


/3&,23+�.)41*'1%�&,�*,20-(3'2*-,
B`epa`�^u�Gku�J]jjano

?]bcXcdcT�^U�FWhbXRb�FdQ[XbWX]V�
8aXbc^[�P]S�FWX[PST[_WXP�
X]�Pbb^RXPcX^]�fXcW

ADC�
HCG �
BGELCIJEKM

Boca Raton  London  New York

CRC Press is an imprint of the
Taylor & Francis Group, an informa business



2 

The Physical World Course Team 
Course Team Chair 

Academic Editors 

Authors 

Consultants 

Course Managers 

Course Secretaries 

BBC 

Editors 

Graphic Designers 

Centre for Educational 
Software staff 

Course Assessor 

Picture Researcher 

Robert Lambourne 

John Bolton, Alan Durrant, Robert Lambourne, Joy Manners, 
Andrew Norton 

David Broadhurst, Derek Capper, Dan Dubin, Tony Evans, 
Ian Halliday, Carole Haswell, Keith Higgins, Keith Hodgkinson, 
Mark Jones, Sally Jordan, Ray Mackintosh, David Martin, 
John Perring, Michael de Podesta, Ian Saunders, Richard Skelding, Tony 
Sudbery, Stan Zochowski 

Alan Cayless, Melvyn Davies, Graham Farmelo, Stuart Freake, 
Gloria Medina, Kerry Parker, Alice Peasgood, Graham Read, 
Russell Stannard, Chris Wigglesworth 

Gillian Knight, Michael Watkins 

Tracey Moore, Tracey Woodcraft 

Deborah Cohen, Tessa Coombs, Steve Evanson, Lisa Hinton, 
Michael Peet, Jane Roberts 

Gerry Bearman, Rebecca Graham, Ian Nuttall, Peter Twomey 

Javid Ahmad, Mandy Anton, Steve Best, Sue Dobson, Sarah Hofton, 
Jennifer Nockles, Pam Owen, Andrew Whitehead 

Geoff Austin, Andrew Bertie, Canan Blake, Jane Bromley, 
Philip Butcher, Chris Denham, Nicky Heath, Will Rawes, 
Jon Rosewell, Andy Sutton, Fiona Thomson, Rufus Wondre 

Roger Blin-Stoyle 

Lydia K. Eaton 

The Course Team wishes to thank the following individuals for their contributions to this book: Tony 
Evans, Ian Halliday, Tony Sudbery, Robert Lambourne and Ray Mackintosh. The book made use of 
material originally prepared for the S271 Course Team by Graham Farmelo, Joy Manners and John 
Walters. The multimedia packages Electron diffraction and Stepping through Schriidinger 's equation were 
written by Joy Manners and programmed by Fiona Thomson. (Electron diffraction made use of material 
originally prepared for the S271 Course Team by John Walters and both packages made use of original 
prototypes programmed by Robert Hasson.) 

The Open University, Walton Hall, Milton Keynes MK7 6AA 

First published 2000 by Institute of Physics Publishing 

Published 2018 by CRC Press 
Taylor & Francis Group 
6000 Broken Sound Parkway NW, Suite 300 
Boca Raton, FL 33487-2742 

Copyright© 2000 The Open University 
CRC Press is an imprint of Taylor & Francis Group, an Inform.a business 

No claim to original U.S. Government works 

ISBN 13: 978-0-7503-0720-8 (pbk) 

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish 
reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the 
consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this 
publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material 
has not been acknowledged please write and let us know so we may rectify in any future reprint. 

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any 
form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and 
recording, or in any information storage or retrieval system, without written permission from the publishers. 

For permission to photocopy or use material electronically from this work, please access www. copyright.com 
(http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 
978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations 
that have been granted a photocopy license by the CCC, a separate system of payment has been arranged. 

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification 
and explanation without intent to infringe. 

V1Sit the Taylor & Francis Web site at 
http://www.taylorandfrancis.com 

and the CRC Press Web site at 
http://www.crcpn,ss.com 

Written, edited, designed and typeset by the Open University. 

Library of Congress Cataloging-in-Publication Data are available. 
This text forms part of an Open University course, S207 The Physical World. The complete list of texts that make up 
this course can be found on the back cover. Details of this and other Open University courses can be obtained from 
the Course Reservations Centre, PO Box 724, The Open University, Milton Keynes MK7 6ZS, United Kingdom: tel. 
+44 (0) 1908 653231; e-mail ces-gen@open.ac.uk 

Alternatively, you may visit the Open University website at http://www.open.ac.uk where you can learn more about 
the wide range of courses and packs offered at all levels by the Open University. 

http://www.copyright.com
http://www.copyright.com/
http://www.taylorandfrancis.com
http://www.crcpress.com
mailto:ces-gen@open.ac.uk
http://www.open.ac.uk


QUANTUM PHYSICS:
AN INTRODUCTION
Introduction 6
Chapter I The origins of quantum physics 7

1 The Compton effect —  a strange dichotomy in the
nature of electromagnetic radiation 7

2 Five problems for classical physics 7
2.1 Problem I : Understanding atoms 8
2.2 Problem 2: Understanding spectroscopy 8
2.3 Problem 3: Understanding blackbody radiation I I
2.4 Problem 4: Understanding the photoelectric effect 14
2.5 Problem 5: Understanding heat capacities of solids 15

3 Physics saved by the quantum 16
3.1 The ultraviolet catastrophe tamed 16
3.2 Einstein’s theory of the photoelectric effect 18
3.3 Einstein’s theory of specific heats 2 1
3.4 Summary of Section 3 23

4 First insights into atomic structure 23
4 .1 Introduction 23
4.2 J. J. Thomson’s ‘plum-pudding’ model 23
4.3 a-particle scattering 25
4.4 Rutherford’s classical model of the atom 28
4.5 Summary of Section 4 30

5 Bohr’s semi-classical atomic model 3 1
5.1 Bohr’s model of the hydrogen atom 3 1
5.2 Bohr’s model extended to heavy atoms 38

6 Towards a quantum model of the atom 39
6.1 Introduction 39
6.2 Wave-particle duality 39
6.3 The de Broglie formula and its verification 40

7 Closing items 43

Chapter 2 Schrodinger’s wave mechanics 46
1 Quantum mechanics —  a new approach to

describing atomic matter 46
2 Towards quantum mechanics 47

2.1 Electron diffraction experiments 47
2.2 The scope of quantum mechanics 50
2.3 Probability waves 50
2.4 Summary of Section 2 52

3 Heisenberg’s uncertainty principle 53
3.1 A wave packet description of the electron 53
3.2 Some more properties of wave packets 54
3.3 Wave packets and Heisenberg’s uncertainty principle 55
3.4 Some examples of the uncertainty principle 57

3



3.5 Another form of the uncertainty principle 60
3.6 Summary of Section 3 6 1

4 The Schrodinger equation 6 1
4.1 Introduction 61
4.2 Free and confined particles 64
4.3 The time-dependent Schrodinger equation 66
4.4 Schrodinger’s time-independent equation 67
4.5 The Schrodinger equation for a particle in a

one-dimensional infinite square well 68
4.6 Interpretation of the wavefunction 72
4.7 The Schrodinger equation for a particle in a

one-dimensional finite square well 77
4.8 Barrier penetration 78
4.9 A particle confined in three dimensions —  degeneracy 80
4.10 The correspondence principle 84
4 .1 I Summary of Section 4 86

5 Closing items 87

Chapter 3 Quantum mechanics in atoms 91
1 Lasers —  a modern tool 9 1
2 Hydrogen —  the simplest atom 93

2.1 Introduction 93
2.2 Using the Schrodinger equation to study the electron

in the hydrogen atom 93
2.3 The energy of the electron in the hydrogen atom 96
2.4 The quantum numbers that specify the wavefunctions

of the electron in the hydrogen atom 98
2.5 The effect of a magnetic field on the energy levels

of the electron in a hydrogen atom 102
2.6 Spectroscopic notation 105
2.7 Summary of Section 2 106

3 Wavefunctions and transitions in hydrogen 107
3.1 Electron distribution patterns in hydrogen —  the shape

of the hydrogen atom 107
3.2 Atomic electrons in transition —  atomic spectra I I I
3.3 Summary of Section 3 114

4 Electron spin 115
4.1 Introduction 115
4.2 An explanation —  electron spin I 15
4.3 Quantum numbers for electron spin I 16
4.4 A pattern in the degeneracy of the quantum states

of the electron in the hydrogen atom I 17
4.5 Summary of Section 4 118

5 The structure of heavy atoms I 19
5.1 Introduction 119
5.2 The constituents of heavy atoms I 19
5.3 Schrodinger’s equation applied to electrons in heavy atoms 120
5.4 Pauli’s exclusion principle and the electronic structures of

heavy atoms 123
5.5 The Periodic Table 129
5.6 Summary of Section 5 131

4



6 Light from atoms and lasers 13 1
6.1 Introduction 131
6.2 Line spectra of sodium 132
6.3 Line spectra of helium 135
6.4 Light from lasers 137
6.5 Absorption and emission of light 137

7 Closing items 142

Chapter 4 The interpretation of quantum mechanics 146
1 Formalism vs. interpretation 146
2 Description and prediction in quantum mechanics 147

2.1 Quantum systems 147
2.2 States and observables 148
2.3 Eigenstates and eigenvalues 153
2.4 Superposition states 155
2.5 A first look at interpretation 158
2.6 Summary of Section 2 161

3 Measurement in quantum mechanics 161
3.1 The nature and effect of a measurement 162
3.2 Measurement and time evolution 164
3.3 Schrodinger’s cat and Wigner’s friend 165
3.4 A second look at interpretation 168

4 Non-locality and realism in quantum mechanics 169
4.1 The Bohr-Einstein debate 170
4.2 The Einstein-Podolsky-Rosen argument 172
4.3 Bell’s theorem 175
4.4 A third look at interpretation 177

5 Closing items 180

Chapter 5 Consolidation and skills development 183
1 Introduction 183
2 Overview of Chapters I to  4 183
3 How to find out more physics 188

3.1 Different notations and conventions 188
3.2 Printed media 189
3.3 Libraries 190
3.4 The Internet 191
3.5 What sources do you believe? The authority problem 192

4 Basic skills and knowledge test 193
5 Interactive questions 195
6 Physica problems 196

Answers and comments 197
Suggestions for further reading 2 16
Acknowledgements 2 17
Index 218

5



The Physical World

Introduction
Two of the most remarkable revolutions in the history of science took place in 
Europe at the beginning of the twentieth century. One began in 1905, when Einstein 
formulated the special theory of relativity. This is based on two principles, namely, 
that the same basic physical laws apply in all inertial reference frames and that the 
velocity of light in a vacuum is constant. Einstein’s theory imposed modifications on 
the Newtonian concepts of space and time, and these modifications led to a radically 
new and unified interpretation of the classical physics of Newton and Maxwell. In 
this sense, the special theory of relativity can be regarded as the crowning glory of 
classical physics.

The same is certainly not true for the other great revolution, which was brought 
about by the advent of quantum physics. This was entirely new and some of its 
assumptions conflict with those of classical physics. This does not imply that all the 
physics you have learnt so far is obsolete and can be discarded. Quantum physics is 
required only when we try to understand phenomena on the atomic scale. This book 
will first show you how the need for quantum physics arose, and will then outline 
the new theory of quantum mechanics, as developed by Erwin Schrodinger, which 
aimed to explain the behaviour of particles at the atomic level.

In Chapter 1 we review a set of phenomena for which no explanation could be found 
within the framework of classical physics. We shall then go on to show how these 
difficulties were resolved, at least partially, by Planck’s quantum hypothesis.

Chapter 2 introduces the revolutionary ideas of quantum mechanics and the basic 
principles of the theory, while in Chapter 3 these principles are applied to the 
understanding of atomic structure.

It is important to realize that the postulates and interpretation of quantum theory are 
completely different from our normal intuitions about natural phenomena. In fact, 
the debate about the real meaning of quantum-mechanical quantities has been 
fiercely argued since its inception and continues with unreduced fervour to this day. 
Chapter 4 is devoted to some of the aspects of the interpretation of quantum theory.

Open University students should view Video 7, The Search for Reality, at 
some stage during their study of this book. This will give you a light-hearted 
first look at some of these strange philosophical aspects of quantum theory. 
The video can be viewed at any stage, but might be most effective at the end 
of Chapter 1.
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Chapter I The origins of 
quantum physics
I The Compton effect —  a strange 
dichotomy in the nature of electromagnetic 
radiation
In a series of experiments conducted between 1919 and 1923, Arthur Holly Compton 
(Figure 1.1) investigated the scattering of monochromatic (single-wavelength)
X-rays from graphite targets. He found that the radiation scattered at an angle 0 to 
the incident beam contained, in addition to radiation of the same wavelength as the 
incident radiation, a second component with a considerably longer wavelength. The 
existence of this second component in the scattered radiation could not be explained 
by the well-established theory of the scattering of electromagnetic waves by 
electrons. Compton considered instead the process illustrated in Figure 1.2, in which 
a particle of electromagnetic radiation, collides with a slow moving electron, which 
then recoils absorbing some of the X-ray particle’s energy. Treating the process as a 
collision between particles, and using only the (relativistic) conservation laws of 
energy and momentum, Compton was able to account for the effect completely. 
However, at the same time, in the same experiment, Compton was using interference 
effects, depending wholly on the wave model, in order to determine the wavelength 
of the scattered radiation. So here was an experiment which apparently required the 
simultaneous use of both the wave and particle models of electromagnetic radiation 
for the interpretation of the results! The existence of this strange dichotomy in the 
nature of electromagnetic radiation was just one indication of the need for a radical 
revision of views regarding the physical world.

Figure l.l Arthur Holly 
Compton (1892-1962) was a 
native of Ohio in the United 
States. After receiving his 
doctorate at Princeton, he began 
his career as a research physicist 
at the Westinghouse Lamp 
Company before returning to 
academic circles by moving to 
Cambridge in 1919. He later held 
professorships at several 
American universities. An 
authority on X-rays, he was 
awarded the Nobel Prize for 
physics in 1927 for his discovery 
and interpretation of the effect 
that bears his name.

Figure 1.2 (a) The Compton effect. An X-ray or y-ray ‘particle’ collides with a slow
moving electron in one of the target atoms, (b) The electron recoils, absorbing energy 
from the X-ray particle which is scattered into a new direction and with increased 
wavelength.

2 Five problems for classical physics
At the beginning of the twentieth century, physicists were faced with several 
profound problems that could not be solved by using the classical theories of 
Newton and Maxwell. In this section we shall describe five of these problems and 
later in the chapter you will see how all were solved (at least partially) by using the 
ideas of quantum physics that were formulated between 1900 and 1922.
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2.1 Problem I : Understanding atoms
By the end of the nineteenth century, it was becoming accepted that matter was not 
infinitely divisible (continuous), but that it consisted of discrete parts, which were 
called atoms. Amongst the most persuasive evidence for this was the work of Dalton 
and Gay-Lussac on the proportions in which chemical elements combine with each 
other. The fact that these proportions were often in ratios of small integers indicated 
that the substances that were combining in these reactions were doing so in discrete 
amounts.

The results of some rather crude experiments had indicated that the atoms that made 
up the different chemical elements each had a diameter of, very roughly, 10“10 m (see 
Example 1.1). This observation prompted some scientists to ask ‘What’s so special 
about 10-10m — why shouldn’t atoms have diameters of, say, 10_6m?’ This may 
strike you as rather an odd question — is it reasonable to ask why atoms have a 
certain size? Shouldn’t the typical atomic size be taken as being a fact of nature? 
Fortunately, the Danish physicist Niels Bohr did regard this as a pertinent and 
extremely important question for physics, and was able to give a clear answer to it.

Another important question concerned the constituents and structure of the atoms 
themselves. As you will see later in this chapter, important advances in this direction 
were made by J. J. Thomson and Ernest Rutherford.

Example l.l

Given that the density of diamond is 3.5 x 103 kg m-3 and the relative atomic 
mass of carbon is 12.0, estimate the radius of a carbon atom.

Solution

From the information provided, we know that one mole of diamond has a mass 
of 0.012 kg, so that its volume is

We know that the number of atoms in a mole is NA = 6.02 x 1023 (Avogadro’s 
number) and the volume occupied by one atom is therefore

If this tiny volume were in the form of a cube, its sides would be of length 
(5.70 x 10_30)1/3 m = 1.8 x 10_10m. The radius of an atom can be no larger 
than half of this, that is, about 10_10m.

2.2 Problem 2: Understanding spectroscopy
One branch of science that had developed considerably by the end of the nineteenth 
century was that of spectroscopy, the study of the light emitted by chemical 
substances when they are heated in a flame.

To find the wavelengths present in, for example, the characteristic yellow light 
emitted by the element sodium, a beam of the light is shone on a diffraction grating 
(Figure 1.3a). If the light consisted of all wavelengths in the yellow part of the

The Physical World
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Quantum physics: an introduction

Figure 1.3 (a) What happens when a parallel beam of yellow sodium light is shone onto
a diffraction grating? (b) When the light emerges from the grating, it does not fan outwards: 
this shows that the light does not contain all the frequencies in the range 580-600 nm 
corresponding to yellow light, (c) Instead, diffraction occurs only at certain definite angles, 
showing that sodium light consists of discrete frequencies, i.e. spectral lines. (Note that the 
grating spacing and the angular separation of the spectral lines are grossly exaggerated here.
Only the first diffraction order is shown on each side of the straight through direction.)

visible spectrum (580-600 nm), it would simply fan out from the grating to give 
continuous bands on either side of the straight-through beam (Figure 1.3b). (The 
abbreviation nm stands for nanometre, 1 nm being equal to 10“9 m.) However, this 
does not happen. Instead, the light is diffracted only at certain definite angles 
(Figure 1.3c). This implies that the yellow sodium light consists of certain, definite 
wavelengths, which have come to be known as spectral lines. The wavelength, A, 
of each line in the spectrum can be determined by the angle, 6n, through which it is 
diffracted by the grating, provided that the grating spacing, d, is known. As shown in 
Dynamic fields and waves, 0n is given by the equation sin dn = n?dd, where n is the 
order of the diffraction. Each element has its own characteristic spectrum, that is, 
its own individual pattern of spectral lines. You can see examples of different line
spectra in Figure 1.4. The fact that the elements have different spectra is the basis of Figure 1.4 The visible atomic 
an important experimental technique in chemical analysis. If the spectrum of an spectra of helium, iron and neon.
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element is identified in the spectrum of a chemical sample, it can be concluded that 
the sample contains that particular element. This method establishes the existence of 
particular elements in the outer layers of the Sun and other stars and even provides 
information about their relative abundance (Figure 1.5).

Figure 1.5 Relative abundance of the chemical elements in the solar spectrum. Note 
the logarithmic scale: an element with a relative abundance of 5 is ten times as abundant 
as one with a value of 4.

By 1860, spectroscopists had determined the spectra of many elements. That was all 
very well, but the really difficult problem was to interpret these data. What could be 
concluded from the patterns of spectral lines, and why do elements emit light of only 
certain specific wavelengths? It was evident that these questions were related to still 
deeper questions about the internal structure of atoms. The way forward was unclear. 
It seemed no easier for a scientist to learn anything about the structure of atoms from 
their spectra than for an engineer to deduce the internal construction of a piano from 
a performance of the ‘Moonlight’ Sonata.

So far, we have only drawn your attention (in Figure 1.4) to the complicated spectra 
of elements such as helium, iron and neon. But what about the spectrum of 
hydrogen, the element with the lightest (and simplest?) atoms of all? Perhaps it 
would be feasible to find out something about the least complicated element.

The Swiss mathematician Johann Balmer surmised in 1885 that the best way of 
tackling the problems of spectroscopy was to concentrate first on trying to 
understand the visible spectrum of hydrogen, which is shown in Figure 1.6. He 
made an excellent start on this problem by finding an interesting numerical pattern

I \  ̂ \

Figure 1.6 The four visible spectral lines of atomic hydrogen.
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among the wavelengths of the visible hydrogen lines, which had been determined 
experimentally as 656.210 nm, 486.074 nm, 434.010 nm and 410.12nm. Note that 
these wavelengths had been measured to five or six significant figures, testifying to 
a very high level of experimental precision. Balmer found that the sequence of the 
four wavelengths is reproduced to extraordinary accuracy by the expression

( 1. 1)

when the integer n is set equal to 3, 4, 5 and 6. This set of spectral lines came to be 
known as the Balmer series and Equation 1.1 as Balmer’s formula.

Balmer suggested that n in his formula might take integer (i.e. whole-number) values 
greater than 6 and that hydrogen might therefore have many other spectral lines 
which, having wavelengths outside the visible spectrum, had not been observed at 
that time. This prediction was later borne out by experiments in which several more 
spectral lines corresponding to n = 7, 8, 9, etc. were found in the ultraviolet part of 
the hydrogen spectrum.

Question I . I Substitute the values 3, 4, 5 and 6 for n in Balmer’s formula 
and compare your results with the measured wavelengths of the four visible 
hydrogen lines. Use the formula to calculate the wavelength of the line 
corresponding to n = 7. ■

So why should the visible spectral lines of hydrogen be given by this relatively 
simple formula? Perhaps the most important consequence of Balmer’s work on 
spectroscopy was that it helped to focus attention on the need to account for the 
spectral lines of hydrogen before fruitful attempts could be made to interpret the 
more complicated spectra of other elements. In 1885, Balmer wrote

‘It appears to me that hydrogen ... more than any other substance is 
destined to open new paths to the knowledge of the structure of matter 
and its properties. In this respect, the numerical relations among the 
wavelengths of the first four hydrogen spectral lines should attract our 
attention particularly.’

These words were to prove prophetic as you will see later in the chapter.

2.3 Problem 3: Understanding blackbody radiation
It is a familiar fact that a heated body emits electromagnetic radiation and that the 
intensity of the radiation increases as the temperature rises. When sufficiently hot, 
the body becomes incandescent and emits visible light, glowing dark red at about 
600 °C, orange at about 1000 °C and white at 1400 °C. The spectrum of this thermal 
radiation is continuous (Figure 1.7), i.e. its intensity varies smoothly across all 
wavelengths, in sharp contrast to the discrete line spectra of gases and vapours. This 
difference can be understood in the following way. In very low-density material, 
radiation is emitted or absorbed by individual atoms and these processes are little 
affected by any interaction between atoms. In a solid, such as a lamp filament, the 
atoms are in very close proximity to each other and they undergo complicated 
coupled motions as a result of thermal agitation. Radiation generated in these 
random motions is thermalized by repeated absorption and re-emission before 
escaping from the surface of the solid. Experiments show that the spectra of such 
‘thermal’ sources approximate to a theoretical ideal that depends on the temperature 
but not on the structure and composition of the source. This ideal thermal spectrum

I I
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Figure 1.7 The spectrum of 
blackbody radiation at various 
temperatures. At any particular 
temperature, T, the curve shows 
the variation of intensity I with 
wavelength A. (Note that the
temperatures are given in kelvin.)

is known as a blackbody spectrum. The blackbody spectrum at a number of 
different temperatures is shown in Figure 1.7. Any radiation that is found to have a 
blackbody spectrum is said to be blackbody radiation.

The reason for the term ‘blackbody’ is that the ideal blackbody spectrum would be 
that emitted by an object that was a perfect emitter and absorber of radiation, and a 
perfect absorber is referred to as a blackbody. You may have noticed that on a sunny 
day, a black object in the Sun, warms up more quickly than a white one. This is 
because it absorbs a greater proportion of the radiation incident on it. However, 
blackbodies do not necessarily appear black: the Sun and stars provide rough natural 
approximations to blackbodies at various temperatures, but the best laboratory 
approximation to a blackbody is a cavity, or box, with all its walls maintained at a 
fixed temperature T. The cavity is filled with radiation streaming in all directions, 
which is constantly absorbed and re-emitted by the walls. If there were a small hole 
in the cavity the radiation emerging from the hole would be blackbody radiation with 
a spectrum appropriate to the temperature of the cavity walls.

The shape of this blackbody spectrum had already been determined experimentally 
by the end of the nineteenth century, and a number of attempts had been made to 
find an equation that would describe the form of the curve at any temperature. Some 
of these were relatively successful but the equations were empirical and none of 
them fitted the spectrum everywhere and at all temperatures.

A satisfactory theory of blackbody radiation should provide a precise mathematical 
expression for the blackbody spectrum. In principle, this should have been 
straightforward, as it does not depend on knowledge of the internal structure of 
atoms, but only on the properties of electromagnetic radiation, which were thought 
to be well understood within the framework of classical physics. However, to the 
astonishment of physicists at the time, classical physics was quite unable to provide 
a satisfactory solution.

In simplified terms the problem was this. The walls of the cavity restrict the possible 
modes of electromagnetic radiation that can exist within it, in much the same way as 
the allowed modes on a stretched string are restricted to those for which the wavelength

12



Quantum physics: an introduction

fits with the length of the string (Figure 1.8). Classical physics states that the energy 
of the blackbody spectrum should be shared out equally among the possible modes of 
electromagnetic radiation that can fit into the cavity. This is an application of a very 
important theorem of classical physics: the equipartition theorem (see Classical 
physics of matter). This theorem states simply that, if a system in thermal equilibrium 
at absolute temperature T has n degrees of freedom, each of those degrees of freedom 
should possess an energy of \ k T (where k is Boltzmann’s constant). Now, each mode 
of the electromagnetic radiation in the cavity has two degrees of freedom, due to the 
two possible polarizations, and should therefore have an energy of kT. Classical 
physics predicted the number, An, of modes available in any small wavelength range 
AA between A and A + AA. The blackbody spectrum should then have been obtained 
by plotting AnkT against A.

So, how many modes are available at different wavelengths? Well, the 
electromagnetic radiation is simply a set of standing waves fitted inside the cavity. 
This is a three-dimensional version of fitting standing waves on a one-dimensional 
string. The modes allowed for a string of length L are given by the formula nX = 2L, 
where n is an integer. The first ten are shown in Figure 1.8. As you can probably see, 
as the value of n increases, the wavelengths of adjacent modes get closer and closer 
together: the wavelength of the n = 9 mode is very similar to the wavelength of the 
n = 10 mode. This means that the number of modes in a given wavelength range 
increases as the wavelength decreases. In three dimensions the effect is even more 
marked, and, in mathematical terms, the number of modes An in the range A to 
A + AA turns out to be 871VAA/A4, where V is the volume of the cavity. The energy 
density (energy per unit volume) at wavelength A, in the small range AA, in the 
blackbody spectrum should therefore be given by this expression, multiplied by kT 
and divided by V, that is SnkTAXJX4.
This formula is the classical prediction for the blackbody spectrum. At long 
wavelengths it fits the experimental spectrum very well (Figure 1.9). However, at 
short wavelengths the expression simply blows up. Classical physics predicts that all 
the energy in the blackbody spectrum should be at the short wavelengths. This was 
clearly a completely unsatisfactory prediction and became known as the ‘ultraviolet 
catastrophe’. In Section 3 you will see how the application of quantum physics to 
this problem produced a very satisfactory result.

Question 1.2 A blackbody cavity is in the shape of a cube of side 5 cm and is at a 
temperature of 2000 K. Find the number of modes available in the cavity in the 
wavelength range 449 nm to 451 nm and hence find the total radiant energy in the 
cavity in this wavelength range according to the classical theory. ■

Figure 1.8 The first ten standing 
wave modes on a string of length L.

Figure 1.9 The ultraviolet 
catastrophe.
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Figure 1.10 Philipp Lenard 
(1862-1947) did his most 
important and influential work 
around the beginning of the 
twentieth of the century, and he 
was awarded the 1905 Nobel Prize 
for physics for his experimental 
investigations into the photoelectric 
effect. In 1924 he became a Nazi 
and he expended much effort in 
attempting to discredit Jewish 
physicists, in particular, Albert 
Einstein.

2.4 Problem 4: Understanding the photoelectric effect
The ejection of electrons from metals which are illuminated by high frequency 
electromagnetic radiation was studied in a series of experiments carried out by 
Philipp Lenard (Figure 1.10) in 1902. This phenomenon is called the photoelectric 
effect (Figure 1.11). Lenard found that the ejected electrons did not all emerge with 
the same kinetic energy, indicating that some electrons are bound more tightly in the 
metal than others. Clearly, the least strongly bound electrons will emerge with the 
greatest kinetic energy.

That much was fairly easy to understand, problems arose only when it came to 
accounting for the details of Lenard’s observations. In particular, he obtained the two 
results summarized below. (Recall that the frequency,/, and the wavelength, A, of 
electromagnetic radiation are related by Xf = c, where c is the speed of light.)

Two key results from Lenard’s observations
(i) The maximum kinetic energy of the ejected electrons is independent of the 
intensity of the incident electromagnetic radiation: it depends only on the 
frequency of the radiation.

(ii) No electrons are emitted from a metal if the frequency of the incident 
radiation is lower than a critical threshold frequency /  that is characteristic of 
the metal.

Why were these observations so remarkable? Well, think carefully how the 
photoelectric effect might have been viewed by Maxwell, whose electromagnetic 
theory had been so successful in accounting for the behaviour of light. He would 
have pictured the radiation impinging on the metal as waves, delivering energy 
continuously (Figure 1.12). Since the intensity of a wave is defined as the energy it 
transfers per unit area per unit time, it follows that the energy delivered by these 
waves is determined only by their intensity and is independent of their frequency.

In this way, it can be argued that a beam of red light should eject electrons with the 
same maximum kinetic energy as a beam of higher frequency blue light of the same 
intensity. But Lenard’s results showed that this was not the case. For each metal that

Figure l . l l  When electromagnetic 
radiation (of sufficiently high frequency) 
impinges on the surface of a metal, 
electrons are ejected. This is known as the 
photoelectric effect.

Figure 1.12 According to the classical 
wave theory of radiation, the energy of the 
beam of radiation is delivered continuously, 
like the energy of water waves. The energy 
of the beam should, according to this 
theory, depend on its intensity, not on its 
frequency. For this reason, it is difficult to 
understand why the frequency of the 
radiation should determine the maximum 
kinetic energy of the ejected electrons.
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he investigated, the electrons ejected by a beam of light of higher frequency always 
had a greater maximum kinetic energy than that of electrons ejected by a beam of 
light of a lower frequency. He also found that if the frequency of his beam was 
below the threshold frequency f t of the metal, then no electrons were ejected, no 
matter what the beam’s intensity!

Clearly something was wrong somewhere. Maxwell’s wave theory seemed to 
suggest that the energy of radiation should depend crucially on its intensity, whereas 
Lenard’s experiments seemed to show that the energy of radiation depended on its 
frequency. This contradiction was perceived very clearly by Albert Einstein, who, in 
1905, put forward a new theory. This enabled Lenard’s observations to be 
understood and also explained another observation, namely that there was no 
measurable time delay between the switching on of the light source and the 
appearance of ejected electrons, a delay which would be expected using Maxwell’s 
wave theory. Section 3.2 is devoted to Einstein’s theory of the photoelectric effect.

2.5 Problem 5: Understanding heat capacities of solids
The molar heat capacity of a substance, denoted by Cm, is the quantity of energy 
which, when absorbed by a mole of the substance, will raise its temperature by 1 K. 
For the case of solids, the difference between the molar heat capacity at constant 
pressure, CPm, and that at constant volume, CV m, is very small, so we will simply 
refer to Cm.
We assume that the internal (thermal) energy of a solid is contained in its lattice 
vibrations, i.e. the coordinated vibrations of its constituent atoms. If the solid is in 
thermal equilibrium at some absolute temperature T, then according to the 
equipartition theorem, each atomic vibrator has an average energy of 3kT since it 
turns out that there are two degrees of freedom associated with each of its three 
possible directions.
The internal (thermal) energy, Um(T), of a mole of the solid will therefore be 

U JJ) = 3NmkT= 3 RT

where Nm is Avogadro’s constant and 

R = Nmk = 8.31 J Kr'moL1

is the molar gas constant. The molar heat capacity at constant volume of the solid is 
then given by the rate of change of the internal energy with temperature. Thus, using 
the language of differential calculus:

= d Un(T) = 3R (CLAs s iCAL THEORY) (1.2)
m d T

This expression for Cm is clearly independent of the temperature and it has the value 
24.93 J K 'm oL 1. The question we must now ask is ‘How does this classical 
prediction for the molar heat capacity of solids compare with experiment?’

As long ago as 1819 the French researchers Pierre Dulong and Alexis Petit reported 
experimental values of Cm for a number of elemental solids, including both metals 
and insulators, at room temperature (Table 1.1). All their samples gave a value close 
to 25 J K-1mol-1. This famous result became known as the Dulong-Petit law. To this 
extent then, classical physics seems to have provided an adequate theory of the heat 
capacities of solids. There are, however, some serious departures from the law. A 
notable example is diamond, for which Cm is approximately 6 J Kr'moL1 at room

Table I. I Dulong and Petit’s 
original data, converted into SI 
units. These measurements were 
taken at constant pressure but, for 
solids, the difference between CP 
and Cv is very small (a few per 
cent).

element molar heat capacity/ 
J K-1 moL1

bismuth 25.77
lead 25.48
gold 24.92

platinum 23.63
tin 25.35

silver 25.38
zinc 25.15

tellurium 24.74
copper 25.19
nickel 25.70
iron 25.06

cobalt 24.80
sulfur 25.50
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Figure 1.13 Experimentally measured values for the temperature variation of the 
molar heat capacity of silver.

temperature. Subsequent research has shown that the molar heats of all solids 
decrease at lower temperatures and approach zero as T approaches the absolute zero 
of temperature. The specific example of silver is shown in Figure 1.13.

In conclusion, the Dulong—Petit law can be regarded as only a partial success for 
classical physics. Although most solid elements have molar heat capacities that are 
close to the predicted value, there are several puzzling exceptions and the law breaks 
down completely at low temperatures. From the viewpoint of classical physics this is 
very worrying. It is hard to see how the argument that led to Equation 1.2 could ever 
be modified to get agreement with experiment for all elements at all temperatures.
Of course, it turns out that the trouble lies with classical physics itself.

3 Physics saved by the quantum

3.1 The ultraviolet catastrophe tamed
It is appropriate to begin with blackbody radiation because it was the first of the five 
problems to be solved (in 1900) and because it provided the essential clue to the 
solution of all of the others.

As you saw in Section 2.3 classical physics predicts that the energy in the blackbody 
spectrum blows up at short wavelengths — the so-called ultraviolet catastrophe.

The ultraviolet catastrophe would be avoided, however, if, instead of the average 
energy per mode being kT for all modes as required by classical physics, this 
average energy actually decreased rapidly with decreasing This would imply that 
the equipartition principle is invalid and therefore some aspect of the argument 
leading to it must be false. Equipartition depends on the assumption that the energy 
of a standing wave is continuous, in other words, it can vary by infinitesimal 
amounts. Max Planck (Figure 1.14) wondered what would be the consequences of 
assuming the contrary — that the energy can be changed only by adding or removing 
a discrete amount or quantum of energy? This implies that the energy of a standing 
wave is contained in a whole number of quanta — a fraction of a quantum cannot 
exist. Planck supposed that the magnitude of the energy quantum must be 
proportional to the frequency of the wave, which is a reasonable choice qualitatively: 
as the discrepancies between classical theory and experiment occur at the high- 
frequency (short-wavelength) end of the spectrum, the quantum of energy should be 
larger for higher frequencies. In this way Planck was led to his quantum hypothesis, 
which we will hereafter refer to as Planck’s law and which may be stated as follows:
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The energy £  of a standing electromagnetic wave of frequency/(wavelength 
A = c/f)is contained in a whole number of quanta, each of which has the value 

hf, or equivalently he/A,, where h is a constant of nature. That is

(1.3)

Max Planck (1858-1947)
Max Planck (Figure 1.14) was born in Kiel in 1858 and studied at Munich. 
After appointments at Munich and Kiel he was appointed professor of physics 
at Berlin University in 1892. In 1937, he resigned his position as president of 
the Kaiser Wilhelm Institute as a protest against the Nazis treatment of Jewish 
scientists. He lost both his sons, one of whom was executed for plotting against 
Hitler. After the war Planck was reappointed as president of the Institute, 
which was renamed the Max Planck Institute, and moved to Gottingen.
He died in 1947.

He is famous for his discovery that the key to understanding blackbody 
radiation is to assume that radiation can be emitted or absorbed only in the 
form of discrete quanta. He was awarded the Nobel Prize for physics in 1918 
in recognition of this achievement, which is generally thought to mark the 
beginning of modem physics.

The constant h is now known as Planck’s constant and has the value 
6.626 18 x 10-34 J s. Max Bom, writing in 1926, said that Planck’s quantum 
hypothesis ‘marked the beginning of an entirely new conception of nature’. Its 
immediate impact on the problem of blackbody radiation was to provide the 
following new expression for the average energy of a standing wave

which obviously differs radically from its classical counterpart, namely

In contrast with the constant value kT, Equation 1.4 exhibits just the sort of rapid 
decrease as the wavelength shortens which is required to tame the ultraviolet 
catastrophe. This result can be understood intuitively as follows. The quantum 
argument assumes that the energy of a standing wave cannot increase continuously 
under thermal agitation, but must climb a kind of ladder on which the distance apart 
of the rungs depends on the wavelength. At long wavelengths, the rungs are close 
together, many quanta will be excited and as we have seen, the classical case of 
continuous energy is approached. At the other extreme, when the wavelength is very 
short, the rungs on the ladder are far apart and the probability of even one quantum 
being excited is very low. In this situation, the thermodynamic average energy of a 
standing wave is close to zero.

•  What is the significance of the factor (o,hcim -  l)-1 in Equation 1.4?

O It is the average number of thermally excited quanta in a standing
electromagnetic wave, of wavelength A, in a cavity at absolute temperature T. 
(That is, it is the thermodynamic average energy of the wave mode divided by 
the energy quantum (he/A.) appropriate to that wavelength.) I

Figure 1.14 Max Planck.

17



When the quantum expression (Equation 1.4) is multiplied by the number of modes 
per unit volume, An/V, in the wavelength range A to A + AA (An/V = Sn AA/A4 from 
Section 2.3), the resulting expression for the energy density (energy per unit volume) 
in blackbody radiation agrees extremely well with experiment (Figure 1.15). This 
expression is known as Planck’s radiation law.

Question 1.3 Using Equation 1.4, calculate the total radiant energy in the same 
wavelength range for the blackbody cavity described in Question 1.2, this time 
according to Planck’s hypothesis. Compare your result with the one you obtained 
using the classical theory. ■

Figure 1.15 The energy 
density in the blackbody 
spectrum according to Planck’s 
radiation law (solid line) and 
experimental measurements 
(dots). The agreement between 
the two is very good.

3.2 Einstein's theory of the photoelectric effect
In Section 3.1 we saw how, according to Planck’s quantum hypothesis, 
electromagnetic waves of given frequency, must transfer energy in complete quanta. 
Albert Einstein (Figure 1.16) sharpened up this idea by arguing that light quanta 
should move through space as localized entities, rather like particles. This would 
explain how they can be emitted and subsequently absorbed by atoms and suggests a 
new picture of the radiation in a cavity as comprising a ‘gas’ of light quanta, which 
criss-cross the cavity at velocity c and bounce off the walls. The energy E of each 
light quantum is given by Planck’s law, E = hf where h is Planck’s constant and/is 
the frequency of the radiation. Since the magnitude of Planck’s constant is so small 
(6.63 x 10-34 J s), each quantum of light has only a minuscule amount of energy. For 
example, red light has a frequency of about 4.5 x 1014 Hz so a quantum of red light 
has an energy of (from Equation 1.3)

When a light is switched on, billions upon billions of light quanta are emitted. For 
example, an ordinary (3% efficient) 100 W light bulb emits roughly 1019 quanta of 
visible light every second! So, in almost all circumstances, the energy in a beam of 
light appears to be delivered in a constant, uninterrupted stream.

In 1905 Einstein applied the quantum concept to the photoelectric effect by 
suggesting that electrons in the metal only received energy from the incident 
radiation in complete quanta of energy E = hf (Figure 1.17). If it is borne in mind 
that a certain amount of energy must be supplied to an electron just to remove it 
from the metal, it is straightforward to write down an energy equation for the 
photoelectric process:

Figure 1.16 Albert Einstein 
(1879-1955). By the age of 27 
Albert Einstein had written three 
of the most famous papers in the 
canon of physics literature. They 
concerned the Brownian motion, 
the special theory of relativity and 
finally, the quantum theory of 
radiation, which was cited 
explicitly when he was awarded 
the 1921 Nobel Prize for physics.
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one quantum of _ energy required to remove _ kinetic energy of 
incident radiation the electron from the metal ”  the ejected electron.
In Section 2.4 we saw that the electrons emitted from the metal do not all have the 
same kinetic energy. The least tightly bound ones should emerge as the most 
energetic electrons as they require the least energy to remove them from the metal. 
This least energy for removal is usually called the work function of the metal, and 
is conventionally denoted by the Greek letter 0 (phi).

You should now be able to see that, according to Einstein’s theory, when 
electromagnetic radiation of frequency/impinges on a metal of work function 0, 
the maximum kinetic energy of the ejected electrons is given by the difference h f-  0. 
Then, if me is the mass of an electron and umax is the speed with which the most 
energetic electrons emerge from the metal, it follows that

(1.5)

This result is known as Einstein’s photoelectric equation.

Figure 1.17 According to 
Einstein’s theory, the explanation 
of the photoelectric effect is that 
each electron is liberated from the 
metal by the absorption of a single 
quantum of energy from the 
incident radiation.

Before discussing testable consequences of Equation 1.5 in detail, let us see how 
Einstein’s theory provides an understanding of Lenard’s two puzzling results, which 
were described in Section 2.4.

•  Why does the maximum kinetic energy of the ejected electrons depend on the 
frequency of the incident radiation and not on its intensity?

O Higher frequency radiation has a higher energy quantum associated with it.
Therefore, if each electron is ejected by a single quantum, the energy imparted to 
the electron will be greater for higher frequency radiation. Raising the intensity 
of the radiation increases the number of quanta, and hence the number of ejected 
electrons, but does not alter the maximum kinetic energy each one may have.

•  Why is there a threshold frequency,/, below which no electrons are ejected 
from the metal?

O For electrons to be ejected, the energy quantum (E = hf) associated with the 
incident radiation must be sufficient to remove the least tightly bound electrons 
(this energy corresponds to the work function 0 of the metal). Thus, hf must be 
greater than 0. This implies that there is a threshold value/ for the frequency of 
the radiation below which electrons will not be ejected. This threshold is given 
by /  = 0//i. It is also possible to talk in terms of a threshold wavelength, At = c//, 
above which no electrons are ejected. ■

An experimental set-up for making photoelectric measurements is shown 
schematically in Figure 1.18a. Monochromatic light enters the evacuated tube T, and 
falls on the target or cathode C. The ejected electrons are collected at the anode A, 
and their flow may be monitored in the external circuit by means of the current 
meter G. By adjusting the variable resistance R2, the electrons can be subjected to a 
retarding potential equal to R2VqI(R\ + R2) where Rx is a fixed resistance and Vq is 
the voltage of the power supply. The procedure for checking Einstein’s photoelectric 
equation is to adjust the retarding potential to a value, called the stopping potential 
Vstop, which just stops the flow of current through G. The maximum initial kinetic 
energy of the electrons as they are ejected is then eVstop, where e is the charge on an 
electron and has a value of 1.6 x 10-19 C. A typical plot of the maximum kinetic 
energy of the ejected electrons (eVstop) against the frequency of the incident radiation 
is shown in Figure 1.18b. According to Equation 1.5 this should yield a straight-line 
graph, and this is confirmed by the figure. The gradient or slope of the graph is equal
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Figure 1.18 (a) An experiment for testing Einstein’s theory of the photoelectric effect.
For a given frequency of incident radiation, the maximum kinetic energy of the ejected 
electrons is given by eVstop, where Vstop is the stopping potential, (b) The variation of the 
maximum kinetic energy of the ejected electrons with the frequency,/, of the incident 
electromagnetic radiation. The straight-line plot confirms the validity of Einstein’s 
photoelectric equation (Equation 1.5).

to Planck’s constant h and the threshold frequency/t is the value o f/a t which the 
line crosses the frequency axis. When the line is extrapolated to lower frequencies 
(dashed portion), its intercept on the maximum kinetic energy axis is -0, i.e. the 
negative of the work function of the metal.

•  How would you expect the graph in Figure 1.18b to differ for different metals?

O If different metals are used, the graphs obtained would have the same slope h, 
but different intercepts, because different metals have different work functions. 
This reflects the fact that the amount of energy required to remove the least 
tightly bound electrons will vary from metal to metal. ■

Question 1.4 Use Figure 1.18b to find the value of (a) Planck’s constant and 
(1868-1953) was a native of Illinois (b) the work function of the metal involved. ■
in the United States. After obtaining
his doctorate at Columbia he spent Einstein’s photoelectric equation was verified in 1916 in a series of experiments carried

out by the American physicist Robert Millikan (Figure 1.19). These experiments led 
to the award of two separate Nobel prizes: one for Millikan himself and another for 

moved to the University of Chicago Albert Einstein who, according to the citation, was awarded the prize principally for 
where, initially, he was Michelson’s his theory of the photoelectric effect. There was no explicit reference in the citation

to his more famous work on the special and general theories of relativity!
determination of two fundamental
constants of nature; e, the charge on Millikan’s measurements also provided yet more supporting evidence for the 
an electron and Planck’s constant h. quantum theory of electromagnetic radiation. The time was measured between the 
He was awarded the Nobel Prize for moment the radiation impinged on the metals, and the moment that electrons were 
physics in 1923 for his work on the first ejected from them. It was found that the electrons were emitted immediately, 
photoelectric effect. that is, at the instant the metal was illuminated. (The time delay is now known to be

20



less than 10-9 s.) This result is easily understood from Einstein’s theory, since it is 
reasonable to expect that an electron in a metal might be ejected as soon as the first 
quantum of energy is transferred from the incident radiation. (See also Box 1.1.) Yet 
the simple wave theory of light predicts that about a minute should pass before an 
amount of energy sufficient to release electrons could be transferred to any individual 
atom in the metal!

You can verify that this long time delay is predicted by the wave theory by working 
through Question 1.5.

Question 1.5 A source of light emits, at a rate of 8 W, electromagnetic radiation of 
frequency sufficient to eject electrons from a piece of potassium that is 1 m away.

(a) Assuming that the radiation is emitted with equal intensity in all directions and that 
the wave theory of light is correct, show that approximately 5 x 10-21 J of energy will, 
in each second, be incident on an atom at the surface of the metal.
(Take the radius of a potassium atom to be 0.5 x 10-10m.)

(b) The work function of potassium is 3.4 x 10-19 J. Assuming that a potassium atom 
absorbs all of the energy incident on it, estimate the time that would elapse between the 
instant that the waves of light impinge on the metal and the instant that the first 
electron is ejected.

(c) Compare your answer to part (b) with the experimentally determined upper limit on 
the time lag, which is about 10-9 s. What do you conclude?

Question 1.6 Light of wavelength 450 nm is incident on a sample of lithium. If the 
work function of lithium is 2.13 eV, calculate the speed of the fastest electrons ejected.

Question 1.7 The photoelectric threshold wavelength of sodium is 542 nm.
Calculate the work function of sodium. ■

Box I . I From light quanta to photons
The idea that radiation was quantized was first introduced by Planck to explain 
blackbody radiation. The concept was reinforced by Einstein in his explanation 
of the photoelectric effect. For Einstein, electromagnetic radiation was not only 
emitted and absorbed in quantized amounts but could also be thought of as 
retaining this energy quantization as it propagated through space.

These ideas evolved gradually over the next twenty years or so into the idea of 
electromagnetic radiation as a stream of particles possessing both energy and 
momentum. The term photon, for each light particle, was introduced by the 
American chemist Gilbert Newton Lewis and nowadays, when physicists 
discuss phenomena which require the particle theory of electromagnetic 
radiation, they almost invariably refer to the particles as photons.

3.3 Einstein’s theory of heat capacities
In Section 2.5 we discussed how classical physics predicts that the molar heat 
capacity of all solids at all temperatures should be equal to 3R, where R is the molar 
gas constant. Although the result is valid in many cases, there are soriie exceptions 
and the prediction is completely wrong at low temperatures. In order to progress 
beyond the simple classical theory given in Section 2.5, it is necessary to make
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some assumption about the nature of the atomic vibrations within the solid. Einstein 
made the simplest assumption possible: that each atom of the solid oscillates at the 
same characteristic frequency/v in all three directions. However, as long as the 
equipartition theorem is thought to be valid, these details can change nothing: the 
average energy of an atomic vibration will still be kT. Planck had shown that, 
according to his quantum hypothesis, the energy of any oscillator of frequency 
/ v should be quantized in steps of hfv and when Einstein added this quantum 
condition to his model he found, as we might expect, that it changed the outcome 
completely. By a chain of reasoning virtually identical to that which led, in the case 
of blackbody radiation, to Equation 1.4, he obtained the average energy of an atomic 
mode of vibration as

( 1.6)

To find the internal energy Um(T), of a mole of solid, we multiply Equation 1.6 by 
the number of independent modes of vibration in one mole, 3Nm. Thus we have

(1.7)

for the internal energy of one mole of the solid. The heat capacity is the rate of 
change of internal energy with respect to temperature and is obtained by 
differentiating Um(T) with respect to T. The result may be written, finally, 
(remembering that R = Nmk) as

Similar reasoning can be applied to 
diatomic gases, and used to explain 
why their room temperature heat 
capacities are lower than predicted 
by the equipartition of energy 
theorem (see Classical physics of 
matter, Chapter 2).

( 1.8)

where &E = hfw/k. The value is known as the Einstein temperature of the solid 
and is proportional to the frequency of vibration,/v, of the atoms of the lattice. 
Figure 1.20 shows how Einstein’s prediction (Equation 1.8) for Cm(T) varies 
with temperature. This prediction is clearly in much better agreement with the 
experimentally observed heat capacity (shown for silver in Figure 1.13) than the 
classical prediction of a constant value of 3R.

Figure 1.20 Einstein’s prediction 
for the molar heat capacity of a 
solid as a function of 77^, where 
T is the actual temperature of the 
solid and 0̂  is its Einstein 
temperature.
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