosec  a 
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Figure 1.5 The radian 
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1.2.8 Sums and differences of functions 
sin A + sin B =  2 sin ½(A + B) cos ½(A - B) 
sin A - sin B =  2 cos ½(Zl + B) sin ½(A - B) 
cos A + cos B = 2 cos ½(A 4-B) cos ½(A - B) 
cos A - c o s  B =  - 2 sin ½(A + B) sin ½(A - B) 
sin 2 A - sin 2 B = sin (A + B) sin (A - B) 
cos 2 A - c o s  2 B = - s i n  (A + B) sin (A - B) 
cos 2 A - sin 2 B = cos (A + B) cos (A - B) 

1.2.9 Functions of multiples of angles 
sin 2A = 2sin A cos A 
cos 2A = cos 2 A - s i n  2 A = 2 cos 2 A - 1 - 1 - 2 sin 2 A 
tan  2A = 2 tan A / ( 1 -  tan 2 A) 
sin 3A = 3 sin A -  4 sin 3 A 
cos 3A = 4 cos 3 A - 3 cos A 
tan 3A = (3 tan A - tan 3 A)/(1 - 3 tan 2 A) 
sin pA = 2 sin ( p -  1) A cos A - sin (p - 2) A 
cos pA = 2 cos (p - 1) A cos A - cos (p - 2) A 

1.2.4.4 Trigonometrical ratios expressed as surds 

Table 1.3 

7[ 7[ 7t 7[ 

Angle in radians 0 -6 4 -3 

Angle in degrees 0* 30* 45* 60* 90* 

sin 0 -1 1 ~/3 1 
2 x/2 2 

cos 1 ~/3 1 _1 0 
2 ~/2 2 

1 tan 0 x/3 1 ,,/3 

Table  1.3 gives these rat ios for certain angles.  

1.2.5 Complementary and supplementary angles 
Two angles are complemen ta ry  when their  sum is a right angle; 
then either is the complemen t  o f  the other ,  e.g. the sine o f  an 
angle equals  the cosine of  its complement .  T w o  angles are 
supp lemen ta ry  when their sum is two right  angles. 

1.2.6 Graphical interpretation of the trigonometric 
functions 
Figures  1.6 to 1.9 show the var ia t ion with a o f  sin a, cos a, tan a 
and  cosec ct respectively. All the t r igonomet r ic  funct ions  are 
periodic with per iod 2n radians  (or 360*). 

1.2.10 Functions of half angles 

s i n A / 2 = ~ / (  l - c o s A  ) = ~/(l +s inA)  _ 2 2 

cos A/2 = v / (  l + c o s A  ) = 2  ~/(I _2sin A) + ~/(1 - sin A ) 2  

t u n A / 2  = l - c O s A =  sin A = ~ / ( l - c o s A )  
sin A 1 + cos A 1 + cos A 

1.2.11 Relations between sides and angles of a 
triangle ( F i g u r e s  1.10 a n d  1.11) 

a b c D m 

s inA s i n B  s i n C  

a = b cos C + c cos B 

c 2 = a 2 + b 2 -  2ab cos C (1.18) 

C 
sin A = b-c x/{s(s-  a ) ( s -  b ) ( s -  c)} (1.19) 

where 2s = a + b + c 

Area  o f  t r iangle A = ½ab sin C =  ~ { s ( s -  a ) ( s -  b ) ( s -  c)} 

tan ~- s ( s -  a) " } 

- , / I  s ( s -  
cos ~ bc } 

A ( s -  b ) ( s -  c) } 
sin~- = ~ / {  bc 

1.2.7 Functions of the sum and difference of two 
angles 
sin (A + B) = sin A cos B + cos A sin B 
cos (A + B ) =  cos A cos B T- sin A sin B 

tan A + tan B 
tan (A + B ) =  1 + tan A tan B 

tan  - -  
B - C  _ ( b - c )  A 

2 (b + c) cot  ~- 
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Figure  1.9 Coseca 
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F igure  1.11 

1.2.11.1 Any right angled triangle (Figure  1.12) 

a 2 + b 2 = c2; A + B = 90*; sin A = cos B; cot A = tan B etc. 

Area  o f  A ABC = ½ab = ½bc sin A = ½ac sin B 

1.2.11.2 Any equilateral triangle (F igure  1.13) 

a=b=c;  A = B = C = 6 0  °= n/3 

bx/3 b2x/3 
h = ~ ' a r e a -  4 

Ci rcumscr ibed  circle radius R - b ~ 3  -/ 
3 

bx/3 
Inscr ibed circle, radius  r -  6 
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Figure 1.13 

1.2.12 Solut ion of trigonometric equations 
The method best suited to the solution of trigonometric equa- 
tions is that described in the section on algebra which deals with 
the method of solving transcendental equations by means of 
graphs. The expression to be solved is arranged as two identities 
and two graphs drawn as shown in Figure 1.14. The points of 
intersection of the curves projected on to the coordinate axes 
give the values which will satisfy the trigonometricequation. 

Example 1.1 Solve sin (x + 30)= ~ cos x for x between 0 and 
2n. 

Assigning values to x in Table 1.4 and calculating the 
corresponding values for y = sin (x + 30) and y = :} cos x gives the 
readings for plotting the curves in Figure 1.14. 

Plotting the curves between x = 169" and 170* shows that the 
intersection is at x =  169.11" to the second approximation. 
Greater accuracy can be obtained by continuing the small range 
large scale plots of  the type in Figure 1.15. 

There is one further value of x between x = 300* and 360* 
which will satisfy the equation as can be seen on Figure 1.14. 

1.2.13 Genera l  solutions of trigonometric equat ions  

Due to the periodic nature of  the trigonometric functions there 
is an infinite number of solutions to trigonometric equations. 
Having obtained the smallest positive solution, ct, the general 
solution for 0 is then given by: 

a = sin-' x then 0 = nn + ( -  l)"a 
a = cos-~ x 0 = 2nn + a 
a = t a n - ~ x  O= nn + a 

where 0 and a are measured in radians and n is any integer. 

1 
A ~ 2  = 3" c o s  X 

y l = sin (x + 30) 

Figure 1.14 Solution of trigonometrical equations showing the 
intersection between x=10 and x=n  as x=169" approximately 

-0.31 

-0.32 

-0.33 

-0.34 

/ 

169 ° 
I I I I I I I I 

169.11 ° 

,4 

170 ° 

Figure 1.15 Enlargement at A of Figure 1.14 

1.2.14 Inverse trigonometric functions 
Inverse functions of trigonometric variables may be simply 
defined by the example: y =  sin-~ ½ which is merely a symbolic 
way of stating that y is an angle whose sine is ½, i.e. y is actually 
30 ° or n/6 in radian measure but need not be quoted if written as 
sin-I ½. 

1.3 Spherical trigonometry 
1.3.1 Definit ions 

Referring to Figure 1.16, representing a sphere of radius r: 

Small  circle The section of a sphere cut by a plane at a section 
not on the diameter of the sphere, e.g. EFGH.  
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x 0 30 60 90 120 150 180 

),, = sin(x + 30) 0.5 0.866 1.0 
y2=~ cos x 0.333 0.289 0.166 7 

0.866 0.5 0 - 0 . 5  
0 - 0 . 1 6 6  7 - 0 . 2 8 9  - 0 . 3 3 3  

x 210 240 270 300 330 360 

y, =sin (x + 30) - 0 . 8 6 6  - 1.0 
Y2 = ~ cos x - 0.289 - 0.166 7 

- 0 . 8 6 6  
0 

- 0 . 5  0 +0.5  
0.166 7 0.289 + 0.333 

D' 

/ 
\\ C ~ / X  B, 

\ / 

D 
Figure 1.16 Sphere illustrating spherical trigonometry definitions 
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Figure 1.17 Spherical triangles 

Great circle The section of  a sphere cut by a plane through any 
diameter, e.g. ACBC' .  

Poles Poles of  any circular section of a sphere are the ends of a 
diameter at right angles to the section, e.g. D and D'  are the 
poles of  the great circle ACBC' .  

Lunes The surface areas of that part of  the sphere between two 
great circles; there are two pairs of  congruent  areas, e.g. 
A C A ' C ' A ;  C B C ' B ' C  and ACB'C 'A;  A ' C B C ' A ' .  

Area oflune If  the angle between the planes of  two great circles 
forming the lune is 0 (radians), its surface area is equal to 20r a. 

Spherical triangle A curved surface included by the arcs of  
three great circles, e.g. CB'B is a spherical triangle formed by 
one edge BB' on part  of  the great circle D B ' B A  the second edge 

B'C on great circle B 'CA 'C '  and edge CB on great circle 
ACBD' .  The angles of  a spherical triangle are equal to the 
angles between the planes of  the great circles or, alternatively, 
the angles between the tangents to the great circles at their 
points of intersection. They are denoted by the letters C, B', B 
for the triangle CB'. 

Area of spherical triangle CB'B = (B' + B + C -  rt)r 2. 

Spherical excess Compar ing a plane triangle with a spherical 
triangle the sum of the angles of the former is zr and the spherical 
excess E of a spherical triangle is given by E =  B' + B +  C - T  r; 
hence, area of a spherical triangle can be expressed as 
(E/4n) x surface of sphere. 

Spherical polygon A spherical polygon of n sides can be 
divided into ( n - 2 )  spherical triangles by joining opposite 
angular  points by the arcs of  great circles. 

Area of  spherical p o l y g o n -  [sum of a n g l e s - ( n - 2 ) n ] r  2 

E 
4n 

x surface of  sphere. 

Note that ( n -  2)n is the sum of the angles of a plane polygon of 
n sides. 

1.3.2 Properties of spherical triangles 
Let ABC, in Figure 1.17, be a spherical triangle; BD is a 
perpendicular from B on plane O A C  and O]~D, OF'D, OEB, 
OFB,  OOE,  DIZIG are right angles; then BI~D = A and BF'D = C 
are the angles between the planes OBA, OAC and OBC, OAC 
respectively. DI~H = COA = b also COB = a, AOB = c, and since 
OB = OA = OC = radius r of sphere, O F  = r cos a, OE = r cos c; 
then 

cos a = cos b cos c + sin b sin c cos A 
cos b = cos a cos c + sin a sin c cos B 
cos c = cos a cos b + sin a sin b cos C 

Also the sine formulae are: 

sin A sin B sin C 
sin a sin b sin c 

and the cotangent formulae are: 

sin a cot c = cos a cos B + sin B cot C 
sin b cot c = cos b cos A + sin A cot C 
sin b cot a = cos b cos C + sin C cot A 
sin c cot a = cos c cos B + sin B cot A 
sin c cot b = cos c cos A + sin A cot B 
sin a cot b = cos a cos C + sin C cot B 
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O 

C 1 

A 

i i 

l 

B Figure 1.18 Polar triangles 

1.4.1 Relation of hyperbolic to circular functions 

sin 0 = - i sinh i 0 
cos 0 = cosh i 0 
tan 0 = i t anh  i 0 

cosec 0 = i cosech i 0 
sec 0 = sech i 0 
cot 0 = i coth  i 0 

sinh 0 = - i sin i 0 
cosh 0 = cos i 0 
t anh  0 = - i tan i 0 

cosech 0 = i cosec i 0 
sech 0 = i sec i 0 
coth  0 = i cot i 0 

In Figure  1.18, ABC,  A~BICi are two spherical  tr iangles in 
which A¿, Bt, C~ are the poles o f  the great  circles BC, CA, AB 
respectively; then A,B~C, is termed the po la r  t r iangle o f  ABC 
and  vice versa. N o w  OA,,  O D  are perpendicu la r  to the planes 
BOC and  A O C  respectively; hence A , 0 D = a n g l e  between 
planes BOC and  A O C = C .  Let sides o f  t r iangle A,BIC , be 
denoted  by a~bzc ~ then c i=  A~OBj = n - C  also a~ = n - A  and 
b~ = r t -  B; c = r t -  C,; a = n -  A~; b = n -  B, and  f r o m  these we get 

cos B + cos A cos C 
cos b = (1.20) 

sin A sin C 

cos A + cos B cos C c o s a =  (1.21) 
sin B sin C 

cos C + cos A cos B 
cos c = sin A sin B (1.22) 

1.3 .2 .1  R i g h t - a n g l e d  t r i a n g l e s  

If  one angle A o f  a spherical  triangle A B C  is 90* then cos 
a = cos b cos c = cot  B cot C 

tan c. tan b. sin B -  sin b 
cos B = t--~--aa" cos C -  tan a" sin c" 

s i n c - S i n c "  t a n B = t a n ,  b. t a n c - t a n c "  
sin a" sm c sin b" 

cos B = cos b sin C; cos C--  cos c sin B. 

1.4 Hyperbolic trigonometry 
The hyperbol ic  funct ions  are related to a rec tangula r  hyperbo la  
in a m a n n e r  s imilar  to the re la t ionship between the o rd inary  
t r igonometr ic  funct ions  and  the circle. They are defined by the 
fol lowing exponent ia l  equivalents:  

1 
sinh 0 -  e ° -  e-A cosech 0 -  sinh 0 

2 

e " + e  -0 1 cosh 0 -  sech 0 -  
2 cosh 0 

sinh 0 1 
tanh O -  coth O -  

cosh 0 t anh  0 

1.4.2 Properties of hyperbolic functions 
cosh 2 O - s i n h  2 0 = 1 

sech 2 0 = 1 - t anh  2 0 
sinh 20 = 2 sinh 0 cosh 0 
cosh 20 = cosh 2 0 + sinh 2 0 

cosech 2 0 = coth 2 0 -  1 

tanh  20 = - -  
2 t anh  0 

1 + tanh  2 0 

sinh (x + y) = sinh x cosh y + cosh x sinh y 
cosh (x + y) = cosh x cosh y -1- sinh x sinh y 

tanh x + t anh  y 
t anh  (x 4- y ) =  1 4- t anh  x t anh  y 

sinh x + sinh y = 2 sinh ½(x + y) cosh ½ ( x -  y) 
sinh x - sinh y = 2 cosh ½(x + y) sinh ½ ( x -  y) 

cosh x + cosh y = 2 cosh ½(x + y) cosh ½ ( x -  y) 
cosh x - c o s h  y = 2 sinh ½(x + y) sinh ½ ( x - y )  

1.4.3 Inverse hyperbolic functions 
As with t r igonomet r ic  functions,  we define the inverse hyper-  
bolic funct ions  by y =  s inh - '  x where x = sinh y: 

Therefore:  x = (e."- e ")/2 

Rea r rang ing  and  add ing  x 2 to each side: 

e 2.v - 2 x .  e ~' + x 2 = x 2 + 1 

or: e y - x = x / ( x 2 +  1) 

and  therefore: y = sinh ~ ' x = log~ [x + x / ( x  2 + 1)] (1.23) 

The other  inverse funct ions may  be t reated similarly. We find: 

s inh - '  x = log [x + x / ( x  2 + 1)]; 

cosh -' x = log [x + x / ( x  2 - 1)]; 

l + x  
t a n h - '  x = ½ log 1 - x '  
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cosech-' x = log 

sech- '  x = log 

1 + ~/(1 + x 2) 

1 + x / ( l  - x 2) 

x + l  
c o t h - '  x = ½ log x -  1 

The  re la t ionships  with the cor respond ing  inverse t r igonomet r ic  
funct ions  are as follows: 

s inh-  I x = - i sin-~ ix 
cosh-  J x = i cos -  ~ x 
t a n h - '  x = - i t a n -  ' ix 

s in - '  x = - i sinh-~ ix 
cos-  ~ x = - i cosh -  ~ x 
t a n -  ' x = i t a n h - '  ix 

1.5 Coordinate geometry 

1.5.1 Straight-line equations 
The  equa t ion  o f  a s t ra ight  line may  be expressed as: 

Q C 
(1) a x + b y + c = O o r y = - - b X - - ~ = m x + n  (1.24) 

where a, b a n d  c are cons tan t s  and m is the slope o f  the line as 
shown in F igure  1.19.  

(2) x + Y = 1 (I.25) 
1 

/ 

n 0 ~ = x  

Figure 1.19 Straight-line equation y=mx+n 

Y 

X , y  

.~ X 

Figure 1.20 Straight-line equation xcos a+ ysin a=p 

X',V" 

~ ~ ~  +by + c = 0 
0 = x 
Figure 1.21 Perpendicular to straight line 

where k is the intercept  on the x axis and  l is the intercept  on the 
y axis. 

(3) x cos a + y sin a = p  (1.26) 

where p = length o f  the perpendicular  f rom the origin to the line 
and a the incl inat ion o f  this perpendicu la r  to O x  in F igure  1.20. 

The  length d o f  a perpendicu lar  (see F igure  1.21) f rom any point  
(x 'y ')  to a s t ra ight  line is given by (ax' + by' + c)/x/(a 2 + b  2) if the 
s traight  line equa t ion  is as given in (I),  or (x'  cos a + y '  sin a - p) 
if the s t ra ight  line equa t ion  is as given in (3). 

The  equa t ion  o f  a s t ra ight  line th rough  one  given point  (x 'y ')  
is y - y '  = m(x - x'). 

The  equa t ion  of  a s t ra ight  line t h r o u g h  two given points  
(Figure  1.22) (x ,y , ) (x :y  2) is: 

y - y ,  _ x - x ,  (1.27) 
Y2 - Yl x 2 - x, 

The  angle ~ between two s t ra ight  lines (F igure  1.23) y = m , x  + n, 
and y = m2x + n 2 is given by: 

m, - m 2 (1.28) 
t a n ~ -  l + m , m  2 

F o r  lines which are paral lel  m, = m 2. 
F o r  lines a t  r ight  angles 1 + m~m2=0. 

X2Y2 

J 
XlJ/1 X 

Figure 1.22 Straight line through two points 

J t~n-lm2 
X 

Figure 1.23 Angle ¥ between two straight lines 
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1.5.2 Change of axes 
Let the equation of the curve be y = f ( x )  referred to coordinate 
axes Ox, Oy; then its equation relative to axes O'x ' ,  O'y '  parallel 
to Ox, Oy with origin O' at point (r, s) is given by y + s =j(x + r) 
in which x and y refer to the new axes. 

If the equation of a curve is given by y = f ( x )  referred to 
coordinate axes Ox, Oy, then if these axes are each rotated an 
angle ~' anti-clockwise about O, the equation of the curve 
referred to the rotated axes is given by x sin ~u+ycos ~ =  

f ( x  cos ~u - y sin ~u). 

1.5.2.1 Tangent and normal to any curve y=f(x)  
The tangent PT and the normal PN at any point x,y, on the 
curve y=f(x)  in Figure 1.24 are given by the following equa- 
tions: 

dy ( x -  x,) where dy Tangent: Y-Y'=-d--x dxx = r e = t h e  slope of the 

curve at P 

ay 
Normal: 0 ' -  Y,) ~-~ + ( x -  x,) = 0 

If ~ be the angle which the tangent at P makes with the axis of x, 
then: 

dy dx dv 
t an4  = ~xx'COSff= ~s s 'S in f f -  ds 

where s is the distance measured along the curve. 

1.5.2.2 Tangent and normal to any curve f (xy)= 0 
The function is implicit in this case so that partial differential 
coefficients are employed in the equations for the tangent and 
for the normal at x, y,. 

of ~f Tangent: ( y -  y,) ~yy + ( x -  x,) ~xx = 0 

Normal: ( y -  y')  - ( x -  x,) 
(,~f/ay) (~f/ax) 

where dy Of / Of ~ = - ~ x / ~ ;  

1.5.2.3 Subtangent and subnormal to any curve y =f(x) 
The subtangent is TQ and the subnormal is QN at any point 
P(x,y,) on the curve y-- f (x)  in Figure 1.24. Their lengths are 
given by: 

Subtangent, TQ =y,  ~ , 

and subnormal, QN =y ,  ~ , 

dy rt and y = 0 i.e. d---~ = - ~-~ 

Therefore: 

/ t  
the required equation of the tangent is y =  - ~ ( x - p )  

2p and the equation of the normal is y = ~ ( x - p )  

y 

= 

= t a n ~  

T ~ Q N 
Figure 1.24 Tangent, normal, subtangent and subnormal to curve 

1.5.3 Polar coordinates 
The polar coordinates of any point P in a plane are given by r, 0 
where r is the length of the line joining P to the origin O and 0 is 
the inclination of OP, the radius vector relative to the axis Ox 
(see Figure 1.25). 

The relations between the rectangular coordinates x and y 
and the polar coordinates r and 0 are: 

x = r cos 0, y = r sin 0; 

r =  ~/(x2 +y2), 0 =  tan- '  y/x 

If PT is a tangent to the curve at point P then: 

tan 4, = rdO/dr; cot 9~ = (1/r)(dr/dO); 

sin ~b = rdO/ds and cos ff = dr/ds 

Y 

O 

, r  + 8 / /  O = ~s 

j = x 
I r 

Figure 1.2§ Polar coordinates 

Example 1.2 Find the equation of the tangent and of the 
normal where x = p  on the curve y---cos nx/(2p) 

dy _ n sin nx nx dx - ~-~ ~ and when x=p,  sin ~ - =  1, 

1.5.3.1 Polar subtangent and subnormal 
In Figure 1.26 the polar subtangent is OR and the polar 
subnormal is OQ where QR is perpendicular to OP a n d  their 
lengths are given by: polar subtangent-tadO/dr;  polar subnor- 
mal=dr/d0. 



Q 

X 
0 

R 

Figure 1.26 Polar subtangent and subnormal 
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Example 1.3 Find the radius of curvature at any point at the 
curve y = a cos x/a: 

dy _ s i n h  x 
dx a 

Therefore: 

I I + (  dy = E l + s i n h 2 a l  

X / 3/2 __ 
= c o s h 2  a = c o s h  3 x a 

d2y_ 1 coshX . . . . .  
dx 2 a a 

Therefore: 

1.5.3.2 Curvature 
Let PQ in Figure 1.27 represent an elemental length c~s of a given 
curve and PS, QT the tangents at the points P, Q then: 

Curvature at P=dp/ds. For a circle centre at C, radius p, 
ds = p dfl, i.e. curvature = 1/p. 

ds Therefore: P=  -3--z = radius of curvature (1.29) up 

Putting f l = t a n - '  ( ~-~dY ) and differentiating: 

d~y 

Curvature d f l_  1 _ dx2 
dS P I l + ( dy~ ) 2~/2 

E l +  ( d y  3/2 

Radius of curvature p = d2y 
dx i 

Where dy/dx is small (as in the bending of beams), the radius of 
curvature is given by: 

1 

P -  d2y/dx 2 (1.30) 

T 

,,/~/3 - "  

S 
~':-X 

p = ~  
a cosh 3 x 

a 

cosh - x 
a 

= a cosh 2 - - - -  
x _ y  ~ 
a a 

1.5.4 Lengths of curves 

1.5.4.1 General theory 
From Figure 1.28: 

ds~= dx2 + d f  

Hence: 

as = 1+ , dx= 1+ ~y dy 

,/( Therefore: s = ~ '  1+ dxx dx 

or :,/I s = ~  1+ dy 

For the evaluation of s for any given continuous function, use 
the first formula if x is single-valued, i.e. if one value of x 
corresponds to one point only in the function, e.g. Figure 1.29. 
If more than one point on the curve corresponds to one value of 
x, the second formula for a curve of the form shown in Figure 
1.30, should be used. 

• f(x) 
ds 

( 

X 
(aO) (bO) 

Figure 1.28 

Figure 1.27 Curvature 
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Y 

T 
Figure 1.29 

0 Figure 1.30 

For polar coordinates, from Figure 1.31 

or: 

as= x/{(pdO) 2 + (@)2} = p2 + -~ dO 

"=I;i do 

,=,7{ (,o),} s=I ' ,  1+ P-d-O-~ dp 

(1.32) 

(1.33) 

f(x) 

x , ~ ~  x2 
dx 

x 
Figure 1.31 

1.5.5 Plane  a reas  by integrat ion 

See Figures 1.32 and 1.33. 

1.5.5.1 General theory 
From Figure 1.32, A = Ix, 

1.5.5.2 Polar coordinates 
From Figure 1.33, dA = ½p2 dO 

Therefore: A = ½~p2dO= ½~{f(O)}2dO (1.34) 

(Note. For curve cutting x axis, equate f (x)  to zero, find values 
of x fory  = 0 and integrate between these values for the area cut 
off by the x axis.) 

When the area lies above and below the x axis integrate the 
positive and negative areas separately and add algebraically. 

Where the area does not extend to the x axis in the case of 
cartesian coordinates, or to the origin in the case of polar 
coordinates, then double integration must be used. 

Thus: A=~dx.dy .~p.dp.dO (1.35) 

p = f ( e )  

O, ~ mx Figure 1.32 

0 

p = f(O) 

dO 

-~  X Figure 1.33 

1.5.6 Plane area by approximate methods 
See Figure 1.34. 

1 Trapezoidal rule: 

h A= ~{Yo+2(y,+y2+ . . .  +y._,)+y.}  (1.36) 

(2) Durand's rule: 

A=h(O.4yo+ l . l y , + y 3 +  . . .  + ) . _2+  l . ly._,  +0.4y.) (1.37) 

(3) Simpson's rule (n made even) 

h A=  -~(Yo+4y,+2y2+4y,+2y4+ .. .  + 2y._2+4y._,+y.) 
(1.38) 

Y 

0 
~x = a .___Jx = ~ \  

n eq~at 
divisions Figure 1.34 



Of these, Simpson's is the most accurate. The accuracy is 
increased in all cases by increasing the number of  divisions. 
Areas can often be determined more rapidly by plotting on 
squared paper and 'counting the squares' or by the use of a 
planimeter. 

1.5.7 Conic  sect ions 

Conic sections refer to the various profiles of  sections cut from a 
pair of  cones vertex to vertex when intersected by a plane. 
Figure 1.35 shows a pair of  cones generated by two intersecting 
straight lines AB, CD about the bisector EF of  the angle 
between the lines. 
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Then the curve is a parabola if e = 1, an ellipse if e < 1; and a 
hyperbola if e > 1. A circle is a particular case of  an ellipse in 
which e - 0 .  

The polar equation of  a conic is given by l=  p ( l -  e t~0s0) 
where p is the radius vector of  any point P on the curve, 0 the 
angle the vector makes with VX and l the semi latus rectum. 

Parabola (e = 1) (see Figure 1.36). 

1.5.8.1 Equations 

With origin at V and putting a= VS = VF then for P at (x, y): 
(x - a) ~ + y2 = (x + a) 2, i.e. y2 = 4ax. 

Two straight lines. A section through the axis EF. 

Circle. A section b-b  parallel to the base of  a cone. 

Ellipse. A section c--c not parallel to the base of  a cone and 
intersecting one cone only. 

Parabola. A section d-d  parallel to the side of  a cone. 

Hyperbola. A section e--¢ inclined to the side of  a cone and 
intersecting both cones. 

1.5.8 P rope r t i e s  o f  conic sections 

A conic section is defined as the locus of  a point P which moves 
so that its distance from a fixed point, the focus, bears a 
constant ratio, the eccentricity, to its perpendicular distance 
from a fixed straight line, the directrix. 

Referring to Figure 1.36: the vertex of the curve is at V, the 
focus of the curve is at F, the directrix of the curve is the line DD 
parallel to yy'; the latus rectum is the line LR through the focus 
parallel to DD, FL = FR = I; the eccentricity of  the curve is the 
ratio FP/PQ = FV/VS = e. 

1.5.8.2 Tangents 

Let PT be a tangent at ~my point P (x~ yj) then the equation of  
PT is given by: 

y - y, = m(x - x,) = (2a/y,)(x - x,) 

or yy, = 2a(x + x,) 

since d/dx(yD = 2), dyldx = 4a, 
i.e. m =  dy/dx= 2a/v, at P (x, y,). 

Alternatively, if any straight line y = m x  + c meets the parabola 
),2 = 4ax then (mx + c)2=4ax at the points of  intersection and 
this expression will satisfy the condition for tangency if the roots 
of  rn2x ~ + 2(mc-  2a)x + t a = 0 are equal, i.e. if 4(mc-  2a) 2 = 4m2d 
or c = a/m so that the equation for the tangent may be expressed 
as y = m x + a / m  for all values of  m where m=dy/dx,  and 
tangency occurs at the point (a/rn 2, 2a/m). 

I I ~  (c) 

I Ellipse 
I I 

c / E le /B 
, _ _  / 

, o , / .  / - _  
Parabola x \ /  ) /  i /  ~ b  ~ ~  . (el 

\ / f l  J ~  / / !  ~ "  -- Hyperbola 

I'" i - - / - - - -x  
- -  - -  (bl 

Circle 

Figure 1 .35 Circular cones generated by two intersecting straight 
lines 
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S \ 

/" 

p J  

F M N 

Figure 1.36 Properties of a conic section 

/ 

D1 
A 

C p, 

x' ~.~ S2 V2 S 

D2 ~ D1 

y' 
Figure 1.37 Ellipse in cartesian coordinates 

1.5.8.3 Normal  

Let PN be the normal  at any point P (x, y~); then the equation of  
PN is given by: 

y - y, = - ( y , / 2a ) ( x -  x,) (1.39) 

1.5.8.4 General properties 

Tangents: 

(1) The tangent PT bisects FPQ. 
(2) The tangents PG,  G W  where PW is a focal chord intersect at 

G on DD.  
(3) The tangent PT intersects the axis of  the parabola  at a point  

T where TV = VM; T F  = SM = PF. 
(4) The angles G F P ,  P H Q  and P G W  are fight angles. 

Normals: any normal  PN intersects VX at N where F T  = FN.  

Subnormals: the subnormal  M N  is a constant  length, i.e. 
M N - -  FS = 2a. 

1.5.8.5 Ellipse (e < 1) 

Referring to Figure 1.37, F,, F 2 and the foci; D,D,,  D2D 2 the 
directrices. 

FlY I _ F I V  2 _ F,V I ._ FIP F,P O F  I _ O F  2 _ F,F  2 
SlY, SlY2 S_,VD MSI MS2 OVl OV2 ViV2 

Let OV, the semi-major axis = a and OE the semi-minor axis = b, 

then O F , = O F 2 = a e a n d O S t = O S , - a  e 

also F , P = a - e x : F 2 P = a + e x  " .F~P+F_.P=2a 

o r  

F,E = eOS, = a; (OE) 2 = b 2 = (FIE) 2 - (OF,)-" = a2( 1 - e2), 

b 2 e2= l  - -~ 

Hence, as OM = x and PM = y  we have the following. 

1.5.8.5 Equation o f  ellipses 
y2 = a2( 1 -- e 2) - x2( 1 - e 2) 

X 2 V 2 
or -~a" + ~ = 1 in cartesian coordinates.  

Substituting p cos a for x and p sin a for y (see Figure 1.38) in the 
above equation for an ellipse we have for the polar equation for 
an ellipse: 

1 _ cos2a + sin2______aa (1.40) 
,O 2 a 2 b 2 

Figure 1.38 Ellipse in polar coordinates 

1.5.8.6 Tangent 

At any point  P (x, y,) on the ellipse 
Let J~xy)= 0 represent the curve, then: 

dy_ Of af (1.41) 
dx dx dy 

Therefore af /dx= 2x/a 2 and df/Oy = 2y/b 2 so that dy/dx at point  
(x, y~) is given by - b2x,la2y, = m. Substituting this value of  m in 
the equat ion of  a straight line ( y - y , ) =  r e ( x - x , )  we have the 
equation of  tangent PT: xx , /a  2 + yyj/b 2 = 1. 

Alternatively, the straight line y - m x  + c i s  a tangent to the 
ellipse x:/a: + y2/b2 = 1 when the roots of  x2/a 2 + (rex + c)2/b 2 
- 1 - 0  are equal, i.e. when c2=a2m2+ b 2. Substituting we have 
for the equat ion of  a tangent at any point  P: y = m x  
+, / (a~m 2 + b~). 
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The equation to the tangent may also be written in the form: 

X 1; - c o s  0+ ~sin 0= 1. (!.42) 
a 

The coordinates of the point of contact are (a cos 0, b sin 0), 0 
being known as the eccentric angle (see Figure 1.37). 

1.5.8.12 Tangents 

Let the straight line y = m x + c  meet the hyperbola x2/a 2 -  
y2/b2= 1; then x 2 / a 2 - ( m x  + c)2/b 2 -  1 =0  will give the poihts of 
intersection. The conditior~ for tangency is that the roots of this 
equation are equal, i.e. c= ~;'(d~m 2 -  b 2) and the equation of the 
tangent is given by y =  m x  + ,~/(a2m 2 -  b 2) at any point. Alternati- 
vely, the tangent to the hyperbola at (x, y,) is given by 
x x , / a  2 - yy , /b  2 = 1. 

1.5.8.7 Normal  

Substituting the value of m above in the general equation for the 
normal PN to a curve at point P (x I y~) given by: 
( y - y l ) m  + ( x - x ~ ) = 0  we have as the equation for the normal 
( y -  yl)b2/y, = (x  - x,)a2/xl. 

1.5.8.8 General properties 

(I) The circle AV2BV s is termed the auxiliary circle (Figure 
1.37). 

(2) OM x OT = a 2. 
(3) F2N = eF2P. 
(4) FIN = eF1P. 
(5) PN bisects /_ F,PF 2. 
(6) The perpendiculars from F,, F 2 to any tangent meet the 

tangent on the auxiliary circle. 

1.5.8.13 Normal  

The equation for the normal at any point (x~ y~) on the curve is 
given by: 

( y -  y,)b2/y, + ( x -  x,~a2/x, =0. (1.44) 

1.5.8.14 Asympto tes  

The tangent to the hyperbola becomes an asymptote when the 
roots of the equation x2/a 2 - (rex + c)2/b 2 - 1 = 0 are both infinite, 
i.e. when b 2 -  a2m2=0 and a2mc=O. Therefore: m =  + b / a  and 
c=  0. Substituting for m in y = m x  + c we have as the equation 
for an asymptote y = + (b/a)x.  The combined equation for both 
asymptotes is given by: 

1.5.8.9 Circle (c = O) 

The circle may be regarded as a particular case of the ellipse (see 
above). The equation of a circle of radius a with centre at the 
origin is x 2 + y2= a 2 or, in polar coordinates, p = a. 

The equation of the tangent at the point (x, Yl) is 
xx ,  + yy, = a 2, or, y = m x  + ax/(! + m2). The equation of the nor- 
mal is xy,  - yx~ = O. 

X 2 1,2 
_ L_ =0 ( 1 . 4 5 )  a 2 b 2 

The equation of the hyperbola referred to its asymptotes as 
oblique axes is: 

a 2 + b 2 
X. Y - (1.46) 

4 

1.5.8.10 Hyperbola  (e > 1) 

This is shown in Figure 1.39 where FI F2 are the foci, DID ~ and 
D2D 2 the directrices and: 

F,V ! _ F , P  _ F2P _ F I V  2 _ F 2 V  , _ V , V  2 _ O V ,  _ OV 2 e ' - -  
S,V I MS, M S  2 S I V  2 S2V I S i S  2 O S  I O S  2 

1.5.8.15 General properties 

(1) F2P - FIP = 2a. 
(2) The product of the perpendiculars from any point on a 

hyperbola to its asymptotes is constant and equal to 
a2b2/(a 2 + b2). 

where O is the origin of the axes x and y. 

Putting OV, = OV 2 = a then OFi = OF2 = ea and OSI = OS2 = a/e; 
also F , P = e x - a  and F 2 F = e x + a .  Now (F,P) 2=(PM) 2+ 
(FIM) 2, so (ex - a) 2 = y2 + (x - ae) 2 which becomes 

=(e a - l ) x  2 - (e  a - l ) a  2. Putting (e 2 - 1 ) a  2=b 2 then y2= 
(b2/a2)x 2 -  b2; therefore the equation of the hyperbola is given by 
x2/a 2 -  y2/b2= 1 in cartesian coordinates, or: 

1 _ cos 2 0 sin 2 0 (1.43) 
a 2 b 2 

1.5.8.16 Rectangular hyperbola 

When the transverse axis V~V (Figure 1:39) is equal to the 
conjugate axis CC' the hyperbola is a rectangular hyperbola, i.e. 
a = b and the equation for the curve is given by x 2 -  y2= a 2. 

The equation for the asymptotes then becomes y = + x which 
represents two straight lines at fight angles to each other. The 
equation of the rectangular hyperbola referred to its asymptotes 
as axes of coordinates is given by x y  =constant.  

in polar coordinates. 
Rearranging we have y=b~ / ( x2 /a  2 -  1), i.e. y is imaginary 

when x 2 < a 2 and y = 0 for x = + a. y is real when x > a and there 
are two values for y of opposite sign. 

1.5.8.11 Conjugate axis  

T h e  c o n j u g a t e  a x i s  l i e s  on y y '  a n d  is g i v e n  b y  CC' where 
O C - - O C ' -  +b.  

1.5.8.17 General equation o f  a conic section: 
The general equation of a conic section has the form: 

ax  2 + 2hxy  + by 2 + 2gx + 2fy + c = 0 

Let  
a 

D =  h 
g I a f and d =  h b 

C 

(1.47) 
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y 

0 2 

X ~ ~ I _ . 

D2 1 Ol 

y' 
Figure 1.39 Hyperbola 

Then, the general equation represents: 

(l)  Anel l ipse  if d >  0; 
(2) A parabola  if d-- 0; 
(3) A hyperbola if d <  0; 
(4) A circle if a =  b and h = 0; 
(5) A rectangular hyperbola if a +  b - 0 ;  
(6) Two straight lines (ri~al or imaginary) if D- -0 ;  
(7) Two parallel straight lines if d - 0  and D =  0. 

The centre of  the conic (Xoyo) is determined by the equations: 
axo-  hy o + g = 0 ,  hx o + by o + f - -  0. 

1.6 Three-dimensional analytical 
geometry 

1.6.1 Sign convention 
1.6.1.1 Cartesian coordinates 

This is shown in Figure 1.40, there being eight compartments 
formed by the right-angled intersection of  three planes. The 
signs of  x, y, z follow the convention that these are positive 
when measured in the directions Ox, Oy, Oz of  the coordinate 
axes and negative when measured in the directions Ox', Oy', Oz' 
respectively. 

1.6.1.2 Polar coordinates 

The location of  any point P in space (see Figure 1.41) is fully 
located by the radius vector P and the two angles 0 and ~ thus 
(p0ff). From Figure 1.41" 

O P =  p=  ( [ ( O D )  2 + (OB)-' + (OC) 2] = V(x 2 + y2 + z 2) 

and x = p sin 0 cos ~; y = p sin 0 sin if; z = p cos ft. 

1.6.1.3 Cylindrical coordinates 

In this system the point P (Figure 1.41) is located by its 
perpendicular distance, z, from the x -y  plane and the polar 
coordinates of  the foot, A, of  that perpendicular in the x - y  
plane. P is the point r, ff,j z where OA = r. 

1.6.1.4 Direction-cosines o f  a straight line 

If the direction of  the line OP in Figure 1.42 is determined by a, 

D 1 

i 
y" ~ I / X 

/ 

7 

17 

I 
//"~ILI/" 
o z .  

!- 
/ J 

X- 
Y+ z-I. 

}i,+ 
f x '  Z+ 

7~ Y 

I tHi  
! I x+ 
! "ly+ 1 L z -  

Z ° 
Figure 1.40 Sign conventions in analytical solid geometry 

z 

0 

/ / 90 ° X" 

P( ,¢) 

B 
~ 0  =" Y o 

A 

Figure 1.41 Polar coordinates in three dimensions 

i 

J 
J 

x J  
Figure 1.42 Direction-cosines 

Y 

fl, 7 then the projections of  a unit length of  OP on to the axes Ox, 
Oy, Oz are given by cos a, cos fl, cos ~, respectively, termed 
direction-cosines. Let l=  cos a, m = cos fl, n = cos ~, and CP = p; 
then p2(12 + m 2 + n 2) = x 2 + y2 + z 2 = if ,  i.e. l 2 + m 2 + n 2 = I. 



Again if." 
12 m 2 n s 1 2 + m 2 + n  2 1 

l : m : n = s : t : u  then - - - = 
S 2 t 2 U 2 S 2 + t 2 + u 2  S 2 + t 2 + u 2  

i.e.: s 1= 
w / ( S  2 "Jr" t 2 + u2); 

m = 

n = 

t 
x/(s2 + t2 + u2) ' 

r- 

, / ( s  2 + t 2 + u 2) 

1.6.1.5 General equations 

The expression F ( x y z ) =  0 represents a surface of  some kind and 
if we put x = 0  the resulting equation is for a curve in the y - z  
plane; similarly, for y = 0 the curve is in the x -z  plane, etc. In 
general, any two simultaneous equations, F ( x y z ) =  O, F ' ( x y z ) =  0 
represent a line (either straight or curved) being the intersection 
of  two surfaces. Any three such simultaneous equations repre- 
sent a point  (or several points). 
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1.6.3 Distance between two points in space 
Let the two points be P(x,y, z,); Q(x2y2z2). Assume origin shifted 
to P and axes kept parallel to original axes, then coordinates of  
Q relative to P are (x  2 -  x,),  (Y2-y~) ,  ( z 2 - z , )  and the length 
PQ = r, i.e. r = x/[(x 2 - x,) 2 + (Y2" yl) 2 + (z2 - z,) 2] and the locus of  
Q is a sphere if r is constant. 

1.6.4 Equations of a straight line 
Using direction cosines for PQ, l = ( x 2 - x , ) / r ;  m = ( y 2 - y , ) / r ;  
n = (z : - z , ) / r .  If  Q is taken as any point then the symmetrical 
equation of  a straight line is given by r = ( x - x l ) / l = ( y - y , ) / m  
= ( z - z ~ ) / n  and the coordinates of any point on the line are 
given by x = x, + rl; y ~ y ,  + rm; z = z, + rn. For a line through the 
origin this becomes: 

x -  x~ _ y - y ,  _ z - z ,  

x_y _z 
l m n 

The equation of  the straight line through the points (x,y~ z,) and 
(x2Y2Z2) is: 

x2-x, Y2-Y, z2-z, 

1.6.2 Equation of a plane 
The general equation of  a plane is given by the expression 
ax + by + cz + d =  0 (abcd being constants). By putt ing y = 0, 
z = 0 then x = - d/a = a' which is the intercept of  the plane on the 
x axis at a distance a' from the origin. Similarly, the intercepts 
on the y and z axes are b' and c'. Hence a = - d / a ' ;  b =  - d / b ' ;  
c=  - d / c '  and substituting these values in the general equation 
for the plane we have the intercept equat ion for a plane as 
x/a '  + y/b'  + z / c ' =  1. 

In Figure 1.43 let P be any point on the plane ABC and let OQ 
of length p be at 90* to the plane ABC; then if l, m, n are the 
direction cosines of  OQ we have p =  Ix + m y  + nz, which is the 
perpendicular form of  the equation to a plane. The various 
forms of  the equation to a plane are interchangeable since: 

d 
p = - x/(a 2 + b2 + c2 ) = la '= rob'= nc' 

1 ~,2 1 _ 1  
and ~-~ + + c, 2 / (1.48) 

B C Y 

Also: 
sin 2 a + sin s fl + sin s ), = ( 1 - 12) + ( 1 - m 2) + ( 1 - n 2) = 2 

Figure 1.43 Equation of a plane 

1.6.4.1 Angle between two lines o f  known direction cosines 

Let PA, QB be any two lines in space (Figure 1.44) and let P'O, 
Q 'O be parallel to PA, QB respectively and having direction 
cosines l~m ~n ,; 12m2n 2 respectively then cos a = 1~12 + m ~m 2 + n ,n 2 
where a =  P ' O Q '  

1.6.4.2 The angle between two planes 

Let the equations of  the planes be: 

a,x  + b,y + c~z + d, = 0 

and: azX + b2y + c2z + d 2 = 0 

then the direction-cosines of the normals to these planes are: 

a, b, c, , 

x/(a~ + b~ + ~) x/(a~ + b~ + c~) x/(a~ + b~ + ~) 

and: a2 b2 c2 , 

x/(a~ + b~ + ~) x/(a~ + b~ + c~) x/(a~ + b~ + c~) 

If  0 is the angle between the planes, this is equal to the angle 
between the normals to these planes, i.e.: 

COS 0 = ala2+blb2+clc2 
~[(a~ + b~ + c~)(a~ + b~ + c~)] (1.49) 

The planes are perpendicular to each other if a,a2+b,b2+ 
c,c 2 = 0. They are parallel if a,/a2= b,/b 2 = c,/c2. 

1.6.4.3 The angle between a plane and a straight line 

The angle 0 between the plane l , x + m , y + n , z = p  and the line 
( x -  x,)/12 = ( y -  y,)/m2 = ( z -  z,)/n 2 is given by sin 0 = (l,l 2 + 
mlm 2 + nln2). 
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1.6.4.4 Length o f  the perpendicular f rom  a point xlylz ! to a 
plane 

(1) Where the equation of the plane is the perpendicular form 
Ix + my  + nz = p then the equation of a plane containing the 
point (x,y~z~) and parallel to the given plane is given by 
Ix + my  + nz =p '  where p and p' are the lengths of perpendi- 
culars from the origin. Therefore required length of perpen- 
dicular is p ' - p =  lx~ + my, + nz~ - p ,  since the point (x,y~z,) 
lies on the second plane. 

(2) Where the equation of  the plane takes the general form 
ax + by + cz + d = 0  the length of perpendicular from point 
x, y l z  , is given by: 

ax, + by, + cz, + d 
~/(a ~ + b ~ + d )  

In the above the equation of the perpendicular is given by: 

x - x ,  _ y - y ~  _ z-z~  
1 m n 

p, P 

t 

B = y  

Figure 1.44 Angle between two lines of known direction-cosines 

d ( u )  v (du /dx ) -u (dv /dx )  
z-S, = v" (1.52) 

For polynomial functions, y =  ax": 

dy = n a x ' - '  (1.53) 
dx 

The differentiation process may be carried out more than once. 
Thus: 

d (dy) _ dE)' etc. (1.54) 
dx dx dx 2 

As an example, if y =f(x)  = aM + bx  3 + CX 2 + d x  + C 

dy 
then: ~-~ = f ' ( x )  = 4 a x  3 + 3bx 2 + 2cx + d 

d2y 
dx 2 - f " ( x ) =  12ax2 + 6bx + 2c 

d3y 
dx 3 - f " ' ( x )  = 24ax + 6b 

d4Y - .  f " ( x )  = 24a 
dx 4 

dSY - f  ' ( x ) = O  
dx 5 

It is often convenient, when dealing with long, complicated 
expressions, to substitute a symbol for a part of a compound 
expression. Suppose we have: 

1.7 Calculus 

The calculus deals with quantities which vary and with the rate 
at which this variation takes place. 

Variables may be denoted by u, v, w, x, y, z and increments of 
these variables are denoted by du, dv . . .  dz. A simple example 
concerns the slope of a curve. Suppose that the curve is defined 
by some function: 

y = f ( x )  (1.55) 

a complicated expression and we choose to make a substitution 
u then the differential, f ' ( x )  can be found from the rule: 

ay=ay.au 
dx du dx 

e.g.: y = (.~ + a2) 6 

y =f(x)  (1.50) The substitution 

The slope at the point x = x, may be approximated to as follows. 
Let x 2 be close in value to x~; then, provided the curvef(x) is well 
behaved in the region of x,, the line joining f ( x O  to f(x2) is an 
approximation to the tangent to the curve at x = x , .  As x2 is 
moved closer to x w the approximation becomes better and 
better, until, in the limit, when x2 reaches x, the tangent (instead 
of the secant) is obtained and thereby the slope of the curve 
y = f ( x )  is found at the point x =  x,. This process is known as 
'differentiation'. 

u = x 4 + a 2 is appropriate 

so: y =  u 6 

dy = 6u 5 and du thus: dxx d-x = 4x3 

dy _ dy du _ 6(x4 + a2)54x 3 
so: du du dx 

1.7.1 D i f f eren t ia t i on  

This process is used to find the value of dy/dx. 
For combinations of  functions u, and v of x: 

dv du d (uv )=u  + v - -  
~ dx 

(1.51) 

= 24x3(x 4 + a 2) (1.56) 

In the case of trigonometric functions the differentiation process 
can be obtained via the expressions for multiple angles (see 
section 1.2). 
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For, suppose: 

y -  sin 0 

We let: 
y + 6y = sin (0 + 60) 

= sin 0 cos 60 + cos 0 sin 60 

The total differential of a function: 

u= f(x ,  y) 

where both x and y are functions of  t is given by: 

du _ du dx + du dy (1.60) 
dt dx dt dy dt 

= sin 0 + cos O. 60 

So." 

6y = cos O. 60 

1.7.3 M a x i m a  and minima 
Maxima and minima of functions occur when the function has 
zero slope or first differential. Thus, in order to determine a 
maximum or minimum of a function y =f (x) :  

3), 6y 
60 - cos 0 or ~ = cos 0 (1.57) dy (1.61) we set: ~ = f ' ( x ) = O  

In cases where inverse trigonometric functions are involved, the 
principle of substitution is employed, for suppose: 

y = s i n  ' u  

then: 
u = sin y 

du so: iy  =COS y=( l - s in2  y ) = ( l - u  2) 

dy  du _ 1 
so: duu=l dy ( l - u  2) (1.58) 

In cases where exponentiation is involved, the principle of 
substitution may again be employed: 

For, suppose y- -  e 3x24 

we write y = e  u 

where u = 3x2/4 

and d y = d y . d u = e u 6 x / 4  
dx du dx 

3x - 2 e3"Z4 (1.59) 

1.7.2 Partial  differentiation 
The dependent variable u may be a function of more than one 
independent variable, x and y, and we wish to find the rates of 
changes of u with respect to u and v separately. These rates of 
change, the partial differentials with respect to x and y are 
denoted by: 

_ du du and - -  
dx dy 

In these processes the normal rules of differentiation are fol- 
lowed except that in finding du/dx, y is treated as a constant and 
in finding du/dy, x is treated as a constant. 

and solve this equation, say x =  x,. 
To distinguish between maxima and minima it is necessary to 

evaluate: 

d2y 
~x ~ at the point x, 

d2y 
For  a maximum: ~-Sx 2 < 0 

d2y 
For  a minimum: ~ > 0  

1.7.4 Integration 
Integration is generally the reverse of the process of differentia- 
tion. It may also be regarded as equivalent to a process of 
summing a number of finite quantities but, in the limit the 
number of quantities becomes infinite and their size becomes 
infinitesimal. 

By the reverse of the differentiation process the integral 

a x n +  I 
ax". dx = ~ + c (I .62) 

the c being an arbitrary constant which, for shortness, is 
frequently not written. This is called an indefinite integral as no 
range over which the integration is to be performed has been 
specified. If  such a range is specified then we obtain the case of a 
definite integral, e.g.: 

if F(x)dx=f(x) 

then ~ ~ F(x) dx =f ib )  - f (a )  
(1.63) 

In geometrical terms, this integral represents the area bounded 
by the curve y =  F(x), the x axis, and the two lines x = a, x = b. 

1.7.5 Successive integration 
This is the reverse process from that of successive differentia- 
tion, each cycle of operations consisting of the integration of the 
function resulting from the immediately previous integration. In 
general terms instructions to carry out successive integration are 
expressed thus: y =  ~ f ( x )  dx, dx, dx, dx, which means inte- 
gration is to be successively carried out 4 times with respect to x. 
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Another  form of  successive integration is v = ~ f ( x ,  y, z) dx, dy, 
dz; referred to as a volume integral. A surface integral would 
take the form s= JJf(x,  y) dx, dy. 

Example 1.4 Find a general expression for the deflection of  a 
simple span girder o f  span I loaded uniformly by a load w per 
unit length of span given that w = E1 d4y /d~  and taking E and I 
as constant and x as measured from one end. 
Load: 

1.7.6 Integration by substitution 

The integration of functions can often be simplified by substitut- 
ing a new variable for a part or the whole of the original 
function, thereby reducing it to one of the standard forms. 

Example 1.5 Find the value of ~ / ( 3  + x)dx 

Let 3 + x = u  

E I ~ - -  = w 

Shear: 

Therefore dx = du 

so that  
~ / ( 3  + x ) d x =  j'u t du= t u3/' = t (3 + x) 3/2 or tx/(3 + x) 3 

~ 4y dx d3Y w# E1 ~ =El-d-- ~ = wx + c, = w x -  -~ 

( wl ) 
Shea r=  - ~-  for x = 0  

Example 1.6 Find the value of  

dx 
2~ e3x+ c_3~ 

Let e 3x= v; then 3e3x.dx=dv, or d x =  dvl3v. 

Bending moment:  Substituting 

~dd~ d2y wx 2 wlx wx 2 
E1 dx=El-d-~  = --)-- - ~ + c 2 -  2 

(B.M. = 0 for x = 0) 

Slope: 

~XX wx3 wlx2 f d2y dx = E1 - - EI  j-d-~x2 6 4 

w/x 
2 

WX 3 WIx 2 wl 3 
+ c3= - - 6  - --4-- + 24 

2~ e3x+e-3X v(v+ l/v) ~ = J t an - '  v =  J t an - '  e 3x. 

Example 1.7 Find the value of  j'x/(1 - x 2) dx. 
Put x = sin 0; then x/(1 - x 2) = cos 0 

Therefore 
j'x/(1 - x 2) .dx= I cos 0. ds in  0 =  Icos 20.dO 

( ') Slope = 0 for x = 

Deflection: 

= S  1 + c ° s 2 0 . d 0  
2 

_ ~ + 0  sin204 -21 {sin_ ~ x + x x / ( l _ x 2 ) }  

wx 4 wlx 3 wPx 
E1 ~xx dx = Ely  = - ~ -  - 1---2- + 24 

(Deflection = 0 for x = 0) 

1.7.7 Integration by transformation 

The integration of  trigonometric functions can often be simpli- 
fied by t ransformation into a s tandard form of  integral. 

i.e. at any distance x from one end the deflection 

l W 
y = ~ - ~  ( x ' -  2tx ~ + t~x) 

--d4y w 

which is in the general form. 
For  the mid-span deflection the range of  integration is from 

x = 0  to x=½1. 

Hence: 

TYPE 

sin m 0 cos" OdO 

Case 1: m = positive odd integer, n = any positive integer. 

TRANSFORMATIONS 

j" sin m- I 0 sin 0 cos" OdO 

= j'(l "COS 2 8) 0"- IV2 sin 8 cos" 8dO 

= - j'(l - cos 2 0) ~'- i,/2 cos" 0d(cos 0) 

Example 1.8 Solve J sin ~ Ocos 20dO 

d'y  d x . d x . d x . d x  wl' . , _ wl' ~ j ' ~ 2  __~ __ 2~(.i_~__ $ + ½)= 5384EI 
sin 3 0 cos 20dO 

= ~(1 - cos 20) sin 0 cos 20dO 

= j" cos 2 0 sin OdO- ~ cos'  0 sin OdO 



cos 3 0 cos 5 0 ..~- 
3 5 

Case 2: m = any  posi t ive integer,  n = posi t ive odd  integer.  

TRANSFORMATION 

sin"0 cos " - ~  OdO= ~(I - sin 20y"-I)/2 sin" Od (sin 0). 

Example  1.9 Solve J sin 20 cos 30d0 

sin 20 cos 30d0= ~(1 - sin 20) sin 20 cos 0d0 

= J sin 20 cos 0 d 0 -  ~ sin '0  cos 0d0 

sin 30 sin 50 
3 5 

TYPE 

tan OdO where n is an integer > 1. 

TRANSFORMATION 

tan"- 2 0 tan  2 OdO = ~ tan"-  2 0 (sec 2 0 -  1) dO 

= ~ tan "-2 0. tan 0 -  ~ tan"-2 0. dO 

TYPE 

cot" OdO where n is an integer > 1. 

TRANSFORMATION 

cot"-  2 0 cot  20dO = ~ cot"-  2 0(cosec 2 0 -  1) d0 

= - ~  cot  "-2 0. d c o t  0-~ cot -20.dO. 

TYPE 

~sec- OdO where n is posit ive and even. 

TRANSFORMATION 

see--2 0 sec 2 OdO= j '(tan 2 0 + 1)~"-- 2~!2d tan 0. 

TYPE 

cosec" OdO where n is positive and even. 

TRANSFORMATION 

cosec"-2 0 cosec 2 OdO = ~ -  (cot 2 0 + 1)~"- 2~/2 d cot  0 

TYPE 

t an"  0 sec" OdO where n is posit ive and even. 

TRANSFORMATION 

j" tan"  0 see"- 2 0 sec 2 OdO = ~ tan"  0 ( tan 2 0 + 1)~"- 2~"2d tan 0. 
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TYPE 

cot"  0 cosec" OdO where n is posi t ive and  even. 

TRANSFORMATION 

~cot m 0 cosec ' -  2 0 cosec 20dO = j -  cot  = 0 (cot 2 0 + 1)~"- 2)/2d cot  0. 

TYPE 

tan m 0 sec- OdO where m and  n are odd.  

TRANSFORMATION 

tan m- t 0 tan 0 see--I 0 sec OdO 
= ~(sec 2 0 -  1)~'-i~/2. sec- - i  0. d sec 0. 

1.7.8 Integration by parts 

The  in tegra t ion  o f  funct ions can of ten be simplified by break ing  
up the funct ion into two par ts  u and  dv where u and v are the 
subs t i tu ted  variables in ~u. dv = u. v -  ~v. du, the fundamen ta l  
fo rmula  for in tegra t ion  by parts ,  ~u. dv represent ing the funct ion  
to be integrated.  In apply ing  this m e t h o d  o f  in tegra t ion  ~v. du  
should  not  be more  complex  than  ~u.dv. The  in tegra t ion  o f  
logar i thmic,  exponent ia l ,  inverse t r igonomet r ic  and  produc t s  o f  
a lgebraic  expressions may  be simplified by this procedure .  

Example  1.10 ~ w sin w dw 
Let u = w and dv = sin w dw then du = dw and v = - cos w 

Therefore :  

.I w sin w. dw = ~ u. dv = - w cos w + ~ cos w dw 
= -- wCOS w + s i n  w 

Example  1.11 ~xe ~ dx 
Let u = x and dv = c ~ dx  then du= dx and v = e ~ 

Therefore:  

~ .re~ dx = ~ u . dv = xe" - ~ e~ dx  = xe.~ - e~ = e~(x - 1) 

Example  1.12 ~ cos 20dO 
Let u = cos 0 and dv = cos OdO then du = - s i n  OdO and v = sin 0 

Therefore:  

j" cos 20dO = ~ u. dv = cos 0 sin 0 + ~ sin 20dO 
sin 20 

- 2 + ~(1 - c o s  2 0) dO 

i.e.: 

2j'cos 20dO ~ + 0  hence ~cos 20dO s i420  0 = = - - + ~  

Example  1. !3 ~ sec 30dO 
Let  u = s e c O  and dv=sec2OdO then d u = s e c O t a n O d O  and 
v -  tan 0 

Therefore :  

j" sec 30dO = sec 0 tan 0 -  ~ tan 2 0 sec OdO 

= sec 0 tan 0 -  ~ sec 30dO + ~ sec OdO 
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i.e.: Therefore: 

2 ~ sec3OdO = sec 0 tan 0 + log~ tan ~ + 
7x 2-  3 

J'2x - 3x 2 + 4x - 6 
2 x + 3  3 

- -  . dx= ~ .-~5-+--2 . dx + ~ 2 x _  3 . dx. 

Therefore: 

[ (")}]  j sec30d0=~ sec0 tan0+ log~  tan 4 + 0  

1.7.9 Integrat ion o f  fractions 

The integration of functions consisting of rational algebraic 
fractions is best carried out by first splitting the function into 
partial fractions. It is assumed that the numerator  is of lower 
degree than the denominator; if not, this should first be achieved 
by dividing out. It may be shown that the prime real factors of 
any polynomial are either quadratic or linear in form. This leads 
to four distinct types of  partial fraction solutions which are now 
described. 

1.7.9.1 Fractions type 1 

The denominator can be factored into real linear factors all 
different. The partial fractions are then of the form a/(bx + c). 

2x+ 3 
Example 1.14 ~ x 2 - 4 dx 

Now 

2x 3 3 
= ~ x-y--+~+ 2 "dX + ~ x-y-+~+ 2 "dx + ~ 2XL 3 "dx 

3 , x 3 = loK.(x 2 + 2) + x/,:-~ tan ~-~ + ~ log~(2x- 3) 

1.7.9.3 Fractions type 3 

The denominator can be factored into real linear factors, some 
of which are repeated. The partial fractions then include expres- 
sions of the form a/(bx + c)". 

3x 2 + 8x + 16 dx = f f ( x )  
Example 1.16 ~ x 3 + 3x 2 - 4 j ~ dx 

F(x)=  ( x -  l ) ( x +  2) 2 and f ( x )  _ A B C 
F(x) x - 1  + (x+  2) + (x+  2) 2 

Hence: 

3x'- + 8x + 16 = A(x + 2)-" + B ( x -  1 )(x + 2) + C ( x -  1) 

putting x = I then A = 3; x = - 2 then C =  - 4; substitution gives 
B = 0  

2 x + 3  A B - + 
x 2 - 4  x - 2  x + 2  

i.e.: 2x + 3 = A(x + 2) + B ( x -  2) 

Therefore: 

~ f ( x )  d x = 3 ~  dx - 4 ~ - d x  x-'Z]-I (x + 2) 2 = 3 lo& ( x -  1) + (x+2 )  

7 1 i.e. A = ~  a n d B = 3 ,  

Therefore: 
2 x + 3  7j, dx +l,_t dx 7 1 
X2-4  dx= -4 x - 2  4 J x + 2 = ~ l o g c ( x - 2 ) + ~ l o g ~ ( x + 2 )  

1.7.9.4 Fractions type 4 

The prime factors of the denominator include quadratic func- 
tions some of which are repeated. The partial fractions then 
include expressions of the form (ax + b)/(cx 2 + dx + e)". 

1 2 x -  I dx-- j" f ( x )  
Example 1.17 ~(x2 + 1)2(x+2) f f ~ d x  

1.7.9.2 Fractions type 2 

The prime factors of  the denominator include quadratic func- 
tions and all factors are different. The partial fractions then 
include expressions of the form (ax + b)/(cx 2 + dx + e). 

7 x 2 -  3 . dx 
Example 1.15 ~ 2x ~ - 3x 2 + 4 x -  6 

7x 2 -  3 Ax + B C 
Put 2x ~ - 3x 2 + 4 x -  6 - x 2 + 2 -t 2x - 3 

i.e." 7x 2 -  3 = (Ax + B)(2x -  3) + C(x 2 + 2) 

f ( x )  Ax  + B Cx + ~ E 
-F-~ dx= (x~+ l) - - - - - ~  + (xi+ + (x+ 2) 

i.e. 
1 2 x -  1 =(Ax  + B)(x+ 2)+ (Cx + D)(x2+ l)(x + 2)+ E(x:+ 1) 2. 

Put x = - 2 ;  then E =  - 1. 

Therefore: 

x4+ 2x2+ 12x=Cx4+(D+ 2C)x3+(A + 2 D +  C)x2+ 
(2A + B + D + 2C)x + 2(B + D) 

= (2A + C)x2+ ( 2 B -  3 A ) x - ( 3 B -  2C) Equating coefficients, we find C =  1, D = - 2 ,  B =  2 and A = 5 

and therefore A = 2, B =  3, C =  3 Therefore: 

~I~x) ax_ I 5x+2 x - 2  a x - ~  ax 
~6~ ~x~ + l )~ ax + ~ ~-r~+ l x + 2 



Mathematics 1/27 

5 d(x2+ 1) dx 1 d(x2+ I) 
= ~ I ( x 2 + l ) i  + 2 I ( x 2 + 1 ) 2  + 2 I  x 2 + l  

dx dx -2Ix- -Ix+2 
5 1 x dx 1 

- - -  2 I ~  + ~ + I ~  + 2 l°g~(x2+ 1) 

- 2 tan-~ x -  log~ (x + 2) 

- ~/(x2 + 1) 2x 5 + log~ 
- 2(x2+ 1--------~ x +  2 

tan ~ x 

1.8 Matrix algebra 
A matrix is an array of mn numbers in m rows and n columns 

a~ a~2 • • •  a l n  

a2) a~ . . .  au 

a,n I am2 . . .  am, 

The element in the ith row and j th  column a u is called the (i, j) th 
element and the matrix is often denoted by [a~ or A. When m = n 
the matrix is square. An m × 1 matrix is called a column vector 
or column matrix. 

Xl 

X = x2. (1.64) 

X,n 

A 1 x n matrix is called a row vector 

Y= D',, y 2 • . .  y,] (1.65) 

is of  order m x p. 
It should be noted that, in general A B  ~ BA.  

1.8.3 The unit matrix 
The unit matrix is a square matrix I for which: 

ao= O for i ~ j  
au= 1 for i = j  

1.8.4 The reciprocal of a m a t r i x  
The reciprocal matrix A-~ of A ~xists only if the determinant of 
A is nonzero and is given by: 

A A - i = I = A - M  

1.8.5 Determinants 
The determinant of a square matrix is defined as: 

IA l = ll ,,ll = E (  + . . . a., ,) 

the summation of n! terms being over all the arrangements (a, fl, 
. . .  v) of the column suffixes and the sign 4- being chosen 
according to whether the arrangement is even or odd. 

In the simplest case, 

a~ a~2 
a2 ~ a22 = a~ a22-  a~2 a2~ 

and from this can be developed the expressions for the expan- 
sion of determinants of higher order than the second. The minor 
of a,j in A is the determinant of the matrix obtained by deleting 
the ith row and j th column of A. The cofactor A,j of a 0 in A is 
( -  ly+; x minor of a o. 

Now the expression for a determinant is given by: 

1.8.1 Addition of matrices 
Two matrices may be added if and only if they are of the same 
order m x n• 

Then: A + B =  [a,;] + [bi;] = [(a,.; + b,;)] 

i.e. the sum is formed by adding corresponding elements. 

1.8.2 Multiplication of matrices 

(1) By a scalar. 
Any matrix may be multiplied by a scalar. 

Then 2A = 2[a,/] = [(2a,j)] = A2 

i.e. all the elements of A are multiplied by 2. 

(2) Multiplication of two matrices. 
Two matrices may be multiplied (A times B in that order) 
only if the number of columns of A is equal to the number of 
rows of B. If A is [ao] of order m x n and B is [b0] of order 
n x p then 

AB=ta~tb°]= E ( ~ a~'bkj ) 

IAl--a, ,IA.l+a,~lAo_l . . .  +a,. lA,.  I 

The value of a determinant is unaltered by interchanging rows 
with columns• Interchanging either two rows or two columns 
changes the sign of a determinant. Thus, if either two rows or 
two columns are identical the determinant is zero. 

1.8.6 Simultaneous linear equations 
Simultaneous linear equations can be arranged in matrix form 
and their solution obtained via determinants 

allxl+a12 X2+ . . .  +a,,,x,,=b~ 

a,,,~ x~ + . . .  + am x,, = b,, 

may be written A X  = B 

and now X = A - ' B  

Io, I 
alternatively x j -  [D[ 

where D denotes the determinant [a,j[ and Dj denotes the deter- 
minant D with the elements aoa2s.., amj replaced by b,b 2 . . .  bin. 
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STATISTICS 

1.9 Introduction 

Statistical techniques are used in engineering mainly in connec- 
tion with the quality control of manufacturing of produced 
material and with the checking for compliance of such products, 
with whatever specifications or clauses are contained in the 
contracts covering their purchase and sale. In order to exercise 
quality control or to check for compliance it is necessary to 
make measurements of one sort or another. Now it is well 
established that the result of repeating a measurement (or of 
repeating an experiment) does not generally repeat the observa- 
tion or original result. Further, repeat measurements will lead to 
further results and so appears the problem of variability. 

Generally speaking, the variation in results arises both 
because the subjects of the measurement are themselves differ- 
ent and also because of errors introduced by the experiment or 
the measuring technique. Such variation is common experience 
in the measurement of, for example, the strengths of materials. 
It will often be desirable (if only from an economic viewpoint) to 
reduce the variation to as small an amount as can conveniently 
be arranged. However, it is not generally possible to reduce such 
variation to an unimportantly small value and so it becomes 
necessary to deal with the problem posed by the obtaining of 
different results from apparently identical experiments. It is to 
deal with the evaluation of such scattered experimental results 
that statistical techniques have been developed. 

It is supposed that, were it possible to continue the experi- 
ments indefinitely, the results so obtained would cluster around 
some fixed value which would be the required value. (It is an 
implicit assumption that the indefinite series of experiments be 
conducted under identical conditions.) Since it is not possible to 
conduct indefinitely long experiments the problem becomes that 
of trying to determine, from a finite series of experiments, that 
fixed value (which is presumably the true value) about which the 
indefinite series of results would cluster. This attempt to deter- 
mine is known as 'estimating', and while the use of that 
particular word does not imply that there has been any guess- 
work in obtaining it, there is an implication of uncertainty about 
the result. In statistical methods this uncertainty is calculated 
and specified in terms of confidence limits. A result obtained 
after statistical calculations should generally be given in terms of 
an estimate surrounded by confidence limits. Of course the more 
nearly certain we wish to be that the confidence limits contain 
the true value the wider those limits must be. In cases where the 
experiment or test is not aimed at the estimating of some 
particular quantity, the form of the estimate and confidence 
limit changes to one that such, and such a result would not have 
arisen 'by chance' more than on so many per cent of occasions 
in an indefinitely long series of trials. 

It is important that statistical results should be properly 
presented in the form of estimate and confidence limits: having 
decided upon such a form it is then sensible to use an appropri- 
ate precision for reporting the values. For example, when 
estimating the strength of concrete where an estimate might be 
of the form: 42 + 5 N/mm 2 (at 95% confidence) there is clearly 
no point in reporting the result to several decimal places. 

When an estimate of some quantity has been obtained, the 
interval between the confidence limits may be wider than it is 
desired they should be, in which case the interval may be 
narrowed by accepting a lower confidence. If this is not desir- 
able it will be necessary to: (1) take more observations; or 
(2) improve the experimental techniques used to reduce the 
variability of the results. 

It is important that the question of what is required by way of 

precision should be considered prior to an experiment so that 
the number of observations necessary to obtain the required 
precision may be assessed. In making that assessment it will be 
necessary to have information about the variability of parts of 
the experiment. This information may be available from pre- 
vious experience, but if not it must be obtained by a pilot 
experiment. 

It will be clear from the foregoing that any result which is 
obtained, being subject to error, may cause a wrong decision to 
be taken. Thus when dealing with, for instance, material to be 
checked for strength the contract for the supply of the material 
should indicate a test scheme to determine whether the strength 
of the material is correct or not. 

Such a test scheme will involve experiments, and the possibili- 
ties for a wrong decision are: 

(1) That the test will wrongly show as unsatisfactory, material 
with the correct strength. (This is known as the manufac- 
turer's or supplier's risk.) 

(2) That the test will wrongly show as satisfactory, material 
with an incorrect strength. (This is known as the consumer's 
risk.) 

The performance of a test scheme is defined by its power and is 
represented by a graph showing, on one axis, the true value of 
the parameter in question (e.g. the strength of the material) 
plotted against the probability that material will pass the test 
and so be accepted. The calculation of such graphs is not a 
simple matter and requires full information about all aspects of 
the test scheme under consideration. The power curves of two 
test schemes represent, however, the only way in which the 
performance of the two schemes may be compared. 

In the following sections are presented definitions of some of 
the terms used in statistical work, descriptions of statistical 
techniques and tests which may be used as a part of the 
experimenter's armoury of techniques and a description of 
central charts as a method of quality control. In the final section 
the references have, in the first cases, been selected for their 
readability as well as for their coverage of any particular point. 
Thus the works by Moroney ~ and Neville and Kennedy 2 are 
especially recommended as initial reading for anyone interested 
in statistical problems and techniques. 

1.10 Definitions of elementary 
statistical concepts 

1.10.1 Statistical unit or item 

One of a number of similar articles or parts each of which may 
possess several different quality characteristics. 

Example 1.18 A piece of glass tubing taken from a large 
number produced in quantity for which the diameter and other 
characteristics may be measured; a concrete cube for which the 
strength may be measured. 

1.10.2 Observation - observed value 

The value of a quality characteristic measured or observed on a 
unit. 

Example 1.19 The diameter in millimetres of a piece of tubing; 
the strength of a concrete cube. 

1.10.2.1 Sample 
A portion of material or a group of units taken from a larger 
number which is used to obtain estimates of the properties of the 
larger quantity. 



Example 1.20 Forty-eight pieces of tubing sampled from all 
the pieces produced during a day; the concrete cube made from 
a batch of concrete. 

1.10.2.2 Random sample 
A sample selected in such a manner that every item has an equal 
chance of inclusion. 
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numbers the median is the average of the two numbers either 
side of the median position.) 

1.11.1.3 Midpoint or midrange 
The value which lies half way between the extreme values. 

Example 1.25 Using the numbers above the mid point is 

1.10.2.3 Representative sample 
A sample whose selection requires planned action to ensure that 
proportions of it are taken from different subportions of the 
whole. 

Example 1.21 The forty-eight pieces of tubing selected two 
from every hour 's  production in one day; concrete cubes made, 
one from every batch, of a lot consisting of several batches. 

1.10.2.4 Population 
A large collection of individual units from one source. In 
particular circumstances this may be, for example, an output or 
batch: the bulk of material (concrete) or total collection of units 
(pieces of tube) produced by a set of machines or a factory in a 
specified time. 

Example 1.22 Pieces of tubing made in a particular factory 
during a month; the concrete produced by a single plant during 
1 day. 

1.10.2.5 Statistic 

A statistic is a quantity computed from the observations of a 
sample. 

1.10.2.6 Parameter 
A parameter is a quantity computed from the observations 
made on a sample. Thus, the value of a parameter for a 
population is estimated by the appropriate statistic for the 
sample. 

1.11 Location 

1.11.1 Measures 
1.11.1.1 Arithmetic mean 

The arithmetic mean, often called the 'mean '  or the 'average', is 
the sum of all the observations divided by the number of 
observations: 

0.5 (2.538 + 2.547)= 2.542 5 

1.12 Dispersion 

1.12.1 Measures 
1.12.1.1 Range 

The difference between the largest and the smallest values. 

Example 1.26 2 .547-  2.538 = 0.009. 

1.12.1.2 Deviation 
The difference between a value and the mean of all the values. 

1.12.1.3 Variance 
The variance of a set of values is the mean squared deviation of 
the individual values and is normally represented by a 2. 

oa = _1 ~ (xi_/02 
n i= (1.67) 

where p is the mean value. 

A frequently occurring problem is that of estimating the main 
properties (the mean to describe the location and the variance to 
describe the dispersion) of a population by measurements (xi) 
taken on a sample. From the measurements on the sample we 
can calculate the sample mean, x which is an estimate of the 
population mean p. The sum of the squared deviations is 
smallest about the arithmetic mean; thus, for the population an 
estimate of variance using the sample mean and sample variance 
will be an underestimate. In cases where we wish to estimate 
population parameters from sample observations, a correction 
is made by using ( n - 1 )  as divisor instead of n. Thus, the 
estimate of the population variance from observations x; on a 
sample is: 

a2 = 1 
n -  1~ (x i -  x)2 (1.68) 

i =  

X ' -  -- X i n i= (1.66) 
1.12.1.4 Standard deviation 

The standard deviation is the square root of the variance. 

Example 1.23 0.20 (2.540 + 2.538 + 2.547 + 2.544 + 2.541) 
=2.542. 

1.11.1.2 Median 
The value which is greater than one-half of  the values and less 
than one-half of the values. 

Example 1.24 The value 2.541 is the median of the above five 
numbers. (Had there been an even rather than an odd number of 

s =  ~ ( x , - x )  2 
i= (1.69) 

As in the case of variance, the divisor n is replaced by ( n -  1) 
when working with sample observations to estimate a popula- 
tion standard deviation. The standard deviation has the same 
units as the original observations and their mean x. 

When carrying-out hand calculations, the identity: 

(X i - -X)2 - -  £ (Xi) 2 - n x 2  
;-- i--, (1.70) 
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frequently saves effort. However, this method is not recom- 
mended for use on computers because of the danger of loss of 
accuracy when n is large and x~ has several significant figures. 

1.12.1.5 Coe~cient of  variation 

The coefficient of  variation is the standard deviation expressed 
as a percentage of the mean. This is useful for dealing with 
properties whose standard deviation rises in proportion to the 
mean, for instance the strengths of concrete as measured by 
compressive tests on cubes. 

1.12.1.6 Standard error 

The standard error is the standard deviation of the mean (or of 
any other statistic). If in repeated samples of size n from a 
population the sample means are calculated, the standard 
deviation calculated from these means is expected to have a 
value: 

Sm=a/ ,dn (1.71) 

where tr is the standard deviation of the population. 

An important result is that whatever the distribution of the 
parent population (normal or not) the distribution of the sample 
mean tends rapidly to normal form as the sample size increases. 

1.13 Samples and population 

1.13.1 Representations 
1.13.1.1 Frequency 

The number of  observations having values between two speci- 
fied limits. It is often convenient to group observations by 
dividing the range over which they extend into a number of 
small, equal, intervals. The number of observations falling in 
each interval is then the frequency for that interval. This allows 
a convenient representation of the information by means of a 
histogram. 

1.13.1.2 Histogram or bar chart 

A diagram in which the observations are represented by rec- 
tangles or bars with one side equal to the interval over which the 
observations occurred and the other equal to the frequency of 
occurrence of observations within that range (Figure 1.45). 

1.13.1.3 Distribution curve 

The result of  refining a histogram by reducing the size of  the 
intervals and correspondingly increasing the total number of 
observations. In the limit, when the intervals become infinitesi- 
mally small and the number of  observations infinitely large, the 
tops of the rectangles of  a histogram become a distribution 
curve (Figure 1.46). 

1.13.1.4 Normal distribution (or Gaussian distribution) 

A particular type of  distribution curve given by: 

{ -½(x-~) ~ } 
y(x)= a(2n)t exp tr 2 

(1.72) 

where x is the observational scale value, g the population mean 
and tr the population standard deviation. 

These parameters of the distribution are estimated by the 
sample mean x and standard deviation s. 

It has been found that a great many frequency distributions 
met with in practice fit quite closely to the normal distribution. 
However, one should beware of thinking that there is any law 
which says that this shall be so; it is simply a matter of 
experience. In circumstances where the observed frequency 
distribution does not appear to be normal it is often possible to 
transform the original data (e.g. by taking logarithms, square 
roots or squares) so that the transformed data is nearly normal. 
These two facts explain why so much of the effort in statistical 
theory has been devoted to treatment of  normal-distribution 
problems. 

For  normal distributions the percentage of observations (in 
large samples) lying within certain limits of the observational 
scale are given in Table 1.5 and Figure 1.47. 

1.14 The use of statistics in industrial 
experimentation 

As has been stated, in experimental work units in a sample 
drawn from a parent population and the observations made on 
them are subject to error, and our task for which we use 
statistics is to make useful statements about the properties of  the 
parent population. To achieve this, the most important statistics 
are the mean and the standard deviation. This section, therefore, 
considers the obtaining of sample means and standard devi- 
ations and confidence limits for them in situations where the 
parent population is normally distributed. Tests of significance 
for comparisons of means and variances are also described. 
Inevitably, only brief summaries are given and a study of 
standard works is advised before using the techniques on any 
important matters. As an alternative, the help of the statistical 
expert should be sought. If such assistance is to be obtained, it 
cannot be emphasized too strongly that it should be acquired 
fight at the outset of the problem. It is rarely of much help to 
anyone (even though it happens only too frequently) for the 
statistician to be asked: 'Please tell me what these numbers 
show: they must mean something, I 've collected so many, and 
they cost a great deal to obtain. '  

1.14.1 Confidence limits for a mean value 
If the form of the distribution were known together with the true 
mean g and the standard deviation tr, then it is easy to make 
statements about the mean of a number of observations. If the 
population is normal then the mean x of a sample size n drawn 
randomly will, on average, satisfy: 

3a - 3tr 
/1 -  ~-~ < x < / l +  

997 times out of 1000 (see Table 1.5). 
Thus, if g is actually unknown (and we are trying to estimate 

it) we may assert: 

- 3tr - 3tr 
x -  ~ < ~ < x +  ,/n 

with 99.7% confidence. By this, we mean that if we go on 
making such assertions indefinitely we shall be wrong only 3 
times in every 1000. We can make the containing interval 
narrower by reducing confidence so that we assert with 95% 
confidence that the limits for g are x + 1.96o/x/n (Figure 1.48). 

Very often we may be concerned with a limit on only one side, 
for instance we may require assurance that g is greater than a 
certain value. Now, the probability of x falling above p + 2o/x/n 



Statistics 1/31 

> ,  

t-- 

U .  

> .  

¢D 

IJ. 

I 

i 
Values of observations 

Figure 1.45 A histogram of observations from a sample 
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Values of observations 

Figure 1.46 A continuous distribution curve 

Table 1.5 The normal distribution 

Range Observations within range (%) 

/t 4- tr 68.27 
/t 4- 2tr 95.45 
/~4- 3tr 99.73 

4- 1.96o 95 
g 4- 3.090 99.8 

is 2.27%. Thus, we may assert with 97.73% confidence that/~ 
does not lie below x - 2 t r / x / n .  

Generally, the proportion of sample means x which exceed 
/~ + u°tr/x/n is equal to a where u, is the value given in a table of 
the normal distribution for a specified probability, say P. 
Because the distribution is symmetrical, ct is also the proportion 
of sample means which are exceeded by p - u j r / x / n .  Thus, the 
whole range of  values which/~ may take is divided into three 

parts and three assertions can be made, to correspond one with 
each part: 

(1) p>~x-ua tr /x /n  with confidence 100(1-a)%.  
(2) lJ <<. x + uatr/x/n with confidence 100(1 - a)%. 

w 

(3) x -  u jr /x /n  <<. x + ujr /x /n  with confidence 100(1 - 2a)%. 

This shows two sorts of statement, the single-sided (cases 1 and 
2) and the double-sided (case 3). When using statistical tables it 
is important to check whether the tabulation is for single-tailed 
testing or two-tailed testing. (This description arises because 
cases 1 and 2 are, in the practical cases where a useful level of 
confidence is being used, representable as the two tails of a curve 
shaped like the normal distribution curve.) 

In the discussion of confidence limits for the mean value/~ of a 
population estimated by the mean of the sample x above it was 
assumed that the population standard deviation was known. 
Generally this will not be the case and p will have to be 
estimated as s, a sample standard deviation and used in place of 
/~ in the calculations above. The confidence limits for ,u are now 
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Figure 1.48 Diagrammatic representation of confidence limits 
(with 95% limits shown) 

wider because of the uncertainty about s and, instead of using u 
from the normal distribution curve it becomes necessary to use 
tables of student 's t. The particular value of t to be used depends 
on how good the estimate s of a is, which in turn depends upon 
the number of degrees of freedom in making the estimate. In the 
case of a standard deviation of n observations, the number of 
degrees of freedom is (n - 1). The number of degrees of freedom 
is generally denoted by 4. Some values of t are given in Table 
1.6. In using this table the 100(1-  2a)% confidence limits are: 

(1) Lower limit x -  t.s/~/'n. 
(2) Upper limit x + t .s /~/n.  

using the value of to for the appropriate number of  degrees of 
freedom. 

Table 1.6 Significance points of the t-distribution (single-sided) 

¢b Probability. P 

0. I 0.05 0.025 0.0 i 0.005 

! 3.08 6.31 12.70 31.80 63.70 
2 i .89 2.92 4.30 6.96 9.92 
5 1.48 2.01 2.57 3.36 4.03 

10 !.37 1.81 2.23 2.76 3.17 
20 1.32 i.72 2.09 2.53 2.85 
40 1.30 1.68 2.02 2.42 2.70 
oc ! .28 1.64 i .96 2.33 2.58 



1.14.2 The difference between two mean values 
A problem which arises frequently is that of determining if the 
difference between two means has occurred by chance because 
of natural variation or whether there is a real difference. A real 
difference can only be asserted in the form of a statistical 
statement that the difference is significant at a certain level, i.e. 
there is a probability that there is a real difference. This is done 
by calculating a t statistic from information about the samples 
and comparing the result with the tabulated t values. The 
means, standard deviations and number of observations of the 
two tests are denoted by x~, x 2, s~, s 2, nl and S 2. 

Calculate t =  (x~ - x2)/s p 

where 1 + 1 ) ( v , s ~ + v z s ~ 2 ) ]  ,0,/[(,: 
and vj=n I - l , v  2=n 2 -1  

(Note:  s o is the pooled standard deviation for the samples 1 and 
2.). 

If this calculated value exceeds a tabulated value of t (for 
if= v~ + v2) then the difference is significant at the level deter- 
mined by the probability heading the column of the t table. 

As an example, consider the comparison of two testing 
machines for crushing concrete cubes. The machines are to be 
compared by making a single batch of twelve concrete cubes and 
testing six cubes on each machine. The results obtained are: 

Machine 1 39.2 38.4 44.7 41.0 41.0 44.1 
Machine 2 41.1 33.8 42.4 36.8 32.0 40.1 

From these observations we can calculate: 

Sample sizes n~ = 6, n 2 = 6 
Sample means x~ =41.4, x2= 37.7 
Sample standard deviations s~ = 2.54, s 2 = 4.19 

~ {  (1  1 )  ( 5 x 2 . 5 4 2 + 5 x 4 . 1 9 2 )  } 
sp= g + g 5+5  =2.0 

so: t=(41.4-37.7) /2 .0= 1.85 

The number of degrees of freedom 9b= vl + v2= 10. 
From Table 1.6 it is seen that for if= 10 the single-sided 2.5% 

(or 0.025) point of the t distribution is 2.23 and so the calculated 
t value is not significant at the 2 x 2.5% level. 
(Note:  It is necessary to double the probability value from the 
table because the question: 'Are the testing machines different?' 
requires a two-sided test to be carried out. By contrast the 
question: 'Is mean 1 greater than mean 2?' would require a 
single-sided test.) 

1.14.3 The ratio between two standard deviations 
In a similar way in which it may be desired to compare two 
means, it may be desired to compare two standard deviations. 
Whereas means are compared by calculating their difference, 
standard deviations are compared by calculating the ratio of the 
variances (the square of the standard deviation) and comparing 
the ratio with tabulated values in an F test. In all such 
calculations the value obtained for the ratio must be greater 
than unity so that the larger standard deviation (say s,) must be 
placed over the smaller (s2) where s~ and s 2 are sample standard 
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deviations and so estimates of the population standard devi- 
ations. Since we have of necessity sl i> s2 when we calculate 

F -  s~ 

the F test is a one-sided test. 
Values of F for comparison with the calculated value from the 

observed standard deviations are given in most statistical 
books? Such tables are presented generally with one table for 
each specified probability and within such a single table the 
column headings are the values of vl ~(the number of degrees of 
freedom, n~- 1, of the smaller standard deviation estimate s2). 

By way of illustration, consider the example used above for 
the comparison of means. In that example the observations lead 
t o :  

n t =n2=6 

SO: V I = V 2 = 5 

s~=2.54 s 2=4.19 

In this example s 2 > s~ so the calculation of F is: 

4 .19 )  ~ 
F =  ~ = 2.72 

In the tables (e.g. in Neville and Kennedy 2) the tabulated ! % 
confidence point of F is 10.97 and the 5% point is 5.05 both 
found for v~ =v 2 = 5. Since the calculated F ratio is not greater 
than the tabulated values the conclusion to be drawn is that 
there is not strong evidence that population standard deviations 
are different. 

1.14.4 Analysis of variance 
If a manufacturing process or a testing scheme involves a 
number of independent factors, each of which contributes to the 
variability of the results, then the variance of the whole system is 
equal to the sum of the component variances. (Note that the 
variance must be added, not the standard deviation.) This 
additive property permits the technique of analysis of variance, 
which can take many forms depending on the structure of the 
process which is being analysed. One of the major difficulties of 
analysis of variance lies in deciding what form of structure is 
appropriate to the process being modelled by the analysis of 
variance. In the majority of cases which are not both simple and 
short it will be sensible for the arithmetic to be performed by 
computer. However, in simple and short situations the calcula- 
tions may reasonably be undertaken by hand. 

Probably the most commonly occurring simple situation is 
that of analysis to determine variance between and within 
batches. The methods are best described by an example. The 
example will be one in which concrete cubes are made batches 
(each of three cubes) and strength tested at (say) 28 days. The 
first step is to define the statistical model which is being used: 

Y~= Y+ A,+ E o (1.73) 

where there are i batches each of j cubes, Yo is the observed 
strength of thejth cube in the ith batch, Y is the average strength 
(averaged over all tests), Ai is the difference between Y and the 
average strength of batch i, and E u is the difference between the 
jth cube of batch i and the average strength Y+ A~ of that batch. 
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If the data for four batches of cubes is: 
19.8 21.1 19.8 (ba t ch l )  
21.8 22.0 21.0 (batch 2) 
21.2 21.5 21.2 (batch 3) 
21.4 21.4 21.0 (batch 4) 

it is found that Y= 21.1. 
From this can now be found the sums of squares of the A~ and 

E u. Associated with each sum of squares is a number of degrees 
of freedom (as usual one less than the number of  occurrences) so 
that dividing the sums of squares by the appropriate number of 
degrees of  freedom gives the mean square. Thus is constructed 
an analysis of  variance table as shown in Table 1.7. 

The method of test is by F ratio so that the larger variance 
(the average of  the sums of squares of errors) is divided by the 
smaller. Here, 1.07/0.23 =4.61 with 3 degrees of  freedom for the 
column heading and 8 for the row heading when comparing 
with the tabulated F values. For  v, = 3, v2=8 the tabulated F 
value at 1% confidence level is 7.59. The observed value does 
not exceed this and so there is no assertion that can be made at 
the 1% level. However, the tabulated F value at the 5% 
confidence level is 4.07. The observed value exceeds this and so a 
result significant at the 5% level has been obtained. Thus, 
although there is not strong evidence there is some evidence of a 
real difference between batches. 

In an example so small as this one the necessary arithmetic 
(especially if properly organized) may reasonably be tackled by 
hand. However, as can be deduced from examination of F 
tables, it is not always easy to get significant results with small 
experiments. Thus, the use of the technique will in many cases 
imply the use of  a computer for handling the arithmetic. In such 
circumstances the engineer is likely to be using an existing 
computer program and need only concern himself with correctly 
presenting the data for the program to analyse and then with the 
interpretation of results and comparisons with tabulated F 
values. He has no need therefore to develop great skills in short- 
cut arithmetic methods. 

Table 1.7 

Model Sum of  Degrees of  Mean 
term squares freedom square 

Ai 3.2 3 1.07 
Eu 1.9 8 0.23 

1.14.5 S t ra igh t - l ine  fit t ing and regression 

Experiments may be designed to examine whether two para- 
meters are related. The circumstances may involve the effect on 
a property of a product  of  some parameter in the production 
process. In the experiment the parameter will be controlled or 
constrained to take a number n of prescribed values x i over some 
range and the consequential observations yi will be paired with 
them. The question now arises as to the 'best straight line' 
through the points x,, y,. It is assumed that the x i values are 
error-free but that the observations y~ are subject to error. The 
method of obtaining the 'best' straight line in such circum- 
stances is to choose the two parameters m and c o'f the straight 
line: 

y = m x + c  (1.74) 

in such a way that the sum of the squares of  the errors in the y 
direction is a minimum. This is achieved by making: 

n Z x y -  Z x Z y  (1.75) 
m - -  

n Xx  2 - (Xx) '  
and: Zx2Zy - Z x Z x y  (1.76) ¢ - -  

n Z x  2 -  ( Z x y  
This line is called the line of regression of y on x and one of its 
properties is that it passes through the centroid 2 ,  y of  the 
observed points. The usual statistical question now arises con- 
cerning the confidence limits which should be applied to the 
calculated line which is an estimage of a relationship. To 
examine this problem the errors or deviations must be calcu- 
lated. At every observation point x I Yi which does not actually 
lie on the calculated line there is an e;. The variance of y 
estimated by the regression line is then: 

s~-  ze'2 (1.77) 
• V 

where v is the number of degrees of  freedom. 
Since calculation of m and c impose two restraints the value of 

v is given by: 

v = n - 2  (1.78) 

m 
The variance of the mean value y is given by: 

S~.r. - "  S~--~2' 
n (1.79) 

so that the confidence limits for y are." 

y 4- ts~ (1.80) 

where, just as for a sample mean, the value of t'is found from 
tables using the appropriate number of degrees of freedom. 

The variance of the slope m is given by: 

~2(x-~) 2 (1.81) 

and the confidence band for slope is given by: 

m + ts m (1.82) 

It may be necessary to compare one regression line with 
another, theoretical one, to see if there is any significant 
difference between the theoretical slope, m 0, and the observed 
slope m. This test is performed by calculating a t statistic: 

m - m o  (1.83) t=  
St, 

and comparing with the tabulated values. Just as in the ease of 
comparison by means of samples we can compare the slopes of 
two observed lines by replacing m -  m 0 by m , -  m 2 in Equation 
(1.83) and using a pooled standard deviation from the variances 
of the slopes of both lines in place of sh. The number of degrees 
of freedom used in the t table will be n w + n 2 - 4 .  

1.15 Tolerance and quality control 

Material is often manufactured for supply according to a 
specification which will include compliance clauses for the 
performance of the product. As an example, CP 110 3 lays down 
(in Section 6.8) certain strength requirements and also suggests 
a testing plan. The H a n d b o o k  to that code 4 discusses the 
problems of compliance and shows how different forms of  



testing plan after the operating characteristic of a test plan and 
so charge the risks run by the producer and by  the customer. 
The customer has, in theory, the opportunity of reducing his 
risk by adopting a more vigorous testing plan. This, however, is 
likely to cost more and a customer may well deem this not worth 
while. The producer, on the other hand, must expect to have to 
meet the compliance clauses and needs to arrange his produc- 
tion methods so as to make a profit taking account of whatever 
limits or penalties may be imposed on him by the compliance 
clauses under which he has to operate. Thus, the manufacturer 
or producer is faced with a problem of how to control his 
product. 

One example of a technique for exercising this control is 
shown by a system advocated for controlling the strength of 
ready-mixed concrete 5 by means of the cumulative sum chart 
which is an improved form of control chart especially developed 
and adapted to the problems of concrete manufacture. 

In the process of manufacture and measurement of some 
property of the product natural variation will cause the results 
obtaine.d to be distributed in some way. The problems facing the' 
manufacturer are: 

(1) To maintain adequate control over the process so that the 
variation in results does not become so large that an 
uneconomic number fall outside the specified tolerances. 

(2) To detect any trend for the observations obtained to be 
moving out of the specified limits, sufficiently early to take 
useful corrective action. 

As usual, samples are taken to estimate the properties of the 
parent population. To do this comparatively, many samples (25 
or more) of comparatively small (but not less than about four 
and all the same) size are tested and the mean of the means 
used to estimate the population mean. The population standard 
deviation is estimated from the variance within samples, the 
average sample standard deviation from the average sample 
range. 

Thus: = x~+x2. . .  +x,  
x - - -  k (1.84) 

x=  s/,/n 

for k samples of size n. 

Now a chart is drawn with time or sample number in the 
horizontal axis and observation values on the vertical axis. A 
line drawn at ~ represents the target performance of the process 
and two surrounding lines at ~ 4- 1.96/(x/n)s represent warning 
levels for the process while surrounding lines at ~ 4-3.09/(x/n)s 
can be regarded as action levels. 

The choice of the figures 1.96 and 3.09 has been made on the 
assumption that the process is functioning in such a way that the 
specified tolerance limits are reasonable, i.e. they are not so 
stringent that the chance of the product meeting the require- 
ments is not high while on the other hand the process is not so 
'good' (in which case it may be unnecessarily expensive) that all 
the results obtained lie well within limits. 

The design and use of control charts is a valuable use of 
statistical methods. Generally they are robust in the sense that 
their usefulness is little affected by factors such as non-normality 
of the basic data. However, for their efficient use in some area 
experience of the particular technology is desirable and for a 
better understanding of the possibilities of the techniques the 
reader is recommended to works by the British Ready Mixed 
Concrete Association 5 and Davies and Goldsmith. 6 
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COMPUTERS 

Computers and computing have made a substantial impact on 
most walks of life, civil engineering not excepted. The pace of 
development in computing is substantially greater than for any 
other area of activity in the engineering world. Although other 
subject areas are subject to bursts of activity from time to time, 
when research or some specific project provides the necessary 
spur, computers are developing rapidly all the time, whether the 
engineering world wishes it or not. In consequence a great many 
organizations find it difficult to keep abreast of what is available 
or of what might actually be of benefit to them in their work. 
This difficulty is not eased by the wide discrepancy between the 
useful life of most civil engineering work and the life of 
computers. 

Although, in princl~!e, computers are simple machines which 
can perform simple arithmetic and make simple decisions 
(according to a set of coded instructions--the program) that 
fact is ever more frequently masked by the use of sophisticated 
techniques which appear to make computers behave more and 
more like human beings, and able to undertake tasks previously 
the province of human effort. 

1.16 Hardware and software 

One of the most important distinctions which must be under- 
stood when considering computers is the difference between 
hardware and software. A simple criterion is to imagine that the 
hardware consists of the material pieces which one can see-- 
boxes, wires, screens, discs, chips etc.--while the software 
comprises the instructions which the hardware obeys. It is in the 
nature of the general developments in society that the cost of 
making the hardware is, in real terms, falling all the time. This 
fall in cost comes about through better design of components, 
automated manufacturing techniques and so on. All this is 
similar to the developments which have been taking place in 
other fields of manufacturing. 

The software, on the other hand, consumes human effort and 
imagination very intensively. It is not easy to improve the 
techniques of manufacture here! In consequence, the total cost 
of a computer installation--if it is regarded, for simplicity, as 
being composed of the two elements of hardware and of 
software--has changed considerably. In the early days, when 
computers were harnessed in working offices, the cost of the 
hardware was the major consideration and the software, if 
considered at all, tended to be something of an afterthought. 
Now we are recognizing that the software is, or ought to be, the 
major consideration. Once the major details of the software 
suitable for the envisaged tasks have been settled it is logical to 
search for the 'best' hardware solution which will accommodate 
the chosen software. 

It is, of course, unlikely that any office, let alone organization, 
will wish to 'computerize' just one activity. It is normal for a 
great multitude of tasks to benefit from being done by machine 
rather than by man. In this event the choice of hardware will be 
constrained by a, perhaps wide, variety of software. This 
emphasizes the fact that computers should be thought of (in the 
hardware sense) as general-purpose machines. 

1.17 Computers 

The changes which have taken place in recent years encompass 
the change from remote 'batch' computing to 'personal' com- 
puting where every person who needs one in order to do his job 
appears to have access to one on his desk. In truth, this 
revolution has come about via an intermediate stage, i.e. the 
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change from the large mainframe machines which, while they 
could perform several tasks apparently concurrently, had to be 
run by dedicated operators remote from the users, to the mini 
machines operated via remote terminals. With this scheme, the 
many users all feel (most of the time) that the computer is 
dedicated to them alone while, actually, the centre of the 
machine is servicing up to some tens of users and it is only the 
terminal which is dedicated to the individual user. 

The development of the 'personal' computer has had a bigger 
impact on this situation than is at first sight obvious. Personal 
computers came about because the huge improvements in 
computer technology allowed the production of a machine 
which can sit, complete, on a desk, but which has power greater 
than the mainframe machines of a decade ago. (Those main- 
frames had required a large dedicated room, and air-condition- 
ing, as well as operating staff.) 

The presence of the computer on the desk, with an impressive 
array of available software, encouraged a situation in which the 
users were often repeating tasks being performed by colleagues 
(especially the inputting of data). One description of the deve- 
lopment as it affected the functioning of an organization was 
that it was leading to near anarchy with little managerial control 
of what was happening to the benefit of the organization. 

This independence of the personal computers has therefore 
been both a benefit and a source of difficulty. Trying to get the 
best of all possible worlds has led to much emphasis on 
communications. Here is meant the communication between 
different computers, generally communicating with other com- 
puters within the same organization, but sometimes further 
afield. Increasingly, for organizations of a certain size, the plan 
followed is one with a major computer at the heart of operations 
with a network of personal computers around it. These personal 
computers can be connected to the 'heart machine', or can be 
operated in stand-alone mode, at the will of the user. In these 
_circumstances it becomes possible for the heart machine to be 
the repository of the valuable corporate data (which should then 
be held once only) to which the individual users can have access 
as and when their work demands it. The individual users can 
then use their own 'personal' data and run the programs of 
interest to them on their personal computer without affecting 
anyone else. Should an individual user have available something 
(be it data or be it a program) to which other users require 
access, this is arranged via the heart machine. 

The organization and control of such an arrangement is not 
simple and produces interesting problems of a managerial and 
human nature. But it is now possible to make arrangements 
which seem to be getting near to providing a situation in which 
men, machines, and the organization can all work reasonably 
efficiently. 

The providers of computing solutions (hardware and soft- 
ware) are, of course, in business. They will therefore advise 
potential customers of the benefits of the particular solutions 
they purvey. It is not easy for the (computing) lay person to 
judge the advice received from such quarters. It seems likely, 
therefore, that many organizations will be well advised to adopt 
the strategy of ensuring that they have in-house expertise to 
judge such matters. This notwithstanding the fact that, as time 
goes by, the purveyors of computing solutions are making 
greater emphasis of the idea that their solution needs no 
computer expertise. As in other walks of life, the lack of 
expertise in an activity in which one is engaged is likely to be 
costly. 

Since the advent of the personal computer (able to double as a 
terminal) sitting on the desk, has come the mobile or portable 
computer. This is depicted as sitting on the knees of the user and 
working off batteries, thus freeing the user from the need for 
access to mains electricity. While an obvious early use was, for 
example, for salesmen to enter their transactions, other applica- 

tions are being found. The collectign of technical data on site is 
an obvious parallel to those activities in other fields, so such 
machines are proving useful to the engineer. It can reasonably 
be said that the use of the fruits of computer invention are 
limited only by human imagination. Though trite, tliis state- 
ment has considerable importance. It can be very difficult indeed 
to think of a really new way of achieving some objective: the 
straitjacket of 'we've always done it this way' can be extremely 
strong. 

1.17.1 The use of computers by civil engineers 
Although engineers have appeared, at times, to lag behind in the 
use of computers, they actually began using them at a very early 
stage. The first 'obvious' application lay in the solution of the 
many simultaneous linear equations to which many problems of 
structural analysis can be reduced. This mathematical problem 
had received much attention in an effort to speed, refine, and 
make more reliable, hand methods. The ability of the computer 
to perform repetitive tasks reliably shifted the search to r0aking 
the preparation, and input, of the data describing the problem 
more robust. This search was hampered for some time by 
limitations of the hardware. However, the availability of sub- 
stantially increased computing power eventually allowed the 
problem of the data to be encompassed as well as the problem of 
solving the equations and presenting the results. 

This theme of the availability of increasing computing power 
allowing new tasks to be tackled has recurred frequently in the 
history of computing. 

The use of computers for structural analysis represented the 
limit of activity in engineering for some time. However, develop- 
ments of other machines for drawing or plotting prompted an 
attack on another phase of engineering design activity. Concep- 
tually, the operation of a design project can be split into four 
stages: (1) the concept and choice of solution; (2) the analysis 
of the whole structure; (3) the design of individual members; 
and (4) the preparation of detailed drawings. 

The contribution computers can provide to (1) above has only 
comparatively recently become apparent in terms of rearranging 
scheme drawings and the holding of base data. Stage (2) was 
covered by the early computing endeavours and (4), the detail 
drawings, became possible when the plotters, developed for aero 
work, for example, became cheap enough for use in civil 
engineering. The development of a package for the production 
of drawings of reinforced concrete details was a major break- 
through. In use the detailer has available the information arising 
from the design of members. Using a desktop computer, for 
example, he supplies data of the basic dimensions of the member 
and then, via a question-and-answer dialogue, supplies informa- 
tion to define the reinforcement detail. At all stages the informa- 
tion supplied by the user is checked for logical consistency, 
geometric compatibility and compatibility with appropriate 
code or standard documents. If an attempt is made to do 
something impossible or contrary to regulation, then the user is 
not permitted to proceed until the error has been rectified. By 
contrast, an attempt to do something which, according to 
standards incorporated with the program, is unusual will result 
in a message which the user can heed, or ignore, at will. Such 
interactive programs were impossible with the earlier batch 
machines. 

Having been developed in modern environments, such a 
program is now expected to be very 'user friendly'. To take a 
cynical view, a user-friendly program is one for which the user 
has no need to consult the (written) user manual! 

The effect of using such an aid is that a small team of detailers 
can become very much more productive, producing many more 
drawings per week than by manual means. Further, the fact that 
the data defining the drawings is stored means that, in the event 



of changes becoming necessary, the revised drawings can be 
produced very much more quickly (and reliably) than if done by 
hand: 

An interesting sideline to the development of such a tool is the 
at[i'tude taken to drawings. While some drawings are required to 
make an impression, and so are treated as works of art, the 
drawing of a reinforcement detail is just a technical necessity 
and it is used only by technical people and therefore may be less 
impressive. In consequence, detail drawings, produced on com- 
paratively cheap dot matrix printers, have become quite accep- 
table. Only a few years ago even these technical drawings were 
also treated as works of art. 

The third stage of the design office exercise, that of designing 
the individual members has also been solved. More than one 
approach has been adopted but this has the benefit of providing 
potential purchasers and users with competitive choice. 

If we consider the three technical stages of the design office 
activity and the solutions listed above, we find the appearance of 
some more common occurrences such as the requirements for 
compatibility and the transfer of information between different 
stages of the work. In this example, the information from the 
global structural analysis is required by both the design and the 
detailing activities. Similarly, the information from the member 
design is required for the detailing phase. There are different 
views about the extent to which this information transfer can, or 
indeed should, be made automatic. At the time of writing the 
general feeling is to limit the amount of automatic transfer, it 
being held that the contribution of man is too difficult to codify 
and too valuable to lose. Such views have held sway before and 
have, eventually, been overturned. It seems probable that the 
developments in expert systems and other advanced computer 
technology may have the same overturning effect here in due 
course. 

The production of the software for such systems represents a 
very substantial expenditure and it is important that the solu- 
tions developed should not be excessively dependent on particu- 
lar hardware. In fact the drawing part of the solution has used 
plotters and more recently dot matrix printers. (A likely change 
is that laser printing will be a practical tool for such work.) The 
actual computers used have covered a wide range although the 
operating system used by the computer has been important. 
This is another area where the general developments in comput- 
ing towards standardized operating and filing systems will make 
the transport of software solutions from machine-to-(often 
successivc)-machine a comparatively painless task. 

This example of the solution of an engineering set of prob- 
lems-analysis,  design, detailing--has been described at some 
length because it typifies the problems which will require 
consideration in some form almost whenever a computer solu- 
tion to a problem is being sought. It is foolish to underestimate 
the benefits which the computer can bring, but it is important to 
be aware of, and consider properly, the problems and side issues 
which can arise. Proper treatment of such matters can some- 
times bring unexpected benefits. 

1.17.2 Nontechnical computing 
Although, when first invented, computers were largely used by 
technical people to perform technical tasks, it has long been the 
case that the bulk of computer sales and use have been in 
commercial fields. For some time this affected the design of 
computers but the picture now is one of much more general 
application as computers are becoming the user's workhorse. It 
is not practicable to have many different computers to perform 
the many different tasks which an individual may tackle. 
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1.17.2.1 Spreadsheet 
One example of the change of use to which software can, be put 
is the spreadsheet. A spreadsheet is essentially a rectangular 
array of boxes identified by £,artesian-type coordinates. A box 
may contain either a value or a formula. Such formulae may 
relate to the values held in other boxes. After entry of data and 
formulae the user will request that calculation of values be 
performed. For whatever reason an item of data, or a formula, 
may need to be altered. After the change a recalculation can be 
requested and will usually seem to be performed almost instan- 
taneously. It does not matter, of course, to the computer, 
whether the change was a correction'of an error or a change of 
mind on the part of the user. The traditional use of spreadsheets 
has been in financial areas where the slogan about answering 
'What if? '  questions was meant to appeal to those with re- 
sponsibility for profit margins, etc. However, a spreadsheet is 
nothing more than a general-purpose or~nization of calcula- 
tion: there is no reason why a spreadsheet should not be used to 
calculate a set of sine or of logarithm tables. Increasingly, 
engineers are finding that, if they think about a problem from a 
different angle, a different solution tool may come to their aid. 
The spreadsheet is one example. The use of an improved 
solution tool will not come about unless knowledge of the tool 
and its capabilities exists together with a knowledge of the tasks 
tackled by the organization. As has been mentioned above, the 
best results will come only when there is a proper awareness of 
requirements and capabilities. 

1.17.2.2 Word processing 
Probably the most widespread computer application now is that 
of word processing. Although, traditionally, an author has 
passed his original (e.g. manuscript or dictated tape) to another 
person who has sole responsibility for production of the typed 
form, this may well change. With the increasing use of com- 
puters many workers who at some stage take on the role of 
author, are becoming more or less keyboard-competent. Now, 
while it would be too much to claim that such authors can key as 
well as a professional typist, there is an increasing number of 
these 'sometime' authors who can type quickly enough to keep 
up with their own creative thought processes. Also, by using a 
few of the more basic capabilities of the word processing system 
the author can produce a good result that is well ordered and 
cogent (even if the spelling and layout may leave something to 
be desired) more quickly than with the older techniques. Even 
the problems of spelling and oflayout can, in part, be tackled by 
the computer. It seems hardly likely that the secretary is under 
serious threat from such developments of author capability but 
the notion of the copy-typing task may well be one that will 
disappear. Provided reasonable control can be exercised over 
aspects of detail and over the proper use of an individual's time, 
there may well soon be a substantial increase in the number of 
engineers producing their own reports. 

1.17.2.3 Networks 
It is this chameleon-like behaviour of the user at his desk, 
wanting to be structural analyst, financial analyst, typist, etc. 
which makes the proper arrangement of personal computers 
that are able to double as terminals so important. While, in 
some circumstances, it may be suitable to have these personal 
computer networks connected to one another without the 
existence of any 'heart' machine, as described above, it seems 
likely that the more frequent situation will be one in which the 
central computer is needed to provide not only backup facilities 
but also the corporate data (details of cost rates for example) 
which many users may require. 
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1.17.3 Specific vs. general-purpose software 
When seeking software there is sometimes a choice between a 
program which has been designed for a strictly limited and well- 
defined purpose on the one hand and a program designed to be 
general-purpose on the other hand. To illustrate this, consider 
the problem of producing drawings of reinforcement details as 
discussed above. The end product drawing is nothing more than 
a set of lines drawn on a piece of paper. Some of these lines are 
straight, some curved and some are in the form of characters. 
Thus, a general-purpose drawing package, capable of putting 
lines on the paper according to data instructions defining, for 
example, cartesian coordinates of end points of line segments, 
could produce the required drawing if the data are prepared. On 
the other hand, the special-purpose detailing program will 
require far less data in order to produce the same end result. It 
will, partly in consequence, be very much easier for humans to 
understand the data of the special-purpose version at a glance. 
They are thereby more able to spot mistakes and correct them. 

On the other hand, the detailing program will be no use for 
the production of general-arrangement drawings or for a host of 
other tasks. It will generally be the case that the general-purpose 
program will feel, to the user, much more cumbersome, than a 
program built to specific purpose. When this occurs, most 
operators begin to feel that they are not properly in control and 
thereby become a little careless, allowing mistakes to creep in. 

It is not practicable to produce special-purpose programs for 
all problems; there are too many problems. Indeed, even a 
special-purpose program will be, to some extent, general- 
purpose. (A detail drawing program will, for instance, be 
capable of drawing a wide variety of beam types, though it may 
not be capable of drawing a column.) 

There is no universal answer to this choice problem. It is a 
question which can be resolved only by harnessing a proper 
awareness. 

1.17.4 Computers and information 
The last half decade has seen an explosion in the amount of data 
stored in computers. (Technically this has become possible as 
the cost of unit storage has reduced'.) However, there is no point 
in storing data in a computer if it cannot be accessed with both 
speed and ease, and then manipulated to meet the need. 

Computers traditionally have been regarded as 'unintelligent' 
so that information would, of necessity, be stored only in 
carefully prearranged patterns in order to permit subsequent 
location and retrieval. The argument has been that, if there is no 
pattern, retrieval will be impossible, so do not store. (There have 
inevitably been 'squirrels' who have adopted the policy of 
storing everything, in case it may be useful. This philosophy has 
not been regarded as generally cost-effective.) 

Information, which can be expensive to collect and to keep, 
has typically been stored in large databases to which accredited 
users can gain access. These databases have generally been in 
very well-defined structural forms. In consequence access has, in 
general, been rapid. However, the design of the database 
envisages 'all' possible accesses which might be used in future. 
Now, however, increased machine speeds and the production of 
'intelligent' software is cutting across these restrictions. The way 
ahead is not clear, nor is it likely to be quick because of the sheer 
volume of information which is available to man. However, 
there will be movement towards making information, generally, 
more easily available. 

1.17.5 Computers and management 
The size of projects in which mankind engages has increased 
enormously; so has the complexity. The management of projects 
(and the training of managers) has become a major problem. 

Early tools to come to the aid of management have included 
bar-chart techniques, etc. The problem with most of these 
techniques is the volume of work necessary to cope with the 
inevitable alterations to the original plan. These alterations are 
liable to occur throughout the life of the project. Ideally, the 
manager would like to examine the effect of the change forced 
on him and then consider possible effects of changing his own 
plan for proceeding. Of course, the calculation power of the 
computer is the facility which makes such possibilities realistic. 

However, this is only dealing with the techniques. There is 
also the problem of training managers, preferably without the 
trainees making mistakes (with very large cost consequences) on 
a real job. Developments in universities and research organiza- 
tions have played a major part here. 

1.17.5.1 Training games 
These developments take the form of the simulation of a 
construction project, e.g. the construction of a manhole. This 
simulation is incorporated in a 'training game'. The game is set 
up by the tutor and included in it are details of the project and 
rates, e.g. for crane hire. Some of this information is made 
available to the player, who is invited to manage the construc- 
tion. For each day's work his management will take the form of 
ordering types of labour and/or materials. The player has 
options, e.g. a cheap but not too reliable crane hire company, as 
opposed to a more reliable, more expensive one. The simulation 
makes available weather forecasts for the following day at the 
stage when the player is ordering. As in real life the weather is 
generally similar to the forecasts but differences do occur. With 
the labour and materials he has ordered, a certain amount of 
construction will get done in the day, and for this the player 
earns credit or payment. On the other side the labour and 
materials will be expensive. The actual progress of the work is 
subject to statistical interruptions whose level of occurrence is 
set by the tutor in advance. The objective for the players is to 
make a profit that is as large as possible. 

The use of this training tool seems to be most effective when 
the player is actually a small team of about four students. The 
element of competition provided by three other teams working 
at the same time (but independently so they suffer different 
statistical 'accidents') increases the learning by sharing comple- 
mentary experiences. There is clear evidence that this training is 
effective: it is certainly cheaper than making mistakes on a real 
job. 

1.17.5.2 Project planning models 
A further illustration of the way computers assist with tackling 
the unknown is to be found in a tool to be used in advance 
planning. For this application the project is modelled as a fairly 
conventional bar chart (possibly at more than one level). 
However, the model is not deterministic, i.e. it is recognized that 
when the chart is constructed, a bar is only a best advance guess 
and that it is subject, in the event, to variation. For many items 
(e.g. weather effects, rate of bricklaying, etc.) data is available 
about the variations which occur in practice. These variations 
are incorporated with the basic data. The best-guess bars 
represent just one way in which the project might be built. 
Changing one bar (within its allowed variation),produces 
another way the project might be built. What the computer does 
is to 'build' the project many hundreds of times allowing all the 
bars to vary stochastically. The result is an envelope of possible 
construction routes. Some will be quicker, others will be slower; 
some will be cheaper, others will be more expensive. Overall, 
however, the envelope will highlight potential holdups caused 
by delays, indicate cashflow requirements, etc. Clearly, the 
system can berun not only prior to construction but also during 



construction (when work already complete is, of  course, no 
longer subject to variation). The tool ideally should be used 
collaboratively between client and contractor  in a noncompeti- 
tive manner.  At present, the world is far from ideal but there 
may be sufficient benefit for this route to appeal, especially to 
those involved in the very large projects for which it is best used. 
It is interesting that this potentially valuable exercise demands 
nothing more expensive than a fairly run-of-the-mill desktop 
personal computer  in order to produce useful results. 
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2.1 Introduction 

The subject 'Strength of Materials' originates from the earliest 
attempts to account for the behaviour of structures under load. 
Thus the problems of particular interest to the first investiga- 
tors, Galileo and Hooke in the seventeenth century, and Euler 
and Coulomb in the eighteenth, ~ were the very practical prob- 
lems associated with the behaviour of beams and columns; at a 
somewhat later stage, general mathematical investigations of 
the behaviour of elastic bodies were made by Navier (1821) and 
Cauchy (1822). The theory of structures has subsequently 
developed so that it now includes many different and sophisti- 
cated fields of interest. Nevertheless, the topic 'Strength of 
Materials' traditionally covers those aspects of the theory that 
were the subject of the original research: the theory of bars and 
the general theory of elasticity. This chapter, therefore, is 
essentially a review of the main features of these two somewhat 
disparate theories, and contains some of the results that are of 
immediate importance to civil engineers. 

2.2 Theory of elasticity 

2 . 2 . 1  I n t e r n a l  s t r e s s  

Internal stress is the name given to the intensity of the internal 
forces set up within a body subject to loading. Consider such a 
body shown in Figure 2.1(a) and an imaginary plane surface 
within the body passing through a point P. The internal forces 
exerted between atoms across this surface are represented in the 
expanded view of Figure 2.1(b). They are described by stress 
vectors (having the dimensions of force per unit area), and the 
particular vectors at P give a measure of the intensity of the 
internal forces at this point. They are denoted by t~ and called 
internal stress vectors. If they are directed away from the 
material as in Figure 2.1 (c) they are called tensile, and if towards 
the material compressive. 

Surface forces 

bl 

(c l  
Figure  2.1 

2.2.1.1 Components o f  stress 

The complete state of stress at P is defined in terms of the 
internal stress vectors acting on three particular surfaces at P 

Theory of elasticity 2/3 
called the positive coordinate surfaces. (The positive x coordinate 
surface is the surface parallel to the y - z  plane of an x, y, z 
coordinate system, with the material situated so that a vector 
directed outwards from the material and normal to the surface is 
in the positive direction of the x coordinate line as in Figure 2.2.) 

ty x= ~ .  Normal vector 
/ - 

~ve x coordinate z surface 

Figure 2.2 

These internal stress vectors are distinguished by appropriate 
subscripts. Thus ~x acts on the positive ~ coordinate surface, 
while ~y and ~ respectively act on the y and z surfaces. Their 
scalar componentst are then denoted by two subscripts. Thus 
the components of ~x are oxx, axy and ax. and are shown in Figure 
2.3(a). Similarly the components of ~y are %x, a , ,  ay: and of tT~ 
are a~x, a~, a= as shown in Figure 2.3(b) and (c). axx, %. and a= 
are called the direct stress components at P in the x, y and z 
directions respectively, while axy, axe, ayx, %,  iT=, and  a:y are 
called the shear stress components. 

While the above notation is strictly logical and clarifies the 
basic concepts of stress, conventional engineering notation is 
somewhat different and emphasizes the physical differences 
between the components. Thus the direct stress components are 
written ax, ay and tL., while the shear stress components are 
written Ly, L.-, ~yx, Z v:, z:,, ~:~.. Except in section 2.2.1.3 (below), 
this latter notation is employed in the remainder of this chapter. 

°xziz (a} 
y 
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2.2.1.2 Stress on an arbitrary surface 

Suppose a plane surface through P is defined in terms of the 
components n x, n~ and nz of the outward unit normal vector n, as 
in Figure 2.4. The stress vector o, acting on this surface is 

t A vector F at P is equal to F,~ x 4- F~jy 4- F~z, where F x, Fy and F z are 
the acalar components of  F, and i x, iy and iz are unit base vectors 
parallel respectively to the x, y and z coordinate lines at P. 
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obtained in terms of the basic stress components defined in the 
previous section by considering the linear equilibrium of the 
differentially small trapezoidal element ABCD shown in the 
figure. Thus: 

tr,x=tr~n x + rein e + L~n~ (2.1) 

tr.v = LeG + trine + Lvn.- (2.2) 

tr,: = Linx + Line + trinz (2.3) 

where a,x, tr,e and tr, z are the components of ~,. 

2.2.1.3 Transformation o f  stress 

Considering a new coordinate system x', y', z' rotated relative to 
the x, y and z system as in Figure 2.5, then the components of 
stress in the new system are defined as in section 2.2.1.1, so that 
L'e' (= G'y), for example, is the component in the y' direction of 
the stress vector acting on the positive x' coordinate surface. 

Y 

t 
.27 

Figure 2.5 

The components of stress in the two systems are related by 
equations of the following type (where for conciseness we 
employ the original notation of section 2.2.1.1): 

COx COx COx COy COx COz 
°-'"' = Ux' &°-'-" + Ux' Uy ' %  + Ux' ~"- ' :  

COy COx COy COy & 

& COx & COy_ Oz & 
(2.4) 

Equation (2.4) and eight similar equations formed by permuting 
x', y '  and z' are called the transformation equations o f  stress. The 
partial derivatives in Equation (2.4) are called direction cosines, 
since COy~COx', for example, is equal to the cosine of the angle 
between the y and x' coordinate lines. 

2.2.1.4 Principal stresses 

For a particular orientation of x', y '  and z' it is found that all the 
shear stress components vanish, i.e. that the stress vectors %., %, 
and ae are directed at fight angles to their respective coordinate 
surfaces. Calling this coordinate system X, Y and Z, the matrix 
of stress components takes the form: 

tr x 0 0 
0 try 0 
0 0 tr z 

The direct stresses tr x, try and tr z are called the principal stresses 
at P, while the X, Y and Z coordinate lines are called the 
principal directions o f  stress. 

The values of the principal stresses in terms of the stress 
components in the x, y and z system are equal to the three roots 
of the equation: 

tr' - l~a 2 + 12tr- 13 = 0 (2.5) 

where 

I~ = G + a y + a ,  (2.6) 

2 ~ ~2 x (2.7) 

13 = trx%tr z + 2rxere.r~x - Gr~ , -  %r~ - cr:z]e (2.8) 

The direction cosines of the Y coordinate line say, relative to the 
x, y and z coordinate lines (;tYx, ;tYe, 2y.), are found by solving the 
equations 

[ (a~- a,) r. r., ] 
rex (G--a,) re: 

" ~ ]  
;try [ =0  

. ; t .J  
(2.9) 

(2rx) 2 + (2ry) 2 + (2r.) 2= 1 (2.10) 

(Note that the three equations represented by Equation (2.9) are 
not independent.) 

2.2.1.5 Internal  equilibrium equations 

Consideration of the equilibrium of a differentially small paral- 
lelepiped element of material surrounding an internal point P, 
leads to three equations of linear equilibrium: 

C&r,, OT~ + CO't'. x 
CO---~-+ coy - ~ ' + r x  0 (2.11) 

Oy COx F , = 0  (2.12) 

Oz Ox Oy 

and three equations of rotational equilibrium: 

(2.13) 



r .=ry~ (2.14) 

G , = r .  (2.15) 

z,~=Lz (2.16) 

In Equations (2.11 to 2.13), F~, Fy and F~ are the components of 
any body force vector F (units: force per unit volume) acting at 
P. Note, for example, that a body force vector of magnitude 
(pg)/unit volume is exerted by the Earth at all points within a 
body situated in its gravitational field, p being the local density 
of the body and g being the acceleration due to gravity. 

The shear stress components % and L~ being equal, are called 
complementary shear stresses. It is apparent from Equations 
(2.14 to 2.16) that if a body is in equilibrium then only six of the 
nine stress components can take different values at any point. 

Shear 
stress 
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Figure 2.7 Mohr's circle of stress 

2.2.1.6 Plane stress 
For structures made of elements whose dimensions in the z 
direction are much smaller than the dimensions in the x and y 
directions, such as thin plate girders, slabs, shear walls, etc., the 
following assumptions can be made: (1) the stress components 
oz, r, ,  zx~ can be ignored; and (2) the stress components are 
uniform across the thickness of the element. That is, they are 
independent of z. 

Such a state of stress is called plane stress. 
For plane stress, the transformation Equations (2.4) take a 

simple and important form. Suppose the x', y', z' system is 
formed by a rotation of at* about the z axis anticlockwise from 
the reader's viewpoint, as in Figure 2.6. The transformation 
equations between G, try, zxy and G,, try,, L,y,, are then as follows: 

G, = ½(trx + try) + ½(tr x -  try) cos (2~) + Ly sin (2a) (2.17) 

%, = ½(tr x + try) - ½(tr x -  try) cos (2et) - Ly sin (2a) (2.18) 

Tx,y, -½(G-G)sin(2ot)+ZxyCOS(2a) (2.19) 

2.2.2 Strain 
Strain is the general name given to the deformation of a body 
subject to loading. 

2.2.2.1 Displacements 
A particular point P in a body before loading, occupies its initial 
position P~ say, and after loading its final position Pf. The line 
joining P~ to Pr is a vector which is denoted by u and called the 
displacement vector at P. In general, this vector varies conti- 
nuously from point to point in the body, and its three compo- 
nents u x, uy and u~ are continuous functions of the coordinates of 
P.t 

Consider two neighbouring points P(x, y, z) and P*(x + dx, 
y + dy, z + dz) in the body. Then 

Oux Ou~ dU~dz dux=-o-xdX +-~y dy+ dz (2.20) 

duy= ~x dx + OU---~ dy + OU---~ dz 
3y Oz 

(2.21) 

V" 

z coming out 
of paper 

~ X "  

X 

Figure 2.6 

OU z OU du. - ~  dx = +-0-~ dy + ~--~ de (2.22) 

where the differentials du x, duy and du~ are the differences 
between the components of u at the two points. As such, these 
differentials can be regarded as the components of the vector 
giving the displacement of P* relative to P. 

2.2.2.2 Components of  strain 
In order to obtain a concise description of the deformation of 
the material at P it is convenient to define nine dimensionless 
components ex~, eyy, ezz, exy, eyz, ez~, coxy, toys, coz~ by the following 
equations, called the strain-displacement relations: 

These equations can then be represented by the following 
graphical construction. Two axes are drawn, the vertical repre- 
senting shear stress and the horizontal, direct stress, and a circle 
is constructed whose centre is at ( G +  G)/2 on the direct stress 
axis, and which passes through the point (G, Ly) as in Figure 
2.7. The line through the centre of the circle at an angle 2a ° 
clockwise to the line joining the centre and (G, r . )  then 
intersects the circle at (G,, L,y)- Produced backwards, it inter- 
sects the circle at a point whose abscissa is try,. This construction 
was devised by Otto Mohr in 1882 and the circle is called Mohr's 
circle of  stress. 

OUx ~ e=-Out (2.23, 2.24, 2.25) exx=-~x , e ,=  Oy' Oz 

1 

e:~=~ +-~- (2.26, 2.27, 2.28) 

t In most cases u is so small that the coordinates of P do not change 
appreciably during the loading. 
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l ( t3u~ _ ~u___~ ~ l ( du___~_ t3u, ) 
c°x'=2 \ dy dx ) '  (o,.=~ \ Oz -~y ' 

O):x --- ~ (2.29, 2.30, 2.31) 

The physical meaning of these components is clarified by 
considering the deformation of the rectangular element of 
material containing P shown in Figure 2.8(a) for each compo- 
nent in turn. 

Thus if e~x#0, ~,yy-'gzz--~,xy--~,yz---ezx=£Oxy=O)yz'-£Ozx=O then, 
by using Equations (2.20 to 2.22), it can be shown that the 
element deforms as in Figure 2.8(b). ex~, corresponding to this 
type of longitudinal deformation is called the direct strain 
component in the x direction at P. If it is positive it is called 
tensile and the element lengthens and if negative, it is called 
compressive and the element shortens. Similarly, the compo- 
nents e,  and e= corresponding respectively to longitudinal 
deformation in the y and z directions are called the direct strain 
components in these directions. 

~xxda 

+ 
~, 2dq 

(a) (b) 

~xxda 

M 

( *xydb 
du ~" J,. ~zy db 

......... ~ i (Oxy dO xydO du 

mzydb ~xydb (c) (d) 

Note: deformation shown to an exaggerated scale 

Figure 2.8 

If exy#0, e~=e,=e==e,=e==to~y=ogy~=to==O then 
OuJOy= Ou/Ox =e~y and again by using Equations (2.20 to 2.22) 
it can be shown that the element deforms into a lozenge shape as 
in Figure 2.8(c). Deformation of this type is called shear strain, 
and exy is called the mathematical shear strain component at P. 
The adjective 'mathematical' is used to distinguish between this 
and the engineering shear strain at P, which is denoted by Yxy 
and is equal to the closure in radians of the angle between the x 
and y coordinate lines. From the geometry of Figure 2.8(c) we 
have 

F~y = 2~y (2.32) 

Similarly, the components e,  and e= correspond to shear strain 
in the y-z and z-x planes respectively. 

Finally, if foxy#0, e ~ x=e ,=e==exy=e ,=e== to ,= to==0  
then duJdy=-du/dx=to~y and it can be shown that the 
element rotates without deformation about the z coordinate line 
as in Figure 2.8(d). to,  is called the rotation at P. Similarly toy, 
and to= correspond respectively to local rotations about the x 
and y coordinate lines through P. These rotations are necessary 
in the theoretical discussion in order to define the displacement 
derivatives in Equations (2.20 to 2.22). However, since they do 
not define deformation directly, they are not considered further 
in elastic analysis. 

As in the case of stresses, the conventional engineering 
notation for the strain components is somewhat different from 

the above and the direct strain components are written e~ ey and 
% Except in section 2.2.2.4 (below), this latter notation is 
employed in the remainder of the chapter, and the shear strains 
are described in terms of y~y, Yr and y.~. 

In the majority of civil engineering structures, the strain 
components are very small, of the order of magnitude i0 -3 . 
Thus, the deformation of the elements in Figure 2.8 is exagger- 
ated. The strain-displacement relations in Equations (2.23 to 
2.28) assume that the displacements are small. If this is not the 
case, nonlinear terms involving the products of the derivatives 
are included3 These nonlinear terms are significant in defining 
the buckling characteristics of thin elements in compression?.' 

2.2.2.3 Uniform strain 
If the displacement components u~, u~ and u z are linear functions 
of the coordinates of P then the corresponding strains given by 
Equations (2.23 to 2.28) are uniform. The overall changes in the 
geometry of a body are then simply related to the strain 
components. Thus consider, for example, a line AB in or on the 
surface of the body which originally coincides with an x 
coordinate line. If the original length of AB is I and its increase 
in length is A/, then: 

ex= Al/l (2.33) 

2.2.2.4 Transformation of strain 
Considering again a new coordinate system x', y', z' rotated 
relative to the x, y and z system as in Figure 2.5, then the 
components of strain in this new system are defined by strain- 
displacement relations similar to Equations (2.23 to 2.28). Thus 
Yx.y(= 2ex,y,), for example, is given by: 

du. du ) (~_~_ +_~z (2.34) Yx,y, = t~x' 

where ux., uy and u:, are the components of the displacement 
vector u relative to x', y' and z'. The components of strain in the 
two systems are related by equations of the same type as 
Equation (2.4) (where again for conciseness we employ the 
original notation of section 2.2.2.2). Thus: 

dx dx dx dy_ dx dz 
ex,y. - Ox, O y, exx +-~-~'~y, eX, +-~-~-~ e= 

ay ~x ~y Oy ~y ~z 

dz dx tgz dy dz dz (2.35) 

The nine equations formed by permuting x', y' and z' in 
Equation (2.35) are called the transformation equations of strain. 

2.2.2.5 Principal strains 
For a particular orientation of x', y' and z', all the shear strain 
components vanish, and in most materials this orientation is the 
same as that of the principal directions of stress discussed in 
section 2.2.1.4. Calling the coordinate system X, Y and Z as 
before, the direct strains ex, er and ez are called the principal 
strains at P. 

The values of the principal strains are equal to the three roots 
of the equation: 



e~ - E,F + E:,e - E~ = 0 (2.36) 

where: 

Et = ex + e v + e, (2.37) 

E, = e,e, + ~,e. + e . e , -  ~ ( ~ ,  + ~ .  + ~ )  

E~ = e,e,e. + ~(~,,.~,,.~,., - e , ~ : -  e,~x - e .~ , )  

(2.38) 

(2.39) 

2.2.2.6 Compatibility equations 
The three displacement components ux, uy and u. can be elimi- 
nated from the six strain-displacement relations in Equations 
(2.23 to 2.28) to produce three equations called the compatibility 
equations, which must be satisfied by the strain components. 
This elimination can be done in different ways to produce 
different sets of equations. Two such are: 

02e, O2e O2L.,, 
+ ~ . . . .  0 (2.40) Oy a Ox 2 dxOy 
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region of a body. From symmetry this is the case in the central 
region of a body which: (1) is very long in the z direction; (2) is 
of uniform cross-section; and (3) is subjected to loading in the z 
plane that is uniformly distributed along its length (Figure 2.9). 
It can therefore occur in struc~res such as gravity dams, tunnel 
linings or retaining walls. 

Considering again the new coordinate system x', y', z' formed 
by a rotation of cz* anticlockwise about the z axis as in Figure 
2.6, the transformation equations between e~, ey, e~y and e~., ey., 
and ex.y. take the same form as Equations (2.17 to 2.19). These 
transformation equations are represented by a graphical con- 
struction called Mohr's circle of strain, whose function is the 
same as that of Mohr's  circle of stress. 

2.2.3 Elast ic  stress--strain re la t ions ~ 

The relationship between the stress and strain components at a 
point in a body is a property of the particular material making 
up the body. For an isotropic elastic material the stress-strain 
relations are linear and are independent of the orientation of the 
x, y, z coordinate system. They take the following form: 

d2e. d2rr O_~ +____~. _ =0  (2.41) 
Oz ~ Oy ~ OyOz 

1 ex = ~ [trx- v(tr, + tr:)] + ocA T (2.46) 

02e" -k 02ex t327:x -- 
O--ff ~T-OzOx 0 (2.42) 

1 ey = ~ [try- v(tr: + trx)] + sAT (2.47) 

O y O---~ - Ox - O x - Y f  = 0  (2.43) 
1 e, = ~ [tr,- v(tr x + try)]+ otAT (2.48) 

dzdx dy \ dx (2.44) 

2dzez t9 t37,x _ ~ d_~7~)= 0 (2.45) 
OxOy- Oz ~ - - ~ -  + Ox 

2.2.2.7 Plane strain 
Plane strain is said to exist when the strain components e~, ey, 
and e,x are equal to zero. It occurs when u~-0  at every point 
within a 

~ u (exaggerated scale) 
X 

[ /  " 
Stresses uniformly 
distributed along length 

1 1 1 Y~y=~ Ly, ? , , = ~  r,~, )'~x= ~ Lx (2.49, 2.50, 2.51) 

where AT is the temperature change from some initial state. E 
and G are constants having the dimensions of force per unit area 
and are called Young's modulus and the shear modulus respec- 
tively, v is a dimensionless constant called Poisson's ratio and at 
is a constant having the dimensions *C -~ and is called the 
temperature coefficient of expansion. G in fact is related to E and 
v by the following equation: 

G= E/2(I + v) (2.52) 

Values of E, v and 0t for a variety of practical materials are given 
in Table 2.1. 

The corresponding inverse stress-strain relations are found 
by solving Equations (2.46 to 2.51) for the stresses and are as 
follows: 

try= 2rex + 2(ex + ey + e , ) -  (32 + 2/~)~tA T (2.53) 

tr, = 2/zey + ;t(ex + ey + e , ) -  (32 + 2/~)~A T (2.54) 

tr, = 2/~e~ + ;t(ex + ey + e,) - (32 + 2/~)~A T (2.55) 

zxy =/qxy, Lz =/qyz, Lx =/~?,~ (2.56, 2.57, 2.58) 

where for conciseness we employ the L a ~  constants 2 and/~ 
defined in terms of E and v by the equations: 

2 = rE~(1 + v)(1 - 2v) (2.59) 

Figure 2.9 It =//:/2(1 + v) (2.60) 
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Table 2.1 Properties of materials (representative) 

Density E 
Material (kg/m 3) (GN/m 2) 

Limit o f  Ultimate " 
ot proportionafity stress Uniform 

(*C- 1) (MN/m 2) (MN/m 2) elongation 

Mild steel 7/840 200 0.31 
High-strength steel 7840 200 0.31 
Medium-strength 

aluminium alloy 2800 70 0.30 
Titanium alloy 4500 120 0.30 
Magnesium alloy 1800 45 0.30 
Concrete 2410 25 0.20 

Timber (Douglas fir) 576 7 (with 
grain) 

Glass 2580 60 0.26 
Nylon 1140 2 --  
Polystyrene (not expanded) 1050 4 --  
High-strength glass-fibre 

composite 2000 60 --  
Carbon fibre composite 1600 170 --  

1.25 x 10 --s 280 370 0.30 
1.25 x 10 -s 770 1550 0.10 

2.3x 10 -5 230 430 0.10 
0.9 x 10 -5 385 690 0.15 
2.7 x 10 -5 155 280 0.08 
1.2 x 10 -s --  3 (tension) - -  

30 (compression) 
0.6 x l0 -5 43 (compression 52 (compression --  

with grain) with grain) 
0.7 x 10 -s - -  1750 - -  

I0 x 10 -s 77 90 1.00 
10 x 10 -5 46 60 0.03 

i 1600 
1400 

The stress-strain relations hold for a wide range of stresses in 
most practical materials. They become invalid when the inter- 
atomic bonds in the materials break down, this process being 
called yielding or fracture. Yielding in steel can be demonstrated 
by the tensile test, where a known stress system trx#:0, 
try = t L =  Ly = re== r==0 ,  called uniaxial stress, is induced in a 
specimen and the corresponding strain e~ is measured. A typical 
plot of tr~ versus ex for a mild steel tensile specimen then takes 
the form shown in Figure 2.10(a). The initial straight section of 
the curve of slope equal to E corresponds to Equation (2.46), 
but at a certain stress of the order of 250 MN/m 2, the strain 
increases dramatically with little or no increase of  load. This 
stress is called the uniaxial yield stress of mild steel. Subse- 
quently, the stress-strain curve indicates that the specimen 

400 
% 

(MN/m 2) 
200" 

Ultimate tensile stress 
_ V 

Yield s t r e s s ~ 1  

~Elastic region 

I , I 
0 0.10 0.20 

Ex 

~ i  (a) on 

cr x ress 

(MN/m = ) 2 0 0 t ~ i r n i t  of proportionality 

~[ "0.2 % (0.00 
l /  I - -  

0' 0.10 
% 

(b) 

supports larger stresses up to a maximum value of the order of 
400 MN/m 2 which is called the ultimate tensile stress. The 
uniaxial stress-strain curve for an aluminium alloy specimen 
shown in Figure 2.10(b) does not display a marked yield stress 
and the material is linear elastic up to a stress called the limit o f  
proportionality which again is of the order of 250 MN/m 2. Two 
other properties frequently quoted in engineering literature, the 
0.2% proof stress and the uniform elongation, are shown in the 
figure. Values for the limit of  proportionality, ultimate stress 
and uniform elongation are included in Table 2.1. 

For accounts of yield criteria and plastic stress-strain re- 
lations corresponding to more general stress systems see, for 
example, Bisplinghoff et al, 5 and Prager and Hedge? 

2.2.4 Analysis of elastic bodies 
The internal equilibrium Equations (2.11 to 2.16), strain--dis- 
placement relations Equations (2.23 to 2.28) and the stress- 
strain relations Equations (2.46 to 2.5 l) are eighteen differential 
equations in the unknowns of  the analysis problem, namely the 
nine stress components, the six strain components and the three 
displacement components. These equations must be satisfied 
subject to boundary conditions. 

2.2.4.1 Boundary conditions 
The boundary conditions at a point P on the surface of a body 
are expressed in terms of the components Sx, Sy and Sz of the 
surface stress vector S acting at P, and the components u~, uy and 
u~ of the displacement vector u of P. They are of three types, as 
follows. 

Static boundary conditions. The three stress vector compo- 
nents at P are specified. Thus at an unloaded point on the 
boundary Sx = Sy = Sz = 0, while at a loaded point Sx = k,, Sy = ks, 
S z = k3, where k~, k 2 and k3 are known values at P. 

Kinematic boundary conditions. The three displacement com- 
ponents at P are specified. Thus at a rigid support u x = uy = u: = 0, 
while at a point whose displacements are constrained by, say, a 
screw jack ux=j,, uy =J2, uz=A, where j,, A and A are known 
values at P. 

Figure 2.10 Definitions of material properties Mixed boundary conditions. Certain displacement and certain 



stress-vector components at P are specified simultaneously. For 
example, at the point P on the  roller support shown in Figure 
2.11, S~=0 and uyfu~=0. 

Y 

Figure 2.11 

2.2.4.2 Solution in terms of  displacements 
A straightforward solution method involves treating the dis- 
placement components as the basic unknowns. The three linear 
equilibrium Equations (2.11 to 2.13) are expressed in terms of 
the displacements by using the stress-strain relations followed 
by the strain-displacement relations. The resulting differential 
equations in Ux, uy and u~ are called the Navier equations. They 
are as follows: 

O¢~+V = o ,uV2ux + (2 +/~) Ox (2.61) 
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(2.43 to 2.45) by using the stress-strain relations to express them 
in terms of the stress components. The resulting equations are 
called the Beltrami-Michell equations and are as follows; 

1 020 - v 20Fx (2.66) 
V~trx'l (1 + v--------) O x---Y - ( I - v-----~) ~ - O x 

l 020_ - v  ~p_20F~ (2.67) 
VZtrY + (1 + v) 0y 2 (1 - v) 0y 

l 020_ - v 20F, (2.68) 
V2tr' + (l + v-----~ 0F (1 - v---) ~P - 0 ~  

or: 
1 020---(O-~yX + d--~ F ) (2.69) 

V2L" -~ (1 + v) Ox---~ Ox 

l 020 _{OF__F_ z OFz) 
V h " +  (1 + v) O ~  = \ Oz +-~'y (2.70) 

I O ~ @ - -  (OFz+O-~) (2.71) 
V2Lx + (1 + v) OzOx- Ox 

where 

O = trx + try + tr~ (2.72) 

0__~_~+ uV%+(a+u) Oy V~=O (2.62) 

c3¢~ 
uV~u~ + (it + u) ~-i  + F~ = 0 (2.63) 

where 

Oeux O~ux O2u" (2.64) 
V2ux =Tfe + ~ + O z ~ 

and: 

OUx ~ + Ouz (2.65) 
¢ = ~ +  0y 0z 

In order to solve these equations, the boundary conditions must 
all be expressed in terms of the displacements of the surface 
points. In the case of the static boundary conditions, equations 
for the internal stress components are obtained using Equations 
(2.1 to 2.3) with the components of  tr, replaced by the compo- 
nents of S. These are then converted to differential boundary 
conditions in displacements by again using the stress-strain and 
the strain--displacement relations. Thus at each internal point 
and each boundary point there are three simultaneous differen- 
tial equations in the unknowns Ux, uy and ur In most cases, a 
direct solution is obtainable only by a numerical procedure such 
as the finite-difference method. 7 

2.2.4.3 Solution in terms of  stresses 
A second solution method involves treating the nine internal 
stress components as the basic unknowns. Six equations in these 
unknowns are immediately available from the internal equili- 
brium Equations (2.11 to 2.16). A further three equations are 
obtained from the compatibility Equations (2.40 to 2.42) or 

~p OFx + ~ OF, (2.73) =-g-£ Oy+O---~ 

The only problems than can be solved directly in terms of 
stresses conveniently are those in which all the boundary 
conditions are static boundary conditions. In such problems, 
three equations in the internal stress components are obtained 
using Equations (2.1 to 2.3) and these, together with the three 
equations of rotational equilibrium and the three compatibility 
equations, provide the required nine equations at the boundary. 
In problems where displacements are specified at various 
boundary points, the corresponding boundary stresses cannot 
usually be obtained in advance of the solution except for those 
special cases where the body is externally statically determinate. 

Direct solutions in terms of stresses can in principle be 
obtained using numerical procedures. However, many solu- 
tions, especially to two-dimensional problems, 2"8 have been 
obtained using stress functions which automatically satisfy the 
equilibrium equations. 

2.2.5 Energy methods 

2.2.5.1 Virtual work 
Consider a body which is in equilibrium under surface stresses S 
over part of its surface and body forces F. Suppose the corres- 
ponding internal stress system is given by t L, try, trz, Ly, ~yz, Lx. 
This is called an equilibrium force system. 

Next consider an entirely independent system of displace- 
ments u* which vary continuously from point to point in the 
body and satisfy the kinematic boundary conditions. Suppose 
the corresponding strain system is given by e*, ey*, e*, 7~, 7y*.., Y..*~. 
This is called a compatible displacement system. 

The virtual work We* done by the external forces S and F, 
supposing they were to move through u*, is as follows: 

W e* = ~,~ (S,,u*~ + Syu* + Szu*) dA 

+ ~v(Fxu* + Fyu*y + F.u*)dV (2.74) 
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where ~A( ) dA represents an integral taken over the loaded 
surface of the body, and ~v( ) d V represents an integral taken 
over its volume. By a purely mathematical operation 5 it can be 
shown that 

W~*= I4~i* (2.75) 

where W~* is a quantity called the internal virtual work and is 
given by 

W~*= ~v(axe*+aye*+cLe*+Lyp*y+zy:y;*+Lxy*,,)dV (2.76) 

Equation (2.75) is called the equation of virtual work. Note that 
its derivation is independent of the nature of the stress-strain 
relations of the material making up the body. 

2.2.5.2 Strain energy 
Consider the body in equilibrium under S and F and suppose 
differential changes in the loading dS and dF occur causing 
corresponding differential changes in the real displacements du. 
du and the strains de.,, dey, de:, d?xy, dTy:, dy:., can be regarded as a 
compatible system of displacements in Equation (2.75). The 
work terms on either side of Equation (2.75) are then differential 
quantities of real work caused by the loading change. In 
particular the internal work is given by 

dW~= ~v(a~ cle,+ try dey + a, de~ + Ly dyxy + zy: dTy: + r:x d),:~) dV 
(2.77) 

Using the elastic stress-strain relations it is possible to integrate 
Equation (2.77) to obtain the total internal work done on an 
elastic body from the initial state with zero stress to the final 
state with stresses corresponding to S and F. This internal work 
is found to be independent of the loading path to the final state 
and is called the elastic strain energy U. It can be expressed in 
three forms: 

+ 2(1 + v)tr~, + z~ + z2:~)] d V 

= ~v ½(axex + %e, + a:e~ + rxyL,y + ry..L: + r:,y~,,) dV 

= I , [ u ( ~ + 4 + 4 )  

2 + ~(~y+ ~ +  ~ ) ]  dV + ~  ~ + ~ Y +  (2.78) 

2.2.5.3 Principle of  stationary total potential energy 
The external work done by the loading in the previous subsec- 
tion is given by: 

d w~ = ~ (s~ d ~  + S, d~, + S, d~,) d~ 
+ ~v(F~ du. + F, du, + F. du.) d V (2.79) 

If the loading is conservative, so that all the loads on the body 
are independent of the displacements, it is possible to define a 
function V as follows: 

V= U -  ~A (S~u~ + Syuy + S.u.) dA - ~v (F,,ux + F~uy + F.u) d V 
(2.80) 

so that the equation of virtual work for the differential change of 
the body in equilibrium takes the form: 

d ~ = 0  (2.81) 

tl) is called the total potential energy of the system of the body 
plus loads. 

Equation (2.8 I) is the mathematical statement of the Principle 
of Stationary Total Potential Energy. Thus, for a body in 
equilibrium, the total potential energy is stationary with respect to 
small changes in the actual displacements of the body. This is the 
most important energy principle, and its method of application 
for the solution of structures involves expressing all the displace- 
ments of the structure in terms of a (usually limited) number of 
degrees of freedom. (This can be done exactly for frameworks, 
but only approximately for structures such as slabs.) The 
stationary position of the total potential energy is found by 
equating to zero the derivatives of • with respect to the degrees 
of freedom. The resulting equations are analogous to the 
stiffness equations in the stiffness method of structural analysis. 
They are solved for the degrees of freedom to yield the exact or 
approximate displacements of the structure corresponding to 
equilibrium. 

If the structural displacements are assumed to be small so that 
the linear strain-displacement relations in Equations (2.23 to 
2.28) are applicable, then it can be shown that the potential 
energy is a minimum for a structure in equilibrium) The 
equilibrium is then said to be stable. If the displacements are not 
small, and the non-linear strain-displacement relations are used 
to obtain ~,  the equilibrium potential energy can either be a 
minimum or a maximum. In  the latter case the equilibrium is said 
to be unstable. For certain values of load called the critical loads 
or eigenvalues, the equilibrium is neutral. This is indicated 
mathematically when the determinant of the coefficient matrix 
in the stiffness equations is zero. Extensive treatments of the 
eigenvalue problem have been given in many texts, e.g. by Croll 
and Walker ~° and by Thompson and Hunt. ~ 

2.2.6 Measurement of stress and strain 

2.2.6.1 Surface strain 
The measurement of strain is usually limited to obtaining direct 
strains tangential t o  the surfaces of structures by means of 
mechanical or electrical strain gauges. If the complete state of 
tangential strain at a surface point is to be determined, then 
separate measurements of direct strain have to be obtained in 
three distinct directions at the point. In interpreting these 
measurements, we then use the fact that two of the principal 
directions of stress and strain are tangential to the surface whilst 
the third is normal to it. Thus using, for example, a 45* strain- 
gauge rosette, producing strain measurements el, e2 and e3 as 
shown in Figure 2.12, it can be shown that the principal 
direction X is at 0* anticlockwise to the x coordinate line where: 

( 2 ~ 2 -  e l -  e3) (2.82) tan (20)-  (e, -- e3) 

The two principal surface strains ex and ey are then given by: 

(el "~" e3) "~- (el + e3) (2.83, 2.84) ex= 2 r er = 2 - r  

where 

r = ½[(e, - e3) ~ + (2e~ - e , -  e3Yl '~ (2.85) 

Example 2.1. The strains measured by the three gauges of the 
45* rosette shown in Figure 2.12 are respectively: 



y Y 

S h e a r  s t r a i n  3 

~3C 

1 

" c t  s t r a i n  

o 
Figure 2.12 

e , = - 5 . 0 x l O  -4 e ~ = + 3 . 0 x l O  -~ e 3 = + l . O x l O  -~ 

What are the principal strains at the point and the orientation of 
the principal direction X, to the x coordinate line? 

From Equation (2.85): 

r = ½[(- 5 . 0 - 1 . 0 )  2 + (2 x 3.0 + 5.0-1.0)2] '/2 x lO- '  

T h e o r y  o f  e l a s t i c i t y  2 / 1 1  

y 

Shear s t ra in  
t , , 

e, (=e x) ~ .  X 
(e, +e,+q)/3 

n t s t ra in  

-I E2 - ~  

Figure 2.14 

Another  common layout for strain gauges is the 60 ° rosette 
shown in Figure 2.14. The principal direction X is then at 0 ° 
anticlockwise to the x coordinate line where'. 

tan (20) = x/3(e 2 - e3)/(2e , - e 2 - e3) 

while the principal surface strains ex and er are given by 

(2.86) 

e~ + e 2 + e 3 em + ez + e3_ (2.87, 2.88) ex= 3 +r  e r = - ~  ----  r 

= 5 . 8  x 10 -4  where 

Thus: r = t(~,  + ~ + ~ - E,e~- ~ -  ~,e,) '/~ (2.89) 

ex= 3.8 x lO -* er = - 7 . 8 x 1 0  -4 

From Equation (2.82): 

t a n  ( 2 0 )  = - 1 . 6 6 7  

Thus: 

2 0 = - 5 9 . 0  ° or 121.0 ° 

The ambiguity in the expression for 0 is resolved by examining 
the position of the strains on the Mohr 's  circle of  strain for the 
sur fa~  plane (Figure 2.13). Thus, it is clear that in this example, 
20 must be greater than 90". The X coordinate line is therefore 
directed at 60.5" anticlockwise to the x coordinate line. 

S h e a r  s t r a i n  

"3 .0  x 10 -4 

__ D i r e c t  s t r a i n  

$ ~ -  1.0 x 10 "4 

The complete state of surface stress corresponding to the strains 
measured above can be found from the stress-strain relations, 
noting that in the absence of surface loading the state of  stress is 
one of plane stress. 

2.2.6.2 The photoelastic method 12." 

A good indication of the internal stresses in model structures 
can be obtained by making use of the property of certain 
materials such as glass and plastics, that they become double- 
refracting when subject to stress. 

The apparatus for photoelastic stress analysis consists essen- 
tially of a light source L (Figure 2.15), a polarizer P, and an 
analyser A and the model M of photoelastic material, which is 
held in a reaction frame and subjected to loads. The lenses Lm 
and L2 are arranged so that a parallel beam of light passes 
through the model. An image containing bands of different 
colours then appears on the ground glass screen, these colours 
representing regions of equal principal stress difference ( trx-  tr r) 
in the model. For  further experimental and theoretical details 
see, for example, Hendry. 2 

L, M I Ground  
g lass  

sc reen  

Figure 2.13 Figure 2.15 
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2.3 Theory of bars (beams and 
columns) 

2.3.1 Introduction 

A great many engineering structures contain components whose 
dimensions in two coordinate directions are small compared 
with their dimensions in the third. These components can be 
called bars as a means of general classification, although they 
are often given other names to denote the particular way they 
are loaded in structures. Thus if they are subjected to tensile 
forces they are called ties, to compressive forces they are called 
struts or columns, to lateral forces they are called beams, while if 
they are subjected to both compressive and lateral forces they 
are called beam-columns. 

Structures completely composed of bars are called frames, 
and are either two-dimensional plane frames, or three-dimensio- 
nal space frames. 

This section reviews the engineering theory of  straight bars of 
uniform cross-section. 

2.3.2 Cross-section geometry 

2.3.2.1 First moment of  area 
Consider a bar of  some particular cross-sectional shape shown 
in Figure 2.16, and the two orthogonal axes y and z. (The choice 
of axes with y horizontal and z downwards, is quite arbitrary 
but has two advantages when applied to beams: (1) the displace- 
ments of  a beam are usually vertically downwards, and there- 
fore in the positive direction of z; and (2) as shown in section 
2.3.5, a positive bending moment about the y axis causes tension 
on the bottom of the beam; and therefore positive stresses occur 
at points in the beam defined by positive values of z.) The first 
moment of  area of  the cross-section about the y axis G:  is 
defined as the sum of the products obtained by multiplying each 
element of cross-sectional area dA by its distance z from the y 
axis. Thus: 

Gy=~AZdA 

Similarly: 

(2.90) 

Gz = ~A Y dA (2.91) 

The position of  the centroid of the cross-section is such that the 
first moment of area about any axis passing through it is zero. 
Thus if C is the centroid in Figure 2.16, then 

G,=G,=O 

From this it is clear that C must lie on any axis of symmetry of 
the section. The centroid can be located in general by selecting 
any two orthogonal axes y' and z'. The coordinates of the 
centroid relative to this system, Y'c and z~, are then given by: 

l I 

Y C 

Figure 2.16 

y~ = Cz.l,4 z'<= c,.IA (2.92, 2.93) 

where A is the area of the cross-section. The positions of the 
centroids of various cross-sectional shapes are shown in Table 
2.2. 

The longitudinal axis of the bar is defined as the line passing 
through the centroids of its cross-sections. 

2.3.2.2 Moments of  inertia 
The moment ofinertia~f of the cross-section about the y axis I :  is 
defined as the sum of the products obtained by multiplying each 
element of cross-sectional area dA by the square of its distance z 
from the y axis. Thus: 

ly=~Az2dA (2.94) 

Similarly: 

/.. = ~A f l  dA (2.95) 

The product of  inertia, ly z is defined as: 

I =~AyzdA (2.96) 

where y and z are the respective distances of each element of  
area dA from the z and y axes. 

The polar moment of  inertia of the cross-section about the x 
axis, Ip, is defined as: 

Ip=~A r2dA (2.97) 

where r is the distance of each element of cross-sectional area dA 
from the x axis. Note that since r 2 = (y2 + z 2) 

Ip = ~A ( .1,,2 + z ~) dA = I z + ly (2.98) 

If y' is an axis parallel to the centroidal axis y and distance c 
from it, then: 

ly = ly + Ac 2 (2.99) 

The relationship in Equation (2.99) is known as the parallel axis 
theorem. This theorem facilitates the calculation of the moments 
of inertia of a complicated cross-section, for the section can be 
divided into separate simpler elements of area A c say, whose 
moments of  inertia I,~ about their own centroidal axes are 
known. If then c, is the distance of an element centroid from the 
y axis, we have: 

ly = ~ (lye + Aec2e) (2.100) 
elements 

The moments of inertia about their centroidal axes, of various 
sectional shapes are given in Table 2.2. 

2.3.2.3 Transformation of  moments of  inertia 
Consider a new system of centroidal axes, y' and z', formed by a 
rotation of at ° anticlockwise about the x axis as shown in Figure 

t The term 'moment of inertia' is commonly used in engineering texts 
because the quantity Iy defined by Equation (2.94) is directly 
proportional to the mechanical moment of inertia about the y axis, of 
a thin lamina of the same shape as the cross-section. A more precise 
term for Iy is the 'second moment of area'. 



Table 2.2 Geometrical properties of plane sections 
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Section Area A Position o f  centroid C Moments  o f  inertia 

(1) Rectangle 

Y 

(2) Triangle 

(3) Trapez ium 

~t--cT --,r.- 

~-b lz x 
(4) D i a m o n d  

(5) Hexagon  

_ 

(6) Circle 

A = b d  

A = bd[2 

A = d(a + b)/2 

A = bd]2 

A = 0.866d 2 

A = lrr 2 
= 3.1416r 2 

c= d/2 

c= d/3 

c = d(2a + b)/3(a + b) 

c= d/2 

ly= bd3/12 

I , = ~ ' / 1 2  

ly  = bd 3/36 

[ z  - -  d b 3 / 4 8  

ly = d 3(a2 + 4ab + b2)/36(a + b) 

Iz = d(a 3 + a2b + ab 2 + b3)/48 

ly = bd 3/48 

I .=db3/48 

c--d/2 / ,-  ~-0.060~d' 

c - ' r  ly = L -  ~r~/4 
=0 .7854 r  ~ 
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Table 2.2 Geometrical properties of plane sections 

Section Area A Position o f  centroid C Moments  o f  inertia 

(7) Hollow circle 

(8) Semicircle 

(9) Ellipse 

(10) Semi-ellipse 

Z 
(1 l) Parabola  

t;°, 

A = n ( d -  r~) 
= 3 . 1 4 1 6 ( d -  r~) 

A = n H / 2  
= 1.5708r 2 

A "- 7~ab 

A = nab~2 

A =4ab/3 

c = r, ly = L = ( ~ / 4 ) ( r ~ -  r~) 
= 0.7854(r~- r~) 

c=0 .424r  

c - - a  

c=0 .424a  

c= 2a/5 

ly=[(n/8)  (8/9n)]r '  
= 0.1098r 4 

l~=nr ' /8  
=0.3927r  4 

ly = (n/4)ba 3 = 0.7854ba 3 

= (n/4)ab 3 = 0.7854ab 3 

Iy = O. 1098ba 3 

L = 0.3927ab 3 

!~' = 0.0914ba 3 

/, = 0.2666ab 3 

2.17. Then the inertias I,.,/,. and ly.:., being defined in the same 
way as ly, I, and ly, in Equations (2.94 to 2.96), are related to I,, 
I, and ly, by the equations: 

ly = }(% + I,) + }(%- I,) cos (2a)- %, sin (200 (2.101) 

I,, = ½(ly + 1,) - ½(ly- I,) cos (2a) + %, sin (2a) (2.102) 

I f e =  ½(ly- Iz) sin (2a) + ly, cos (2a) (2.103) 

Note that  these t ransformat ion equations are similar in form to 
the t ransformat ion equations of  plane stress in Equat ions (2 .17  
to 2.19), the difference being in the sign of  ~. 

For  a certain orientation of  y '  and z', the product  of  inertia 
ly.,. vanishes. Denot ing these coordinates by Y and z ,  then ly 

y 4., 

Z" 

Figure 2.17 

and I z are called the principal moments o f  inertia of  the cross- 
section, and Y and Z are called the principal axes. Concerning 
their orientation, it can be shown in part icular  that one of  the 
principal axes always coincides with an axis of  symmetry in the 
section. Values of  Iy and I z for s tandard  rolled sections are given 
in B S  4 ."  
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~ Centroid of 
cross-.section 

.z" M~ T 

Figure 2.18 

2.3.3 Stress resultants 
The stresses acting across a particular cross-section of a bar 
under loads, are conveniently represented by their resultant 
forces and couples relative to the three coordinate axes x, y and 
z. Thus the resultants acting on the material of the bar on the 
negativet side of the cross-section are considered positive when 
acting in the directions shown in Figure 2.18 and are defined as 
follows: 

Resultant Defining equation 

Axial force N N=  #A a~ dA (2.104) 

Bending moment about the y 
axis M,. M, = ~,, o,,z dA (2.105) 

Bending moment about the z 
axis M. M.= - ~A a y  dA (2.106) 

Shear force in the y direction 
S>. 

Shear force in the z direction 
S. 

Torque T 

S>. = j'~ zx,. dA (2.107) 

S.= #4 r,,: dA (2.108) 

T= #4 ( - L y  z + rxY) dA (2.109) 

These resultants are in equilibrium with the loads acting on 
that part of the bar which is on the negative side of the cross- 
section. Thus, if the bar is statically determinate, the resultants 
can be obtained directly by resolving and taking moments. 

A stress resultant diagram represents the variation of the 
stress resultant with x for a specified bar loading. The diagram is 
drawn positive in the direction of the y and z coordinates. Thus 
given the beam subject to the vertical forces shown in Figure 
2.19(a), the shear force (S.) diagram and the bending moment- 
(My) diagram take the form shown in Figures 2.19(b) and (c) 
respectively. Note that a positive bending moment My, causes 
tension on the bottom of the beam and therefore that the 
bending moment diagram is located on the tension side of the 
member. This orientation of the bending-moment diagram is 
very useful in reinforced concrete design leading to an imme- 
diate visual impression of where in the beam the tension 
reinforcement needs to be placed. 

It is sometimes of interest in the case of beams to consider the 
value of a stress resultant (or any other parameter), at a 
particular point P in the beam, for various positions of a load 
moving across the beam. If, for example, we consider the 
bending moment about the y axis at P ([My]p), caused by a unit 
vertical force at point x on the beam, then [M~] e is a function of 

t 'Negative' means the side in the negative direction of the x axis. 

I F I F 2 
. . . .  Z _ _ _  
i • . . . . . . . .  i 

+ "! 

(a) 
. . . . .  

(b) 

My (c) 

Figure 2.19 

the coordinate x. The plot of [My] p versus x is called the influence 
line of.My at P. Thus for the beam AB in Figure 2.20 the 
influence lines for [Sz] e and [My]e are as shown. 

The stress resultants are not all independent of each other. 
Thus considering the rotational equilibrium about the y axis of a 
small element of a bar subject to a vertical distributed load q per 
unit length, as in Figure 2.21: 

A P B • 
O I ( L - a )  

1 # 

/ ,  

[Sz] P (L -a) 
L 

+ t / a  
[My] p " ~ ' ~ ~ ~ ~ a  ( L - ) 

L 
Figure 2.20 

q 
s~ 

I ; 
Figure 2.21 

+ (dS~zld x 
dx l 
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d M / d x  = S, (2.110) 

Further, considering vertical equilibrium: 

d S / d x  = - q (2.111) 

Whence, combining Equations (2.110) and (2.111) gives: 

d2M, Idx 2= - q (2.112) 

A similar set of equations relates Mr.., Sy and the horizontal 
loading on the bar. 

Centre of ~ curvature 

lane sections 
remain plane 

2.3.4 Bars subject to tensile forces (ties) 
Consider a bar subject to axial forces N, produced by the 
loading shown in Figure 2.22. 

Axis F / 
< i i l i i i i i i  

Plane sections 
remain plane 

F 
i i i i i i 1 i 1 1 IL k 

l l l l l l l l U ~  .,-- 

Figure 2.22 

From the symmetry of the system at some distance from the 
loading points it can be deduced that plane sections originally 
normal to the longitudinal axis remain plane and normal to the 
axis after the deformation, while from the geometry of the bar, it 
can be assumed that the only nonzero component of stress is 
0,,. 8 

The stress-strain relations corresponding to the uniaxial state 
of stress take the form: 

ex = (a dE) + s a T  (2.113) 

G = e: = - (vax/E) + otaT (2.114) 

and it follows that at some distance from the loading points: 

G = N / A  (2.115) 

G = (N/EA) + aa T (2.116) 

My 

Figure 2.23 

Y 

It can again be assumed that: (3) the only nonzero component of 
stress is G. 

The above three conditions are the fundamental assumptions 
made in the engineering theory o f  the bending of  beams. 

The surface containing those points in the beam at which 
G = 0 is called the neutral surface. The intersection of the neutral 
surface with a cross-section produces a line called the neutral 
axis. 

From the geometry of the deformation, the uniaxial stress-- 
strain relations in Equations (2. I 13, 2.114), and the requirement 
of axial equilibrium (N=0),  it follows that: 

(1) The neutral axis is given by the equation: 

z = 0  (2.117) 

i.e. it is a horizontal straight line, coincident with the y 
coordinate line, and passing through the centroid of the 
section. 

(2) a~ =M~z (2.118) 
• ! } '  

and 

2.3.5 Beams subject to pure bending 

2.3.5.1 Beams symmetric about the vertical plane and 
subject to vertical loading 

Consider a beam subject to a uniform bending moment My over 
part of its length, produced, for example, by the loading shown 
in Figure 2.23. (Note that Equation (2.110) implies that a 
uniform bending moment can only occur in the absence of shear 
forces.) From the symmetry of the system it can be deduced that: 
(1) the beam deforms in the vertical plane, and straight-line 
generators parallel to the longitudinal axis deform into seg- 
ments of circles with a common centre; and (2) planes originally 
normal to the axis remain plane and normal to the axis after 
deformation. 

1 _M~ (2.119) 
& e!~ 

where Ry is the vertical radius of curvature of the beam axis. 

2.3.5.2 Composite beams 

Suppose the beam in the previous subsection is made of two 
materials of Young's modulus E, and E 2 respectively comprising 
areas A, and A 2 of the total cross-section, as in Figure 2.24. The 
three conditions of the engineering theory of the bending of 
beams discussed in the previous subsection still apply. It there- 
fore follows that: 

(1) The neutral axis is a horizontal straight line passing through 
a point C' called the equivalent centroid o f  the cross-section. 



E ~  7., I 

C2 . . . . .  I c ' / /  axis 

Flgure 2.24 

This is defined as being such that the first moment of 
Young's modulus times area about any axis passing through 
it is zero. Thus if c' is the distance of C' from the upper 
boundary of the beam and cl and c 2 are the distances of the 
respective centroids of the areas A~ and A 2 from the upper 
boundary, then: 

c' =E,A,c, + E2A2c 2 
E,A, + E2A 2 (2.120) 

M.vz [0,,],42 = E 2 M.,,z 
(2) [G]A, ~ I~, E~ I~, (2.121, 2.122) 

and 

l _ M ,  
Ry E,1'y (2.123) 

where [o ]A represents the axial stress in the area A~, etc.£y is the 
x i 

equivalent moment of inertia of the cross-section defined as: 

G ~ =  ~A, ( z2 ) dA, + ff~ ~A 2 (z 2 ) da  2 (2.124) 

where t'A ( ) dAI represents an integral taken over the area A I 
a I 

etc. In the above equations, the coordinates are relative to axes y 
and z passing through the equivalent centroid of the section. 

2.3.5.3 Reinforced concrete beams 
A reinforced concrete beam behaves as a composite beam, 
except that where the concrete is in tension (i.e. below the 
neutral axis for positive bending about the y axis) its stress- 
bearing capacity is taken to be zero (Figure 2.25). Otherwise the 
conditions of the engineering theory of the bending of beams 
still apply. 

c~ 

C' 

- axis 

Effective area 
of concrete 

Figure 2.25 

Let the subscripts c and s denote parameters associated 
respectively with the concrete and the steel. It then follows that: 

(1) The neutral axis is a horizontal straight line passing through 
the equivalent centroid whose distance c' from the upper 
boundary of the beam is given by: 

c'= E~A'G + E,A,c, (2.125) 
EoAo + E,A, 
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(Note that since A c and Cc are themselves functions of c', 
Equation (2.125) is an implicit equation.) 

(2) [ o ~ = - ~  [o J, =E--'t Mrz 
eo i ;  

and 

(2.126, 2.127) 

l _ M ,  
Ry EJ'y (2.128) 

where 
l'y=~,,(z2)dA~+E'~,q(z2)dA, 

Eo (2.129) 

Example 2.2. A rectangular reinforced concrete beam with a 
single layer of reinforcement is shown in Figure 2.26. For this 
section: 

A, 2Ecb(d_e) ,/2_ 1] E(,+ (2.130) 

I ' bc'3 +-~ A,[d- (c' + e)] 2 
(2.131) 

Note that the ratio E, : Ec is generally taker, to be 15. 

b 

d 
° ~ N e u t r a l  

" - - , - -ax is 

~ ~ A s 

Figure 2.26 

2.3.5.4 Beams of asymmetric section subject to both vertical 
and horizontal loading 
Consider again a beam of homogeneous material. The general 
case of pure bending occurs when the beam is of asymmetric 
section and is subject to uniform bending moments My and M. 
(Figure 2.27) over part of its length. 

~" • ~ . ~ . .  ~" " axis 

Figure 2.27 

From the symmetry of the system it can be deduced that 
straight-line generators parallel to the axis of the beam deform 
into curves of constant horizontal and vertical curvature. The 
other conditions discussed in section 2.3.5.1 still apply. 

From the geometry of the deformation, the uniaxial stress- 
strain relations and the requirement that N= 0, it follows that: 
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(1) The neutral axis is given by the equation: 

( MyI. + M.Iv.) z - ( M . !  v + MJr.) y = 0 (2.132) 

i.e. it is a straight line passing through the centroid of the 
section, as shown in Figure 2.27. 

(Me/.. + M Je:) z - ( M . l ~ . +  M,.I,..) y 
( 2 )  a , =  - - (!J-- - ~;) (2.133) 

±= (M/,+ M J,,) ±= -(Mr + M/,.) 
Ry E(lyl z - I~,) R: E(lyl,- I~,.) (2.134, 2.135) 

where R. is the horizontal radius of curvature of the beam 
axis. 

Note: 
(I) If the loading is vertical so that M..=0, Equation (2.135) 

indicates that the deformed beam is curved horizontally, i.e. 
Rz S0. 

(2) If y and z are principal axes, so that ly.=0, Equations 
(2.134, 2.135) indicate that the curvature about each axis is 
proportional only to the bending moment about that axis. 

In some cases, where a standard commercial section is mounted 
obliquely, as in Figure 2.28(a) for example, ly., I,. and ly. e will be 
known relative to the axes y', z', while the bending moments will 
be known about the axes y and z. In order to use the results in 
Equations (2.132 to 2.135) it is preferable to work in terms of the 
y' and z' axes and resolve the bending moments into equivalent 
moments about these axes, as in Figure 2.28(b). 

~ roid -- -- 

Mz,=: %,~oo+M,~o,o: z 
(a) (b) 

Figure 2.28 

2.3.6 Beams subject to combined bending and shear 
Practical loading arrangements on beams generally produce a 
combination of bending and shear stress resultants as, for 
example, in Figure 2.19. 

2.3.6.1 Beams symmetric about the vertical plane and 
subject to vertical loading 

Consider a point in a beam at which both My and Sz are 
nonzero. The presence S, then implies the existence of the shear 
stresses L, on the cross-section and corresponding shear strains 
y=, and much of the symmetry of the deformation of a beam 
under a uniform bending moment is lost. In particular, plane 
sections no longer remain plane. 

The following approximate analysis of  the problem is due to 
St Venant. ~5 It is assumed that the direct stresses ax and 
curvature (l/Ry) are the same as they would be if My were acting 
alone. They are therefore given by Equations (2.118, 2.119). The 

shear stresses in the beam are then obtained by considering the 
longitudinal equilibrium of the element of length dx shown 
shaded in the cross-sectional view of Figure 2.29. Thus employ- 
ing Equations (2.110) and (2.118), namely dMy/dx=S= and 
tr x = Mj / l y ,  it can be shown that the mean longitudinal shear 
stress r on the surface ABCD is given by: 

S.Aec= 
T - -  " bely (2.136) 

where A e is the cross-sectional area of the element, c e is the 
distance of its centroid from the neutral axis, and b e is the length 
of the curve joining AB (Figure 2.29). 

0 X 

I 

" - - ~ e  hleutralaxis 

dx " \ 
)( 1, A e 

! 

I 

Figure 2.29 

can then be related to the shear stresses rxy and rx: on the 
cross-section as follows. If  the cut surface ABCD is a horizontal 
plane (i.e. it is a z-coordinate surface) then z is the mean value 
of the shear stress component r:~ on that surface. Whence, since 
Z:x = L:, it follows that T is also the mean value of L: on the line 
AB. For  thin sections, we assume that L: is uniformly distri- 
buted across the width so that: 

r x := r  (2.137) 

Thus for the rectangular section shown in Figure 2.30, Equation 
(2.136) gives the following parabolic distribution of shear stress 
on the cross-section: 

3s= 
Lz = 2--b~ (d2-  4z2) (2.138) 

b 3Sz/2bd 

A B 

rxz rxz 

Figure 2.30 

If  the cut surface ABCD is a vertical plane (a y-coordinate 
surface) then z is the mean value of the shear stress component 
zyx on that surface, or the mean value of L v on the line AB. Thus 
for an I-section, the shear stresses in the flanges are as shown in 
Figure 2.31. 

2.3.6.2 Composite beams 

The existence of the longitudinal shear stress z (Figure 2.29) is of 
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Szdb 

L 2Iy L, 
q 1 ~ s,  aor 

special significance in built-up composite beams, because this 
stress has to be transmitted between the separate components of 
the beams by means of suitable bonds such as welds, rivets or 
shear connectors. 

Thus consider a beam composed of two materials of Young's 
modulus E, and E 2 respectively comprising areas A, and A 2 of 
the total cross-section (Figure 2.32). The position of the neutral 
axis and the equivalent moment of inertia of the cross-section 
are again given by Equations (2.120) and (2.124), whence, 
employing the assumptions of St Venant's theory, it can be 
deduced that the mean longitudinal shear stress at the interface 
AB is given by: 

r =  S . A , ( c '  - c , )  
b/~ (2.139) 

~. b #E,, 

I 
~ C' axis 

--E~,A, 

Figure 2.32 

while the corresponding longitudinal shear force/unit length of 
beam F is given by: 

F=  b'r (2.140) 

If the beam were composed, say, of a concrete slab connected to 
a steel T-section joist, then Fwould be transmitted by stud shear 
connectors of the type shown in Figure 2.33 which would be 
welded on to the top face of the T-section. Supposing that the 
factored shear strength of each connector were known experi- 
mentally to be F,, then the connectors would need to be 
distributed at a concentration of F/F, per unit length of beam. 

2.3.6.3 The shear centre (beams asymmetric about the 
vertical plane) 
In a beam of asymmetric cross-section the shear stresses given 
by St Venant's theory contribute to a torque T. Consider, for 
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o o" o. I ° 

Figure 2.33 

example, the shear stresses produced in the channel section 
shown in Figure 2.34. They are statically equivalent to the stress 
resultants Sf acting in the two flanges, and S, in the web, where: 

S.=S. (2.141) 

S-b2dt (2.142) 

sAb I sAb 
21y ~ Y  21y 

, , _ .  

s~ s~dt, 
[ e [ t Centroid ~ - ~ y  

b ,r rxz 

- She~ e ~-Sf'~ 

Figure 2.34 

t1. } 

and because of the asymmetry of the section, they produce a 
torque T acting about the longitudinal axis of the channel given 
by 

T= S.c + S'b2d2-----~t (2.143) 
41y 

An important assumption of St Venant's theory is that the beam 
deflects vertically without twist. Thus, it can be deduced that if 
the loading on the beam is such that it produces the 'torque T, 
then twisting does not, in fact, occur. (If the loading did not 
produce T then some twisting of the beam would be necessary in 
order to modify the torque obtained in Equation (2.143).) T can 
be applied by positioning the vertical loading so that its resul- 
tant at any cross-section lies at a suitable distance from the 
centroid. Thus the torque in the channel can be produced by 
the loading shown in Figure 2.35. The point at 

'~') 

Figure 2.35 
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Table 2.3 Shear centres of the walled sections 

SectDn Position of shear centre Q 

(1) Channel 

(2) Lipped channel 

~ ,  b ,, 

z 

(3) Hat-section 

QII 

" IZ " 

(4) I-section 

(5) Split circle 

e = d  (-~y ~ ) 

where Hy. is the product of inertia of the half section (above 
the y axis). 

If t is uniform: 

b2d2t 
e -  4Iy 

Values of (e/d) 

bid 
c/d 1.0 0.8 0.6 0.4 0.2 

0.0 
O.l 
0.2 
0.3 
0.4 
0.5 

0.430 
0.477 
0.530 
0.575 
0.610 
0.621 

0.330 
0.380 
0.425 
0.470 
0.503 
0.517 

0.236 
0.280 
0.325 
0.365 
0.394 
0.405 

0.141 
0.183 
0.222 
0.258 
0.280 
0.290 

Values of (e/d) 

bid 
c/d 

0.055 
0.087 
0.115 
0.138 
0.155 
0.161 

e -  
~,+I~ 

where 11 and 12 respectively denote the moments of inertia 
about the y axis of flange 1 and flange 2 

0.0 0.430 0.330 0.236 0.141 0.055 
O. 1 0.464 0.367 0.270 O. 173 0.080 
0.2 0.474 0.377 0.280 O. 182 0.090 
0.3 0.453 0.358 0.265 0.172 0.085 
0.4 0.410 0.320 0.235 0.150 0.072 
0.5 0.355 0.275 0.196 0.123 0.056 
0.6 0.300 0.225 0.155 0.095 0.040 

e - - r  

1.0 0.8 0.6 0.4 0.2 
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Section Position of shear centre Q 

(6) Z-section 

Y . d  

(7) Sections with elements intersecting at a single point 

0 
- j  

etc. 

Shear centre coincides with centroid 

Shear centre lies at point of intersection 

which the vertical resultant crosses the neutral axis is then called 
the shear centre, and for the channel section it is located at a 
distance e from the web (Figure 2.34) where 

b2d2t 
e ' ~ ~  4Iy (2.144) 

The positions of the shear centres of various cross-sectional 
shapes are shown in Table 2.3. 

The shear axis of the beam is defined as the line passing 
through the shear centres of its cross-sections, and by definition, 
the resultants of all lateral forces acting on the beam must pass 
through this axis if the beam is to deflect without twist. 

2.3.7 Deflection of beams 
According to St Venant's theory, the curvature of a beam 
subject to combined bending and shear is given by Equation 
(2.119) thus: 1/Ry=My/EI r Suppose u: is the corresponding 
vertical deflection of the longitudinal axis of the beam, then 
from the geometry of the deformation (Figure 2.36), it can be 
shown that: 

1 _  d2u./ 
R, dx21 ( 1 +  ( ~ ) 2 ) m  (2.145) 

In practice, the slopes of beams are extremely small and the 
denominator of the fight-hand side of Equation (2.145) can be 
taken to be equal to unity, whence, combining Equations 
(2.119) and (2.145) gives the following differential equation: 

d2u: + My = 0 (2.146) 

Co._of beam 

Note: deflections shown to an 
exaggerated scale 

Figure 2.36 

called the differential equation of beams. For statically determi- 
nate beams, where My can be found as a function of x, this 
second-order equation can be solved subject to boundary condi- 
tions by double integration. The solution uz(x) is then the 
deflected shape of a beam produced by the applied loading. 
Examples of the boundary conditions for particular cases are 
shown in Figure 2.37. Special techniques, such as the step 
function method ~" and the moment-area method ~5 have been 
devised to simplify the analysis. 

The differential equation of beams can be expressed in two 
further forms using the results of Equations (2.110) and (2.112). 
Thus from Equation (2.110) we have: 

d3uz S + - '  =0  (2.147) 
dx 3 EI, 

while from Equation (2.112) we have: 
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Figure 2.39 

d'u: q 0 (2.148) 
dx' El, 

Equation (2.148), expressing the deflections of beams in terms of 
the lateral loading, is directly equivalent to the three-dimen- 
sional Navier Equations (2.61 to 2.63), and can be solved if the 
boundary conditions are expressed in terms of the displace- 
ments. The solution of this equation as opposed to Equation 
(2.146), is necessary when a beam is statically indeterminate, i.e. 
when M v cannot be found in advance. Examples of the required 
displacement boundary conditions for particular cases are 
shown in Figure 2.38. 

du z du z 

-~-~-- . . . . . . . . . . . . . . .  " ~ " ~ " - " ~  Encastr6 beam 

du z - t d'Uz 

~,~_~ A Propped cantilever 
d~z =0 daUz 'd~.' _~ ,~ ~_ ~~'--° '  ~,,=o 

i-~-'-'-'1"-"~'~'~ j Continuous beam 

%1 = %2 = 0 

-7-2- ~dx'J \-~x2J, 

Figure 2.38 

An interesting modification of Equation (2.148) occurs when 
a beam rests on an elastic foundation. Suppose the stiffness of 
the foundation is k per unit length of beam. Then in addition to 
the vertical applied loading q, the foundation resists the deflec- 
tion of the beam with distributed forces equal to ku: per unit 
length. Equation (2.148) then takes the form: 

d4u: _ q _  
+ ku, -ffl~y-O (2.149) dx 4 

Examples of the solution of this equation are given by Het~nyi. '6b 

2.3.8 Bars subject to a uniform torque 

2.3.8.1 Bars of circular cross-section 
Consider a bar subject to a uniform torque T produced, for 
example, by the loading shown in Figure 2.39. 

From the symmetry of the system it can be deduced that: (1) 
the bar twists about its longitudinal axis; (2) planes originally 
normal to the axis remain plane and normal to the axis and 
rotate like rigid laminae, and (3) the rotation 0 of any plane is 
proportional to its distance along the beam. 

From the geometry of the deformation and the shear stress- 
strain relations in Equations (2.49 to 2.51), it follows that: 

Tr 
rx ' -  J (2.150) 

dO T 
dx GJ 

(2.151) 

where L, is the shear stress on the cross-section at a distance r 
from the axis, and tangential to the circle of radius r (Figure 
2.40). J is a sectional constant, equal in this case to the polar 
moment of inertia Ip about the longitudinal axis. 

"rx y 

z 
Figure 2.40 

Shear stress 
trajectory 

The quantity dO/dx being the rate of change of rotation with x 
is called the twist of the bar, and is clearly uniform when the bar 
is subject to uniform torque. 

2.3.8.2 Bars of arbitrary cross-section 
The three assumptions of section 2.3.8.1 can be shown to lead to 
impossible values of L, at the boundaries of an arbitrary section, 
since in order to satisfy longitudinal equilibrium conditions, L, 
must be tangential to those boundaries (Figure 2.41). 

Figure 2.41 

Equil ibrium 
contravened 



The theory for the analysis of bars of arbitrary section is 
again due to St Venant? Thus the assumption in the previous 
subsection that plane sections remain plane is relaxed, and a 
point P is assumed to have an axial displacement ux given by: 

d0 Ux=-d--x C,(y, z) (2.152) 

u, is called the warping of the section, and is directly propor- 
tional to the twist, but is independent of x. The shear stresses Lv 
and L,z are then expressed in terms of a stress function o(y, z) by 
the equations: 

% = 0410z ~ x ,  = - 041oy (2.153, 2.154) 

so that the internal equilibrium Equations (2.11) to (2.13) are 
identically satisfied. Satisfaction of the compatibility Equations 
(2.40) and (2.42) then leads to the following equation: 

02¢ 02¢- (2.155) 

Equilibrium conditions require that $ is constant along the 
boundaries of the section, and if the section is solid $ can be 
conveniently taken as zero along the boundaries, whence it can 
be shown that: 

T= 2IA 4 dA (2.156) 

Equations (2.155) and (2.156) are solved simultaneously, 
either numerically, or experimentally, 8 and the shear stresses 
corresponding to T are obtained from Equations (2.153) and 
(2.154). The results can be expressed in the following form: 

[Z.,~]m, , = T[k (2.157) 

dO/dx= T/GJ (2.158) 

where [Lb]m,, is the maximum shear stress on the boundary of 
the section and is tangential to the boundary, k and J are 
constants, and their values for various cross-sectional shapes are 
shown in Table 2.4. 

For the narrow rectangular section shown in Figure 2.42: 

k = t2d/3 J= t3d/3 (2.159, 2.160) 

and the maximum shear stress occurs along the boundaries of 
greatest length. These results can be used to determine the 

Table 2.4 Torsional constants 

Section k J 

(1) Rectangle d/b 

1.0 0.208 (bad) 0.1406 (b3d) 
1.2 0.219(b2d) 0.166(b3d) 
1.5 0.231 (b2d) 0.196(bad) 
2.0 0.246 (bad) 0.229 (/gd) 
2.5 0.258 (b2d) 0.249 (b3d) 
3.0 0.267 (b2d) 0.263 (b3d) 
4.0 0.282(b2d) 0.281(b3d) 
5.0 0.291 (bad) 0.291 (b3d) 

10.0 0.312 (b2d) 0.312 (b3d) 
oo 1/3 (b2d) 1/3 (b3d) 
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(2) Equilateral triangle 

b3/20 x/3b'/80 

(3) Right isosceles triangle 

0.0554 b 3 0.0261 b 4 

(4) Hexagon 

0.217 Ad 0.133 AaU 

(5) Circle 

(6) Hollow circle 

(7) Ellipse 

[ 
Cl 

2b x 

nr312 n#12 

1.5708 r 3 1.5708 # 

rtab2/2 na3b3/(a 2 + b 2) 

A B A B_I~ B__~j'i2~~ Dist r'ibution of 
I shear stress 

I . ! : :~  Maximum 
shear stress 

Figure 2.42 



2•24 Strength of materials 

torsional properties of a thin-walled open-section bar, suppos- 
ing that the cross-section can be divided into narrow rectangular 
elements of thickness t c and de, for it can be shown that to a first 
approximation: 

j=~: t:de 
e~-, .  3 (2.161) 

Thus for the I-section shown in Figure 2.43: 

3 +  3 j_2d/ t /  dwtw 
3 (2.162) 

# #' 
t J'~tf 

dw l [ tw 

,  tt, 

Figure 2.43 

The maximum shear stress [q~]~ along the boundaries of a 
particular element are given by: 

[ r ~ =  T/k, (2.163) 

where 

k~ = J/t~ (2.164) 

[ ~ ,  however, is not the maximum shear stress on the cross- 
section, for this now occurs at the re-entrant corners. Thus, in a 
constant-thickness channel section (Figure 2.44(a)) [L~],, oc- 
curs a t  point P, and is related to [L~ and the radius of the 
comer as shown in Figure 2.44(b)? 

. •  3.5 
F~] 3.0 

" "  2.5 

• , 1.5 

(o) 1.0 0 

Figure 2.44 

I I I  I 

. t • 

10 210 
r" 

(b) "T 

In a thin-walled closed-section bar, such as the tube of 
varying wall thickness t shown in Figure 2.45, the shear stress L~ 
is uniform across the thickness at any point and is tangential to 
the surface of the tube. It is given by: 

rxb = T/2At (2.165) 

where ,4 is the gross cross-sectional area. 
J in Equation (2.158) is given by: 

Figure 2.45 

where ds is an element of length round the tube (Figure 2.45). A 
further quantity q called the shearflow is defined at a point in the 
tube wall by the equation 

q = zxbt (2.167) 

It is then apparent from Equation (2.165) that the shear flow is 
independent of t. 

In multicell thin-walled bars, as shown in Figure 2.46, the 
concept of circulatory shear flows qj, q2, q3 is introduced, a 
concept which automatically satisfies the conditions of longitu- 
dinal equilibrium at junctions such as A. The shear flow at point 
B, for example, is then given by (q l -  q2)- The shear flows and the 
twist of the bar corresponding to a certain applied torque are 
calculated from the four simultaneous equations: 

T= 2qlA I + 2q2A2 + 2q3A 3 (2.168) 

dO_ 1 qds)= 1 q 1 qds 3 
dx 2A1G~-[ 2-~2G ~2 }- ds2 = 2--~3G ~;3 7 

(2.169, 2.170, 2.171) 

where ~;, represents the contour integral taken round cell 1, etc. 

A 

Figure 2.46 

2.3.9 Nonuniform torsion 

Nonuniform torsion in a bar is defined to occur when the twist 
dO/dx varies along its length. This situation arises when the 
warping assumed in St Venant's theory is restrained at a rigid 
support, or when the torque exerted by the applied loading is 
nonuniform. 

The nature of the modification necessary to St Venant's 
theory can be appreciated by considering the nonuniform 
torsion of the I-section cantilever shown in Figure 2.47. Since 
dO/dx is not constant, the flanges are curved in the z plane. 
Considering the flanges as subsidiary beams, they contain shear 
forces [S:]/which are related to this curvature. The torque T 
therefore includes an extra component [Sz]fd. [Sz]f is given by 
Equation (2.147) as: 

d3/A 
[S Jr= - EtlJf ~ (2.172) 

where [l),]f is the moment of inertia of each flange about the y 
axis, and u, is its displacement. Whence noting that: 
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Figure 2.47 

. . .  r 

l t ,l, its, l, 

T= G ~ _  EIy d2 d30 
dx 3 i2.174) 

Equation (2.174) can be expressed in the more general form: 

T = G j d O - E F  d30 (2.175) 
dx dx 3 

Table 2.5 Warping factors 

Section 

(1) I-section 

i i 

t, 
' 

4' b ~ 'I 

½b3d2t, 

(2) Channel section 

•t I ~b3d2t ' ( 3bt, + 2dt 2 ) 
6bt, + dt 2 / 

, t , +  

(3) Z-section 

i • 2bt, + d~/  t1 , X b ~b3d2tl(bt,+2dt2~ 

, 
b 

4 ~ 
(4) Thin-walled sections with 

elements intersecting at a single 
point 

where F is a constant called the warping factor. Its values for 
various cross-sectional shapes are given in Table 2.5. The 
differential Equation (2.175) can be solved for various values of 
T applied to the bar, subject to boundary conditions in 0. 
Examples of these boundary conditions are shown in Figure 
2.48. 

=0 "d20 = 
' d.z.2 0 

I _ r, 
?, 

dO {dOl (d. O 1 (d'O _ 0 
dx :0  l~-d-x]=~,-d-x], dx' 

Figure 2.48 

2.3.10 Bars subject to compressive forces (columns) 
2.3.10.1 Short columns 
If the geometry of a bar is such that its length is less than about 5 
times its lateral dimensions, then it is usually stable under 

compressive forces. If therefore it is subjected to an axial 
compressive force F, then N = - F and the corresponding stress 
tr x is given by Equation (2.115) as: tr x = N/A. If further, the bar is 
subjected to bending moments My and M= acting about the 
principal axes y and z, then by superposition: 

N Myz M y  
aX=A + Iy I. 

and the neutral axis is given by the equation: 

(2.176) 

M y z _ M y  + N 
Iv /= ~ = 0  (2.177) 

Combined compressive forces and bending moments occur in 
the bar if the compressive force F is eccentrically positioned as 
shown in Figure 2.49. Thus if the resultant due to F passes at a 
distance n and m from the y and z axes respectively, then: 

the additional torque component becomes: 

_ EI; d2 d30 
dx 3 

where Iv is the total moment of inertia of the cross-section about 
the y axis. Combining this with the torque required for the 
uniform torsion of the bar, we obtain: 

N= - F Mv = - Fn Mr..= + Fm 

and: 

(2.178) 

The neutral axis is then given by the equation: 

. z  , 2 1 7 9 ,  o-.,= - F  +)-~/+ 
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nz+~Y+ 1=0 
: ( 2 . 1 8 0 )  

where ry and r= are the radii of  gyration of the cross-section 
defined respectively by the equations: 

r y - A  - -A (2.181) 

Note that if the location of the neutral axis is known, then the 
maximum and minimum stresses on the section are located at 
those points which are at the greatest perpendicular distance 
from this axis. Their positions can easily be found graphically. 

It is apparent from Equation (2.180) that the location of the 
neutral axis depends only on the coordinates n and m defining 
the eccentricity of F. If this eccentricity is such that the neutral 
axis falls outside the section, then the stress ax is negative (or 
compressive) at all points in the section. This situation arises if 
the stress resultant lies within an area called the core of the 
section. The dimensions of the cores of regular sections can be 
found analytically and some examples are given in Table 2.6. 

Table 2.6 Cores of sections 

Section 

(1) Rectangle 

(2) Circle 

l , b>'3,, 
° 

/3~ 

d 

(3) l-section 

2k, 

-, I b x 

Z 

k, = 2~/b 

k 2 = 2~/d 

2.3.10.2 Long columns 
If the length of a bar is greater than about 5 times its lateral 
dimensions, it can become unstable under compressive forces. 
Consider, for example, the pin-ended bar subject to an axial 
compressive force F shown in Figure 2.50. If u: is the lateral 
displacement in the z direction of a particular cross-section, then 
the moment My exerted by F at the section is Fu r Thus from 
Equation (2.146) we have the differential equation 

d2u____~= Fu. 
dx 2 + ~-~, = 0 (2.182) 

Figure 2.50 

One solution of Equation (2.182) is u.=0, i.e. the bar remains 
straight. However, further nonzero solutions for u: occur for 
particular values of F called the eigenvalues. The lowest eigenva- 
lue is the critical load F ,  of the bar, and can be regarded as the 
maximum load that can be carried before failure by lateral 
instability. It can be shown that F= is given by: 

=n2El2 (2.183) 
F~, r 

while the corresponding deflected shape of the bar is sinusoidal 
and of arbitrary amplitude, taking the following form: 

u:=Asin ( 7 )  (2.184) 

The value for the critical load was first obtained by Euler, and a 
pin-ended bar subject to axial compression is often called an 
Euler strut. 

Dividing Equation (2.183) by the area of the bar leads to the 
following expression for the critical buckling stress a~: 

% = n2E/22 (2.185) 

where 2 (=  l /Q is called the slenderness ratio. 

When, as in most cases, ly ~ I,, the strut buckles first about the 
minor principal axis, about that axis for which the moment of 
inertia of the section is a minimum. 



ac =n2E/2e2 (2.186) 

where X,= I J r  v. Values for le are included in the table. 

Table 2.7 Critical buckling loads of struts 

All struts are o f  length # I: > ly 

Lower end Upper end 
boundary boundary 
condition condition 

(1) Hinge Hinge along y 
along y axis 
axis 

(2) Clamped Clamped 

(3) Clamped Hinge along y 
axis 

(4) Clamped Free 

Mode Per 

(5) Hinge Hinge along z 
along axis 
z axis 

Smaller of 
4n2Ely/l 2 or 
7~2EL/I 2 

I 
F 

J 

F 

I: F 

rt2Elv/l 2 . 

4rt2 E!v/ l 2 

20.19 E!,./12 

n2El/412 

0.5• 

l 

0.5l 

0.71 

2.01 

0 u 
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The above type of buckling is called f lexural buckling, and 
occurs when the cross-section of the strut has two axes of 
symmetry. For unsymmetrical sections, buckling may be,accom- 
panied by torsion as well as flexure, producing a correspond- 
ingly reduced critical load. Results for such cases are given by 
Bleich? 

2.3.10.3 Formulae for  the strength o f  columns 
The plot of crcr versus 2 for various column lengths is the 
hyperbola shown in Figure 2.51. Clearly, when 2 is very small, 
the critical stress becomes much greater than the yield stress av 
of the material, and the failure of the column is brought about 
by the yielding of the material rather than by flexural buckling. 
If the columns were perfectly straight and the axial load had no 
eccentricity then the ljltimate stresses au would be given by the 
upper curve in Figure 2.51, i.e. the elastic buckling hyperbola 
intersected by the horizontal 'squash' line. However, tests show 
that the strengths of real columns are considerably reduced by 
initial imperfections when a,-"-av as indicated by the lower 
curve in the figure. The following semi-empirical formulae have 
been devised to account for this, giving the ultimate stresses of 
columns in terms of their geometrical and material properties. 

° v Squash line 
w 

The critical buckling loads of struts with other than pin-ended 
boundary conditions are given in Table 2.7. The corresponding 
effective lengths l s are then defined so that the critical stresses can 
be given by an equation analogous to Equation (2.185) namely 

r perfect columns) 

Strength curve. 
for real columns 

Figure 2.51 

(6) zal°ngHingeaxis Hingeaxis along y ~F 
z 

20.19 E!v/12 0.71 

Special loading cases 

(7) Pin-ended strut under end 
load P~ and central F1 
load P2 

(8) Cantilever strut under d 
uniformly distributed load 
q/unit length 

,i 

(F~ + F2)== rt2El/(kl) 2 
where k--- 1/(2- e 2) 
c = V,/(V, + V2) 

(q=)l= n2El/( l .1221) 2 

The Rankine formula. ~7 A simple interaction formula relating 
tr.,, trv and trcr is as follows: 

I l l - + - -  (2.187) 
tY u tYcr tYy 

gives: 

a u - -  
a y  

°'r22 (2.188) 
1 + 7tZE 

The interaction curve is tangential to the squash line at 2 =0, 
and to the buckling hyperbola at 2 = ~ .  

The Johnson parabola. ~7 The formula: 

trr12 ~ (2.189) o ,=  try 1 -- 4~t2E/ 
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gives a parabolic interaction curve in the nonelastic range which 
is tangential to the squash line at 2--0, and to the buckling 
hyperbola at the point a,~ = ½av. 

The secant formula. The secant formula is derived assuming 
that the axial forces on the column have an initial eccentricity e 
(Figure 2.52(a)). In this case it can be shown that: 

av (2.190) 
o,  = l + ,~ scc [ ( ~ / 2 ) 4 ( o , / o = ) ]  

where r/is given by: 
tl = ec/~ (2.191) 

c is the distance from the neutral axis to the extreme fibre of the 
section. 

The Perry-Robertson formula. Assuming that the column has 
an initial curvature and that its maximum misalignment is e 
(Figure 2.52(b)), Ayrton and Perry derived the following for- 
mula: 

[( ) ¢r =½[av+( l+t/)ac,] - ~v+(l+,Da= 2 _ 0 , ~  = 
2 

(2.192) 

where i/is again given by Equation (2.191). 

~ F F 

e 

(a) (b) 

Figure 2.52 

Robertson showed by experiment that a good but conserva- 
tive prediction of the real strengths of columns can be obtained 
by making r/proportional to 2, as follows: 

r/= 0.003 ;t (2.193) 

Later experiments by DutheiW led to the modified expression 

r/= 0.3 (2/lOOv) ~ (2.194) 

2.3.10.4 Codes of practice for the design of columns 
Section 2.3.10.3 summarizes the bases of simple empirical for- 
mulae for the strengths of columns. Current and projected codes 
of practice are somewhat more complicated, attempting to allow 
for the effects of variations in cross-sectional geometry and of 
residual stresses due to rolling and welding. 

The British codes of practice are based on the Perry-Robert- 

son formula. In the current standard for the design of steel 
bridges, ~8 compression members are designed for r/in Equation 
(2.191) which is linearly related to 2 and a parameter ¢z as 
follows: 

F/=O (2<2o) (2.195) 

~=o.oo1= (~-~o) (~ >,Io) (2.196) 

where g 0 is the slenderness ratio below which the members are 
assumed to reach their full squash load. This is given as 0.2 2, 
where ~.1 (-Jzx/E/ar) is the slenderness ratio for which the 
critical stress is equal to the yield stress. Four curves for a, are 
presented, curves A, B, C and D corresponding to ~z= 2.5, 4.5, 
6.2 and 8.3 respectively. These are shown in a nondimensional 
plot in Figure 2.53. The curves appropriate for various cross- 
sections and fabrication methods are then selected according to 

1.0 

I r 
~ 05 C " 

0 0.5 1.0 1.5 2.0 

Figure 2.53 British and European column strength curves 

Table 2.8.t The revised standard for steelwork in buildings, '9 
adopts a similar approach, with slight differences in a for the 
different cases. 

The European Recommendations for Steel Construction, 2° pub- 
lished by the European Convention for Structural Steelwork 
(ECSS) employ three basic column strength curves a, b and c 
again describing the strengths of groups of rolled and welded 
columns with various cross-sections. These curves are included 
as broken lines in Figure 2.53. The additional curves a0 and d 
respectively deal with heat-treated sections in high-strength 
steel, and with sections with particularly thick plates (> 40 mm). 
For welded sections the effective value of the yield stress is 
reduced by 6%. An extended account of the reasoning behind 
the Recommendations is given in Chapters 2 and 3 of the 
Second International Colloquium report? ' 

The current American codes of practice are based on the 
Johnson parabola. Thus the American Institute of Steel Con- 
struction 2~ recommend that the allowable stresses are obtained 
by dividing the interaction curve given by Equation (2.189) by a 
safety factor 9~ which depends on the slenderness ratio. Thus 
defining 22 to be the slenderness ratio for which ac, = ½at, then 

t Extracts from BS 5400:Part 3:1982 are reproduc~-xi by permission of 
the British Standards Institution, 2 Park Street, London, W1A 2BS 
from whom complete copies of the standard can be obtained. 



Table 2.8 Selection of British column strength curves. British 
Standards Institution (1982) Steel, concrete and composite bridges, 
BS 5400: Part 3. BSI, Milton Keynes) 

Members fabricated by All other members 
welding (excluding local (including stress relieved 
welding of battens, welded members) 
lacing, etc.) 

re/c/> 0.7 curve B curve A 

re/c = 0.60 curve C curve B 

ry/c = 0.50 curve C curve B 

r/c <<, 0.4.5 curve C curve C 

All-rolled 
sections with 
flange 
thickness > 
40 mm 

curve D 

Hot-finished 
hollow 
sections 

curve A 

Notes: (a) For intermediate values of ry/C, linear interpolation may be 
used between the curves given. 

(b) c is defined as for Equation (2.191). 

- - 8 1 - - ( ~ 2 2 )  3/2 ( '~  < '~2) (2.197) 

~--23__].2 ( / ] , >  2 2 )  ( 2 . 1 9 8 )  

For slender bracing and secondary members for which 2 > 120, 
the allowable stresses may be divided by (1.6-; t /200),  giving 
stresses similar to those of the Rankine formula. The Structural 
Stability Research Council (SSRC) 23 describe three column- 
strength curves (1), (2) and (3) each one representing the 
computed strength of a group of rolled or welded sections with 
realistic residual stresses and an initial bow of l/1000. These are 
shown in Figure 2.54. 

1.o 

g 
0.5 

Oy 

0 i I I I ! I , ~ t I , , J i I i I I i I J I t 
0 0.5 1.0 1.5 2.0 

MX 1 
Figure 2.54 American column strength curves 
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2.3.11 Vir tual  work and strain energy of frameworks 

The state of stress and strain at all points in a framework can be 
expressed in terms of the stress resultants at those points, using 
the appropriate equations o~ the previous sections and the 
stress-strain relations. The internal virtual work done in a 
framework corresponding t 9 the general expression in Equation 
(2.76) is then given by: 

1 ( N N *  MeM ~ * MzM* + k eSeS *y 
w,*=E ~o EA + + ~. El e EI~ GA 

kzS~S*+ TT* ) dx (2.199) 
+ GA G 

o ,  

where k e and k: are dimensionless form factors depending on the 
shape of the bar cross-section at each point in the framework. 
Values of the form factors for some common cross-sections are 
given in Table 2.9. 

Table 2.9 Form factors 

Section k e k. 

1 Rectangle 1.20 
2 Circle 1. l 1 
3 Hollow circle 2.00 
4 I-section or hollow rectangle 

(approx.) 

Similarly the internal strain energy of a framework corres- 
ponding to the expression in Equation (2.78) is given by: 

, ( u '  M~ ~t'~+k~S~+ 
U=~,~ ~e 2EA +2El e +2EI~ 2GA 

k~S2 T 2 ) 
+ 2GA + 2GJ dx (2.200) 

2.3.12 Note on the limitations of the engineering 
theory of the bending of beams (ETBB) 
As noted in section 2.3.6, the basic assumptions of the ETBB, 
while quite correct when the beam is subject to pure bending, 
become invalid when the beam is also subject to shear. In 
particular, we can no longer assume that plane sections remain 
plane. 

Some indication of the error involved in using the ETBB is 
obtained by analysing a thin-walled deep cantilever beam. 
Treating this as a plane stress problem, a complete solution is 
possible subject only to certain assumptions regarding the fixity 
at the encastre end? Thus it can be shown that if the cantilever 
is loaded by a single vertical load F at its end so that the shear 
stress resultant is uniform along the length, the direct and shear 
stresses given by the ETBB are exact. However, the deflections 
u x and uz are given by: 

vFz3 Fz3 (2.201) 
Ux=2~l~ -21x+x2)z4 6El e 6GI~ 

• 

F 2 vF uz=~-~-:~-(,31x - x 3) + ~ ( l -  x) z2 + ~  2El, or,1 e 
Fd2x 
8GI~ (2.202) 

and the corresponding deflected shape of the beam is composed 



2/30 Strength of materials 

_• t L 

d 

Bending deflections 

- ~  FI 3 

Sheer deflections 

Figure 2.55 

of two components as shown in Figure 2.55. One is the curved 
shape predicted by the ETBB, while the other is a linear vertical 
displacement due to the shear with the original plane cross- 
section taking up an S-shape in side view. 

If the cantilever is loaded by a uniformly distributed load 
F/unit length so that the shear-stress resultant varies with x then 
the stresses given by the ETBB are also slightly inaccurate. 
However, it can be shown that the error is small, provided the 
span of the beam is large compared with its depth. Further the 
curvature of the beam is modified from Equation (2.119) to: 

l _ E _ ~ i y +  F d :  v (2.203) 

where the second term on the right-hand side represents the 
effect of" the shear forces. 

The preceding discussion concerns the behaviour of the webs 
of beams. However, in the flanges as well, it can be shown that 
plane sections no longer remain plane when beams are subject to 
shear. This phenomenon is called shear lag. It can be conve- 
niently illustrated by the T-section cantilever shown in Figure 
2.56(a). According to St Venant's theory (section 2.3.6), the 
forces in the flange are transmitted by longitudinal shear across 
the section A-B,  so that the flange can be considered to behave 
like the cantilever plate shown in Figure 2.56(b) subjected to the 
uniformly distributed axial load along its centreline. It is then 
clear that the corresponding displacements u x and the axial 
stress a x are nonuniform across the width of the flange. The 

F 
r ! 

I 

"r 
(b) 

Figure 2.56 

Typical o x 
deflections 

---_-_~. 

1 

analysis of shear lag for practical cases is complex, and the topic 
is dealt with at some length by Williams. 24 

Further departures from the ETBB occur when beams 
become geometrically unstable. This instability can take the 
form of local compressive buckling of the flanges, 3 local shear 
buckling of the webs 3 and overall torsional buckling? 
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~3.1 Introduction 

3.1.1 Basic concepts 
The 'Theory of Structures' is concerned with establishing an 
understanding of the behaviour of structures such as beams, 
columns, frames, plates and shells, when subjected to applied 
loads or other actions which have the effect of changing the state 
of stress and deformation of the structure. The process of 
'structural analysis '  applies the principles established by the 
Theory of Structures, to analyse a given structure under speci- 
fied loading and posfiibly other disturbances such as tempera- 
ture variation or movement of supports. The drawing of a 
bending moment diagram for a beam is an act of structural 
analysis which requires a knowledge of structural theory in 
order to relate the applied loads, reactive forces and dimensions 
to actual values of bending moment in the beam. Hence 'theory' 
and 'analysis' are closely related and in general the term 'theory' 
is intended to include 'analysis'. 

Two aspects of structural behaviour are of paramount im- 
portance. If the internal stress distribution in a structural 
member is examined it is possible, by integration, to describe the 
situation in terms of 'stress resultants'. In the general three- 
dimensional situation, these are six in number: two bending 
moments, two shear forces, a twisting moment and a thrust. 
Conversely, it is, of course, possible to work the other way and 
convert stress-resultant actions (forces) into stress distributions. 
The second aspect is that of deformation. It is not usually 
necessary to describe structural deformation in continuous 
terms throughout the structure and it is usually sufficient to 
consider values of displacement at selected discrete points, 
usually the joints, of the structure. 

At certain points in a structure, the continuity of a member, 
or between members, may be interrupted by a 'release'. This is a 
device which imposes a zero value on one of the stress resul- 
tants. A hinge is a familiar example of a release. Releases may 
exist as mechanical devices in the real structure or may be 
introduced, in imagination, in a structure under analysis. 

In carrying out a structural analysis it is generally convenient 
to describe the state of stress or deformation in terms of forces 
and displacements at selected points, termed 'nodes'. These are 
usually the ends of members, or the joints and this approach 
introduces the idea of a structural element such as a beam or 
column. A knowledge of the forces or displacements at the 
nodes of a structural element is sufficient to define the complete 
state of stress or deformation within the element providing the 
relationships between forces and displacements are established. 
The establishment of such relationships lies within the province 
of the theory of structures. 

Corresponding to the basic concepts of force and displace- 
ment, there are two important physical principles which must be 
satisfied in a structural analysis. The structure as a whole, and 
every part of it, must be in equilibrium under the actions of the 
force system. If, for example, we imagine an element, perhaps a 
beam, to be removed from a structure by cutting through the 
ends, the internal stress resultants may now be thought of as 
external forces and the element must be in equilibrium under the 
combined action of these forces and any applied loads. In 
general, six independent conditions of equilibrium exist; zero 
sums of forces in three perpendicular directions, and zero sums 
of moments about three perpendicular axes. The second princi- 
ple is termed 'compatibility'. This states that the component 
parts of a structure must deform in a compatible way, i.e. the 
parts must fit together without discontinuity at all stages of the 
loading. Since a release will allow a discontinuity to develop, its 
introduction will reduce the total number of compatibility 
conditions by one. 
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3.1.2 Force-displacement relationships 
A simple beam element AB is shown in Figure 3.1 The 
application of end moments MA and MB produces a shear force 
Q throughout the beam, and end rotations 0 A and 0 B. By the 
stiffness method (see page 3/11), it may be shown that the end 
moments and rotations are related as follows: 

M^ = 4 EIO ̂  2li0" 
l "  1 + ~  

= 2EIO^ M.  4EIIOa +---T-- 
(3.1) 

Or, in matrix notation, 

=, 
which may be abbreviated to, 

S=kO (3.2) 

oI" 2" 
I-" V l  

Figure 3.1 

Equation (3.2) expresses the force-displacement relationships 
for the beam element of Figure 3.1. The matrices S and 0 
contain the end 'forces' and displacements respectively. The 
matrix k is the stiffness matrix of the element since it contains 
end forces corresponding to unit values of the end rotations. 

The relationships of Equation (3.2) may be expressed in the 
inverse form: 

o r  

0 = f S  (3.3) 

Here the matrix f is the flexibility matrix of the element since it 
expresses the end displacements corresponding to unit values of 
the end forces. 

It should be noted that an inverse relationship exists between 
k and f 

i.e. 

kf= I 

or ,  

k = f - I  (3.4) 

or ,  

f = k - I  
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The establishment of force--displacement relationships for struc- 
tural elements in the form of Equations (3.2) or (3.3) is an 
important part of the process of structural analysis since the 
element properties may then be incorporated in the formulation 
of a mathematical model of the structure. 

3.1.3 Static and kinematic determinacy 
If the compatibility conditions for a structure are progressively 
reduced in number by the introduction of releases, there is 
reached a state at which the introduction of one further release 
would convert the structure into a mechanism. In this state the 
structure is statically determinate and the nodal forces may be 
calculated directly from the equilibrium conditions. If the 
releases are now removed, restoring the structure to its correct 
condition, nodal forces will be introduced which cannot be 
determined solely from equilibrium considerations. The struc- 
ture is statically indeterminate and compatibility conditions are 
necessary to effect a solution. 

T.he structure shown in Figure 3.2(a) is hinged to rigid 
foundations at A, C and D. The continuity through the founda- 
tions is indicated by the (imaginary) members, AD and CD. If 
the releases at A, C and D are removed, the structure is as shown 
in Figure 3.2(b) which is seen to consist of two closed tings. 
Cutting through the rings as shown in Figure 3.2(c) produces a 
series of simple cantilevers which are statically determinate. The 
number of stress resultants released by each cut would be three 
in the case of a planar structure, six in the case of a space 
structure. Thus, the degree of statical indeterminacy is 3 or 6 
times the number of rings. It follows that the structure shown in 
Figure 3.2(b) is 6 times statically indeterminate whereas the 
structure of Figure 3.2(a), since releases are introduced at A, C 
and D, is 3 times statically indeterminate. A general relationship 
between the number of members m, number of nodes n, and 
degree of static indeterminacy ns, may be obtained as follows: 

6 
n s = 3 ( m - n +  1 ) - r  (3.5) 

where r is the number of releases in the actual structure 

\ / 

D 0 

(c) 
O 

Figure 3.2 

Turning now to the question of kinematical determinacy; a 
structure is defined as kinematically determinate if it is possible 
to obtain the nodal displacements from compatibility condi- 
tions without reference to equilibrium conditions. Thus a fixed- 
end beam is kinematically determinate since the end rotations 
are known from the compatibility conditions of the supports. 

Again, consider the structure shown in Figure 3.2(b). The 

structure is kinematically determinate except for the displace- 
ments of joint B. If the members are considered to have 
infinitely large extensional rigidities, then the rotation at B is the 
only unknown nodal displacement. The degree of kinematical 
indeterminacy is therefore 1. The displacements at B are con- 
strained by the assumption of zero vertical and horizontal 
displacements. A constraint is defined as a device which con- 
strains a displacement at a certain node to be the same as the 
corresponding displacement, usually zero, at another node. 
Reverting to the structure of Figure 3.2(a), it is seen that three 
constraints, have been removed by the introduction of hinges 
(releases) at A, C and D. Thus rotational displacements can 
develop at these nodes and the degree of kinematical indetermi- 
nacy is increased from 1 to 4. 

A general relationship between the numbers of nodes n, 
constraints c, releases r, and the degree of kinematical indeter- 
minacy nk is as follows, 

6 1) c+ r nk=3 ( n -  -- (3.6) 

The coefficient 6 is taken in three-dimensional cases and the 
coefficient 3 in two-dimensional cases. It should now be appar- 
ent that the modern approach to structural theory has de- 
veloped in a highly organised way. This has been dictated by the 
development of computer-orientated methods which have 
required a re-assessment of basic principles and their applica- 
tion in the process of analysis. These ideas will be further 
developed in some of the following sections. 

3.2 S t a t i c a l l y  d e t e r m i n a t e  t russ 
analys is  

3.2.1 Introduction 
A structural frame is a system of bars connected by joints. The 
joints may be, ideally, pinned or rigid, although in practice the 
performance of a real joint may lie somewhere between these 
two extremes. A truss is generally considered to be a frame with 
pinned joints, and i f  such a frame is loaded only at the joints, 
then the members carry axial tensions or compressions. Plane 
trusses will resist deformation due to loads acting in the plane of 
the truss only, whereas space trusses can resist loads acting in 
any direction. 

Under load, the members of a truss will change length slightly 
and the geometry of the frame is thus altered. The effect of such 
alteration in geometry is generally negligible in the analysis. 

The question of statical determinacy has been mentioned in 
the previous section where a relationship, Equation (3.5) was 
stated from which the degree of statical indeterminacy could be 
determined. Although this relationship is of general application, 
in the case of plane and space trusses, a simpler relationship may 
be established. 

The simplest plane frame is a triangle of three members and 
three joints. The addition of a fourth joint, in the plane of the 
triangle, will require two additional members. Thus in a frame 
having j joints, the number of members is: 

n = 2 ( j -  3) + 3 = 2 j -  3 (3.7) 

A truss with this number of members is statically determinate, 
providing the truss is supported in a statically determinate way. 
Statically determinate trusses have two important properties. 
They cannot be altered in shape without altering the length of 
one or more members, and, secondly, any member may be 
altered in length without inducing stresses in the truss, i.e. the 



truss cannot be self stressed due to imperfect lengths of members 
or differential temperature change. 

The simplest space truss is in the shape of a tetrahedron with 
four joints and six members. Each additional joint will require 
three more members for connection with the tetrahedron, and 
thus: 

n = 3 ( j -  4) + 6 = 3 j -  6 (3.8) 

A space truss with this number of members is statically determi- 
nate, again providing the support system is itself statically 
determinate. It should be noted that in the assessment of the 
statical determinacy of a truss, member forces and reactive 
forces should all be considered when counting the number of 
unknowns. Since equilibrium conditions will provide two rela- 
tionships at each joint in a plane truss (there is a space truss), the 
simplest approach is to find the total number of unknowns, 
member forces and reactive components, and compare this with 
2 or 3 times the number of joints. 

3.2.2 Methods of analysis 
Only brief mention will be made here of the methods of 
statically determinate analysis of trusses. For a more detailed 
treatment the reader is referred to Jenkins ~ and Coates, Coutie 
and Kong. 2 

The force diagram method is a graphical solution in which a 
vector polygon of forces is drawn to scale proceeding from joint 
to joint. It is necessary to have not more than two unknown 
forces at any joint, but this requirement can be met with a 
judicious choice of order. The two conditions of overall equili- 
brium of the plane structure imply that the force vector polygon 
will form a closed figure. The method is particularly suitable for 
trusses with a difficult geometry where it is convenient to work 
to a scale drawing of the outline of the truss. 

The method of resolution at joints is suitable for a complete 
analysis o f a  truss. The reactions are determined and then, 
proceeding from joint to joint, the vertical and horizontal 
equilibrium conditions are set down in terms of the member 
forces. Since two equations will result at each joint in a plane 
truss, it is possible to determine not more than two forces for 
each pair of equations. As an illustration of the method, 
consider the plane truss shown in Figure 3.3. The truss is 
symmetrically loaded and the reactions are clearly 15 kN each. 

Consider the equilibrium of joint A, 

vertically, PAF COS 45*= RA; hence PAF = 15,,/2 kN (compres- 
sion) 

horizontally, PAc = PA~ COS 45*; hence Pac = 15 kN (tension) 

It should be noted that the arrows drawn on the members in 
Figure 3.3 indicate the directions of forces acting on the joints. It 
is also seen that the directions of the arrows at joint A, for 
example, are consistent with equilibrium of the joint. Proceed- 
ing to joint C it is clear that Pce= 10 kN (tension), and that 
Pep = PAc = 15 kN (tension). The remainder of the solution may 
be obtained by resolving forces at joint E, from which 
Pea = 5x/2 kN (tension) and Per = 20 kN (compression). 

X 

-~I -- It 3 D 
B 

Figure 3.3 
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The method of sections is useful when it is required to 
determine forces in a limited number of the members of a truss. 
Consider, for example, the member ED of the truss in Figure 
3.3. Imagine a cut to be made along the line XX and consider the 
vertical equilibrium of the-part to the left of XX. The vertical 
forces acting are R A, the 10kN load at C and the vertical 
component of the force in ED. The equation of vertical equili- 
brium is: 

15 -  10= PFD COS 45* hence PeD = 5x/2 kN 

Since a downwards arrow on the left-hand part of ED is 
required for equilibrium, it follows-that the member is in 
tension. The method of tension coefficients is particularly suit- 
able for the analysis of space frames and will be outlined in the 
following section. 

3.2.3 Method of tension coefficients 
The method is based on the idea of systematic resolution of 
forces at joints. In Figure 3.4, let AB be any member in a plane 
truss, TAB = force in member (tension positive), and LAB = length 
of member. 

We define: 

TAB= LABtAB (3.9) 

w h e r e  tAB = tension coefficient. 

. . . . . . .  txe, ye~ 

(~a, YA) 
Figure 3.4 

That is, the tension coemcient is the actual force in the member 
divided by the length of the member. Now, at A, the component 
of TAB in the X-direction: 

= TAB COS BAX 

= TAB(xB-- XA)_ tAB(X.-- XA) 
LAB 

Similarly the component of TAB in the Y-direction: 

= taB(ya-- ya) 

At the other end of the member the components are: 

tAa(XA-- Xa), tAa(Ya--Ya) 

If at A the external forces have components X A and Y A, and if 
there are members AB, AC, AD etc. then the equilibrium 
conditions for directions X and Y are: 

taa(xa- XA) + tAc(X c -- XA) + tAD(X D- XA) + . . .  + X A = 01(3.10 ) 

/aa(Ya--YA) + tAc(Yc--YA) +/AD(YD--YA) + + YA--0 J 
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Similar equations can be formed at each joint in the truss. 
Having solved the equations, for the tension coefficients, usually 
a very simple process, the forces in the members are determined 
from Equation (3.9). 

The extension of the theory to space trusses is straightfor- 
ward. At each joint we now have three equations of equilibrium, 
similar to Equation (3.10) with the addition of an equation 
representing equilibrium in the Z direction: 

tAB(Z~--ZA)+ tAc(Zc--ZA)+ . . .  + ZA=O 
(3.11) 

The method will now be illustrated with an example. The 
notation is simplified by writing AB in place of tAs etc. A fabular 
presentation of the work is recommended. 

Example 3.1. A pin-jointed space truss is shown in Figure 3.5. 
It is required to determine the forces in the members using the 
method of tension coefficients. We first check that the frame is 
statically determinate as follows: 

Number  of members = 6 
Number  of reactions = 9 

Total number of unknowns = 15 

IOkN IOkN 

20 kN 

Table 3.1 

Joint Direction Equations Solutions 

A x 

C x 

- 2 A C -  2AD + AC = A D -  -~o 
2 A B = 0  

6 A C + 6 A D + 1 0 = 0  A B = - ~  
2AC - 2AD = 0 - 4BC - 4BD + 

+ 2 0 = 0  
2 B C -  2 B D +  10=0  

- 4 B C -  4 B D -  2AB BC-~-  ,0 
+ 2 0 = 0  

6BC+ 6 B D +  6BE B D = ~  
+ 1 0 = 0  

- 2BD + 2BC + 10 -- 0 Hence BE = --~ 

Table 3.2 

Member Length (m) Tension Force (kN) 
coefficient (tension + ) 

AB 2 _ io - 3.33 6 
AC 6.62 _ J_o - 5.52 12 
AD 6.62 _ i_o - 5.52 12 
BC 7.48 i_0 + 3.12 24 
BD 7.48 13o + 40.5 24 

BE 6 - ~  - 4 5 . 0  

6 m  ,r 
X 

- • •  20 kN 
2m , • 

-- ~ IOkN 
C Figure 3.5 

The number of  equations available is 3 times the number of 
joints, i.e. 3 x 5-- 15. Hence, the truss is statically determinate. 
In counting the number of reactive components,  it should be 
observed that all components should be included even if the 
particular geometry of the truss dictates (as in this case at E) 
that one or more components should be zero. 

The solution is set out in Tables 3.1 and 3.2 where it should be 
noted that, in deriving the equations, the origin of coordinates is 
taken at the joint being considered. Thus, each tension coeffi- 
cient is multiplied by the projection of the member on the 
particular axis. 

The methods of truss analysis just outlined are suitable for 
'hand '  analysis, as distinct from computer analysis, and are 
useful in acquiring familiarity and understanding of structural 
behaviour. Much analysis of this kind is now carried out on 
computers (mainframe, mini- and microcomputers) where the 
stiffness method provides a highly organized and suitable basis. 
This topic will be further considered under the heading of the 
stiffness method. 

3 . 3  T h e  f l e x i b i l i t y  m e t h o d  

3.3.1 Introduction 

The idea of statical determinacy was introduced previously (see 
page 3/4) and a relationship between the degree of statical 
indeterminacy and the numbers of  members, nodes and releases 
was stated in Equation (3.5). A statically determinate structure 
is one for which it is possible to determine the values of forces at 
all points by the use of equilibrium conditions alone. A statically 
indeterminate structure, by virtue of  the number of members or 
method of connecting the members together, or the method of 
support of the structure, has a larger number of forces than can 
be determined by the application of equilibrium principles 
alone. In such structures the force analysis requires the use of 
compatibility conditions. The flexibility method provides a 
means of analysing statically indeterminate structures. 

Consider the propped cantilever shown in Figure 3.6(a). 
Applying Equation (3.5) the degree of statical indeterminacy is 
seen to be: 

n ,= 3 ( 2 - 2 +  1 ) - 2 =  1 

(Note that two releases are required at B, one to permit angular 
rotation and one to permit horizontal sliding, and also that an 
additional foundation member is inserted connecting A and B.) 
The structure can be made statically determinate by removing 
the propping force R, or alternatively by removing the fixing 
moment at A. We shall proceed by removing the reaction R,. 
The structure thus becomes the simple cantilever Chown in 
Figure 3.6(b). The application of  the load w produces the 
deflected shape, shown dotted, and in particular a deflection u at 
the free end B. Note also that it is now possible to determine the 
bending moment at A - wP/2, by simple statical principles. The 
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Figure 3.6 Basis of the flexibility method 

deflection u may be obtained from elementary beam theory as 
wl~/8El. We now remove the applied load w and apply the, 
unknown, redundant  force x at B. It is unnecessary to know the 
sense of the force x; in this case we have assumed a downwards 
direction for positive x. The application of the force x produces 
a displacement at B which we shall call fx; i.e. a unit value of x 
would produce a displacement f. The compatibility condition 
associated with the redundant force x is that the final displace- 
ment at B should be zero, i.e.: 

u+fx=O (3.12) 

and substituting values of u and f 

x =  - -~wl 

The process may be regarded as the superposition of the 
diagrams Figures 3.6(b) and (c) such that the final displacement 
at B is zero. The addition of the two systems of forces will also 
give values of  bending moment throughout the beam, e.g. at A: 

A,=~MtgM/dF~ ds (3.13) 
El 

in which A i is the displaeentent required, M is a function 
representing the bending moment distribution and F~ is a force, 
real or virtual, applied at the position and in the direction 
designated by i. It follows that aM/OF~ can be regarded as the 
bending moment distribution due to unit value of F~. 

Consider the cantilever beam shown in Figure 3.7(a). Forces 
x~ and x 2 act on the beam and it is required to determine 
influence coefficients corresponding to the positions and direc- 
tions defined by x~ and x 2. From now on we work with unit 
values of x, and x 2 and draw bending moment diagrams, as in 
Figure 3.7(b) and (c), due to unit values of x~ and x 2 separately. 

L. V2 _1_ //2 _1 
I-" "-I-"" ""-I 

X2 
(a) 

=J t (c) 

Figure 3.7 Evaluation of flexibility coefficients 

These are labelled m~ and m 2. Consider the application of unit 
force at x, (x 2 = 0). Displacements will occur in the directions of 
x~ and x 2. Applying Equation (3.13) the displacement in the 
direction of x~ will be: 

fl, = ~m,rn,~l 

and in the direction of x2: (3.14) 

wl 2 wl 2 
2 lswl2 -- 8 

The actual values of reactions are as shown in Figure 3.6(d). 
The displacement f is called a 'flexibility influence coefficient'. 

In general f,, is the displacement in direction r in a structure due 
to unit force in direction s. The subscripts were omitted in the 
above analysis since the force and displacement considered were 
at the same position and in the same direction. 

3.3.2 Evaluation of flexibility influence coefficients 
As seen in the above example, flexibility coefficients are dis- 
placements calculated at specified positions, and directions, in a 
structure due to a prescribed loading condition. The loading 
condition is that of a single unit load replacing a redundant 
force in the structure. It should be remembered that at this stage 
the structure is, or has been made, statically determinate. 

For simplicity we restrict our attention to structures in which 
flexural deformations predominate. The extension to other 
types of deformation is straightforward? In the case of pure 
flexural deformation we may evaluate displacements by an 
application of Castigliano's theorem or use the principle of 
virtual work? In either case a convenient form is: 

f 21= ~rn2ml~l 

Similarly, when we apply x2= l, x, = 0, we obtain: 

.f22 - j'm2m2-~/ 

and: 

f , 2 = S m , m 2 ~  

(3.15) 

The general form is: 

The evaluation of Equation (3.16) requires the integration of the 
product of two bending moment distributions over the complete 
structure. Such distributions can generally be represented by 
simple geometrical figures such as rectangles, triangles and 
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parabolas and standard results can be established in advance.
Table 3.3 gives values of product integrals for a range of
combinations of diagrams. It should be noted that in applying
Equation (3.16) in this way, the flexural rigidity EI is assumed
constant over the length of the diagram.

We may now use Table 3.3 to obtain values of the flexibility
coefficients for the cantilever beam under consideration. Using
Equations (3.14) and (3.15) with Figures 3.7(b) and (c) we
obtain:

1 I I I J2
II2=2'2'2' I 'EI=8EI

It is seen that hi and 112 are numerically equal, a result which
could be established using the Reciprocal Theorem. This is a
useful property since in general Irs = Isr and the effect is to reduce
the number of separate calculations required. It should be
further noted that whilsthi =/;2' hi is an angular displacement
and h2 a linear displacement.

The evaluation of the flexibility coefficients Irs provides the
displacements at selected points in the structure due to unit
values of the associated, redundant, forces. Before the compati­
bility conditions can be written down, it remains to calculate
displacements (u) at corresponding positions due to the actual
applied load. The basic equation (Equation 3.13) is applied once
more. Now the bending moment distribution M is that due to
the applied loads and we will re-designate this mo. As before,
oMjiJF;=mj , and thus:

(3.17)

The table of product integrals, Table 3.3, can be used for
evaluating the Uj in the same way as thehs'

Table 3.3

Product integrals ;;1mrm. ds
(£1 uniform) 0

~ 00 o~ ODbm.
7 ( I

Dc lac toc ~(o+b)C

I

c~ ~oc ~oc i(2o+b)C

I

~c i oc lac t(o+2b)C
6

I

CDd ~o(c+d) ~O(2C+d)
~{O(2C+d)+

bC2d+CI}
(

~
~/OC l. oc ~(o+b)C

3
I

In cases where the bending moment diagrams do not fit the
standard values given in Table 3.3 or where a member has a
stepped variation in EI, the member may be divided into
segments such that the standard results can be applied and the
total displacement obtained by -addition. In cases where the
standard results cannot be applied, e.g. a continuous variation
in EI, the integration can be carried out conveniently by the use
of Simpson's rule:

where a = width of strip

h _mlfls ..
i - E/ at section 1.

In using Simpson's rule it should be remembered that the
number of strips must be even, i.e. n must be odd.

3.3.2.1 Sign convention

A flexibility coefficient will be positive if the displacement it
represents is in the same sense as the applied, unit, force. The
bending moment expressions must carry signs based on the type
of curvature developing in the structure. Since the integrand in
Equation (3.16) is always the product of two bending moment
expressions, it is only the relative sign which is of importance. A
useful convention is to draw the diagrams on the tension
(convex) sides of the members and then the relative signs of mr
and mscan readily be seen. In Figure 3.7(b) and (c), both the m l

and m2 diagrams are drawn on the top side of the member. Their
product is therefore positive. Naturally, the product of one
diagram and itself will always be positive. This follows from
simple physical reasoning since the displacement at a point due
to an applied force at the same point will always be in the same
sense as the applied force.

3.3.3 Application to beam and rigid frame analysis

The application of the theory will now be illustrated with two
examples.

Example 3.2. Consider the three-span continuous beam
shown in Figure 3.8(a). The beam is statically indeterminate to
the second degree and we shall choose as redundants the
internal bending moments at the interior supports Band C. The
beam is made statically determinate by the introduction of
moment releases at Band C as in Figure 3.8(b). We note that the
application of the load W now produces displacements in span
BC only, and in particular rotations U1 and U2 at Band C. The
bending moment diagram (mo) is shown in Figure 3.8(c).

We now apply unit value of XI and X 2 in turn. The deflected
shapes and the flexibility coefficients, in the form of angular
rotations, are shown at (d) and (e). The bending moment
diagrams m 1 and m2 are shown at (f) and (g).

Using the table of product integrals (Table 3.3), we find:

2
E/h2=31

IEII12 = E/hl =6
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Figure 3.8 Flexibility analysis of continuous beam 

(o) 

(b) 

(c) 

(d) 

(e) 

(f) 

(g) 

(h) 

a (  2_~ ) Wab b b Wab 
Elu~=--~ 1+ l - 3 " 1  l 

and 

;b(a + 2b) 

E1 u2 = - : - ~  b + 2a) 

The required compatibility conditions are, for continuity of the 
beam: 

at B, f~,x, +f~2x2+ u, = 0 
at C, fnxl +f~2x2 + u2 = 0 

or, in matrix form: 

F X + U = 0  (3.18) 

i.e.: 

l [4  1 4 ] [ x , ]  WabE(a+2b)-] 
6El 1 x2 = / ~  (b+2a)_! 

and the solutions are: 

Wab + MB=x l = ~ 2 a  7b) 

Wab 
M c = x 2 = l-3ff(2b + 7a) 

and the bending moment under the load W is: 

Wab b a 
Mw = - ---[-+ 7 x' + 7x2 

2Wabt 2+ 5ab) 
= - 1513 ~41 

The final bending moment diagram is shown in Figure 3.8(h). 

Example 3.3. A portal frame ABCD is shoffn in Figure 3.9(a). 
The frame has rigid joints at B and C, a fixed support at A and a 
hinged support at D. The flexural rigidity of the beam is twice 
that of the columns. 

120 kN 30 kN/m 

B 2E I  C 

EZ 

4m 

480 

480 

(d) 

(o) - '  " - -  7 3  i I 4 3 

® ® 
Ic) 

Figure 3.9 
The frame has two redundancies and these are taken to be the 

fixing moment at A and the horizontal reaction at D. The 
bending moment diagrams corresponding to the unit redundan- 
cies, m, and m 2 and the applied load, m 0, are shown at (b), (c) 
and (d) in Figure 3.9. 

Using the table of product integrals, Table 3.3, we obtain: 

l.m2 ds _ 14 f,, . i .  

J ,  E1 3El 

A = im~ a~ _ 5 5 E1 E1 

(:Is 35 
f ,2 = f n = Ira,m2 E l -  3El 

Ex,] WabF(2a+ 7b)-] 
x 2 =/--5ffm(Zb+7a)J 

The actual bending moment distribution may now be deter- 
mined by the addition of the three systems, i.e. the applied load 
and the two redundants. The general expression is: 

M= m o + mlx, + m2x 2 (3.19) 

In particular: 

J tm0m Ids 1320 Ul E1 E1 

u2- Imom2 ds 4600 
-~= E1 

Thus the compatibility equations are: 

[14 35] I x , I = +  V1320 -] 
35 165 x 2 L4600J 
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from which 

xt = + 157 kNm 

and 

x 2 = + 50 kN 

The bending moment at any point in the frame may now be 
determined from the expression: 

M = m o + m t x  j + m 2 x  2 

e.g." 

M.^ = 4 8 0 -  l ( +  157) -  4(+  50)= 123 kNm 

and 

MCD--" 3X2"-- 150 kNm 

3 .3 .4  A p p l i c a t i o n  to  truss  ana lys i s  

The analysis of  statically indeterminate trusses follows closely 
on that established for rigid frames; however, the problem is 
simplified due to the fact that for each system of loading 
investigated, the axial forces are constant within the lengths of 
the members and thus the integration is considerably simplified. 
We are now concerned with deformations in the members due to 
axial forces only and the flexibility coefficients are: 

l 
f~= EPr P'AE (3.20) 

and 

1 Ui 2., Po P,~-~ (3.21 ) 

in which the Pr system of forces is due to unit tension in the rth 
redundant member and similarly for p, and Pi. The P0 system of 
forces is that due to the applied load system acting on the 
statically determinate structure (i.e. with the redundant mem- 
bers omitted). Equations (3.20) and (3.21) should be compared 
with Equations (3.16) and (3.17) in the flexural case. 

Example  3.4. The plane truss shown in Figure 3.10 has two 
redundancies which we will choose as the forces in members AE 
and EC. AE is constant for all the members and equal to" 
1 x 106 kN. The member EC is 1/10 000 short in manufacture 
and has to be forced into position. The member force systems P0, 
p~ and P2 are found from a simple statical analysis and are listed 
in Table 3.4. 

The flexibility coefficients may now be obtained as follows: 

--  1 21 
f~,= ~t)tp,~--E = ~ 1 + x/2) 

A2 ---fl I 

E l f!2 =f2, = ~,Pd~2 - 2 A E  

U, = ~.,PuOo~/E = A ~  1 + 1/~/2, 

F 

A) B, 

L. t .__ 

E D 

I .  )c 
I_. t _ I  

Figure 3.10 

Table 3.4 

M e m b e r  Length po/W pt P2 

AB l 0 - 1/#2 0 
BC l 0 0 - 1/#2 
CD l - 1/2 0 - 1/,,/2 
DE l - 1/2 0 - 1/#2 
EF l - 1/2 - 1/,,/2 0 
AF l - 1/2 - 1/,/2 0 
FB x/(2)l 1/,,/2 1 0 
BE 1 0 - 1/~/2 - 1/,,/2 
BD ,,/(2)1 I/,7'2 0 1 
AE ~/(2)1 0 1 0 
EC x/(2)l 0 0 I 

Ignoring, for the moment, the effect of the shortness in length of 
member EC, the compatibility equations are: 

f,,x, +f,2x 2 + u, = 0  

f2,x, +f=2x2 + u2 = 0 

Clearly the symmetry will produce x~ = x 2 and thus: 

The effect of  the prestrain caused by the forced fit of member EC 
may be obtained by putting: 

and then solving FX + U = 0 
obtaining: 

- 200 kN x, = (47 + 32x/2) 

800(1 + ~/2) kN 
x2= (47 + 32~/2) 

The forces in the other members may now be obtained from 
P =P0 +PtXl +P2X2 • 

The sign of the lack of fit in Equation (3.22) should be studied 
carefully and it should be noted that the convention for the signs 
of forces is tension-positive throughout.  

3 . 3 . 5  C o m m e n t s  on the f l ex ib i l i ty  m e t h o d  

For a more detailed treatment of the flexibility method the 
reader may consult any of the standard texts, e.g. Jenkins ~ and 
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Coates, Coutie and Kong. 2 The method has declined in popular- 
ity in recent years due to the widespread adoption of computer- 
ized methods based on stiffness concepts. In the context of 
automatic computation, the stiffness method, which will be 
considered in the next section, offers considerable advantages 
over the flexibility method. Methods based on flexibility offer 
some advantage for hand computation in structures with low (1 
or 2) degrees of statical indeterminacy or with lack of fit, 
temperature change or flexible supports. The concept of flexibi- 
lity influence coefficients is also useful in determining stiffness 
coefficients, e.g. in nonprismatic members. 

3.4 The stiffness method 

3.4.1 Introduction 
This method has been very extensively developed in recent years 
and now forms the basis of most structural analysis carried out 
on digital computers. The method of 'slope-deflection' is an 
example of the application of the general stiffness method. 

Consider the structure shown in Figure 3.11 (a) which is fixed 
at A and C and has a rigid joint at B. The degree of kinematical 
indeterminacy, from Equation (3.6), is: 

nk= 3(n-  1 ) - -c+r  

4El+ 4El 
I'=-U l~ 

Thus: 

1+ 1)  WI, 4 E I ~  ~ r -  8 

Hence: 

r = 
Wl2,12 

32El( t ,  + 12) 

The member forces are now obtained by adding the two systems 
(b) and (c) in Figure 3.U, e.g.: 

MoA =---ff-Wl' 4EI(r)_ WI, ( 8 l-~ls ) 

_ Wl21 
8(1, +/2) 

and 

4El(r) _ WI 2, 
M ~ : = -  /2 - 8(I,+12) 

= 3 ( 3 - 1 ) - 5 + 0  

=1 

The five constraints are the zero displacements, three at C and 
two at B, related to the fixed point A. The single unknown 

A t 7- q - -  
I I I', 

(o1 (b) (c) 

Figure 3.11 Basis of the stiffness method 

displacement, nodal degree of freedom is, of course, the rotation 
of the joint B. 

The procedure is to clamp the joint B so constraining the 
nodal degree of freedom r. On applying the load W, a constrain- 
ing force, R, will be required at B to prevent the rotation of the 
joint. The constraining force R is now applied to the, otherwise 
unloaded, structure with its sign reversed and the nodal degree 
of freedom released. The result is a rotation of joint B through 
angle r. The external moment required to effect this rotation is 
kr where k is the stiffness of the structure for this particular 
displacement. Thus, for equilibrium: 

kr = R (3.23) 

Note that in the above, clockwise moments are considered 
positive. 

Table  3.5 Fix-end moments for uniform beams (clockwise 
moments positive) 

MR. Loodino 

- (#) 

Web - ~ (o+2b) 

_ wc [12ob2+c 2 
12l 2 

(o-2b) ] 

wl 2 
12 

wl 2 
30 

- ~ wl 2 

Mb (2o-b) 

M a-~ ( t z -  3bz) 

MFm 

:l ~W F, 

~o_,_ # 

,_ o_l_ b 

v 

w 

!_o ,3" , ,~ b =I 

(b- 2o) ] 

wl 2 
12 

wl z 
20 

5 ~s wt2  

MO 
- iF ( 2b- o ) 

I~ ~l~ ~ I 

From the table of fixed-end moments, Table 3.5: 

R -  Wll 
8 

and from the force-displacement relationships of Equation (3.1) 

3.4.2 Member stiffness matrix 

In the stiffness method, a structure is considered to be an 
assemblage of discrete elements, beams, columns, plates, etc. 
and the method requires a knowledge of the stiffness character- 
istics of the elements. In the 'finite element' method (see page 3/ 
14) an artificial discretization of the structure is adopted. As an 
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I 2 

Figure 3.12 Structural beam element 

Two further relationships between the forces and displacements 
are obtained from statical equilibrium as follows: 

For vertical equilibrium, P~ + P2 = 0 

Hence: 

Pz = - P, (3.28) 

Taking moments about end 1" 

example of the determination of stiffness influencing coefficients 
we shall consider the simple beam element shown in Figure 3.12. 
We neglect any axial deformation. 

The expression for the bending moment in the beam with 
origin at end 1 and deflections y positive downwards is: 

Eld2y/dx  2= P I x -  M,  

Integrating 

P i x  2 
E l d y / d x  = ~ -  M~x + Cj 

M 2 = - M i - p2l 

2EIOi , 6Ely  I _ 4EI02 6EIy2 
- 1 1 - ~ - r  l 12 (3.29) 

Equations (3.26)-(3.29) may be combined in the matrix form: 

 f;'l 1 6l PI E1 61 12 61 - 1 Yi 
M 2 =-ff  2l 2 61 412 -611 02 

- 6 1  - 12 - 6 l  1 

= EIO~ for x = 0 or S = kA (3.30) 

Hence: 

C! = ElOi 

= EIO 2 for x = l 

Hence: 

The matrix k is the stiffness matrix of the beam, and S and A are 
the matrices of member forces and nodal displacements respecti- 
vely. Equation (3.30) expresses the force--displacement relation- 
ships for the beam in the stiffness form as distinct from the 

f lexibil i ty  form. The symmetry of the matrix should be noted as 
consistent with the symmetry exhibited by flexibility coefficients 
(see page 3/9). 

EI(O 2 - 0 , ) =  _ ~.__~2p.! _ M,I  

Integrating again: 

X 2 
P~x~ MI- ~ + ElO~x + C 2 E l y = ~  - 

= E l y  I for x = O  

Therefore: 
C 2 = E ly  I 

= E ly  2 for x = 1 

Hence: 

13 12 
El(y  2 - y , ) -  EIO, I= P , - 6 -  M , ~  

Solving equations (3.24) and (3.25) for M~ and PI" 

l l O  6Ely  I 2EIO 2 6Ely  z 
M~=4 ' + ~ +  l 12 

(3.24) 

(3.25) 

(3.26) 

3.4.3 Assembly of structure stiffness matrix 
The stiffness method involves the solution of a set of linear 
simultaneous equations, representing equilibrium conditions, 
which may be expressed in the form: 

Kr= R (3.31) 

Equation (3.31) is similar in form to Equation (3.23) with the 
important difference that now we are concerned with a multiple 
degree of freedom system as distinct from a single unknown 
displacement. K is the structure stiffness matrix, r is a matrix of 
nodal displacements and R a matrix of applied nodal forces. 

The process of assembling the matrix K is one of transferring 
individual element stiffnesses into appropriate positions in the 
matrix K. Naturally, this has been the subject of considerable 
organization for digital computer analysis and the subject is well 
documented) Some aspects of a computerized approach will be 
considered later but the basic process will be illustrated here 
using a simple example. Consider the structure shown in Figure 
3.13(a). The two beams are rigidly connected together at B 
where there is a spring support with stiffness k s. End A is hinged 
and end C fixed. The structure has three degrees of freedom, 
rotations r~ and r 3 at A and B and a vertical displacement r 2 at B. 
The stiffness matrix for each beam has the form of Equation 
(3.30) from which k may be written in the general form: 

and 

6ElOi 12Ely I 6EI02 12Ely 2 
PI =---- i f -  + l 3 + 12 l 3 (3.27) 

I kl~ kl2 kl3 kl4 ] 
k = k21 kz2 k23 k24 

k31 k32 k33 k34 
k41 k42 k43 k~ 

(3.32) 
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where k,, = 4E / / l ;  k,2= 6El / l  2, etc. 

We apply unit value of each degree of freedom in turn as shown 
in Figure 3.13(b), (c) and (d). It should be noted that when r~ = 1 
is applied, r 2 and r 3 are constrained at zero value and similarly 
with r 2 = 1 and r 3 = 1. The force systems necessary to achieve the 
unit values of the degrees of freedom are also shown at (b), (c) 
and (d). The equilibrium conditions are clearly: 

Kl,r i + KI2r2 + Kl3r 3 = R, 

K2,r , + K22r2 + K23r 3 = R 2 

K31r I + K32r 2 + K33r 3 = R 3 

i.e. Kr = R 

where R is the matrix of applied loads. Clearly, the forces shown 
in Figure 3.13(b), (c) and (d) constitute the elements of the 
stiffness matrix K and this may now be assembled by inspection. 
Using the individual beam elements from Equation (3.30) with 
the notation of Equation (3.32): 

K . _ .  

(k,,), 

- (k,9, 

(k,3), 

- (k,2), 

(k**), + (k22)2 + k, 

(k23)2- (k,,), 

(k,3), 

(k23)2- (k,4), 

(k33), + (k,,)2 
(3.33) 

and more specifically: 

4 - / - ,  

K= - 6  -ff 

- 6 7 } -  ' 

(,,) 12 73- +12 -F +k, 
I 2 

6 (~--~-/)2- 6 (~--T/), 

2-7-  ' 

E1 
6(~-)2-6(~---i-/), 

4 +4 -7- 
I 2 

(3.34) 

3.4.4 Stiffness transformations 
The member stiffness matrix k in Equation (3.30) is based on a 
coordinate system which is convenient for the member, i.e. 
origin at one end and X-axis directed along the axis of the beam. 
Such a coordinate system is termed 'local' as distinct from the 
'global' coordinate system which is used for the complete 
structure. This subject is considered in detail in a number of 
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t e x t s  2.3 and we shall give only a brief indication of the type of 
computation required. 

Consider a three-dimensional coordinate system ~Ir~, (glo - 
bal) which is obtained by rotation of the (local) coordinate 
system X Y Z .  In the local system the force--displacement re- 
lationships for a beam element may be expressed in the par- 
titioned matrix form: 

ES:] = k,,J k''l [;:] ,335, 

in which the subscripts refer to ends 1 and 2. 
The stiffness expressed in the coordinate system ~"Ie'2 may be 

obtained as follows: 

(3.36) 

in which ~ is a matrix of direction cosines as follows: 

2~y 2~z 0 0 0 

k = ;t~x ;t~y 2~ 0 0 
0 0 2~x ;t~y ;t~ 
o o ~ ~ ~ 
0 0 ;t~x 2~y 21 

where ;t~x =cos ,Y(OX, etc. 

3.4.5 Some aspects of computerizatiOn of the 
stiffness method 
The remarkable increase in popularity of the stiffness method is 
due to the widespread availability of relatively cheap computing 
power. The method is of limited practical use except  on com- 
puters. The stiffness method is eminently suitable for computers 
because the setting up of the data describing the structure and 
loading system to be analysed is a comparatively simple opera- 
tion. Although there is then generally considerable numerical 
computation to do, this is done by the computer. Thus the 
human effort required is minimized and the likelihood of errors 
being made also reduced. With the phenomenal development of 
cheap and powerful microcomputers, which are quite suitable 
for analysing most 'run-of-the-mill' structures, it is quite likely 
that in the very near future almost all structural analysis will be 
carried out on computers. 

It will be useful to look briefly at the more important aspects 
of adapting the stiffness method for use on computers. The 
method may be viewed as a succession of six stages: 

(1) Define the nodal degrees of freedom of the structure (n) 
(Equation (3.6)), the nodal 'coordinates'. The total number 
determines the size of the structure stiffness matrix K. The 
ordering is a matter of convenience but in some programs a 
judicial ordering of coordinates is necessary to reduce the 
'band width' of K. An array K (n x n) is now generated in the 
computer and all elements are zeroed. This is necessary since 
component stiffnesses are going to be added-in to this array 
thus "accumulating' the stiffnesses element by element. 

(2) The individual structural elements are now defined and their 
force-displacement relationships expressed in stiffness 
matrices, k (Equation (3.30)); S=kA. The dimensions of 
these matrices will depend on the type of element used but 
for  most of the common elements (beam, column, pin- 
jointed truss member, etc.) the standard matrices are pub- 
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lished in the textbooks. The element stiffnesses are now 
transformed from local to global coordinates using matrix 
transformations as in Equation (3.36). 

(3) The transformed stiffnesses are now transferred into appro- 
priate locations of the structure stiffness matrix K. Suppose 
we are to transfer the stiffnesses of a particular element and 
suppose this element has two coordinates numbered 1 and 2. 
If the coordinates in the actual structure which correspond 
to 1 and 2 of the element are, say, i and j then the transfer of 
stiffnesses is carried out as follows: 

kin ---~ kii 
k~2~kij 
k21 ~kji 
k22--'kii 

There is considerable economy in organization and pro- 
gramming if the above procedure is applied to 'groups' of 
coordinates, e.g. a//the displacements at one node. This can 
be achieved by partitioning the element stiffness matrices. 

(4) Once K has been set up, the applied load matrix R is 
generated. This is simply a column matrix containing the 
applied (nodal) loads arranged in the same order as the 
nodal coordinates. If the structure is carrying loads other 
than at the defined nodes, then such loads must be con- 
verted to statically equivalent nodal loads. In rigid frames, 
for example, this is easily done using the standard values of 
'fixed-end' effects. If a concentrated load~oes not coincide 
with the defined nodal coordinates then it is a simple matter, 
as an alternative, to introduce a node at the load point. This 
procedure, although it increases the size of the system to be 
solved, does have the advantage of yielding the displace- 
ments developing at the load point. 

(5) The computer now solves the linear simultaneous equations 
(Equation (3.31)) K r = R  to produce the nodal displace- 
ments r. 

(6) Lastly, the element forces are obtained from Equation (3.30) 
S---kA. In this last operation, some logical organization is 
clearly needed to extract the element nodal displacements A 
from the structure displacement Sr. 

The foregoing is a description of the fundamental basis of the 
stiffness method applied on computers. Of course, it is possible 
to incorporate many refinements and devices to simplify the 
input and output, to check the results and to make changes in 
data without having to re-input all data. 

In its most general form the stiffness method is used to 
analyse complex structures in which not only simple elements 
such as beams and columns are used but 'continua' such as 
plates and shells. This is the 'finite element' method which will 
now be examined briefly. 

3 . 4 . 6  F i n i t e  e l e m e n t  a n a l y s i s  

This extremely powerful method of analysis has been developed 
in recent years and is now an established method with wide 
applications in structural analysis and in other fields. Space 
permits only the most brief introduction here but the method is 
extensively documented elsewhere. ~ We have discussed the 
application of the stiffness method to framed structures in which 
the structural elements, beams and columns, have been con- 
nected at the nodes and the method observes the correct 
conditions of displacement compatibility and equilibrium at the 
nodes. The finite element method was developed, originally, in 
order to extend the stiffness method to the analysis of elastic 
continua such as plates and shells and indeed to three-dimensio- 
nal continua. The first step in the process is to divide the 
structure into a finite number of discrete parts called 'elements'. 

The elements may be of any convenient shape, e.g. a thin plate 
may be represented by triangular or rectangular elements, and 
the discretization may be coarse, with a small number of 
elements, or fine, with a large number of elements. The connec- 
tion between elements now occurs not only at the nodal points 
but along boundary lines and over boundary faces. 

The procedure ensures, as for framed structures, that equili- 
brium and compatibility conditions are satisfied at the nodes but 
the regions of connection between nodes are constrained to 
adopt a chosen form of displacement function. Thus, compati- 
bility conditions along the interfaces between elements may not 
be completely satisfied and a degree of approximation is gener- 
ally introduced. Once the geometry of the elements has been 
determined and the displacement function defined, the stiffness 
matrix of each element, relating nodal forces to nodal displace- 
ments, can be obtained. The remainder of the structural analysis 
follows the established procedures similar to those for framed 
structures. Naturally the best choice of element and discretiza- 
tion pattern, the precise conditions occurring at the interfaces 
and the accuracy of the solution, are matters which have 
received a great deal of attention in the literature. 

A central stage in the process is the adoption of a suitable 
displacement function for the element chosen, and the subse- 
quent evaluation of the element stiffnesses. This will be illus- 
trated with one of the simplest possible elements, a triangular 
plate element for use in a plane stress situation. 

3.4.6.1 Triangular element for plant stress 
A triangular element ijk is shown in Figure 3.14. Under load, 
the displacement of any point within the element is defined by 
the displacement components u, v. In particular t h e n o d a l  
displacements are: 

A = {uiuju kvivyk} (3.38) 

r(v) 

k 

, b 

i X(u) 
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It is now assumed that the displacements u, v are linear 
functions of x, y as follows: 

u=aq +ot2x+%y (3.39) 
v= oq+ ot s x +  aqy 

The nodal displacements A are now expressed in terms of the 
displacement parameters 0t, from Equations (3.39) and Figure 
3.14: 

u i 1 0 0 0 0 0 0q 
uj I a 0 0 0 0 0t 2 
Uk _ 1 C b 0 0 0 0t 3 
v, 0 0 1 0 0 tx,, 
vj 0 0 1 a 0 ot s 
v k 0 0 1 c b oq 

or, A ~- A~ 

(3.40) 



The strains in the element are functions of the derivatives of u 
and v as follows: 

~,= e~ = | av/ay 
Lau/Oy + ~v/~x 

0~ I 

I0 1 0 0 0 0] ~x2 
= 0 0 0 0 1 at3 

0 1 0 1 0 oq 
0~ 5 

0~ 6 

(3.41) 

(3.42) 

i . e . :  

~=Bat=BA-tA 

from Equation (3.40). 
It should be noted that the matrix B in Equation (3.42) contains 
only constant terms and it follows that the strains are constant 
within the element. 

The stress-strain relationships for plane stress in an isotropic 
material with Poisson's ratio v and Young's modulus E are: 

tr, 1 v 0 ex 
tr,. E 

( l - v  2) v 1 0 
r ,  0 0 ½(1 - v) ~,  

i.e.: 

(3.43) 

iT= D¢=DBA-IA (3.44) 

Matrix D is the 'elasticity' matrix relating stress and strain. To 
obtain the element stiffness we employ the principle of virtual 
work and apply arbitrary nodal displacements A producing 
virtual strains in the element: 

[:=BA-IA (3.45) 

The virtual strain energy in the element, from Equation (2.78) of 
Chapter 2, is: 

~,ot ~r~d V 

where V= volume of triangular element = tab~2, t = thickness 
Substituting for U and ~ from Equations (3.45) and (3.44) 
respectively, the virtual strain energy is: 

~,o,[BA-'-A]rDBA-tAdV 

Now since all the matrices contain constant terms only and are 
thus independent of x and y, the expression for the virtual strain 
energy may be written: 

Ar{[A-,]r B r DBA-t V.}A 
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The external work is the product of the virtual displacements Z~ 
and the nodal forces S, hence equating external virtual work and 
internal virtual strain energy: 

_ o 
A r s = A r { [ A - q r B r D B A  tY}A  

The virtual displacements are quite arbitrary and in particular 
may be taken to be represented by a unit matrix, thus: 

S = ([A-,]r B r DBA- ' V}A 
= kA, from Equation (3.30) 

Thus: 

k = [ A ' ]  r B rDBA-' V (3.46) 

Before the matrix multiplications required in Equation (3.46) 
can be performed we need to find A-e. This is easily determined 
a s :  

1 
A - I  

- ab 

ab 0 0 0 0 0 
- b  b 0 0 0 0 

( c - a )  - c  a 0 0 0 
0 0 0 ab 0 0 
0 0 0 - b  b 0 
0 0 0 ( c - a )  - c  a 

Hence finally, with l2 , = ½(1-v) and 22= ½(1 + v) we obtain the 
stiffness matrix for the plane stress triangular element as shown 
in equation (3.47) below. 

It is neither necessary nor economical to carry out these 
operations by hand; the computation of the element stiffness 
and, indeed, the entire computational process is easily pro- 
grammed for the digital computer. 

Computer 'packages' for finite element analysis of structures 
are highly developed, very powerful and readily available. 
Because of the comparatively heavy demands on computer 
storage, the use of the packages is generally confined to main- 
frame computers. A good example of a finite element system 
which is used very extensively is PAFEC? The more important 
topics which should be studied in pursuing finite element 
analysis include: (1) shape (displacement) functions; (2) con- 
forming and nonconforming elements; (3) isoparametric ele- 
ments; and (4) automatic mesh generation. 

Et 
2(1 - v2)ab 

b 2 + At(c- a) 2 

- b 2 - A t c ( c  a) 

2ta(c a) 

22b(c a) 

2tb(c a) + vcb 

vab 

b 2 + ,;qc 2 

2tac 

2tcb + vb(c a) 

22bc 

vab 

2ta 2 

,;qab 

2lab 

21b 2 + (c a) 2 

2,b 2 -  c(c a) 

a(c - a) 

Symmetric 

2,b 2 + c 2 

a c  
(3.47) 
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3.5 Moment  distribution 

3.5.1 Introduction 
Although the stiffness method, described in the previous section 
has the merit of simplicity, the solution of the equilibrium 
equations (3.31) is generally a matter for the digital computer 
since only for the simplest structures can a hand solution be 
contemplated. An alternative procedure which is eminently 
suitable for hand computation is the method of moment distri- 
bution which is essentially an iterative solution of the equations 
of equilibrium. 

As in the general stiffness method, we first imagine all the 
degrees of freedom, joint rotations and joint translations, to be 
constrained. We ignore axial effects in members and consider 
flexure only. The constraints are imagined to be clamps applied 
to the joints to prevent rotation and translation. The forces 
required to effect the constraints are applied artificially and in 
the moment distribution processes these clamping forces are 
systematically released so as to allow the structure to achieve an 
equilibrium state. It is important to note that in the method as 
generally applied, the rotational joint restraints are relaxed by 
one process and the translational restraints by another. Finally 
the principle of superposition is used to combine the separate 
results. 

It is necessary to assemble certain standard results before we 
can consider the actual process. 

3.5.2 Distribution factors, carry-over factors and 
fixed-end moments 
For the time being we confine our attention to prismatic 
members. The treatment of nonuniform section members will be 
touched on later. 

Standard member stiffnesses are required and these are illus- 
trated in Figure 3.15. The member end forces are those required 
to produce the deflected forms shown. Diagrams (a) and (b) 
relate to rotation without translation (sway), and diagrams (c) 
and (d) relate to sway without rotation. The results in diagrams 
(a) and (c) may be deduced from the stiffness matrix in Equation 
(3.30). The other results may be obtained easily from elementary 
beam theory, e.g. in Figure 3.15(b), taking the origin of x at the 
left-hand end and y positive downwards: 

6EIA 

) 
.-7~ 

3EIA 

I ~  --  13 
i z  (b) (d) 

Figure 3.15 

M r  
Eld2y/dx ~ = : ~ ,  where M is the moment, to be determined, at 

the right-hand end, 

Eldy/dx = 1 x2 ~+c, 

= EIO for x = 1; hence Cj = EIO- M l 

X 3 E l y = ~  - ~ + ( E I O - M I ) x + C 2  

= 0 for x = 0; hence C2 = 0 

= 0 for x = 1; hence, M -  3E10 

When loads are applied to members which are constrained at 
the joints, fixed-end moments are required to prevent the end 
rotations. This is another standard type of result which is 
required in the moment distribution method. Table 3.5 lists 
fixed-end moments for a selection of loading cases on uniform 
section beams. Again, these results may be obtained from 
elementary beam theory. It should be noted that the sign 
convention is that a moment is positive if tending to produce 
clockwise rotation of the end of the member at which it acts. 
This convention is different to, and should not be confused with, 
the sign convention for constructing bending moment diagrams 
which must be based on the curvature produced in the member. 

As an illustration of the basic process, consider the structure 
ABC shown in Figure 3.11. This structure was analysed by the 
stiffness method previously. Joint B is considered to be clamped 
and thus a system of fixed-end moments is set up in member AB. 
The end moments in the members are shown in line 1 of Table 
3.6. The constraining moment at joint B is seen to be Wl,/8 
clockwise and we imagine this moment to be removed by the 
application of a moment -WI~/8. The subsequent rotation of 
joint B, anticlockwise through angle 0, will develop moments in 
both members. Referring to Figure 3.15 the moments induced 
will be: 

4E10 2EIO 
M s ^ = -  Ii ..... ; M^a= ii 

4EIO 2EIO 
M a c = -  12 "Mca= 12 

For equilibrium of joint B, the applied moment -Wl~/8 must 
equal the sum of the moments absorbed by the two members 
meeting at the joint: 

Wt~ 4EIO 4E10 _ 4 E I O [ I + I ' ~  

and it is seen that the moment is 'distributed' to the members in 
proportion to their Ill values. 

Thus: 

- WI~ I/l~ _ - WI~ ( 12 ) 
M.^= 8 (///, +lID 8 

and: 

- W I  t 1/12 - W I ~ (  l~ ) 
Mac-  8 (I/l, + I/12)- 8 

The moments induced at A and C are from Figure 3.15, one-half 
of those induced at B and the factor of one-half is termed the 
carry over factor. This set of moments is shown in line 2 of Table 
3.6. 

Joint B is now 'in balance' and since it was the only joint 
which was clamped we have reached an equilibrium state and no 
further distribution of moments is required. The final set of 



Table 3.6 

Moment  distribution 3 / 1 7  

Stage Operation M^, M,^ MBc Mc, 

1 Fixed-end moments - WI,/8 
2 Distribution at B WI'( 12 ) -q-( 

3. Total moments _ WI_____~ (2l, + 312 '~ 
16 \ 1,+12 ) 

+ WIJ8 0 0 
WI,( 12 ) WI,(' l, ) WI,( 1, ) 

--~- ~ --~- ~ -1--~ 
WFI Will Wl21 

8(•, + 12) 8(•, +/2) 16(/, + 12) 

moments is obtained in line 3 of Table 3.6, by the addition of 
lines 1 and 2. This result is the same as that obtained from pure 
stiffness considerations. It should be noted that the zero sum of 
moments M,^ and MBc indicates that joint B is in rotational 
equilibrium. 

Two further points should be noted before we consider the 
moment distribution process in more detail. Referring to Figure 
3.16, of the three members connected at joint A, member AD is 
hinged at the end remote from A whereas the other two 
members are fixed. Since D is hinged no moment can exist there 
and hence there is no carry-over to D. Furthermore, the 
moment-rotation relationship is different for a member pinned 

-/,'-/.. + 

AB" AC :AD = 

.=rk 

3 • 

£k  £/t 

Figure 3.16 Distribution factors at typical joint 

at the remote end, as may be seen by comparing Figures 3.15(a) 
and (b). In calculating~distribution factors this is taken account 
of by taking ¼(Ill) for such members as compared with I/1 for 
members fixed at the remote end. 

3.5.3 Moment distribution without sway 
As an example of a structure with two degrees of freedom of 
joint rotation and no sway, consider the frame shown in Figure 
3.17, E1 (beams)= 3 x E1 (columns). 

3 0  k N / m  

C 3EI D 3EI EI~ 

A 

3 - 6 5 m  - I -  3"05m ~ l  
Figure 3.17 

E 
143 
O 
rb 

Table 3.7 Moment distribution for frame shown in Figure 3.17 

Joint A C D B E 

Distribution factors 
end moments AC 

0.285 0.715 0.386 0.154 0.460 
CA CD DC DB DE BD ED 

(1) Fixed-end moments 
(2) Distribution at C 

(3)- Carry-over to A and D 
(4) Distribution at D 

(5) Carry-over to C, B and E 
(6) Distribution at C 

(7) Carry-over to A and D 
(8) Distribution at D 

(9) Carry-over to C, B and E 
(10) Distribution at C 

(11) Carry-over to A and D 
(12) Distribution at D 

(13) Carry-over to C, B and E 

- 33.3 + 33.3 - 23.3 + 23.3 
+ 9.5 + 23.8 

+ 4.75 + 11.9 
- 8.45 - 3.38 - 10.07 

- 4.23 - 1.69 - 5.04 
+ 1.20 + 3.03 

+ 0.60 + 1.52 
-0 .59  -0 .23  - 0 . 7 0  

- 0 . 3 0  -0 .12  -0 .35  
+ 0.09 + 0.21 

+0.05 +0.11 
- 0 . 0 4  -0 .02  -0 .05  

May be neglected 

(14) Total moments (kNm) + 5.40 + 10.79 - 10.79 +37.75 - 3.63 -34 .12  - 1.81 + 17.91 
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The fixed-end moments are, (w12/12), 

MFCD = - 30 x 3"i~; MFDc = + 30 x 3"1~= 33.3 kNm 

FrDF = -- 30 X ~252; MF~D= + 30 X 3"1~= 23.3 kNm 

and the distribution factors are: 

3/3.65 . 1/3.05 
at C, C D ' C A  = (1/3.05) + (3/3.65) (1/3.05)+(3/3.65) 

= 0.715"0.285 

at D, D C : D B : D E =  

3/3.65 1/3.05 
(3/3.65) + (1/3.05) + (3/3.05): (3/3.65) + (1/3.05) + (3/3.05)" 

3/3.05 
(3/3.65) + (1/3.05) + (3/3.05) 

'20kN B CIL'I~I I~ "°l'A ['I- 
• 

I i  ° ' 

1o1 b) (el 

Figure 3.18 

(El )  
MFCD = - 3  7T ACD (note Mroc= 0) 

We cannot evaluate,these moments unless A is known but we 
could proceed with an arbitrary value of A, and carry out a 
distribution to produce rotational equilibrium of the joints B 
and C. In fact, it is seen that any arbitrary values of moments 
can be used providing these are in the correct proportions 
between the two columns. The ratio in this example is: 

' ( )co A B ' C D =  ( ~ ) ^  :~ 

= 0.386" 0.154" 0.460 If we adopt 

The moment distribution is carried out in Table 3.7. It should be 
noted that after each distribution at a joint the distributed 
moments are underlined to indicate that the joint is balanced at 
that stage. At step 4, the out-of-balance moment to be distri- 
buted at D is + 33.3 + 11.9- 23.3 = + 21.9; hence the distributed 
moments should total - 21.9. 

3.5.4 Moment  distribution with sway 
This process will be illustrated with reference to Example 3.3 
(page 3/9), for which the structure is shown in Figure 3.9. We 
first ignore any horizontal movement (sway) of the joints B and 
C and carry out a moment distribution. 

The fixed-end moments are wP/12= + 40 kNm; and the dis- 
tribution factors are: 

MFa A =" My^ s = - 90 

and 

M F C  D = - -  8 0  

the moments are in the correct proportion. A second moment 
distribution is now carried out, using these values of fixed-end 
moments, and the result is shown in line 1 of Table 3.8. This set 
of moments is consistent with an applied horizontal force F 2, 
Figure 3.18(c), and: 

F2=66+ 78 6j[ 4 + =56.3 kN 

Table 3.8 

B A ' B C = ~ : ~  Joint A B C 

CB:CD = ~" ~ (noting ¼1/1 for CD) 

The result of this (no sway) moment distribution is given in line 
3 of Table 3.8. We now consider the horizontal equilibrium of 
the beam BC, Figure 3.18(a), and find that a force FI is required 
to maintain equilibrium. F, may be calculated by evaluating the 
horizontal shear forces at the tops of the columns as follows: 

End moments AB BA BC CB CD 

(1) Arbitrary sway 
(2) Corrected [(1)x 2] 
(3) No sway moments 
(4) Final moments 

[(2)+(3)1 

- 7 8  - 6 6  +66 +61 -61  
- 1 6 7  -141  +141 +131 -131 

+10 +20 - 2 0  +20 - 2 0  

- 1 5 7  -121  +121 +151 -151  

F, = 120+(20+ 10) 20= 120.8 kN 
4 3 

This force cannot exist in practice and what happens is that the 
beam BC deflects to the right and a new set of bending moments 
is set up with the effect that the out-of-balance horizontal force 
F I is removed. We consider the effect of this sway separately. 
Referring to Figure 3.18(b), a movement to the right of A, 
without joint rotation, requires column moments as shown. 
From Figure 3.15(c) and (d), these column moments are, 

My. ̂ =My^ . = - 6  -~- A^. 

Now F 2 has to be scaled to equal F, and the scaling factor is F,/ 
F 2 = 2 = 120.8/56.3 = 2.14. 

The corrected moments are given in line 2 of Table 3.8 and the 
final moments are in line 4 obtained by adding lines 2 and 3. 

3.5.5 Additional topics in moment distribution 
Space has permitted only a brief introduction to the method of 
moment distribution. Additional topics which should be studied 
by reference to the standard texts) ,4 are as follows: 

(1) Frames with multiple degrees of freedom for sway. These 
are handled by carrying out an arbitrary sway distribution 



for each sway in turn. Equilibrium conditions are then used I_ 
to relate the out-of-balance forces and obtain the correction A l -  
factors for each sway mode. ,,?A, ~1 

(2) Treatment o f  symmetry. In cases of symmetry the moment 
distribution process can be considerably shortened. Two 
cases arise and should be studied, systems in which it is -=11-- 

known that the final set of moments is symmetrical and 
systems in which the final moments form an anti-symmetri- °l 
cal system. 

(3) Nonprismatic members. If the flexural rigidity (E/) of a 
- - I -  

member varies within its length, then the effect is to change .~  
the values of end stiffnesses, carry-over factor and fixed end 
moments. A suitable general method for handling this 
situation is to evaluate end flexibilities by the use of Simp- 
son's rule and then convert the flexibilities into stiffnesses. 

3.6 Influence lines 

3.6.1 Introduction and definitions 
It is frequently necessary to consider loads which may occupy 
variable positions on a structure. For example, in bridge design 
it is important to determine the maximum effects due to the 
passage of a specified train or system of loads. In other cases the 
total load on a structure may be comprised of different loads 
which may be applied in various combinations and this again is 
a problem of variability of load or load position. The effect of 
varying a load position may be studied with the help of influence 
lines. 

An influence line shows the variation of some resultant action 
or effect such as bending moment, shear force, deflection, etc. at 
a particular point as a unit load traverses the structure. It is 
important to observe that the effect considered is at a fixed 
position, e.g. bending moment at C, and that the independent 
,variable in the influence line diagram is the load position. The 
following is a summary of influence line theory. For  a more 
detailed treatment the reader should consult Jenkins. ~ 

3.6.2 Influence lines for beams 
Consider the simply-supported beam AB, Figure 3.19, carrying 
a single unit load occupying a variable position distant y from 
A. We require to obtain influence lines for bending moment and 
shear force at a fixed point X distant a from A and b from B. 

If the unit load lies between X and B: 

M~ = R^.a = l ( l l Y )  a 

If the unit load acts between A and X: 

(3.48) 

Mx = RB.b= 1.y/bb (3.49) 

Equations (3.48) and (3.49) are linear in y and when plotted in 
the regions to w~hich they relate, form a triangle as shown in 
Figure 3.19(b). We note that, in both cases, substitution of y = a 
gives M, = 1 .ab/l. Thus the influence line for M~ is a triangle with 
a peak value ab/l at the section X. 

Turning now to the influence line for sheafing force at X. For  
unit load between X and B: 

S~=R^ l - y  - 1 (3.50) 

Influence lines 3/19 
y 

o / r  
- I ,~- = 

I 

~ ~  °~b// Influence line for  

" - ' - ~ . . ~ . . . . b l l  Influence line for  

Influence li~eep__~----.~.~_ I 

I 
w, t -iw~ 

: , , .  .v. _, ~,+v2~ 

(a) 

(b) 

(c) 

(d) 

(e) 

(f) 

. /M..~ ,~ 

~ b  (h) 
= Y , = ~ y ( t - y )  

~ , , . ~ ' ~ . . , f l t l  - -  ' 

Figure 3.19 Influence lines and related diagrams lot simply 
supported beams 

namely that Sx is positive if the resultant force to the left of the 
section is upwards). 

Where y -  a, S~ = b/l 

For unit load between A and X: 

S~ = - RB= - y/ l  (3.51) 

when y = a, Sx = - a/l 

We note that Equations (3.50) and (3.51) give different values of 
S, for y =  a and moreover the signs are opposite. This means 
that the shear force influence line contains a discontinuity at X 
as shown in Figure 3.19(c). 

In using influence lines with a given system of loads and 
having determined the locations of the loads on the span, the 
total effect is evaluated as: 

~ ( W  x ordinate), for concentrated loads (3.52) 

(and now we have implied a sign convention for shear force and: 
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~whdx = w (area under influence line) (3.53) 

for distributed loads (Figure 3.19(d). 
The maximum effect produced at a given position is of 

interest in the design process. In the case of concentrated loads, 
from Equation (3.52), this is obtained when: 

~ ( W  x ordinate) is a maximum 

The process of locating the loads to produce the maximum value 
is best done by trial and error. It follows from the straight-line 
nature of a bending moment diagram due to concentrated loads, 
that the maximum bending moment at a section will be obtained 
when one of the loads acts at the section. This may be illustrated 
by reference to the two-load system shown at (e) in Figure 3.19. 
The shape of the bending moment diagram is as shown at (f) and 
at (g) is drawn a diagram which shows the maximum value of 
bending moment at any section in the beam. This is the 
maximum bending moment envelope Aim, which is seen to consist 
of two intersecting parabolic curves My, and My2. 

The curve My, represents the maximum bending moment at 
all sections in the beam when this is obtained with load W, 
placed at the section. The curve Myz represents the maximum 
bending moment at all sections in the beam when this is 
obtained with load W 2 at the section. It is seen that 14/, should be 
placed at the section towards the left-hand end of the beam, and 
W 2 at the section towards the right-hand end of the beam. 

The expressions for My, and My2 are as follows: 

My, = ( W, + W2)~( I -  y, - a) 

M,2 = ( W, + W2) (l-lY') (y2 - b) 

(3.54) 

In the case of a distributed load which has a length greater than 
the span, then for an influence line of type (b) in Figure 3.19, the 
whole span would be loaded, whereas for an influence line of 
type (c) one would place the left-hand end of the load at X thus 
avoiding the introduction of a negative effect on the maximum 
positive value. For a short distributed load, as at (h), for 
maximum effect at y, the load must be placed so that the shaded 
area in (j) is a maximum. 

The rule for this is: 

y/ l=a/c  (3.55) 

3.6.3 Influence lines for plane trusses 
In the analysis of plane trusses, the influence line is useful in 
representing the variations in forces in members of the truss. 

Figure 3.20(a) shows a Warren girder AB of span 20 m. For 
the unit load acting at any of the lower chord joints, the force in 
member 1 is: 

ARA 
P ' -  2x/3 

The peak value occurs when the unit load is at C, and thus: 

2 4 8 
P i m = x = ~  x -  x 1--  ,/3 5 5,/3 

The influence line for P, is shown at (b). 
For member 2, if the unit load lies between A and E, we take: 

x 
I D 2 /  

A 

,..., 

/ 

f 

8/~/~ 

Compression 

12/5/~ 

3/5 

+ 

Figure 3.20 Influence lines for plane truss 

B 
(o) 

(b) 

(c) 

(d) 

12R. 
P2-  2x/3 

or, if the unit load lies between E and B we take: 

8 R  A 
P2-  2x/3 

The result is a triangle with peak value 12/5x/3 at E, as shown in. 
diagram (c). 

It should be noted that both the P, and P2 influence lines 
indicate compression for all positions of the unit load. 

For members 3 and 4 it is useful to note that these members 
carry the vertical shear force in the panel CE, and we proceed by 
drawing the influence line for VCE as at (d). 

Considering now the force in member 3 and the section XX in 
diagram (a), it is clear that the relationship is: 

VCE 
P3 -- sin 60 ° 

and that P3 is tensile when VCE is positive and compressive when 
VCE is negative. 

3.6.4 Influence lines for statically indeterminate 
structures 
The use of influence lines in representing the effects of variable- 
position loads in statically determinate beams and trusses has 
been outlined. The concept is, of course, of general application. 
When dealing with statically indeterminate structures it is 
convenient to introduce some additional theorems to assist the 
analysis. It is possible to relate influence line shapes to deflected 
shapes of structures under particular forms of applied force. 
This involves an application of Mueller-Breslau's principle, 
which we shall look at in this section. The application of this 
principle can take the form of a model analysis, to which a 
simple form or model of the structure is made and particular 
distortions of the model produce scaled versions of influence 
lines. 
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With the enormous increase in computing power now avail- 
able there is little need to use models in this way and it is 
generally more economical to produce influence lines by com- 
puter. It should be noted that it is always possible to construct 
influence lines by repeated analysis of the structure under a unit 
applied load, changing the load position for each analysis and 
thus producing a succession of ordinates to the influence line 
sought. This latter approach will be illustrated in section 3.6.8. 

We now look at two important theorems concerned with 
influence lines. 

3.6.5 Maxwell's reciprocal theorem 
Consider the propped cantilever shown in Figure 3.21 to be 
subjected to a load W at A, producing displacementsf~l andf2~ 
as shown at (a), and then separately to be subjected to a moment 
M at B producing displacementsf~2 and f22 as at (b). Assuming a 
linear load-displacement relationship we may use the principle 
of superposition and obtain the combined effects of W and M by 
adding (a) and (b). Clearly it will be immaterial in which order 
the forces are applied. Applying W first and then M, the work 
done by the loads will be: 

(½ Wfll) -F (½Mf22 q- W~2 ) (3.56) 

_ A~ w B ~[ A B~M 

f:' f'(Z,) f:,2 
(o} 

Figure 3.21 

The first bracket in Equation (3.56) contains the work done 
during the application of W and the second bracket the work 
done (by both M and W) during the application of M. 

In a similar way, if the order is reversed, the work done is: 

(½M f::) + (½ Wf~, + Mr:,) (3.57) 

From Equations (3.56) and (3.57) it is evident that: 

Wf~2= Mr:, (3.58) 

If the applied actions are taken to have unit values, then 
Equation (3.58) simplifies to: 

f~2 =f2, (3.59) 

Equation (3.59) is a statement of Maxwell's reciprocal theorem. 
A more general theorem, of which Maxwell's is a special case, is 
due to Betti. This latter theorem states that if a system of forces 
Pi produces displacements p~ at corresponding positions and 
another set of forces Q~, at similar positions to P,, produces 
displacements q~, then: 

P,q, + P2q2 + . . .  + P.q.= Q, p, + Q2p2 + . . .  + Q.P.  (3.60) 

w I 
A ~ C B (o) 

t ° t , 

"I~SD_~I ~ ... .  (b) 

q 
Figure 3.22 

3.22(b), is obtained. If a unit load now occupies any arbitrary 
position D, as at (c), then from Maxwell's theorem the deflec- 
tion at C will be 6 o. In other words, the deflected form (b) is the 
influence line for deflection of C. 

Now the force at C to move C through 8 c = 1 
Hence, the force at C to move C through 6 o = 1 x 6o/6 c. 
If a unit load acts at D, producing a deflection 6 o at C, then 

the upwards force needed to restore C to the level of AB is 
1 x 6D/6 c. Hence, the reaction at C for unit load at D is 1 x 60/6 c. 
Since D is an arbitrary point in the beam then it is seen that the 
deflected shape due to unit load at C, Figure 3.22(b), is to some 
scale, the influence line for R c. The scale of the influence line is 
determined from the knowledge that the actual ordinate at C 
should equal unity. Hence, the ordinates should all be divided 
by 6 c. 

This result leads to Mueller-Breslau's principle which may be 
stated as follows: 

'The ordinates of the influence line for a redundant force are 
equal to those of the deflection curve when a unit load 
replaces the redundancy, the scale being chosen so that the 
deflection at the point of application of the redundancy 
represents unity.' 

W 

~ A  HA (a) 

-.~ v,fH~M, (b) Figure 3.23 

3.6.7 Application to model analysis 
Consider the fixed arch shown in Figure 3.23(a). The arch has 
three redundancies which may be taken conveniently as H A, V  ̂
and M^. We make a simple model of the arch to a chosen linear 
scale and pin this to a drawing board. End B is fixed in position 
and direction and the undistorted centreline is transferred to the 
drawing paper. We then impose a purely vertical displacement 
Av at A and transfer the distorted centreline to the drawing 
paper. The distortion produced will require force actions at A, 
V', H' and M'. Let the displacement of a typical load point be 
Aw. Applying Equation (3.60) to the two systems of forces: 

3.6.6 Mueller-Breslau's principle 
This principle is the basis of the indirect method of model 
analysis. It is developed from Maxwell's theorem as follows. 
Consider the two-span continuous beam shown in Figure 
3.22(a). On removal of the support at C and the application of a 
unit load at C, a deflected shape, shown dotted in Figure 

V,,(AJ + HA_ (0) + MA(O) + W(aJ = V'(0) + H'(0) + M'(0) + O(o3 

Hence: 

V^A+ Wa~=0 

and if W= 1: 
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v,  - - A .  Av (3.61) 

Similarly, we impose a purely horizontal displacement A H and 
obtain: 

- -  A '  w 

HA-- A. (3.62) 

then a pure rotation 0 and obtain: 

A u 

MA= - - - ~  (3.63) 

In Equations (3.62) and (3.63) the displacements A'w and A" 
represent the arch displacements due to the imposed horizontal 
and rotational displacements respectively. In each case the 
deflected shape, suitably scaled, gives the influence line for the 
corresponding redundancy. 

3.6.7.1 Sign convention 

The negative sign in Equations (3.61) to (3.63) leads to the 
following convention for signs. On the assumption that a 
reaction is positive if in the direction of the imposed displace- 
ment, then a load W will give a positive value of the reaction if 
the influence line ordinate at the point of application of the load 
is opposite to the direction of the load. This is evident in Figure 
3.23(b) where the upward deflection A w, being opposed to the 
direction of the load W, is consistent with a positive (upwards) 
direction for V A. 

Unit Load Positions 

3.6.7.2 Scale of the model 
It should be noted that when using relationships (3.61) and 
(3.62) the ratios Aw/A , and A'JA n are dimensionless and thus the 
linear scale of the model does not affect the influence line 
ordinates. On the other hand, when using Equation (3.63)in 
obtaining an influence line for bending moment, A J 0  has the 
dimensions of length and thus the model displacements must be 
multiplied by the linear scale factor. 

In performing the model analysis, quite large displacements 
can be used providing the linear relation between load and 
displacement is maintained. Hence, the indirect method is 
sometimes called the 'large displacement' method. 

3.6.8 Use of the computer in obtaining influence lines 
With adequate computing facilities it is generally more econo- 
mical to proceed directly to the computation of influence line 
ordinates by the analysis of the structure under a unit load, the 
unit load occupying a succession of positions. The actual 
method of analysis is immaterial but for bridge-type structures 
often the flexibility method offers some advantage especially if 
the structural members are 'nonprismatic'. An example of this 
type of computation is shown in Figure 3.24 where influence 
lines for bending moments at the interior supports of a five-span 
continuous beam are given. The beam is taken to be uniform in 
section over its length and, due to the symmetry of the spans, 
unit load positions need only be taken over one-half of the 
structure as shown. 

A B C D 
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Figure 3.24 Influence lines for bending moments in a continuous 
beam obtained by computer analysis 



3.7 Structural dynamics 

3.7.1 Introduction and definitions 
Structural vibrations result from the application of dynamic 
loads, i.e. loads which vary with time. Loads applied to struc- 
tures are often time-dependent although in most cases the rate 
of change of load is slow enough to be neglected and the loads 
may be regarded as static. Certain types of structure may be 
susceptible to dynamic effects; these include structures designed 
to carry moving loads, e.g. bridges and crane girders, and 
structures required to support machinery. One of the most 
severe and destructive sources of dynamic disturbance of struc- 
tures is, of course, the earthquake. 

The dynamic behaviour of structures is generally described in 
terms of the displacement-time characteristics of the structure, 
such characteristics being the subject of vibration analysis. 
Before considering methods of analysis it is helpful to define 
certain terms used in dynamics. 

(1) Amplitude is the maximum displacement from the mean 
position. 

(2) Period is the time for one complete cycle of vibration. 
(3) Frequency is the number of vibrations in unit time. 
(4) Forced vibration is the vibration caused by a time-dependent 

disturbing force. 
(5) Free vibrations are vibrations after the force causing the 

motion has been removed. 
(6) Damping. In structural vibrations, damping is due to: (a) 

internal molecular friction; (b) loss of energy associated 
with friction due to slip in joints; and (c) resistance to 
motion provided by air or other fluid (drag). The type of 
damping usually assumed to predominate in structural 
vibrations is termed viscous damping in which the force 
resisting motion is proportional to the velocity. Viscous 
damping adequately represents the resistance to motion of 
the air surrounding a body moving at low speed and also the 
internal molecular friction. 

(7) Degrees of freedom. This is the number of independent 
displacements or coordinates necessary to completely define 
the deformed state of the structure at any instant in time. 
When a single coordinate is sufficient to define the position 
of any section of the structure, the structure has a single 
degree offreedom. A continuous structure with a distributed 
mass, such as a beam, has an infinite number of degrees of 
freedom. In structural dynamics it is generally satisfactory 
to transform a structure with an infinite number of degrees 
of freedom into one with a finite number of freedoms. This 
is done by adopting a lumped mass representation of the 
structure, as in Figure 3.25. The total mass of the structure is 
considered to be lumped at specified points in the structure 
and the motion is described in terms of the displacements of 
the lumped masses. The accuracy of the analysis can be 
improved by increasing the number of lumped masses. In 
most eases sufficiently accurate results can be obtained with 
a comparatively small number of masses. 

1-o-c-o-t  
(o) (b) 

Distributed moss beom Lumped moss beom 

Figure 3.25 

3.7.2 Single degree of freedom vibrations 
The portal frame shown in Figure 3.26 is an example of a 
structure with a single degree of freedom providing certain 
assumptions are made. If it is assumed that the entire mass of 
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Figure 3.26 

the structure (M) is located in the girder and that the girder has 
an infinitely large flexural rigidity and further, that the columns 
have infinitely large extensional rigidities, then the displacement 
of the mass M resulting from the application of an exciting force 
P(t), is defined by the transverse displacement y. The girder 
moves in a purely horizontal direction restrained only by the 
flexure of the columns. 

From Newton's second law of motion: 

Force = mass x acceleration 

i.e.: 

~ P =  Mfi (3.64) 

Now from Figure 3.26(b), the force resisting motion is: 

=24 E/y (3.65) 

Thus Equation (3.64) becomes: 

Ely P(t)- 24 --~-= My 

or: 

M~+ 24~h/3 y =  P(t) (3.66) 

If the effect of damping is included then the equation of motion, 
Equation (3.66) is modified by the inclusion of a term cjp where c 
is a constant. It should be noted that since the effect of damping 
is to resist the motion, then the term c~ is added to the left-hand 
side of Equation (3.66). Thus: 

M)7 + c.~ + 24~h/3Y = P(t) (3.67) 

Equation (3.67) may be generalized for any single degree of 
freedom structure by observing that the stiffness of the struc- 
ture, i.e. force required for unit displacement horizontally, is 
given by: 

E1 
k =  24 ~y (3.68) 

Combining Equations (3.67) and (3.68) we obtain the general 
single degree of freedom equation of motion: 

Mfi + c~ + k y -  P(t) (3.69) 
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If in Equation (3.69) P(t) = 0, we have a state o f  f ree  vibration of 
the structure. The governing equation becomes: 

Mfi+  cp+ k y = O  (3.70) 

Again, no vibrations result and Equation (3.78) has the form 
shown in Figure 3.27(a). 

From Equation (3.73) the value of c for this condition is given 
by: 

The situation envisaged by Equation (3.70) would arise if the 
beam were given a horizontal displacement and then released. 
The resulting vibrations would depend on the amount of 
damping present, measured by the coefficient c. 

The solution of Equation (3.70) is: 

y = Axe ~,' + A2e ~2' (3.71) 

where A, and A 2 are the constants of integration, to be evaluated 
from initial conditions, and 2, and 22 are the roots of the 
auxiliary equation: 

M22+ c2 + k = O  (3.72) 

or, substituting: 

p 2 = k / M  I and 
2 n = c / M  

Equation (3.72) becomes: 

(3.73) 

co= 2x/(Mk) (3.79) 

(o) 

Figure 3.27 

I ~ (b) 

This is termed critical damping and the critical damping 
coefficient c¢ is the value of the damping coefficient at the 
boundary between vibratory and nonvibratory motion. The 
critical damping coefficient is a useful measure of the damping 
capacity of a structure. The damping coefficient of a structure is 
usually expressed as a percentage of the critical damping 
coefficient. 

22+ 2n2 + p 2 = 0  (3.74) Case 3.3 p2 > n 2 

Hence: 

2 = - n 4- x/(n 2 - / f )  (3.75) 

Four cases arise: 

Here c < c¢ and the structure is underdamped. 
From Equation (3.75), 2 = - n +  ix/(p 2 -  n 2) 
Hence: 

y = e-.,(A~e,,/,2-.2), + Aze- i,/t,2-,2), ) 

Case 3.1 p2 < n 2 or, putting: 

Here ( n 2 - p  2) is always positive and < n 2 and thus 2~ and 22 are 
real and negative. 

Equation (3.71) takes the form: 

(If  - n 2) = q2 

y = e-.,(Aleiq, + A2e-~q , ) 

y = e-.,(AleV(.2-p2), + A2e-,/(.2-p2) , ) (3.76) o r  

The relationship between y and t of Equation (3.76) is shown in 
Figure 3.27(a) and it is seen that the displacement y gradually 
returns to zero, no vibrations taking place. 

Now, since n 2 > p2, then: 

c 2 k 
4 M ~ > M  

y = e-"'(A cos qt + B sin qt) (3.80)' 

A typical displacement-time relationship for this condition is 
shown in Figure 3.27(b). 

An alternative form for Equation (3.80) is: 

y = Ce-"' sin (qt + fl ) (3.81) 

o r  where C and fl are new arbitrary constants 

c > 2x/(Mk) (3.77) 

A structure exhibiting these characteristics is said to be over- 
damped. 

Case 3.2 p2 = n 2 

The period T -  2n_  2n q px/{1 - (n/p) 2} 

The period is constant but the amplitude decreases with time. 
The decay of amplitude is such that the ratio of amplitudes at 
intervals equal to the period is constant, i.e.: 

From Equation (3.75), 2 - n  (twice) 
and hence, 

y=e-" ' (A ,  + A2t ) (3.78) 

Y(0 = e.r 
Y(,+ 7~ 

and log e ~r = n T= 



t~ is called the logarithmic decrement, and is a useful measure of 
damping capacity. 

The percentage critical damping 

= 1 ~  
C¢ 

wL 

Mass w/unit length 

wtl4 ~14 wtl4 

M, M2 M~ 
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This is of the order of 4% for steel frames and 7% for concrete 
frames. 

Case 3.4 c = 0  

In the absence of damping, Equation (3.70) becomes: 

M~ + ky = 0 (3.82) 

The solution of which is: 

y = A,e ~' + A2e ~2' 

where, from Equation (3.72): 

L 

Figure 3.28 

Ad) 

(e) 

;t, =/p 

22 ~ m i p  

Thus: 

y = A sin pt  + B cospt (3.83) 

The period is, T - 2 n  
P 

where p is the natural circular frequency 

1 p 
The natural frequency is f -  T -  2n 

3.7.3 Multi-degree of freedom vibrations 
Vibration analysis of systems with many degrees of freedom is a 
complex subject and only a brief indication of one useful 
method will be given here. For a more comprehensive and 
detailed treatment, the reader should consult one of the stan- 
dard texts. 7 

For a system represented by lumped masses, the governing 
equations emerge as a set of simultaneous ordinary differential 
equations equal in number to the number of degrees of freedom. 
Mathematically the problem is of the eigenvalue or characteristic 
value type and the solutions are the eigenvalues (frequencies) and 
the eigenvectors (modal shapes). We shall consider the evalu- 
ation of mode shapes and fundamental, undamped, frequencies 
by the process of matrix iteration using the flexibility approach 
(see page 3/6). The method to be described, leads autgmatically 
to the lowest frequency, the fundamental, this being the one of 
most interest from a practical point of view. The alternative 
method using a stiffness matrix approach leads to the highest 
frequency. 

Consider the simply-supported, uniform cross-section beam 
shown in Figure 3.28(a). The mass/unit length is w and we will 
regard the total mass of the beam to be lumped at the quarter- 
span points as shown in Figure 3.28(b). We may ignore the end 

masses wl/8 since they are not involved in the motion, and 
consider the three masses 

M I = M 2 = M 3 = wl/4. 

The appropriate flex/b/l/ties, fj, are shown at (c), (d) and (e). 
Using the fexibility method previously described, we may 

obtain a flexibility matrix as follows: 

Ff~, f~2 f~f] I3 .003.672.33-1 
F = / f 2 ,  f22 f23 / = 13 256EI 3.67 5.33 3.67 (3.84) 

Lf3~ f32 f33_J ~2.33 3.67 3.00 

It should be noted that fj is the displacement of mass M~ due to 
unit force acting at mass M r Thus, if the forces acting at the 
positions of the lumped masses are F~.2.3 and the corresponding 
displacements are YJ.z.3, then: 

y, =f~,F~ +f~2F2 +f~3F3 ] 
Y2 =L,F, +L2F2 +f23F3 
y~ =L,v, +L,r, +L~r~ 

(3.85) 

For free, undamped vibrations, F~ is an inertia force= -M~ fi~. 

Thus: 

y, +f~,M,./;, +f~2M2f2 +fl3M3fi3 = 0 ] 
Y2 +f2,M,fi, +f2:M2.i/2 +f23Mx//3 = 0 ) y, +L,M,~, +L~MY~ +L~MY~ = 0 

(3.86) 

The solutions take the form: 

y, = 6~ cos (pt + a) (3.87) 

Hence: 

y =  _p2y~ (3.88) 
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Thus, Equations (3.86) become: 

a,-ft,M,p 2 a,-A2 M2p2¢Sz-A3 M3p 2 a3=O ) 
a:-f~,M,p ~ a , -f~ M~ p~a~-f. M~p ~ a~=0 
a3-A,M,P ~ a,-A~ M~e~a~-A M,p ~ a~=0) 

or: 

A=p2FMA 

where: 

~2 
gL 

• M =  
0 

(3.89) 

(3.90) 

The unknowns in Equation (3.90) are the displacement ampli- 
tudes tf i and the frequency p; p has as many values as there are 
equations in the system, and for every value of p (eigenvalue) 
there corresponds a set of y (eigenvector). 

We adopt an iterative procedure for the solution of Equation 
(3.90) and first of all rewrite the equations in the form: 

1 FMA = ~ A  

We start with an assumed vector A0, thus: 

(3.91) 

1 
FMAo =~Ao 

Putting FMA o = A, 

l p2_~_Ao 
A,----~ A o giving At 

We cannot form Ao/A, since each A is a column matrix, so we 
take the ratio of corresponding elements in Ao and A, and form 
the ratio t~0/g ,. It is best to use the numerically greatest g for this 
purpose. 

Continuing the process: 

FMA,---~A, giving p2= g,/~ 2 

= A2 

and again: 

FMA2-----~A2 

= A 3 giving p2 = 62/~ 3 

It can be shown that this iterative process converges to the 
largest value of 1/p 2 and hence yields the lowest (fundamental 
mode) frequency. 

Applying the iterative scheme to the beam of Figure 3.28, and 
assuming: 

then, A I = FMA o 

p I3.00 3.67 
.67 5.33 where FM = 256EI [_2.33 3.67 

wl 4 I13 "00 
= - -  .67 

1024EI L2.3 3 

 -tlw,/4 
367J 

'12.67-] 
wr 118.001_ 

Thus: A I -  1024EI L12.67 ] 

3.67 
5.33 
3.67 

2.33] 
3.67 I 
3.00j 

1.00] 
_ 12.67w!_____~ 4 1.42 

1024EI L1.00] 

0 041 wl/4 
0 wl/ 

p~_~0_i 2 x I024EI Hence: ~, 12.67 x 1.42wl 4 

= 114~.  / . wl 4 

A second iteration gives: 

wl 4 
A2= F M A j -  1024EI I3 .00 3.67 

.67 5.33 
[2.33 3.67 

2.33] p.ool 
3.67 I 12.67wl' ~ 1.42 i 
3.oo_1 ~ Ll.OO3 

w14 y r 10.54] ( 12.67 /14.911 
\ 1024eI] U0.sa_J 

Hence: 

p2_~,~ _ 12.67 x 1.42wl 4 
t~ 2 1024EI 12.67(w14/lO24El) 2 × 14.91 

= 97.5w~ 4 

This result is very close to that produced by an exact method, 
i.e. 97.41El/wl 4. 

3.8 Plastic analysis 

3 .8 .1  I n t r o d u c t i o n  
The plastic design of structures is based on the concept of a load 
factor  (N), where 

N =  Collapse load _ W c ' 
Working load W, (3.92) 

A structure is considered to be on the point of collapse when 
finite deformation of a t  least part of the structure can occur 
without change in the loads. The simple plastic theory is based 
on an idealized stress-strain relationship for structural steel as 
shown in Figure 3.29. A linear, elastic, relationship holds up to a 
stress try, the yield stress, and at this value of stress the material is 
considered to be in a state of perfect plasticity, capable of 
infinite strain, represented by the horizontal line AB continued 
indefinitely to the  right. For comparison the dotted line shows 
the true relationship. 
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The term "plastic analysis' is generally related to steel struc- 
tures for which the relationship indicated in Figure 3.29 is a 
good approximation. The equivalent approach when dealing 
with concrete structures is generally termed 'ultimate load 
analysis' and requires considerable modification to the method 
described here. 

The stress-strain relationship of Figure 3.29 will now be 
applied to a simple, rectangular section, beam subjected to an 
applied bending moment M (Figure 3.30). 

Under purely elastic conditions, line OA of Figure 3.29, the 
stress distribution over the cross-section of the beam will be as 
shown in Figure 3.30(b) and the limiting condition for elastic 
behaviour will be reached when the maximum stress reaches the 
value try. As the applied bending moment is further increased, 
material within the depth of the section will be subjected to the 
yield stress try and a condition represented by Figure 3.30(c) will 
exist in which part of the cross-section is plastic and part plastic. 
On further increase of the applied bending moment ultimately 
condition (d) will be reached in which the entire cross-section is 
plastic. It will not be possible to increase the applied bending 
moment further and any attempt to do so will result in increased 
curvature, the beam behaving as if hinged at the plastic section. 
Hence, the use of the term plastic hinge for a beam section which 
has become fully plastic. 

(o) (b) (c) (d) 

Figure 3.30 

The moment of resistance of the fully plastic section is, from 
Figure 3.30(d): 

d d bd2a~ 
Mp= b~ry~= 4 

= Z/r,  (3.93) 

where Zp= plastic section modulus 

In contrast, the moment of resistance at working stress tr, is, 
from Figure 3.30(b): 

d tr, 2 bd 2 
M, = b ~ -~- ~ d = - - ~ ,  (3.94) 

=Z/r,  

where Z¢ = elastic section modulus 

The ratio Zp/Z c is the shape factor of the cross-section. Thus the 
shape factor for a rectangular cross-section is 1.5. 

The shape factor for an I-section, depth d and flange width b, 
is given approximately by; 

1 + x/2)  
1 + x/3 

t,d where x=2-~f b and t, and tf are the web and flange thicknesses 

respectively 

Values of plastic section moduli fo.r rolled universal sections are 
given in steel section tables. 

3.8.2 Theorems and principles 
The definition of collapse, which follows from the assumed basic 
stress-strain relationship of Figure 3.29, has already been given. 
If the structural analysis is considered to be the problem of 
obtaining a correct bending moment distribution at collapse, 
then such a bending moment distribution must satisfy the 
following three conditions: 

(1) Equilibrium condition: the reactions and applied loads must 
be in equilibrium. 

(2) Mechanism condition: the structure, or part of it, must 
develop sufficient plastic hinges to transform it into a 
mechanism. 

(3) Yield condition: at no point in the structure can the bending 
moment exceed the full plastic moment of resistance. 

In elastic analysis of structures where several loads are acting, 
e.g. dead load, superimposed load and wind load, it is permiss- 
ible to use the principle of superposition and obtain a solution 
based on the addition of separate analyses for the different 
loads. In plastic theory the principle of superposition is not 
applicable and it must be assumed that all the loads bear a 
constant ratio to one another. This type of loading is called 
'proportional loading'. In cases where this assumption cannot 
be made, a separate plastic analysis must be carried out for each 
load system considered. 

For cases of proportional loading, the uniqueness theorem 
states that the collapse load factor N¢ is uniquely determined if a 
bending moment distribution can be found which satisfies the 
three collapse conditions stated. 

The collapse load factor Arc may be approached indirectly by 
adopting a procedure which satisfies two of the conditions but 
not necessarily the third. There are two approaches of this type: 

(a) We may obtain a bending moment distribution which 
satisfies the equilibrium and mechanism conditions, (1) and 
(2); in these circumstances it can be shown that the load 
factor obtained is either greater than or equal to the collapse 
load factor Arc. This is the 'minimum principle' and a load 
factor obtained by this approach constitutes an 'upper 
bound' on the true value. 

(b) We may obtain a bending moment distribution which 
satisfies the equilibrium and yield conditions, (1) and (3), 
and in these circumstances it can be shown that the load 
factor obtained is either less than or equal to the collapse 
load factor N c. This is the 'maximum principle' and its 
application produces a 'lower bound' on the true value. 

It should be observed that whilst method (a) is simpler to use in 
practice, it produces an apparent load factor which is either 
correct or too high and thus an incorrect solution is on the 
unsafe side. A most useful approach is to employ both principles 



3/28 Theory of structures 

in turn and obtain upper and lower bounds which are suffi- 
ciently close to form an acceptable practical solution. 

3.8.3 Examples of plastic analysis 
This section contains some examples of plastic analysis based on 
the minimum principle. The method employed is termed the 
'reactant bending moment diagram method'. 

Example  3.5. The structure is a propped cantilever beam of 
uniform cross-section, carrying a central load W, as shown in 
Figure 3.31(a). The bending moment distribution under elastic 
conditions is shown in Figure 3.31 (b) and it should be noted that 
the maximum bending moment occurs at the fixed end A. 

As the load W is increased, plasticity will develop first at end 
A. As the load is further increased, end A will eventually become 
fully plastic with a stress distribution of the type shown in 
Figure 3.30(d) and the bending moment at A, M^, will equal Mp 
the fully plastic moment of the beam. Further increase of load 
will have no effect on the value of M^ but will increase MB until 
it also reaches the value Mp. The resulting bending moment 
distribution will now be as shown in Figure 3.3 l(c). 

a c 
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(b) 

and the relationship between the load and the value of Mp may 
be obtained by differentiation as follows. 

At C: 

M _ (  w'x x N-~ - M,7 

i.e.: 

wtx(t- x) 
M.= N ~ (-i-4x) 

dM~= Nw_t{(t + x)(t- 2x)- x(t- x)} 
dx 2 (1 + x) 2 

(3.97) 

=0 for Mpmax 

~ : ~ I ~  (c) 

Figure 3.31 

Hence: x 2 + 2 x l -  l 2-" 0 

i.e.: 

x=  l (x/2-  1) = 0.414l 

which locates the point C. 

The geometry of the diagram produces a relationship between 
the load at collapse, W c, and the plastic moment of resistance of 
the beam Mp, as follows: 

W~I -a-= M, + M,/2 

(3.95) 

o r :  

420 
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252 
(b) 

If the working load is IV, then the load factor is given by: 

N_w¢ 
I4/, (3.96) 

Example  3.6. This is again a propped cantilever but here the 
load is uniformly distributed (Figure 3.32(a)). At collapse the 
bending moment diagram will be as shown in Figure 3.32(b) 
with plastic hinges at A and C. It should be noted that C is not 
at the centre of the beam. The location of the plastic hinge at C 

420 

252 

i 

Figure 3.33 

(c) 



Also, substituting in Equation (3.97) for x: 

Nwl 2(#2 - 1) 
Mp= 2 ~/2 (2-~/2)  

= ( - ~ ) 4 ( 3 - 2 x / 2 )  

=0.686 ( - ~ )  

Example 3.7. A two-span continuous beam is shown in Figure 
3.33. The loads shown are maximum working loads and it is 
required to determine a suitable universal beam (UB) section 
such that N =  1.75 with a yield stress try= 250 N/mm 2. Effects of 
lateral instability are ignored for the purposes of this example. 

With factored loads, the free bending moments are: 

8 2 
1.75 x 30 x ~ = 4 2 0  kNm 

52 5 
1.75 x 30 x ~ + 1.75 x 40 x ~= 252 kNm 

For collapse to occur in span AB, Figure 3.33(b) 

420 x 0.686= Mp = 288 kNm 

For collapse in BC, assuming the span hinge in BC to occur at 
the centre (Figure 3.33(c)): 

3 252=~Mp; Mp= 168<288 

Hence the beam must be designed for Mp = 288 kNm 

Hence: 

= Z p O ' y  

288 x 106 
Z0=250 x 10 ~ c m 3 =  1152 cm 3 

From section tables, select 406 x 178 UB 60 (Zp= 1194 cm3). 
This design may be compared with elastic theory from which 

we obtain Mmax = 198kNm, Zo= 1200cm 3 (using aw=165N/ 
mm=). A suitable section would be 457x 152UB67 
(Ze= 1250 cm 3) or, 406 x 178 UB 74 (Ze= 1324 cm3). 

The plastic design may be improved by choosing different 
sections for spans AB and BC: 

168 106 
For BC, MpBc = 168 giving Zp= 2-3- 6 x 103=672cm3 

Select 356 x 171 UB45 (Zp= 773.7 cm 3) 

For AB, MpA . ~ 420-- ½MpB c 

773.7 x 103 x 250 
= 420 -  ½ x 106 

= 420-96 .7=  323 kNm 

323 x 106 
.'.Zp - 250 ]-O~ = 1293 cm 3 

Select 406 x 178 UB 67. 
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The weights of steel used in the different designs may be 
compared. 

First plastic design , 780 kg 
Elastic design 87-,tl kg 
Second plastic design 761 kg 

_= 
As an alternative to the second plastic design the lower value of 
Mp could be used, based on collapse in BC (356x 171UB45, 
Zp= 773.7, Mp = 193 kNm), and flange plates welded on to the 
beam in the region DE, Figure 3.33(c). 

The additional Mp required at the plated section 

=420 - 3  x 193 
= 130 kNm 

Using plates 150 mm wide top and bottom,~he plastic moment 
of resistance of the plates is approximately: 

2 (150 x t x 250 x 3~ 6 ) - -  x10-6 

= 13.4t 

where t = plate thickness in millimetres 

Hence: 

130 
t = 1--~.4 ~ 10mm) 

Example 3.8. Here we consider the plastic analysis of a portal 
frame type structure as in Figure 3.34(a) and (b). At (a) the 
frame has pinned supports and at (b) fixed supports. A simple 
form of loading is used for illustration of the principles. 

The frame is made statically determinate by the removal of 
H A in both cases, and by the removal of M A and M E in case (b). 
The 'free' bending moment diagram is then as in diagram (c) 
and the reactant bending moment diagrams are as at (d) for H A 
and at (e) for M A and M E combined. We now seek combinations 
of the diagrams which will satisfy the conditions of equilibrium, 
mechanism and yield (see page 3/27). We consider first the case 
of the two-hinged frame. 

Diagram ( f )  
This is consistent with a pure sideway mode of collapse. From 
the geometry of the diagram: 

Hh 
M p -  2 (3.98) 

The yield condition will be satisfied providing: 

wl Hh 
-4-- ~<--2- (3.99) 

Diagram ( g) 
This is a combined mechanism involving collapse of the beam 
and sidesway. From the geometry of the diagram: 

At D: 

Mp = Hh -T- HAh 
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v I v I 
(o) (b) 

modes of collapse. The corresponding bending moment dia- 
grams are constructed at (h), (j) and (k) and the results are as 
follows: 

Diagram (h): 

/-/,h 
M p -  2 

W ~ f  

I 

, l 

i I 

(c) 

(d) 

M~ E / / / / ~ ~  I 

I v ~ M p  I 

( e l  

(g) 

M p ~  HAP/ 

(k) 

Figure 3.34 

At C: 

WI Hh Mr,=--~----~- 4- H,,h 

Adding: 

_•_ Hh 
2M~- + 2 

Mp = H h -  HA h -  Mp 

Hence: 

Hh 
M p -  4 (3.101) 

Diagram (19: 

WI Hh Mp = -~- - --~- -I- H A h 

Mp = Hh -T- H A h -  Mp 

Adding: 

WI Hh + ~  3Mp =--~-- 2 

or: 

Hh 
Mp= + 6 (3.102) 

Diagram (k)  
This mode is the same as the collapse of a fixed end beam; the 
columns are not involved in the collapse apart  from providing 
the resisting moment Mp at B and D. From the geometry of the 
diagram: 

WI 
g p -  8 (3.103) 

Example 3.9. Here we consider a pitched roof frame, a struc- 
ture which is eminently suitable for design by plastic methods. 
The frame is shown in Figure 3.35(a). The given loads are 
already factored and we are to find the required section modulus 
on the basis of a yield-stress try = 280 N/mm 2, neglecting instabi- 
lity tendencies and the reduction in plastic moment  of resistance 
due to axial forces. 

The bending moment diagram at collapse is shown in Figure 
3.35(b). The free bending moment diagram, EFGB, is drawn to 
scale after evaluating values of moment at intervals along the 
rafter members. The reactant line (HA diagram) is then drawn by 
trial and error so that the maximum moment  in the region BC is 
equal to the moment at D. This moment  is the required Mp for 
the frame and is found to be: 

Mp = 52 kNm = tryZp 

or: from which: 

WI Hh 
M~=-g-+-T (3.100) 

52x l(Px 103 
Zp=  280x103 = 1 8 6 c m  3 

In the case of the frame with fixed feet, there are three possible Home  8 and Baker and Heyman 9 should be consulted for a more 
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detailed study of plastic analysis. Among the topics deserving of 
further study are: 

(1) Use of the principle of virtual work in obtaining relation- 
ships between applied loads and plastic moments of resis- 
tance. 

(2) Effects of strain hardening. 
(3) Evaluation of  shape factors for various cross-sections. 
(4) Application of the maximum principle in obtaining lower 

bounds. 

(5) Numbers of independent mechanisms. 
(6) Shakedown. 
(7) Effects of axial forces. 
(8) Moment carrying capacity of columns. 
(9) Behaviour of welded connections. 
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4.1 In t roduc t ion  

A good working knowledge of the materials used in civil 
engineering is very important to the engineer and in this book 
the characteristics and properties of many materials are de- 
scribed appropriately in other chapters as indicated below. 

Material Chapter 
Soils 9 
Rocks 8 and 10 
Reinforcement 12 
Steel 13 
Aluminium 14 
Bricks and masonry 15 
Timber 16 
Bituminous materials 23 (also 17 and 24) 

This chapter is concerned with materials which are not covered 
elsewhere in the book and considers in detail only: concrete 
(pages 4/3 to 4/18), plastics and rubbers (pages 4/18 to 4/24) and 
paint (pages 4/24 to 4/26). 

The authors gratefully acknowledge permission by Peter 
Pullar Strecker to include or update parts of his text from the 
3rd Edition of the reference book (1974). 

In the field of materials especially, the solution of problems 
often requires a full understanding of technologies outside the 
engineer's normal experience. Fortunately specialist help is 
usually readily available in the UK, although the enquirer does 
not always know where to look for it. Many sources~are listed by 
the Construction Industry Research and Information Associa- 
tion (CIRIA) t Guide to sources of  construction information. A 
selection of useful organizations and their addresses is as 
follows. 

Aluminium Federation Ltd, Broadway House, Calthorpe 
Road, Five Ways, Birmingham B 15 1TN. 
Asbestos Information Centre, 40 Piccadilly, London WlV 
9PA. 
Association of Bronze and Brass Founders, 136 Hagley 
Road, Birmingham B I6 9PN. 
Brick Development Association, Woodside House, Wink- 
field, Windsor, Berks SL4 2DX. 
British Aggregate Construction Materials Industries, 156 
Buckingham Palace Road, London SWlW 9TR. 
British Cast Iron Research Association, Alvechurch, 
Birmingham B48 7QB. 
British Cement Association, Wexham Springs, Slough, Berks 
SL3 6PL. 
British Ceramic Research Ltd, Queens Road, Penkhull, 
Stoke-on-Trent, Staffs ST4 7LQ. 
British Constructional Steelwork Association Ltd, 35 Old 
Queen Street, London SWlH 9HZ. 
British Glass Industry Research Association, Northumber- 
land Road, Sheffield S10 2UA. 
British Non-ferrous Metals Federation, 10 Greenfield Cres- 
cent, Edgbaston, Birmingham B15 3AU. 
British Rubber Manufacturers' Association Ltd, 90-91 
Tottenham Court Road, London, WlP 0BR. 
British Standards Institution, 2 Park Street, London WlA 
2BS. 
British Steel Corporation, Corporate Research Laboratories, 
Swinden House, Moorgage, Rotherham $60 3AR. 
British Wood Preserving Association, 150 Southampton 
Row, London WC1B 5AL. 
Building Centres: London, Manchester, Bristol, Peter- 
borough, Durham, Glasgow. 
Building Research Establishment, Garston, Watford, Herts 
WD2 7JR. 
Cement and Concrete Association, see British Cement Asso- 
ciation. 
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Clay Pipe Development Association, Drayton House, 30 
Gordon Street, London WCIH 0AN. 
Concrete Pipe Association, 60 Charles Street, Leicester LEI 
IFB. 
Construction Industry Re,arch  and Information Associa- 
tion (CIRIA), 6 Storey's Gate, London SWlP 3AU. 
Copper Development Association, Orchard House, Mutton 
Lane, Potters Bar, Herts EN6 3AP. 
Flat Glass Council, 44-48 Borough High Street, London SEI 
IXB. 
Institution of Mining and Metallurgy, 44 Portland Place, 
London W 1N 4BR. 
Lead Development Association, 34 Berkeley Square, London 
W1X 6AJ. 
National Physical Laboratory, Teddington, Middlesex TWl I 
0LW. 
Paint Research Association, Waldegrave~qoad, Teddington, 
Middlesex TW11 8LD. 
RAPRA Technology Ltd, Shawbury, Shrewsbury, Shrop- 
shire SY4 4NR. 
Steel Construction Institute, Silwood Park, Ascot, Berks SL5 
7QN. 
Stone Federation, 82 New Cavendish Street, London WlM 
8AD. 
Timber Research and Development Association, Stocking 
Lane, Hughenden Valley, High Wycombe, Buckinghamshire 
HP 14 4ND. 
Zinc Development Association, 34 Berkeley Square, London 
W1X 6AJ. 

4.1.1 Standards and codes of practice 
British and some other standards and codes referred to in this 
chapter are listed separately in the bibliography. 

4.2 C o n c r e t e  

4.2.1 Cement 
Hydraulic cement, i.e. a cement which hardens because of 
chemical reactions between the cement and water is the main, 
and often the only, binder used in concrete for civil engineering 
purposes. Portland cement or one of its variants is usually used, 
but high-alumina cement has advantages for some applications. 
The following list of cements is~likely to be encountered in civil 
engineering. The relevant British Standards governing proper- 
ties are given in the headings. 

4.2.1.1 Ordinary Portland cement (OPC): BS 12 

This is the most commonly used form of cement. It is made by 
heating together raw materials containing alumina and calcium. 
Clay and chalk or limestone are common sources. During the 
heating process the materials fuse to form clinker which is 
subsequently ground to a fine powder, gypsum usually being 
added at this stage to control the setting characteristics of the 
cement. Portland cements normally comprise four main phases 
or chemical compounds: tricalcium silicate, dicalcium silicate, 
tricalcium aluminate and calcium ferroaluminate. For con- 
venience, these phases are usually given a shorthand notation 
of C3S, C~S, C3A and C,AF. This powder resulting from the 
grinding of clinker is the cement in its final form. The fineness of 
grinding, the raw materials and the conditions of the fusing 
process influence the nature and the reactivity of the cement, 
fine cement hardening more quickly than coarse cement of the 
same composition. The quality of British cement, although 
varying according to its source, usually exceeds the BS require- 
ments by a considerable margin. 



4/4 Materials 

4.2.1.2 Rapid-hardening Portland cement (RHPC) : BS 12 

This is similar to OPC in composition but it is more finely 
ground. It gains strength more quickly than OPC, though the 
final strength is only slightly increased. Heat is generated more 
quickly during the hydration of the cement. This may have 
advantages in cold weather, or in precasting operations. The 
difference in strength development between OPC and RHPC 
has now become less marked. 

4.2.1.3 Low-heat Portland cement: BS 1370 

This cement is less reactive than OPC because it differs in 
composition, but it is nevertheless more finely ground than 
OPC. Heat is generated more slowly on hydration and lower 
concrete temperatures are reached. Early and eventual strengths 
are less than with OPC and the initial setting time is greater. 
This cement is made only to order in the UK. 

4.2.1.4 Sulphate-resisting Portland cement: BS 4027 

This cement is similar to OPC but the proportions of the cement 
phases are different and it is less prone to attack by sulphates 
principally by having a controlled low C3A content. Heat may 
be generated more slowly than with OPC, but a little more 
quickly than with low-heat Portland cement. 

and processing to remove the normal OPC grey coloration; it 
would also comply with BS 12 for setting time and early and 
eventual strength. 

4.2.1.9 Supersulphated cement: BS 4248 

This cement is made from granulated blast-furnace slag, gyp- 
sum and not more than 5% of OPC clinker. It is more resistant 
to sulphate attack than sulphate-resisting cement, and it is not 
attacked by weak acids. This cement is much finer though less 
reactive than OPC, but eventual strengths are at least as high. It 
is not currently available in the UK. Good control of concrete 
mix is essential and its use has largely been superseded by other 
cement-slag combinations. 

4.2.1.10 Water-repellent cement 

This is made from OPC and stearates. It is used to reduce water 
permeability especially in screeds and rendering. 

4.2.1.11 Masonry cement: BS 5224 

This cement is made by mixing OPC with plasticizers and a fine 
powder (often whiting). It is used to give plasticity to bricklay- 
ing and rendering mortars, especially where the local sand is 
harsh. 

4.2.1.5 Portland blast-furnace cement: BS 146 

This cement is made by grinding together OPC clinker with 
granulated blast-furnace slag (see later). The granulated blast- 
furnace slag content must be less than 65% of the total weight. 
This cement is less reactive than OPC and gains strength a little 
more slowly. It has advantages in generating heat less quickly 
than OPC and in being more resistant than OPC to attack from 
sulphates. Portland blast-furnace cement is not widely available 
in the UK. (Low-heat Portland blast-furnace cement contains 
more slag but is manufactured only to order in the UK; BS 4246 
governs its composition and properties.) Combination at the 
concrete mixer of Portland cement with ground granulated 
blast-furnace slag is more commonly used to achieve similar 
performance. By this method a wider range of OPC:slag ratios 
is readily achievable. These combinations are likely to be 
available in most parts of the UK. 

4.2.1.6 Portland PFA cement: BS 6588 

This cement is manufactured by intergrinding or combining at 
the cement plant pulverized fuel ash (PFA), complying with BS 
3892, Part 1 (see later) with ordinary Portland cement. The PFA 
content should be between 15 and 35% by weight. The rate of 
strength development is slower than that of the respective 
Portland cement source. The cement may generate heat less 
quickly and be more chemically resistant in some circumstances. 

Combination of PFA with ordinary Portland cement at the 
concrete mixer can produce concrete with a similar performance 
to that using this cement. 

4.2.1.7 Pozzolanic cement with PFA as pozzolana: BS 6610 

As for BS 6588 but the PFA content is between 35 and 50%. 
This cement is not referred to in BS 8110 or BS 5328 and is 
therefore unlikely to be used in reinforced concrete or other 
slender structural elements. The lower heat of hydration is 
useful property in massive structures. 

4.2.1.8 White Portland cement 

This cement is similar to OPC but with selected raw materials 

4.2.1.12 High-alumina cement: BS 915 

This cement is chemically different from OPC and its varieties. 
Concrete made with it has different properties from OPC 
concrete. High-alumina cement is very reactive and produces 
very high early strengths (the eventual strength may be reached 
in less than 1 day) but the initial setting is slower than with all 
varieties of Portland cement. 

High-alumina cement is very resistant to attack from sul- 
phates and is more resistant to acid attack than any variety of 
Portland cement but is attacked by alkalis. At temperatures 
above 700"C, high-alumina cement forms a ceramic bond with 
suitable aggregates and it can therefore be used for refactory 
concrete. Under moist conditions at temperatures of 40* to 
100*C conversion takes place and high-alumina cement loses 
strength. Cement in this condition is less resistant to chemical 
attack. 

It is widely believed that high-alumina cement should not be 
used in contact with hardened Portland cement. The scientific 
basis for this is, however, less well founded. Mixtures of 
unhardened Portland and high-alumina cements lead to very 
rapid 'flash' setting. This phenomenon has some practical 
applications where almost instantaneous setting is wanted, but 
the quality of the resulting concrete will be in most respects 
inferior to either Portland cement concrete or high-alumina 
cement concrete. 

High-alumina cement concrete is not permitted for use in 
structural concrete in BS 8110. Applications such as floor 
toppings, hardstandings are still permissible. 

4.2.1.13 Other cementing materials 

Ground granulated blast-furnace slag. This is a by-product of 
the manufacture of iron from iron ore. The molten slag is 
removed from the furnace and quenched rapidly (granulation). 
Subsequent grinding can be either after combination with 
Portland cement clinker or more commonly of the granulated 
slag alone. The slag is composed mainly of calcium and mag- 
nesium silicates and alumino-silicates. Although some small 
strength gain or hardening would take place in water, the 
strengths developed are not likely to be sufficient for construc- 
tion. Blending with a Portland cement prbduces a much faster 



and useful strength gain. Combinations of ground granulated 
blast-furnace slag and Portland cements have been used for 
many years both in the UK and overseas. An increase in the use 
and interest in these materials has taken place over recent years 
in the UK and BS 6699 gives composition and performance 
requirements. It is widely available in the UK. 

Pozzolanas. Natural or artificial materials containing amor- 
phous silica in a reactive form. The silica can react with lime to 
produce cementing compounds giving useful strength proper- 
ties. This lime can be either hydrated lime or the calcium 
hydroxide produced during the hydration of Portland cements. 
The original pozzolana was volcanic ash from Pozzuoli, Italy. 
Using pozzolanas as a cementing component in Portland 
cement concretes can be useful to reduce heat of hydration or to 
improve resistance to some chemicals. Early age strength dev- 
elopment may be affected unless the concrete is proportioned to 
allow for it. 

Pulverized fuel ash (PFA). This is the most common pozzo- 
lana used in Portland cement concrete. It is electrostatically 
precipitated from the exhaust fumes of coal-fired power stations 
burning pulverized coal. It is widely available in the UK, and 
performance and compositional requirements are given in BS 
3892, Part 1 (for use in structural concrete) and BS 3892, Part 2 
(for miscellaneous uses in concrete). 

Condensed silica fume. A high-purity silica pozzolana which 
has a very fine particle size much smaller than that of cement or 
PFA (mean particle size approximately 1 lam). Condensed silica 
fume is so fine it can be used to fill the interstices between 
cement particles and it reacts rapidly with the cement hydration 
products. Condensed silica flume is a by-product of the produc- 
tion of silicon and ferro-silicon being collected by cooling and 
filtering of furnace gases. Condensed silica flume can be used to 
produce very high strengths and good chemical resistance. 

4.2.1.14 Non-UK standards 
Many other national standards exist for Portland cements and 
combinations of Portland cements with blast-furnace slag or 
PFA. These standards cover similar ranges of materials to those 
in the British Standards given in the preceding pages although 
the overlap will not be complete for each country. Methods or 
terminology of classification vary for each country but common 
principles exist, e.g. sulphate-resisting cements are always low in 
C3A content but the actual limiting value will be different. 

Standards issued by the American Society for Testing 
Materials (ASTM) are widely used outside the US. Their 
standard C-150 has five main categories of Portland cement and 
a summary of these types is given in Table 4.1. 

Other national standards for Portland cements which are 
likely to be encountered more widely are issued by Deutsches 
Institut fiir Normung (DIN) and in Japan as Japanese Indus- 
trial Standards (JIS). A wide range of cement specifications are 
incorporated within these standards and, hence, are not repro- 
duced here. 

4.2.2 Aggregates 
Aggregates form more than three-quarters of the volume of 
concrete and the selection and proportioning of coarse and fine 
aggregates greatly influence the properties of both fresh and 
hardened concrete. The choice of grading, maximum aggregate 
size and aggregate:cement ratio are subjects for concrete mix 
design and are dealt with below. In this section the selection of 
aggregate type will be covered. Broadly, aggregates cari be 
classified according to density as normal (particle density 2000 
to 3000 kg/m3), lightweight (less than 2000 kg/m 3) and heavy 
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aggregates (greater than 3000kg/m3). Typical properties of 
concretes made with a range of aggregates are given in Table 
4.2. 

Table 4.1 Cement type classification in ASTM C-150 

Type Use Special requirements 

I Where other special types 
not needed 

II General use, moderate 
sulphate resistance or 
moderate heat of 
hydration 

III For high early strength 

IV For low heat of 
hydration 

V For high sulphate 
resistance 

Max.C3 A (8%) 

Max. C3S (35%) 
Min. C2S (40%) 
Max. C3A (7%) 

Max CaA (5%) 
Max. C4AF + 2 C3A 

(20%) 

4.2.2.1 Normal aggregates 
These usually consist of natural materials, hard crushed rock or 
crushed or natural gravel and their corresponding sands, but 
artificial materials like crushed brick and blast-furnace slag can 
also be used. The specific gravity of these materials usually lies 
between 2.6 and 2.7. Because satisfactory concrete for most 
purposes can be made with a very wide range of aggregates, 
local sources of supply usually determine which aggregate will 
be used. Where very high strength, resistance to skidding, good 
appearance or other special properties are required, appropriate 
aggregates will have to be selected, preferably on the basis of 
previous experience. 

For example, the low-speed skidding resistance of concrete 
roads is affected by the hardness of the sand but only slightly by 
the polished-stone value of the coarse aggregate.Thus, a hard 
sand should be chosen for concrete which is to form the surface 
of a concrete pavement. 

Some aggregates have undesirable influences on important 
concrete properties or are themselves unsound. They should be 
used with caution, if at all. Examples are aggregates with high 
drying shrinkages, which may lead to poor durability in exposed 
concrete, aggregates which react with alkalis in the cement 
paste, aggregates which are readily oxidized, aggregates which 
can cause surface staining, and aggregates made from weath- 
ered, partially decomposed, rocks. 

Other aggregates, although making reasonably satisfactory 
hardened concrete, for most purposes, may give the fresh 
concrete poor handling characteristics. Aggregates with fiat, 
flakey, very angular or hollow particles tend to have this effect. 
In general, aggregates with well-rounded particles in the case of 
gravels, or near-cubical particles in the case of crushed rock, 
produce concrete with better workability and fewer voids than 
aggregates with angular particles. 

Natural sands have advantages over crushed rock sands 
because their particles tend to be more rounded and they 
contain less very fine material (of 150 Ixm or less), but crushed 
rock sands may be preferable, e.g. where the grading of locally 
occurring natural sands is poor, where the colour of natural 
sands would be unsatisfactory in weathered concrete (many 
sands weather to a yellowish colour) or where resistance to 
slipping is important. General requirements for aggregates to be 
used in concrete are given in BS 882. 
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Table 4.2 Properties of concrete using different aggregates 

Aggregate 
Typical range of dry density 

Aggregate Concrete 
(kg/m 3) (kg/m 3) 

Compressive Drying 
strength shrinkage 
(N/mm 2) (%) 

Thermal 
conductivity at 
5% moisture 
content 
(W/m°C) 

Flint gravel or crushed rock 
Crushed limestone 
Crushed brick 

1350-1600 2200-2500 
1350-1600 2200-2400 
1100-1350 1700-2150 

20-80 0.03-0.08 1.6-2.2 
20-80 0.03-0.04 1.6-2.0 
15-30 0.85-1.50 

Expanded clay, shale or slate and sintered 300-1050 1350-1800 
pulverized fuel ash 

Foamed slag 500-950 1700-2100 

15-60 0.02-0.12 0.55-0.95 

15-60 0.04--0.10 0.85-1.40 

Expanded clay, shale or slate and sintered 300-1050 700-1300 
pulverized fuel ash 

Foamed slag 500-950 950-1500 
Pumice 500-900 650-1450 
Exfoliated vermiculite and expanded 

perlite 60-250 400-1100 
Clinker 700-1050 1050-1500 

2-7 0.03--0.07 0.24--0.50 

2-7 0.03-0.07 0.30--0.65 
2-15 0.04-0.08 0.21-0.63 

0.5-7 0.20-4).35 0.15-0.39 
2-7 0.04--0.08 0.35-0.65 

4.2.2.2 Lightweight aggregates 
These consist of various artificial and natural materials with 
specific gravities of between 0.1 and 1.2. They are used to make 
lightweight concrete for structural and insulating applications. 
In general, concrete made with lightweight aggregates has better 
fire resistance than dense concrete, but greater shrinkage and 
moisture movement. 

Examples of lightweight aggregates are given below. 

(1) Sintered PFA is made by heating pellets of PFA until they 
fuse to form hard spherical lumps. 

(2) Expanded clay, shale, slate and perlite are made by heating 
suitable grades of these materials to their fusion tempera- 
ture (about 1000*C) when they simultaneously fuse and are 
blown by gases generated within the material. 

(3) Pumice is a natural lightweight aggregate consisting of a 
frothy volcanic glass. 

(4) Clinker consists of fused lumps of fuel residues. To be 
suitable for use as a concreting aggregate it must be low in 
sulphates and residual fuel. Limits are given in BS 1156. 

(5) Foamed blast-furnace slag is made by treating molten blast- 
furnace slag with water so that the steam which is generated 
blows the slag. Standards for this material are given in BS 
877. 

(6) Exfoliated vermiculite is made by heating vermiculite (a 
micalike mineral found in Africa and America) to a temper- 
ature of about 700"C when it expands to form a very light 
material. 

Of these aggregates the sintered PFA, and the expanded clay, 
shale and slate and perlite are the most likely to be encountered. 

4.2.2.3 Heavy aggregates 
These consist either of natural or artificial materials and are 
used to make high-density concrete for radiation shielding or 
ballasting. 

Examples of heavy aggregates are barytes, which is a natur- 
ally occurring rock consisting of 95% barium sulphate (specific 

gravity about 4.1; density of concrete up to 3700 kg/m3); iron 
ores such as magnetite, goethite, limonite and ilmenite (specific 
gravity about 3.4 to 5.3, density of concrete up to 4200 kg/m 3) 
iron or steel shot (specific gravity 7.7; concrete density up to 
5500 kg/m3); lead shot (specific gravity 11.4; concrete density up 
to 7000 kg/m 3) and scrap-iron stampings and punchings. Pro- 
vided the materials are sound and free from oil, satisfactory 
concrete of good structural strength can be made, especially if 
prepared by a method such as prepacking to avoid segregation. 
Consideration of the higher-density effect on mixing and batch- 
ing facilities is important. 

4.2.2.4 Contaminants, unsound aggregates and reactive 
aggregates 
Aggregates may contain impurities which upset the hydration of 
the cement or coatings which interfere with bond, or the 
aggregates themselves may be unstable. To some extent, impuri- 
ties and surface coating can be removed by suitable treatments, 
but aggregates which are unsound or reactive must be avoided. 2 
Unsound or reactive particles may occur naturally with the 
aggregate source and may be detected by careful examination of 
the supply. It is also possible for a small percentage of contami- 
nation to occur during transportation or storage of aggregate. 

Organic impurities. These may or may not delay or prevent the 
hydration of the cement and it is best to compare the strength of 
the concrete made with the contaminated aggregate with the 
strength of concrete made from similar but clean aggregate. 
Sugar, sugar-like substances and humic acid are among com- 
mon contaminants which are known to retard or prevent 
cement hydration. Products of wood degradation such as 'celli- 
biose' have a similar effect. 

Clay and fine material. These can contaminate aggregates 
either as a coating on the coarse aggregate or as a constituent of  
the fine aggregate. As coatings, these materials interfere with 
bond and therefore reduce concrete strength. As constituents of  
the mix they are less troublesome unless the quantity is great 



enough t o  require the addition of extra water to make the 
concrete workable. Clay, silt and fine material should not form 
more than 1% by weight of coarse aggregate, 3% by weight of 
gravel sand or 15% by weight of crushed rock sand (BS 882). 

Salt is usually present in marine deposited or extracted 
aggregates and in small quantities it is harmless. Efficient 
washing of the aggregates before use in concrete is capable of 
reducing the salt to an acceptable level. The salt content should, 
however, be limited to the levels in Table 4.3 taken from BS 
882: 1983. 

In addition to the limits given in Appendix C of BS 882, there 
is an overall limit given for the chloride ion from all sources 
calculated as a percentage by weight of cement given in Table 
6.4 of BS 8110. 

Table 4.3 Maximum chloride content of aggregates 

Type or use of  concrete Maximum total chloride 
con tent expressed as 
percentage of  chloride ion by 
mass of  combined aggregate 

Pre-stressed concrete ) 0.02 
Steam-cured structural 

concrete 
Concrete made with cement 0.04 

complying with BS 4027 or 
BS 4248 

Concrete containing embedded 0.06 for 95% of test results, 
metal and made with cement with no result greater than 
complying with BS 12 0.08 

Note: 
Marine aggregate and some inland aggregate contain chlorides. Both should be 
selected carefully and may need efficient washing to achieve the limit required for 
use in pre-stressed concrete. 

Nondurable particles. These are sometimes found in aggregates 
which are otherwise satisfactory. Examples of such particles are 
lumps of clay, shale, wood or coal. Being soft, they are easily 
eroded and will lead to pitting or spalling of the concrete 
surface. If more than about 5% of such particles are present in 
the aggregate they will also cause strength to be reduced. 
Although no limits are given for these in BS 882, generally such 
particles should not form more than 1% of the aggregate by 
weight. The actual significance of the particles in the structure 
will be affected by the nature of the structure, e.g. a concrete 
paving will be more affected by soft particles floating to the 
surface than will a wall. 

Reactive particles. Reactive particles found in some aggregates 
may be soluble in, or react with, water or the hydrating cement 
paste. Mica and sulphates, e.g. gypsum, react with cement paste, 
and iron sulphides, e.g. pyrites and marcasite, react with air and 
water to form products which then react with the cement paste 
and cause staining or pop-outs. 

Unsound material. This may form the whole of the aggregate 
or unsound particles may merely contaminate it. Unsoundness 
is the property of some aggregates to expand or contract 
excessively as a result of freezing and thawing, wetting and 
drying, or temperature changes. Such movements can be large 
enough to cause the aggregate itself to break down or they may 
disrupt concrete made with it. Examples of unsound aggregates 
are rocks with very high water absorption, porous cherts, 
limestones and other sedimentary rocks if they contain laminae 
of clay, and some shales. Foreknowledge of how such aggre- 
gates behave in concrete is the only reliable guide, but freezing 
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and thawing tests may give some indication of an aggregate's 
unsoundness. 

Reactive aggregates. Reactive aggregates are those which react 
chemically with the cement L~ste, the most common reaction 
being between reactive silica and alkalis (in the form of sodium 
and potassium ions). Reactive silicas occur in opaline and 
chalcedonic cherts, siliceous limestone, rhyolites, andesite and 
phyllites. The actual susceptibility of particular aggregate 
sources needs to be assessed by tests or previous experience. The 
silica forms a gel with the alkali and this gel expands continu- 
ously as it absorbs water, exerting enough force to disrupt the 
surrounding cement paste in some cases. ! This phenomenon of 
alkali silica reactions is well known and recorded. It was first 
identified some 46 years ago by'Stanton in the US. Since then, 
workers in other counties  around the world notably Denmark, 
Iceland, Germany and South Africa hava identified similar 
reactions. It was believed uhtil recently that the combination of 
high alkali cements together with reactive aggregates did not 
occur in the UK. However, a number of cases of alkali silica 
reaction have now been reported in UK structures built over 
many years. It is not clear at this time what the extent of these 
occurrences are or what significance they will have in structural 
performance. Guidance is available on minimizing the risks of 
the reaction. 3 

4.2.3 Admixtures 
Relatively small quantities of other materials called admixtures 
can be added to concrete to modify its properties in either fresh 
or hardened state. There are several classes of admixtures which 
are listed below. 

The British Standard for admixtures BS 5075 is in separate 
parts for each class of admixture. 

4.2.3.1 Water-reducing admixtures and workability aids 
(BS 5075, Part 1) 
These materials are also commonly called plasticizers and have 
the effect of making concrete more workable for a given water 
content. They can also reduce the water:cement ratio for a 
constant workability and can therefore be used to improve 
strength development. 

These materials can also entrain a little air in the concrete or, 
if used in too high a dosage, can cause retardation of the cement 
setting. If used as a result of trial mixes or in accordance with the 
manufacturer's recommendations these side-effects should not 
be significant under normal site conditions. 

Plasticizers for mortars are used to give plasticity or cohesion. 
They function by entraining large amounts of air which, as a 
side-effect, reduces strength. This modification to mortars 
should be carried out using only admixtures specifically formu- 
lated for the particular use. 

4.2.3.2 Superplasticizers and high-range water-reducing 
admixtures (BS 5075, Part 3) 
These more specialized admixtures perform similar functions to 
normal plasticizers but with increased effectiveness. Very high 
workability or flowing concrete is a common application. 
Because of their very effective action on the fluid properties of 
the concrete, much closer control of the initial mix design and 
subsequent batching is needed to prevent excessive bleeding or 
segregation of the mix. Many of the general superplasticizing 
admixtures have a relatively limited activity and the concrete 
workability may fall back to normal levels after approximately 
30 to 45 min. 
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4.2.3.3 Air-entraining agents (BS 5075, Part 2) 
These are widely used admixtures, especially for paving con- 
crete. Their importance is related to the capacity of concrete 
containing a small amount of air in the form of well-distributed 
small bubbles to have greater resistance to the destructive action 
of freezing and thawing when the concrete is saturated than 
similar concrete made without air-entraining agents. The freez- 
ing and thawing action is made more severe when de-icing salts 
are used, or can be brought on to the surfaces by vehicles. In 
such circumstances the use of air entrainment is strongly recom- 
mended in codes of practice. This increased durability is gained 
at the expense of some strength and it is therefore important to 
control the amount of entrained air between close limits. 

The amount of air that will be entrained with a given addition 
of an air-entraining agent is influenced by the grading of the 
sand, the workability of the concrete, the type of mixer and the 
duration of mixing. Trial mixes are essential to establish how 
much of each agent is to be added. Frequent regular measure- 
ments must be made throughout the work to ensure that the 
correct air content is being maintained (see page 4/17). Some 
difficulty may be experienced when using fine sands, sands with 
an organic or carbon content or when PFA and ground 
granulated blast-furnace slag materials are incorporated in the 
mix constituents. 

As well as being more resistant to damage from de-icing salts, 
air-entrained concrete is somewhat more cohesive than concrete 
made without an air-entraining agent and tends to have slightly 
higher workability, a factor which can be used partly to offset 
the strength reduction. 

4.2.3.4 Accelerators and 'antifreezes' (BS 5075, Part 1) 

These are used to hasten the hardening of concrete, particularly 
in cold weather. The term 'antifreeze' is misleading because 
these admixtures merely lessen the period when frost damage is 
likely; they do not prevent concrete from freezing. Since the 
prohibition of the use of chloride-based accelerators as a result 
of corrosion of embedded steel, other proprietary products, 
often based on calcium formate, have been developed. Such 
admixtures are much less efficient at accelerating the strength 
development and therefore are less attractive to use. There may 
also remain some uncertainty about the risks of inducing 
corrosion. Alternative procedures for protecting concrete or 
mortars from frost, such as heated materials and adequate 
protection for the formed work, may be preferable. 

4.2.3.5 Retarders (BS 5075, Part 1) 
These have the effect of delaying the onset of hardening and 
usually also of reducing the rate of the reaction when it starts. 
Ultimate strengths are unaffected by retardation for several 
hours but may be reduced if th6 addition of retarder is excessive. 
Accidental overdosage may cause retardation of a few days or it 
may prevent hardening altogether. The fear that this may 
happen is probably one of the reasons why retarders are seldom 
used in the UK. Nevertheless, retarders can be beneficial where 
large volumes of concrete have to be poured in one operation or 
where high ambient temperature conditions prevail which lead 
to rapid setting. Care must be taken in this situation that the 
rapid set is not the result of rapid moisture loss by evaporation. 
Trial mixes are essential to determine the dosage at which the 
retarder is to be used. 

4.2.3.6 Mixed admixtures 
Mixed admixtures containing a variety of materials are avail- 
able. Examples are combinations of an air-entrainment admix- 
ture with water-reducing admixture, or water-reducing and 
retarding admixtures. 

4.2.3.7 Other admixtures 

These include waterproofers, viscosity modifiers, resin bonding 
agents, fungicides, etc. They may be useful for specific applica- 
tions, but the claims made for them should be supported by 
impartial test results. This applies particularly to the perma- 
nence of the effects claimed. 

Pigments may be incorporated in concrete mixes. If bright or 
pastel shades are wanted, white cement and light-coloured sand 
must be used for the basic concrete, but low-key colours and 
dark shades can be obtained with ordinary concrete. The 
pigments must be stable in cement, fast to light and resistant to 
being washed out by weathering. Requirements are given in BS 
1014. 

Although a number of organic pigments can be used in 
concrete, the most commonly used are iron oxides for red, 
brown, yellow arid black, and chromium oxide for green. 
Synthetic iron oxides have better staining power than natural 
ones and are available in a greater colour range. Although more 
expensive than natural oxides, they may be cheaper in use. 
Carbon black gives a more intense black than iron oxide, but 
because it is often greasy it is difficult to disperse and has the 
reputation of being easily washed out. Pigment additions vary 
typically from about 2 to 10% or more by cement weight. Some 
strength reduction should be expected with the larger rates of 
addition. 

4.2.4 Concrete mix design 
4.2.4.1 General 

The purpose of concrete mix design is to choose and proportion 
the ingredients used in a concrete mix to produce economical 
concrete which will have the desired properties both when fresh 
and when hardened. The variables which can be controlled are: 
(1) water:cement ratio; (2) maximum aggregate size; 
(3) aggregate grading; (4) aggregate:cement ratio; and (5) use 
of admixtures. 

Interactions between the effects of the variables complicate 
mix design and successive adjustments following trial mixes are 
usually necessary. Experience built up by ready-mix concrete 

producers should enable them to produce suitable mix designs 
more quickly than this. Many different methods of mix design 
have been developed, one relatively simple method is given by 
Teychenn~, Franklin and Erntroy? 

4.2.4.2 Water: cement ratio 

Many of the most important properties of fully compacted 
hardened concrete and strength in particular are for normal 
concrete virtually decided by the water:cement ratio of the mix. 
The importance of this parameter is due to the fact that any 
excess of water over that needed to hydrate the cement (about 
25% by weight) forms voids in the concrete, thus reducing its 
density. The reduced density leads to reduced compressive, 
tensile and bond strengths, lower durability, lower resistance to 
abrasion and greater permeability to water. Excess water cannot 
be eliminated altogether because it is needed to lubricate the mix 
and make it workable, but it should be kept to a minimum. 

Figure 4.1 shows how strength is influenced by water:cement 
ratio and the first step in concrete mix design is to fix the 
water:cement ratio from a knowledge of the strength required. 
The shape of the curves will be similar for all types of Portland 
cements but the actual relationship between strength and 
water:cement ratio will be different for each cement source. 

4.2.4.3 Workability 
When the concrete is fresh it must be workable or fluid enough 
to be comoacted easily under the conditions in which it will be 


