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Preface

The first edition of 3D Game Engine Design appeared in print over six years
ago (September 2000). At that time, shader programming did not exist on

consumer graphics hardware. All rendering was performed using the fixed-function
pipeline, which consisted of setting render states in order to control how the geomet-
ric data was affected by the drawing pass.

The first edition contained a CDROM with the source code for Wild Magic Ver-
sion 0.1, which included 1,015 source files and 17 sample applications, for a total
of 101,293 lines of code. The distribution contained support only for computers
running the Microsoft Windows operating system; the renderer was built on top of
OpenGL; and project files were provided for Micrsoft Visual C++ 6. Over the years,
the source code evolved to Wild Magic Version 3.9, which contained additional sup-
port for Linux and Macintosh platforms, had OpenGL and Direct3D renderers, and
included some support for shader programming. However, the design of the engine
was still based on a fixed-function pipeline. The distribution also included support
for multiple versions of Microsoft’s compilers, support for other compilers on the
various platforms, and contained some tools such as importers and exporters for pro-
cessing of art assets.

This is the second edition of 3D Game Engine Design. It is much enhanced, de-
scribing the foundations for shader programming and how an engine can support it.
The second edition is about twice the size of the first. The majority of the increase is
due to a more detailed description of all aspects of the graphics system, particularly
about how shaders fit into the geometric pipeline. The material on scene graphs and
their management is also greatly expanded. The second edition has more figures and
less emphasis on the mathematical aspects of an engine.

The second edition contains a CDROM with the source code for Wild Magic
Version 4.0, which includes 1,587 source files and 105 sample applications, for a
total of 249,860 lines of code. The Windows, Linux, and Macintosh platforms are
still supported, using OpenGL renderers. The Windows platform also has a Direct3D
renderer whose performance is comparable to that of the OpenGL renderer. Multiple
versions of Microsoft’s C++ compilers are supported—versions 6, 7.0, 7.1, and 8.0
(Professional and Express Editions). The MINGW compiler and MSYS environment
are also supported on the Windows platform. The Linux platform uses the g++
compiler, and the Macintosh platform uses Apple’s Xcode tools.

The graphics system of Wild Magic Version 4.0 is fully based on shader program-
ming and relies on NVIDIA’s Cg programming language. The precompiled shader
programs were created using the arbvp1 and arbfp1 profiles for OpenGL and us-
ing the vs_2_0 and ps_2_0 profiles for Direct3D, so your graphics hardware must

xxi
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support these in order to run the sample applications. If your graphics hardware sup-
ports only lesser profiles such as vs_1_1 and ps_1_1, you must recompile the shader
programs with these profiles and use the outputs instead of what is shipped on the
CDROM. The distribution also contains a fully featured, shader-based software ren-
derer to illustrate all aspects of the geometric pipeline, not just the vertex and pixel
shader components.

The replacement of the fixed-function approach by a shader-based approach has
made Wild Magic Version 4 a much more powerful graphics engine for use in all
graphics applications, not just in games. Much effort went into making the engine
easier to use and to extend, and into improving the performance of the renderers. I
hope you enjoy this new manifestation of Wild Magic!

A book is never just the product of the author alone. Many people were involved
in making this book as good as it possibly can be. Thanks to the reviewers for provid-
ing valuable and insightful feedback about the first edition regarding how to improve
it for a second edition. A special thanks goes to Marc Olano (University of Maryland,
Baltimore County) for taking the time to provide me with detailed comments based
on his experience using the first edition as a textbook. Thanks to Elisabeth Beller, the
production editor and project manager for all of my Morgan Kaufmann Publisher
books, for assembling yet another fine group of people who have the superb ability
to take my unattractive book drafts and make them look really good. And, as always,
thanks to my editor Tim Cox for his patience and help in producing yet another book
for Morgan Kaufmann Publishers.



C h a p t e r 1
Introduction

I have no fault to find with those who teach geometry. That science is the only
one which has not produced sects; it is founded on analysis and on synthesis and on

the calculus; it does not occupy itself with probable truth; moreover it has the
same method in every country.

— Frederick the Great

1.1 The Evolution of Graphics Hardware
and Games

The first edition of 3D Game Engine Design was written in the late 1990s when
3dfx Voodoo cards were in style and the NVIDIA Riva TNT cards had just

arrived. The book was written based on the state of graphics at that time. Six years
have passed between that edition and this, the second edition. Graphics hardware has
changed dramatically. So have games. The hardware has extremely powerful graphics
processing units (GPUs), lots of video memory, and the option of programming it
via shader programs. (These did not exist on consumer cards when I wrote the first
edition.) Games have evolved also, having much richer (and much more) content and
using more than graphics. We now have physics engines and more recently physics
processors (PhysX from Ageia).

The Sony Playstation 2 was not quite released when I started writing the first
edition. We’ve also seen Microsoft’s Xbox arrive on the scene, as well as the Nintendo
GameCube. These days we have Microsoft’s Xbox 360 with multiple processors, and
the Sony Playstation 3 is soon to follow with the Cell architecture. Smaller game-
playing devices are available. Mobile phones with video screens are also quite popular.

With all this evolution, the first edition of the book has shown its age regarding
the discussion of real-time graphics. The time is right for the second edition, so here
it is.

1
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1.2 The Evolution of This Book
and Its Software

In the late 1990s when I conceived the idea of writing a book on real-time graphics
as used in games, I was employed by Numerical Design, Ltd. (now Emergent Game
Technologies) designing and developing NetImmerse (now Gamebryo). At that time
the term game engine really did refer to the graphics portion of the system. Companies
considering using NetImmerse wanted the real-time graphics in order to free up the
computer processing unit (CPU) for use by other systems they themselves were used
to building: the game logic, the game artificial intelligence (AI), rudimentary collision
and physics, networking, and other components. The first edition of 3D Game Engine
Design is effectively a detailed summary of what went into building NetImmerse.

Over the years I have received some criticism for using “game engine” in the
title when the book is mainly about graphics. Since that time, the term game engine
has come to mean a collection of engines—for graphics, physics, AI, networking,
scripting, and you name it. It is not feasible to write a book in a reasonable amount
of time with sufficient depth to cover all these topics, nor do I intend to write such a
massive tome. To address the criticism about the book title, I could have changed the
title itself. However, I have chosen to keep the original title—the book is known now
by its name, for better or for worse. The second edition includes some discussion
about physics and some discussion about an application layer and how the engines
must interact, but probably this is not enough to discourage the criticism about the
title. So be it.

The first edition appeared in print in September 2000. It is now six years later and
the book remains popular in many circles. The algorithmic aspects are still relevant,
the scene graph management still applies, but the material on rendering is clearly out
of date. That material was essentially about the fixed-function pipeline view of a graph-
ics system. The evolution of graphics hardware to support a shader-based pipeline
has been rapid, now allowing us to concentrate on the special effects themselves (via
shader programming) rather than trying to figure out how to call the correct set of
state-enabling functions in the fixed-function pipeline to obtain a desired effect.

The second edition of the book now focuses on the design of the scene graph
managment system and its associated rendering layer. Most of the algorithmic con-
cepts have not changed regarding specialized scene graph classes such as the con-
troller classes, the sorting classes, or level-of-detail classes. Core classes such as the
spatial, geometry, and node classes have changed to meet the needs of a shader-based
system. The current scene graph management system is much more powerful, flexi-
ble, and efficient than its predecessors. The shader effect system is integrated with the
scene graph management so that you may do single-pass drawing, multipass drawing
with a single effect, or even drawing with multiple effects. I have paid much attention
to hiding as many details as possible from the application developer, relying on well-
designed and automated subsystems to do the work that earlier versions of my scene
graph management system forced the developer to do.
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One characteristic of my books that I believe sets them apart from other technical
books is the inclusion of large source code libraries, a lot of sample applications that
actually compile and run, and support for multiple platforms (PC, Mac, Linux/Unix,
and various compilers on each platform). What you have purchased is a book and
a software product to illustrate what is described in the book. The sample source
code that ships with many books is not carefully planned, lacks quality control, is not
multiplatform, and usually is not maintained by the book authors. I am interested in
carefully designed and planned code. I believe in quality source code. I maintain the
source code on a regular basis, so I encourage people to send email about problems
they encounter, both with the source code and in the book material. The Geometric
Tools website lists all the updates to the software, including bug fixes as well as new
features, and the site has pages for book corrections.

The first edition of this book shipped with Wild Magic version 0.1. The book had
two additional printings in its first edition, one shipping with Wild Magic version
0.2 and one shipping with Wild Magic version 0.4. The second edition ships with
Wild Magic version 4.0, which when compared to version 0.1 looks very little like
it. I believe the quality of the Wild Magic source code is a significant feature that
has attracted many users. The latest version represents a significant rewrite to the
rendering layer that has led to easier use of the engine and better performance by
the renderers. The rewrite represents three months of dedicated time, something
most authors would never consider investing time in, and it includes implementing
a shader-based software renderer just to illustrate the book concepts in detail. I hope
you enjoy using Wild Magic for your leisure projects!

1.3 A Summary of the Chapters

The book is partitioned into six parts.
Graphics. Chapter 2 discusses the details of a rendering system, including trans-

formations, camera models, culling and clipping, rasterizing, and issues regarding
software versus hardware rendering and about specific graphics application program-
mer interfaces (graphics APIs) in use these days. Chapter 3 is about rendering from
the perspective of actually writing all the subsystems for a software renderer. The
chapter includes what I consider a reasonable abstraction of the interface for a shader-
based rendering system. This interface essentially shows that the renderer spends
most of its time doing resource management. Chapter 3 also includes details about
shader programs—not about writing them but about dealing with data management
issues. Here I address such things as matching geometric vertex data to vertex pro-
gram inputs, matching vertex program outputs to pixel program inputs, and ensur-
ing that the infrastructure is set so that all resources are in the right place at the right
time, hooked up, and ready to use for real-time rendering.

Scene Graph Management . Chapter 4 is about the essentials of organizing your
data as a scene graph. This system is designed to be high level to allow ease of use
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by application programmers, to be an efficient system to feed a renderer, and to be
naturally extensible. The chapter also includes a section that talks about scene graph
compiling—converting scene graphs to more optimized forms for target platforms.
Chapters 5, 6, and 7 are about specially designed nodes and subsystems of the scene
graph management system. These include subsystems to support animation, spatial
sorting, and level of detail.

Collision Detection and Physics. Some general concepts you see in attempting to
have physical realism in a three-dimensional (3D) application are discussed in Chap-
ters 8 and 9. A generic approach to collision detection is presented, one that I have
successfully implemented in a real environment. I also discuss picking operations
and briefly talk about automatic pathfinding as a means for collision avoidance. The
chapter on physics is a brief discussion of some concepts you will see often when
working with physical simulations, but it does not include a discussion about the
black-box-style physics you see in a commercial physics engine, such as Havok. That
type of physics requires a lot more discussion than space allows in this book. Such
physics is heavily mathematical and requires attention to issues of numerical round-
off errors when using floating-point arithmetic.

Mathematical Topics. Chapters 10 through 17 include a lot of the mathematical
detail for much of the source code you will find in Wild Magic. These chapters in-
clude a discussion of standard objects encountered in geometric manipulation and
queries, including curves and surfaces covered in Chapters 11 and 12. You will also
find material on queries regarding distance, containment, and intersection. Chapter
16 presents some common numerical methods that are useful in graphics and physics
applications. The final chapter in this partition is about the topic of rotation, includ-
ing basic properties of rotation matrices and how quaternions are related to matrices.

Software Engineering . Chapter 18 is a brief summary of basic principles of object-
oriented design and programming. Various base-level support for large libraries is
important and includes topics such as run-time type information, shared objects and
reference counting, streaming of data (to/from disk, across a network), and initial-
ization and termination for disciplined object creation and destruction in an appli-
cation. Chapter 19 is about memory management. This is of particular importance
when you want to write your own memory managers in order to build a system that is
handed a fixed-side memory block and told it may only use memory from that block.
In particular, this approach is used on game consoles where each engine (graphics,
physics, sound, and so on) is given its memory “budget.” This is important for hav-
ing predictable behavior of the engines. The last thing you want to happen in your
game is one system consuming so much memory from a global heap that another
system fails because it cannot successfully allocate what it needs.

Special Effects Using Shaders. Chapter 20 shows a handful of sample shaders and
the applications that use them. This is just to give you an idea of what you can do
with shaders and how Wild Magic handles them. The appendix describes how you
can add new shader effects to Wild Magic. The process is not difficult (by design).

I believe the organization here is an improvement over that of the first edition of
the book. A number of valid criticisms of the first edition were about the amount



1.3 A Summary of the Chapters 5

of mathematics interleaved in the discussions. Sorry, but I remain a firm believer
that you need a lot of mathematics when building sophisticated graphics and physics
engines. That said, I have made an attempt to discuss first the general concepts
for graphics, factoring the finer detail into the chapters in the mathematics section
that occurs late in the book. For example, it is possible to talk about culling of
bounding volumes against frustum planes without immediately providing the details
of the algorithm for specific bounding volumes. When discussing distance-based
collision detection, it is possible to motivate the concepts without the specific distance
algorithms for pairs of objects. The mathematics is still here, but factored to the end
of the book rather than interleaved through the entire book.

Another criticism of the first edition of the book was its lack of figures. I believe
I have remedied this, adding quite a few more figures to the second edition. That
said, there may be places in the book where someone might feel the need for a figure
where I thought the concept did not require one. My apologies if this happens. Send
me feedback by email if you believe certain parts of the book can be improved by the
addition of figures.

Finally, I have included some exercises in the book. Creating a large set of well-
crafted exercises is a full-time job. In fact, I recall meeting a person who worked
for Addison-Wesley (back in the early 1980s). His full-time job was managing the
exercises for the calculus textbook by George Thomas and Ross Finney (seventh
edition at that time). As much as I would like to have included more exercises here,
my time budget for writing the book, writing the Wild Magic source code to go
with the book, and making a living doing contract programming already exceeded
24 hours per day. I hope the exercises I have included will support the use of the book
as a textbook in a graphics course. Most of them are programming exercises, requests
to modify the source code to do something different or to do something in addition
to what it does. I can imagine some of these taking quite some time to do. But I also
believe they will make students think—the point of exercises!
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C h a p t e r 2
The Graphics System

This chapter provides some basic concepts that occur in a computer graphics sys-
tem. Some of these concepts are mathematical in nature. I am assuming that

you are familiar with trigonometry, vector and matrix algebra, and dot products and
cross products. A warning to those who have a significant mathematical background:
I intentionally discuss the mathematical concepts in a somewhat informal manner.
My goal is to present the relevant ideas without getting tied down in the minutiae of
stating rigorous definitions for the concepts. The first edition of this book was criti-
cized for overemphasizing the mathematical details—and rightly so. Learn computer
graphics first, and then later explore the beauty of formal mathematical exposition!

The foundations of coordinate systems (Section 2.1) and transformations (Sec-
tion 2.2) are pervasive throughout a game engine. They are found not only in the
graphics engines but in the physics engines and sound engines. Getting a model out
of a modeling package and into the game world, setting up a camera for viewing, and
displaying the model vertices and triangles is a process for which you must absolutely
understand the coordinate systems and transformations. Scene graph management
(Chapter 4) also requires a thorough understanding of these topics.

Sections 2.3 through 2.6 are the foundation for drawing 3D objects on a 2D
screen. In a programming environment using graphics APIs such as OpenGL or Di-
rect3D to access the graphics hardware, your participation in the process is typically
restricted to selecting the parameters of the camera, providing the triangle primitives
whose vertices have been assigned various attributes, and identifying objects that are
not within the viewing region so that you do not have to draw them. The low-level
processing of vertices and triangles is the responsibility of the graphics drivers. A dis-
cussion of the low-level processing is provided in this book, and a software renderer
is part of the source code so you can see an actual implementation of the ideas.

7
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Section 2.7 is a discussion about issues that are relevant when designing and im-
plementing a graphics engine. The first edition of this book had a similar section, but
I have added new material, further delineating how you must think when designing
an engine or building a component to live on top of an existing graphics API. Section
2.7.2 is about the trade-offs you must consider if you want your code to be portable
(or not). As you will see, the most important trade-off is which computational unit
has the responsibility for certain operations.

Section 2.8 is about the vector and matrix conventions used by OpenGL, Di-
rect3D, and Wild Magic. In your own code you must also choose conventions. These
include how to store vectors and matrices, how they multiply together, how rotations
apply, and so on. The section also mentions a few other conventions that make the
APIs different enough that you need to pay attention to them when creating a cross-
platform graphics engine.

2.1 The Foundation

We are all familiar with the notation of tuples. The standard 3-tuple is written as
(x , y , z). The components of the 3-tuple specify the location of a point in space
relative to an origin. The components are referred to as the Cartesian coordinates of
the point. You may have seen a diagram like the one in Figure 2.1 that illustrates the
standard coordinate system.

Welcome to the book’s first rendering of a 3D scene to a 2D screen, except this
one was hand drawn! The standard coordinate system is simple enough, is it not?
Coordinate systems other than the standard one may be imposed. Given that many
people new to the field of computer graphics have some confusion about coordinate
systems, perhaps it is not that simple after all. The confusion stems from having to
work with multiple coordinate systems and knowing how they interact with each
other. I will introduce these coordinate systems throughout the chapter and discuss
their meaning. The important coordinate systems, called spaces, are Cartesian space
(everything else is built on top of this), model space (or object space), world space, view
space (or camera space or eye space), clip space (or projection space or homogeneous
space), and window space.

Figure 2.1 is quite deceptive, which also leads to some confusion. I have drawn
the figure as if the z-axis were in the upward direction. This is an unintentional con-
sequence of having to draw something to illustrate a coordinate system. As humans
who rely heavily on our vision, we have the notion of a view direction, an up direc-
tion, and a complementary right direction (sorry about that, left-handers). Just when
you have become accustomed to thinking of the positive z-direction as the up direc-
tion, a modeling package comes along and insists that the positive y-direction is the
up direction. The choice of view directions can be equally inconsistent, especially the
defaults for various graphics engines and APIs. It is important to understand the co-
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(a, b, 0)

(a, b, c)

(0, 0, 0)

(a, 0, 0)

x

y

z

Figure 2.1 The standard coordinate system in three dimensions. The point at (a , b, c) is reached
by starting at the origin (0, 0, 0), moving a units in the direction (1, 0, 0) to the point
(a , 0, 0), then moving b units in the direction (0, 1, 0) to the point (a , b, 0), and
then moving c units in the direction (0, 0, 1) to the point (a , b, c).

ordinate system conventions for all the packages you use in your game development.
Throughout the book, my discussions about coordinate systems will refer to view, up,
and right directions with coordinate names d , u, and r , respectively, rather than to
axis names such as x, y, and z.

2.1.1 Coordinate Systems

Rather than constantly writing tuples, it is convenient to have a shorter notation to
represent points and vectors. I will use boldface to do so. For example, the tuple
(x , y , z) can refer to a point named P. Although mathematicians distinguish between
a point and the coordinates of a point , I will be loose with the notation here and
simply say P= (x , y , z). The typical names I use for the direction vectors are D for
the view direction, U for the up direction, and R for the right direction. Using the
standard convention, a direction vector must have unit length. For example, (1, 0, 0)

is a direction vector, but (1, 1, 1) is not since its length is
√

3. In our agreed-upon
notation, we can now define a coordinate system and how points are represented
within a coordinate system.

A coordinate system consists of an origin point E and three independent direction
vectors, D (view direction), U (up direction), and R (right direction). You may think
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of the origin as the location of an observer who wishes to make measurements from
his own perspective. The coordinate system is written succinctly as

{E; D, U, R} (2.1)

Any point X may be represented in the coordinate system as

X = E + dD+ uU + rR (2.2)

where d , u, and r are scalars that measure how far along the related direction you
must move to get to the point X. The tuple (d , u, r) lists the coordinates of X relative
to the coordinate system in Equation (2.1).

The direction vectors are nearly always chosen to be mutually perpendicular. This
is not necessary for coordinate systems. All that matters is that the directions are in-
dependent (linearly independent to those of you with some training in linear algebra).
In this book, I will assume that the directions are indeed mutually perpendicular. If
for any reason I need a coordinate system that does not have this property, I will make
it very clear to you in that discussion. The assumption that the direction vectors in
the coordinate system of Equation (2.1) are unit length and mutually perpendicular
allows us to easily solve for the coordinates

d =D . (X − E), u= U . (X − E), r = R . (X − E) (2.3)

where the bullet symbol (.) denotes the dot product of vectors. The construction of
the coefficients relies on the directions having unit length (D . D=U . U= R . R= 1)
and being mutually perpendicular (D . U =D . R = U . R = 0). In addition to being
mutually perpendicular, the direction vectors are assumed to form a right-handed
system. Specifically, I require that R = D× U, where the times symbol (×) denotes
the cross product operator. This condition quantifies the usual right-hand rule for
computing a cross product. A coordinate system may also be constructed to be a left-
handed system using the left-hand rule for computing a cross product.

But wait. What does it really mean to be right-handed or left-handed? And what
really is a cross product? The concepts have both algebraic and geometric interpreta-
tions, and I have seen many times where the two interpretations are misunderstood.
This is the topic I want to analyze next.

2.1.2 Handedness and Cross Products

To muddy the waters of coordinate system terminology, the Direct3D documentation
[Cor] has a section

DirectX Graphics | Direct3D 9 | Programming Guide | Getting Started |
Coordinate Systems and Geometry | Coordinate Systems
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This section is a one-page description of coordinate systems, but unfortunately it
is sparse on details and is not precise in its language. The documentation describes
right-handed versus left-handed coordinate systems, but assumes that the positive
y-axis is the up direction, the positive x-axis is the right direction, and the positive z-
axis points into the plane of the page for left-handed coordinates but out of the plane
of the page for right-handed coordinates. Later in the documentation you will find
this quote:

Although left-handed and right-handed coordinates are the most common sys-
tems, there is a variety of other coordinate systems used in 3D software.

Coordinate systems are either left-handed or right-handed: there are no other
choices. The remainder of the quote is

For example, it is not unusual for 3D modeling applications to use a coordinate
system in which the y-axis points toward or away from the viewer, and the z-axis
points up. In this case, right-handedness is defined as any positive axis (x, y, or z)
pointing toward the viewer. Left-handedness is defined as any positive axis (x, y,
or z) pointing away from the viewer.

The terminology here is imprecise. First, coordinate systems may be chosen for which
none of the axis direction vectors are the x-, y-, or z-axes. Second, handedness has
to do with the order in which you list your vectors and components. The way you
draw your coordinate system in a figure is intended to illustrate the handedness, not
to define the handedness.

Let us attempt to make the notions precise. The underlying structure for every-
thing we do in three dimensions is the tuple. Essentially, we all assume the existence of
Cartesian space, as described previously and illustrated in Figure 2.1. Cartesian space
is the one on which all of us base our coordinate systems. The various spaces such as
model space, world space, and view space are all built on top of Cartesian space by
specifying a coordinate system. More importantly, Cartesian space has no preferential
directions for view, up, or right . Those directions are what you specify when you impose
a coordinate system on Cartesian space for an observer to use.

I have already presented an intuitive way to specify a coordinate system in Equa-
tion (2.1). I have imposed the requirement that the coordinate system is right-
handed. But what does this really mean? The geometric interpretation is shown in
Figure 2.2 (a).

In Figure 2.2 (a), the placement of R relative to D and U follows the right-hand
rule. The algebraic interpretation is the equation R =D×U, which uses the following
definition. Given two Cartesian tuples, (x0, y0, z0) and (x1, y1, z1), the cross product
is defined by

(x0, y0, z0)× (x1, y1, z1)= (y0z1− z0y1, z0x1− x0z1, x0y1− y0x1) (2.4)
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X = E + dD + uU + rR
X = E + dD + uU + rR

U U

E
E

R

R
E + dD + uU

E + dD + uU

E + dD

E + dD

D

D
P

(a) (b)

Figure 2.2 (a) A geometric illustration of the right-handed coordinate system in Equation (2.1).
(b) A geometric illustration of the left-handed coordinate system in Equation (2.5).

Both the algebraic interpretation and the geometric interpretation are founded on
the standard Cartesian coordinate system.

A point X is represented in the coordinate system of Equation (2.1) via Equa-
tion (2.2), where the components of the coordinate tuple (d , u, r) are computed by
Equation (2.3). Instead, I could have used the coordinate system

{E; R , U, D} (2.5)

with the representation of X given by

X = E + rR + uU + dD (2.6)

This coordinate system is left-handed and the coordinate tuple for X is (r , u, d).
Algebraically, Equations (2.2) and (2.6) produce the same point X. All that is different
is the bookkeeping, so to speak, which manifests itself as a geometric property as
illustrated by Figure 2.2. In the right-handed system shown in Figure 2.2 (a), D points
into the plane of the page and the last coordinate direction R points to the right. It is
the case that D× U = R; the last vector is the cross product of the first two vectors.
In the left-handed system shown in Figure 2.2 (b), R points into the plane of the page
and the last coordinate direction D points to the left. It is the case that R × U =−D;
the last vector is the negative of the cross product of the first two vectors.

Whereas Figure 2.2 illustrates the geometric difference between left-handed and
right-handed coordinate systems, the algebraic way to classify whether a coordinate
system is left-handed or right-handed is via the cross product operation. Generally, if
you have a coordinate system

{P; U0, U1, U2}
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where P is the origin and where the Ui are unit length and mutually perpendicular,
then the coordinate system is right-handed when

U0 × U1= U2 (right-handed)

and is left-handed when

U0 × U1=−U2 (left-handed)

Equivalently, if you write the coordinate direction vectors as the columns of a matrix,
say, Q= [U0 U1 U2], then Q is an orthogonal matrix. Right-handed systems occur
when det(Q)= 1 and left-handed systems occur when det(Q)=−1.

I have more to say about this discussion. Sometimes I read news posts where
people say that Direct3D has a “left-handed cross product.” This is imprecise ter-
minology, and I will explain why, using an example. Let A and B be vectors (not
points). The representations of the vectors relative to the coordinate system of Equa-
tion (2.1) are

A = daD+ uaU + raR , B= dbD+ ubU + rbR

and their cross product is

A × B= (uarb − raub)D+ (radb − darb)U + (daub − uadb)R (2.7)

The representations of the vectors relative to the coordinate system of Equation (2.5)
are

A = raR + uaU + daD, B= rbR + ubU + dbD

and their cross product is

A × B= (daub − uadb)R + (radb − darb)U + (uarb − raub)D (2.8)

Regardless of which coordinate system was used, Equations (2.7) and (2.8) produce
the same vector in Cartesian space.

Now let’s work with the coordinates themselves, but with specific instances just to
simplify the discussion. Let A = D and B= U. In the coordinate system of Equation
(2.1), the coordinate tuple of A is (1, 0, 0). This says that you have 1 of D and none
of the other two vectors. The coordinate tuple of B is (0, 1, 0). This says you have 1 of
U and none of the other two vectors. According to Equation (2.4), the cross product
of these tuples is

(1, 0, 0)× (0, 1, 0)= (0, 0, 1) (2.9)

In the coordinate system of Equation (2.5), the coordinate tuple of A is (0, 0, 1) since
D is the last vector in the list of coordinate axis directions. The coordinate tuple of B
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is (0, 1, 0). According to Equation (2.4), the cross product of these tuples is

(0, 0, 1)× (0, 1, 0)= (−1, 0, 0) (2.10)

Whereas Equations (2.7) and (2.8) produce the same Cartesian tuple, Equations
(2.9) and (2.10) produce different tuples. Is this a contradiction? No. The tuples
(0, 0, 1) and (−1, 0, 0) are not for the Cartesian space; they are coordinate tuples
relative to the coordinate systems imposed on Cartesian space. The tuple (0, 0, 1)
is relative to the right-handed coordinate system of Equation (2.1), so the actual
Cartesian tuple is 0D+ 0U + 1R = R; that is, A × B= D× U = R. In Figure 2.2
(a), you obtain R from D and U by using the right-hand rule. Similarly, the tuple
(−1, 0, 0) is relative to the left-handed coordinate system of Equation (2.5), so the
actual Cartesian tuple is −1R + 0U + 0D=−R; that is, A × B= D× U =−R. In
Figure 2.2 (b), you obtain −R from D and U by using the left-hand rule. Table 2.1
summarizes our findings when A =D and B= U.

If you compute cross products using coordinate tuples, as shown in Equation
(2.10) for a left-handed camera coordinate system, you have a left-handed cross
product, so to speak. But if you compute cross products using right-handed Cartesian
tuples, as shown in Equation (2.8) also for a left-handed camera coordinate system,
you wind up with a right-handed cross product, so to speak. This means you have
to be very careful when computing cross products, making certain you know which
coordinate system you are working with. The Direct3D function for computing the
cross product does not care about the coordinate system:

D3DXVECTOR A = <a tuple (x0,y0,z0)>;
D3DXVECTOR B = <a tuple (x1,y1,z1)>;
D3DXVECTOR C;
D3DXVec3Cross(&C,&A,&B); // C = (y0 z1 - z0 y1, z0 x1 - x0 z1, x0 y1 - y0 x1)

The function simply implements Equation (2.4) without regard to which coordinate
system the “tuples” A and B come from. The function knows algebra. You are the one
who imposes geometry.

Table 2.1 Summary of handedness and cross product calculations.

Equation Result Coordinate System Handedness Cross Product Applied To

(2.7) D× U = R Right-handed Cartesian tuples

(2.8) D× U = R Left-handed Cartesian tuples

(2.9) D× U = R Right-handed Coordinate tuples

(2.10) D× U =−R Left-handed Coordinate tuples
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2.1.3 Points and Vectors

You might have noticed that I have referred to points and to vectors. These two
concepts are considered distinct and are the topics of affine algebra. A point is not
a vector and a vector is not a point. To distinguish between points and vectors within
text, some authors use different fonts. For the sake of argument, let us do so and
consider three points P, Q, and R and a vector V. The following operations are
axioms associated with affine algebra, but once again to be loose with the notation, I
will just say the following:

1. The difference of the two points is a vector, V = P − Q.

2. The sum of a point and a vector is a point, Q = P + V.

3. (P − Q)+ (Q −R)= (P −R). The intuition for this is to draw a triangle whose
vertices are the three points. This equation says that the sum of the directed edges
of the triangle is the zero vector.

In the third axiom, rather than appealing to the geometry of a triangle, you might
be tempted to remove the parentheses. In fact, the removal of the parentheses is a
consequence of this axiom, but you have to be careful in doing such things that, at
first glance, seem intuitive. The axioms do not allow you to add points in any manner
you like; for example, the expression P + Q is not valid. However, additional axioms
may be postulated that allow a special form of addition in expressions called affine
combinations. Specifically, the following axioms support this:

4. P =∑n
i=1 ciPi is a point, where

∑n
i=1 ci = 1.

5. V =∑n
i=1 diPi is a vector, where

∑n
i=1 di = 0.

With the additional axioms, an expression such as

(1/3)P + (1/3)Q + (1/3)R

is valid since the coefficients sum to one. This example produces the average of the
points. The expression

(P − Q)+ (Q − R)= P − Q + Q − R

is valid. The implied coefficients of the points on the right-hand side are 1,−1, 1, and
−1 (in that order), and their sum is zero. Thus, the expression on the right-hand side
is a vector.

At the beginning of this chapter, I promised not to delve into the finer mathemat-
ical details of the topics. I have done so here, but for practical reasons. Some graphics
programmers choose to enforce the distinction between points and vectors, say, in
an object-oriented language such as C++. To hint at the topic of Section 2.2.5, a
fourth component is provided for both points and vectors. Points are represented as
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4-tuples of the form (x , y , z, 1) and vectors are represented as 4-tuples of the form
(x , y , z, 0). The five axioms for affine algebra are satisfied by these representations.

Axiom 1 is satisfied,

(x0, y0, z0, 1)− (x1, y1, z1, 1)= (x0 − x1, y0 − y1, z0 − z1, 0) (2.11)

Axiom 2 is satisfied,

(x0, y0, z0, 1)+ (x1, y1, z1, 0)= (x0 + x1, y0 + y1, z0 + z1, 1) (2.12)

Axiom 3 is satisfied,

((x0, y0, z0, 1)− (x1, y1, z1, 1))+ ((x1, y1, z1, 1)− (x2, y2, z2, 1))

= (x0 − x1, y0 − y1, z0 − z1, 0)+ (x1− x2, y1− y2, z1− z2, 0)

= (x0 − x2, y0 − y2, z0 − z2, 0)

= ((x0, y0, z0, 1)− (x2, y2, z2, 1))

Axiom 4 is satisfied,

n∑
i=1

ci(xi , yi , zi , 1)=
(

n∑
i=1

cixi ,
n∑

i=1

ciyi ,
n∑

i=1

cizi ,
n∑

i=1

ci

)

=
(

n∑
i=1

cixi ,
n∑

i=1

ciyi ,
n∑

i=1

cizi , 1

) (2.13)

where I used the fact that the ci sum to one. Axiom 5 is satisfied,

n∑
i=1

di(xi , yi , zi , 1)=
(

n∑
i=1

dixi ,
n∑

i=1

diyi ,
n∑

i=1

dizi ,
n∑

i=1

di

)

=
(

n∑
i=1

dixi ,
n∑

i=1

diyi ,
n∑

i=1

dizi , 0

) (2.14)

where I used the fact that the di sum to zero.
Two classes are implemented, one called Point and one called Vector. The inter-

face for the Vector class has minimally the following structure:

class Vector
{
public:

// ‘this’ is vector U
Vector operator+ (Vector V) const; // U + V
Vector operator- (Vector V) const; // U - V
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Vector operator* (float c) const; // V*c
friend Vector operator* (float c, Vector V) const; // c*V

private:
float tuple[4]; // tuple[3] = 0 always

};

The interface for the Point class has minimally the following structure:

class Point
{
public:

// ‘this’ is point P
Point operator+ (Vector V); // P + V, Equation (2.12)
Point operator- (Vector V); // P - V, Equation (2.12)
Vector operator- (Point Q); // P - Q, Equation (2.11)
static Point AffineCSum (int N, float c[], Point Q[]); // Equation (2.13)
static Vector AffineDSum (int N, float d[], Point Q[]); // Equation (2.14)

private:
float tuple[4]; // tuple[3] = 1 always

};

I have shown the points and vectors stored as 4-tuples. The fourth component
should be private so that applications cannot access them and inadvertently change
them. Thus, if you were to support an operator[] member function, you would
need to trap attempts to access the fourth component (via assertions, exceptions, or
some other mechanism). It is possible to use 3-tuples, relying on the fact that the
class names themselves imply the correct fourth component. Given current CPUs
and game consoles, it is better, though, to have 16-byte (4-float) alignment of data
because the hardware expects it in order to perform well.

Two issues come to mind. First, having classes Point and Vector means main-
taining more code than having just a single class to represent points and vectors. The
amount of additional source code might not be of concern to you. Second, and per-
haps the more important issue, is that the clipping process occurs using 4-tuples of
the form (x , y , z, w), where the fourth component w is not necessarily 0 or 1. Clip-
ping involves arithmetic operations on 4-tuples, but the Point class does not support
this when it insists on w = 1. If you were to allow the fourth component to be pub-
lic and not force it to be 1, you would be violating the purist attempt to distinguish
between points and vectors. You could implement yet another class, say, HPoint, and
represent the general 4-tuples, but this means maintaining even more code. My opin-
ion is to keep it simple and just support a vector class, keeping the distinction between
points and vectors in your own mind, being consistent about it when coding, and not
maintaining additional code.
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2.2 Transformations

We want to construct functions that map points in 3D space to other points in 3D
space. The motivation was provided in the last section: taking an object built in model
space and placing it in world space. The transformations considered in this section are
the simplest ones you encounter in computer graphics.

2.2.1 Linear Transformations

The topic of linear transformations is usually covered in a course on linear algebra.
Such transformations are applied to vectors rather than points. I will not give a
detailed overview here. You can read about the topic in any standard textbook on
linear algebra.

The basic idea is to construct functions of the form Y = L(X). The input to the
function is the vector X and the output is the vector Y. The function name itself is also
typeset as a vector, namely, L, to indicate that its output is a vector. A linear function
or linear transformation is defined to have the following property:

L(cU + V)= cL(U)+ L(V) (2.15)

where c is a scalar. The expression cU + V is called a linear combination of the two
vectors. In words, Equation (2.15) says that the function value of a linear combination
is the linear combination of the function values.

Example
2.1

Let X = (x0, x1, x2) and Y = (y0, y1, y2). The function Y = L(X), where L(x0, x1,
x2)= (x0 + x1, 2x0 − x2, 3x0 + x1+ 2x2), is a linear transformation. To verify this,
apply the function to the linear combination cU + V, where U = (u0, u1, u2), V =
(v0, v1, v2), and c is a scalar:

L(cU + V)= L(c(u0, u1, u2)+ (v0, v1, v2))

= L(cu0 + v0, cu1+ v1, cu2 + v2)

= ((cu0 + v0)+ (cu1+ v1), 2(cu0 + v0)− (cu2 + v2),

3(cu0 + v0)+ (cu1+ v1)+ 2(cu2 + v2))

= (c(u0 + u1)+ (v0 + v1), c(2u0 − u2)+ (2v0 − v2),

c(3u0 + u1+ 2u2)+ (3v0 + v1+ 2v2))

= c(u0 + u1, 2u0 − u2, 3u0 + u1+ 2u2)

+ (v0 + v1, 2v0 − v2, 3v0 + v1+ 2v2)

= cL(u0, u1, u2)+ L(v0, v1, v2)

= cL(U)+ L(V)
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These algebraic steps verify that L(cU + V)= cL(U)+ V, so the function is linear.

Example
2.2

The function L(x0, x1, x2) = x2
0 is not a linear transformation. To verify this, it is

enough to show that the function applied to one linear combination is not the lin-
ear combination of the function results. For example, let c = 2, U = (1, 0, 0), and
V = (0, 0, 0); then L(U)= L(1, 0, 0)= 1, L(V)= L(0, 0, 0)= 0, and L(cU + V)=
L(2, 0, 0)= 4. Also, 2L(U)+ L(V)= 2L(1, 0, 0)+ L(0, 0, 0)= 2. This specific case
does not satisfy the constraint L(cU + V)= cL(U)+ L(V), so the function is not
linear.

Example
2.3

Translation of a vector is not linear. The translation function is L(x0, x1, x2) =
(x0, x1, x2)+ (b0, b1, b2), where (b0, b1, b2) �= (0, 0, 0) is the vector used to translate
any point in space. If you choose c = 1, U = (1, 1, 1), and V = (0, 0, 0), then

L(U + V)= L(1, 1, 1)= (1+ b0, 1+ b1, 1+ b2)

which is different from

L(U)+ L(V)= L(1, 1, 1)+ L(0, 0, 0)= (1+ b0, 1+ b1, 1+ b2)+ (b0, b1, b2)

= (1+ 2b0, 1+ 2b1, 1+ 2b2)

Translation is, however, an example of an affine transformation, which I discuss later
in this section.

Linear transformations are convenient to use because they have a representation
that makes them easy to implement and compute in a program. Let us write the
transformation input X and output Y as column vectors (3× 1 vectors). A linear
transformation is necessarily of the form⎡

⎣ y0
y1
y2

⎤
⎦=

⎡
⎣m00 m01 m02

m10 m11 m12
m20 m21 m22

⎤
⎦
⎡
⎣ x0

x1
x2

⎤
⎦=

⎡
⎣m00x0 +m01x1+m02x2

m10x0 +m11x1+m12x2
m20x0 +m21x1+m22x2

⎤
⎦ (2.16)

where the coefficients mij of the 3× 3 matrix are constants. The more compact
notation is

Y =MX (2.17)

where M is a 3× 3 matrix. This form is suggestive of the one-dimensional case
y =mx, which is the equation of a straight line that passes through the origin. The
geometry of linear functions in higher dimensions is slightly more complicated. Once
again, I refer you to any standard textbook on linear algebra to see the details.

By using the representation Y =MX, I have already chosen a convention regard-
ing the manipulation of vectors and matrices. Vectors are columns for me, and the
application of a matrix to a vector puts the matrix on the left and the vector on the
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right. This is the mathematician in me speaking—I chose what I was raised with.
OpenGL and Direct3D choose the opposite convention, which is to represent vec-
tors as rows and to apply a matrix to a vector by putting the vector on the left and
the matrix on the right. This is the usual convention chosen by computer graphics
people. There is no right or wrong for choosing your conventions. For any choice
you make, you will find users who disagree with that choice because they have made
another choice. The fact is, you make your decisions. You live by the consequences.
What is important is to ensure that you have documented your engine and code well,
making it clear to clients exactly what your choices are. There are quite a few other
conventions you must decide on when designing a computer graphics system. A com-
parison of the conventions for transformations is provided in Section 2.8 regarding
Wild Magic, OpenGL, and Direct3D.

Exercise
2.1

Verify that the function defined by Equation (2.16) is a linear transformation.

Computer graphics has a collection of linear transformations that arise frequently
in practice. These are presented here.

Rotation

The motivation for 3D rotation comes from two dimensions, where a rotation ma-
trix is

R =
[

cos θ − sin θ

sin θ cos θ

]
= I + (sin θ)S + (1− cos θ)S2 (2.18)

where I is the identity matrix and S is the skew-symmetric matrix, as shown:

I =
[

1 0
0 1

]
, S =

[
0 −1
1 0

]

I have chosen to factor the matrix R in terms of I , S, and θ because it is suggestive of
how to build the matrix for rotation about an arbitrary axis. For a positive angle θ ,
RV rotates the 2× 1 vector V counterclockwise about the origin, as shown in Figure
2.3. Whether a positive angle represents a counterclockwise or a clockwise rotation is
yet another convention you must choose and make clear to your users.

In three dimensions, the matrix representing a rotation in the xy-plane is

R =
⎡
⎣ cos θ − sin θ 0

sin θ cos θ 0
0 0 1

⎤
⎦= I + (sin θ)S + (1− cos θ)S2 (2.19)

where
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I =
⎡
⎣ 1 0 0

0 1 0
0 0 1

⎤
⎦ , S =

⎡
⎣ 0 −1 0

1 0 0
0 0 1

⎤
⎦

Assuming a choice of coordinate axes as is shown in Figure 2.1, the direction of
rotation is counterclockwise about the z-axis when viewed by an observer who is on
the positive z-side of the xy-plane and looking at the plane with view direction in the
negative z-direction, (0, 0, −1). Think of Figure 2.3 as what such an observer sees. In
that figure, the positive z-direction is out of the page; the negative z-direction is into
the page. A 3D view is shown in Figure 2.4 (a).

y
RV

V
x

 > 0

Figure 2.3 A positive angle corresponds to a counterclockwise rotation.

z

y y y

x x x

z z

> 0

> 0 > 0

(a) (b) c)

Figure 2.4 Rotations about the coordinate axes. (a) A positive-angle rotation about the z-axis.
(b) A positive-angle rotation about the y-axis. (c) A positive-angle rotation about
the x-axis.
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Similar rotation matrices may be constructed for rotations about the other coor-
dinate axes. The matrix representing a rotation in the xz-plane is

R =
⎡
⎣ cos θ 0 sin θ

0 1 0
− sin θ 0 cos θ

⎤
⎦= I + (sin θ)S + (1− cos θ)S2 (2.20)

where

S =
⎡
⎣ 0 0 1

0 1 0
−1 0 0

⎤
⎦

Figure 2.4 (b) is a 3D view of a positive-angle rotation about the y-axis, which
is a counterclockwise rotation in the xz-plane as shown. The matrix representing a
rotation in the yz-plane is

R =
⎡
⎣ 1 0 0

0 cos θ − sin θ

0 sin θ cos θ

⎤
⎦= I + (sin θ)S + (1− cos θ)S2 (2.21)

where

S =
⎡
⎣ 1 0 0

0 0 −1
0 1 0

⎤
⎦

Figure 2.4 (c) is a 3D view of a positive-angle rotation about the x-axis, which is
a counterclockwise rotation in the yz-plane as shown.

In general, the matrix representing a rotation about the axis with direction vector
(u0, u1, u2) is as shown. Define the skew-symmetric matrix

S =
⎡
⎣ 0 −u2 u1

u2 0 −u0
−u1 u0 0

⎤
⎦

then the rotation matrix is

R = I + (sin θ)S + (1− cos θ)S2

=
⎡
⎣ γ + (1− γ )u2

0 −u2σ + (1− γ )u0u1 +u1σ + (1− γ )u0u2

+u2σ + (1− γ )u0u1 γ + (1− γ )u2
1 −u0σ + (1− γ )u1u2

−u1σ + (1− γ )u0u2 +u0σ + (1− γ )u1u2 γ + (1− γ )u2
2

⎤
⎦(2.22)

where σ = sin θ and γ = cos θ .
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Exercise
2.2

Verify that Equation (2.22) produces the coordinate plane rotations mentioned in
Equations (2.19), (2.20), and (2.21). Also verify that the S-matrix in Equation (2.22)
produces the S-matrices for the coordinate plane rotations.

Exercise
2.3

Using algebraic methods, construct the formula of Equation (2.22).

Reflection

A plane passing through the origin is represented algebraically by the equation
N . X = 0, where N is a unit-length vector perpendicular to the plane and X is any
point on the plane. Figure 2.5 (a) provides a 3D view of the plane, a vector V, and the
reflection W of V through the plane. Figure 2.5 (b) shows a 2D side view.

The vector N⊥ is a point on the plane and is the midpoint of the line segment con-
necting V and its reflection U. The superscript symbol ⊥ denotes perpendicularity.
In this case, N⊥ is a vector perpendicular to N.

The side view gives you a good idea of how the vectors are related algebraically.
The input vector is the linear combination

V = cN + N⊥

for the scalar c. The perpendicular component N⊥ is naturally dependent on your
choice of V. In fact, the scalar is easily determined to be c = N . V, which uses the
conditions that N is unit length and that N and N⊥ are perpendicular. The reflection
vector is the linear combination

U =−cN + N⊥

The difference is that the normal component of V is negated to form the normal
component for U; this is the reflection. Subtracting the two equations and using the

N

N

N

–cN

cN

U
U

V
V

(a) (b)

N

Figure 2.5 The reflection of a vector through a plane. (a) A 3D view. (b) A 2D side view.
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formula for c leads to

U = V − 2(N . V)N =
(
I − 2NNT

)
V

where I is the 3× 3 identity matrix and the superscript T denotes the transpose
operation. Using my conventions, N is a 3× 1 (column) vector, which makes NT a
1× 3 (row) vector. The product NNT is a 3× 3 matrix. Notice that NTN is the product
in the other order but is necessarily a scalar (a 1× 1 matrix as it were).

If N = (n0, n1, n2), the reflection matrix is

R = I − NNT =
⎡
⎣ 1− n2

0 −n0n1 −n0n2

−n0n1 1− n2
1 −n1n2

−n0n2 −n1n2 1− n2
2

⎤
⎦ (2.23)

Rotation and reflection matrices are said to be orthogonal matrices. An orthogonal
matrix M has the property that MMT =MTM = I , which says that the inverse
operation of M is its transpose. Apply M to a vector V to obtain U=MV. Now apply
MT to obtain MTU =MTMV = IV = V. Geometrically, if R is a rotation matrix
that rotates a vector about an axis by θ radians, RT is a rotation matrix about the
same axis that rotates a vector by −θ radians. If R is a reflection matrix through a
plane N . X = 0, then RT = R, which says that if you reflect twice, you end up where
you started.

One distinguishing algebraic characteristic between rotations and reflections is
the value of their determinants. Recall that the determinant of a 3× 3 matrix M is

det(M)= det

⎡
⎣m00 m01 m02

m10 m11 m12
m20 m21 m22

⎤
⎦

=m00m11m22 +m01m12m20 +m02m10m21

−m02m11m20 −m01m10m22 −m00m12m21

(2.24)

The determinant of a rotation matrix is 1. The determinant of a reflection matrix
is−1.

Exercise
2.4

Verify that the determinant of the matrix in Equation (2.22) is 1. Verify that the
determinant of the matrix in Equation (2.23) is −1.

Scaling

Scaling is a simple transformation. You scale each component of a vector by a desired
amount: (y0, y1, y2)= (s0x0, s1x1, s2x2), where s0, s1, and s2 are the scaling factors.
The matrix that represents scaling is
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S =
⎡
⎣ s0 0 0

0 s1 0
0 0 s2

⎤
⎦ (2.25)

This is a diagonal matrix. Usually, we assume that the scaling factors are positive
numbers, but 3D modeling packages tend to allow you to set them to negative num-
bers, which can cause all sorts of problems for exporters and engines that rely on
positive scales. If the scales are all the same value, s0 = s1= s2, the transformation is
said to be a uniform scaling ; otherwise, it is a nonuniform scaling . Nonuniform scales
can also lead to problems in the design of a graphics engine. I will get into the details
of this later in the design of a scene graph hierarchy for which each node stores rota-
tion and scaling matrices and translation vectors but also stores a composite matrix
for the entire transformation. Given a composite matrix, a frequently asked question
is how to extract the rotational component and the scaling factors. We will see that
this is an ill-posed problem; see Section 17.5.

The scaling matrix of Equation (2.25) represents scaling in the directions of the
coordinate axes. It is possible to scale in different directions. For example, if you want
to scale the vectors by s in the direction D, you need to decompose the input point X
into a D component and a remainder:

X = dD+ R

where R is perpendicular to D. The decomposition is similar to what was used to
construct reflections. The component of X in the D direction is dX, where d =D . X.
The vector scaled in the D direction is

Y = sdD+ R

and is illustrated in Figure 2.6.

Y

D

R

X
D

sdD

dD

Figure 2.6 Scaling of a vector X by a scaling factor s in the direction D to produce a vector Y.
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Some algebra will show that

Y =
(

sDDT +D⊥
(

D⊥
)T
)

X

where D⊥ is a unit-length vector perpendicular to the unit-length vector D.
Generally, in three dimensions you can apply scaling in three noncoordinate

axis directions D, U, and R by representing the input point in this new coordinate
system as

X = dD+ uU + rR

and then scaling each of the components:

Y = s0dD+ s1uU + s2rR

In matrix form, this becomes

Y =
(
s0DDT + s1UUT + s2RRT

)
X (2.26)

Exercise
2.5

Construct Equation (2.26). Hint: Use the fact that d = D . X, u = U . X, and r =
R . X. Use the construction that led to Equation (2.23) to help you decide how to
rearrange the various vector terms appropriately.

A more intuitive equation for general scaling than Equation (2.26) is obtained by
using a matrix M = [D U R]. The notation means that the first column of M is the
3× 1 vector D, the second column is the 3× 1 vector U, and the third column is the
3× 1 vector R. The transpose of M is also written in a concise form,

MT =
⎡
⎣ DT

UT

RT

⎤
⎦

The notation means that the first row of M is the 1× 3 vector DT, the second row of
M is the 1× 3 vector UT, and the third row of M is the 1× 3 vector RT. Let S be the
diagonal matrix of Equation (2.25). The scaling matrix becomes

s0DDT + s1UUT + s2RRT = [D U R]

⎡
⎣ s0 0 0

0 s1 0
0 0 s2

⎤
⎦
⎡
⎣ DT

UT

RT

⎤
⎦=MSMT (2.27)

Both M and MT are rotation matrices since we are assuming that our coordinate
systems have direction vectors that are mutually perpendicular and form a right-
handed system. In words, MT rotates X to the new coordinate system, S scales the
rotated vector, and M rotates the result back to the old coordinate system.
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(x0, x1)

2(x0, x1) 2(x0 + sx1, x1)

(x0 + sx1, x1)

Figure 2.7 Shearing of points (x0, x1) in the x0 direction. As the x1 value increases for points,
the amount of shearing in the x0 direction increases.

Shearing

Shearing operations are applied less often than rotations, reflections, and scalings, but
I include them here anyway since they tend to be grouped into those transformations
of interest in computer graphics. To motivate the idea, consider a shearing in two
dimensions, as illustrated in Figure 2.7.

In two dimensions, the shearing in the x0 direction has the matrix representation

S =
[

1 s

0 1

]

This maps the point (x0, x1) to (y0, y1)= (x0 + sx1, x1), as shown in Figure 2.7. If
you want to shear in the x1 direction, the matrix is similar,

S =
[

1 0
s 1

]

This maps the point (x0, x1) to (y0, y1)= (x0, x1+ sx0).
In three dimensions, shearing is applied within planes. For example, if you want

to shear within the planes parallel to the x0x1 plane, you would use the matrix

S01=
⎡
⎣ 1 s 0

0 1 0
0 0 1

⎤
⎦ (2.28)

to shear within each plane x2 = c (constant) in the direction of x0. Notice that
(x0, x1, x2) is mapped to (x0 + sx1, x1, x2), so only the x0 value is changed by the
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shearing. If you want to shear within these planes, but in the x1 direction, you would
use the matrix

S10 =
⎡
⎣ 1 0 0

s 1 0
0 0 1

⎤
⎦ (2.29)

In the two equations, the subscripts on the matrix names refer to the indices of the
matrix entries that contain the shearing factors.

Similarly, you can shear in the planes x1= c (constant) in the x0 direction by
using the matrix

S02 =
⎡
⎣ 1 0 s

0 1 0
0 0 1

⎤
⎦ (2.30)

or you can shear in the x2 direction by using the matrix

S20 =
⎡
⎣ 1 0 0

0 1 0
s 0 1

⎤
⎦ (2.31)

You can shear in the planes x0 = c (constant) in the x1 direction by using the matrix

S12 =
⎡
⎣ 1 0 0

0 1 s

0 0 1

⎤
⎦ (2.32)

or you can shear in the x2 direction by using the matrix

S21=
⎡
⎣ 1 0 0

0 1 0
0 s 1

⎤
⎦ (2.33)

Shearing in an arbitrary plane containing the origin is possible. The construction
of the matrix is similar to what was done for scaling; see Equation (2.27) and the
discussion leading to it. You rotate the input point X to the coordinate system of
interest, apply one of the coordinate scaling transformations, and then rotate the
result back to the original coordinate system. The general transformation is

[ D U R ]Sij

⎡
⎣ DT

UT

RT

⎤
⎦ (2.34)

where Sij is one of the shearing matrices from Equations (2.28) through (2.33).
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2.2.2 Affine Transformations

As noted previously, translation is not a linear transformation. However, it is what
distinguishes an affine transformation from a linear one. The definition of a linear
transformation says that a transformation of a linear combination is a linear com-
bination of the transformations. In mathematical terms, if ci are scalars and Vi are
vectors for 1≤ i ≤ n, and if L is a linear transformation, then

L

(
n∑

i=1

ciVi

)
=

n∑
i=1

ciL(Vi)

An affine transformation must deal with the distinction between points and vec-
tors. For the moment, I will switch back to the typesetting conventions for points and
vectors. Let P and Q be points. Let Q=A(P) be a transformation that maps points to
points. The transformation is an affine transformation when it satisfies the following
conditions:

1. Consider points Pi and Qi =A(Pi) for 1≤ i ≤ 4. If P2 − P1= P4 − P3, then it
must be that Q2 − Q1= Q4 − Q3.

2. If X = P2 − P1 and Y = Q2 − Q1, then the transformation Y = L(X) must be a
linear transformation.

This is a fancy mathematical way of saying that an affine transformation is com-
posed of two parts, one part that maps a point to a point and one part that maps a
vector to a vector. Suppose that the linear transformation is written in matrix form,
Y =MX, for some matrix M . The second condition in the definition implies

P2 = P1+ X (2.35)

and

Q2 = Q1+ Y = Q1+MX

Since Q1 is a point, we can write it as an offset from P1; namely,

Q1= P1+ B

for some vector B. Combining the last two displayed equations, we have

Q2 = P1+ (MX + B) (2.36)

The affine transformation between points is

Q2 =A(P2)
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Figure 2.8 Rotation of a point P about a central point C to obtain a point Q.

but Equation (2.36) says that as long as we use the same origin for the coordinate
space, we may compute the transformation in vector terms:

Y =MX + B (2.37)

You should recognize this as the standard form in which you have manipulated
vectors when translations are allowed. It is important to note that the right-hand side
of Equation (2.37) consists only of vector and matrix operations. There are no “point”
operations. Perhaps this is yet another argument why your graphics engine need not
enforce a distinction between points and vectors.

Although translation is the obvious candidate to illustrate affine transformations,
another one of interest is rotation about a point that is not at the origin, as Figure 2.8
illustrates.

The origin of the coordinate system is O= (0, 0, 0). The vector from the origin to
the center of rotation is defined by C = C − O. The rotation matrix is R. The points
are P = O + X and

Q = O + Y

= C + (O − C)+ Y

= C + (Y − C)

= C + R(X − C)

= O + (C − O)+ R(X − C)

= O + C + R(X − C)

Removing the point notation, the vector calculations are

Y = RX + (I − R)C (2.38)

where I is the identity matrix. The translational component of this representation for
the affine transformation is (I − R)C.
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Note: For the remainder of the book, I will use the same typesetting convention
for points and vectors. When necessary, I will state explicitly whether something is a
point or a vector.

2.2.3 Projective Transformations

Yet another class of transformations involve projections. There are different types of
projections that will interest us: orthogonal, oblique, and perspective.

Orthogonal Projection onto a Line

Orthogonal projection is the simplest type of projection to analyze. Consider the goal
of projecting a point onto a line. Figure 2.9 illustrates this.

The point X is to be projected onto a line containing a point P and having unit-
length direction D. In the figure, the point Y is the projection and has the property
that the vector X − Y is perpendicular to D; that is,

0=D . (X − Y)

Because Y is on the line, it is of the form

Y = P+ dD

for some scalar d . Substituting this in the previous displayed equation, we have

0=D . (X − P− dD)

P X

Y

D

Figure 2.9 The orthogonal projection of a point onto a line.
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which can be solved to obtain

d =D . (X − P)

The point of projection is therefore defined by

Y − P= (D . (X − P))D=DDT(X − P)

Equivalently, the projection is

Y =DDTX +
(
I −DDT

)
P (2.39)

which is of the form Y =MX + B, therefore orthogonal projection onto a line is
an affine transformation. Unlike our previous examples, this transformation is not
invertible. Each point on a line has infinitely many points that project to it (an entire
plane’s worth), so you cannot unproject a point from the line unless you have more
information. Algebraically, the noninvertibility shows up in that M =DDT is not an
invertible matrix.

Orthogonal Projection onto a Plane

Consider projecting a point X onto a plane defined by N . (Y − P)= 0, where N is
a unit-length normal vector, P is a specified point, and Y is any point on the plane.
Figure 2.10 illustrates this.

The projection point is Y. The vector X − P has a component in the plane, Y − P,
and a component on the normal line to the plane, nN, for some scalar n. Thus,

X − P= (Y − P)+ nN

N

P Y

XnN

Figure 2.10 The orthogonal projection of a point onto a plane.
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Dotting with N, we have

N . (X − P)= n

which uses the facts that N is unit length and Y − P is perpendicular to N. We may
solve to obtain

Y − P= (X − P)− (N . (X − P))N =
(
I − NNT

)
(X − P)

Equivalently, the projection is

Y =
(
I − NNT

)
X + NNTP (2.40)

You will notice that this is of the form Y =MX + B, therefore orthogonal projection
onto a plane is also an affine transformation. Moreover, it is not invertible since
infinitely many points in space project to the same point on the plane (an entire
line’s worth), so you cannot unproject a point from the plane unless you have more
information. Algebraically, the noninvertibility shows up in that M = I −NNT is not
an invertible matrix.

Oblique Projection onto a Plane

As before, let the plane contain a point P and have a unit-length normal vector N.
The projection of a point onto a plane does not have to be in the normal direction
to the plane. This type of projection is said to be oblique to the plane. Let D be the
unit-length direction in which to project the points. This direction should not be
perpendicular to the plane; that is, N . D �= 0. Figure 2.11 illustrates this.

N

P Y

D

X

Figure 2.11 The oblique projection of a point onto a plane.
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The projection point is Y = X + dD for some scalar d . Subtracting the known
plane point, we have

Y − P= (X − P)+ dD

Dotting with N, we have

0= N . (X − P)+ dN . D

which uses the fact that Y − P is perpendicular to N. We may solve for d ,

d =−N . (X − P)

N . D

The projection is defined, therefore, by

Y − P= (X − P)− N . (X − P)

N . D
D=

(
I − DNT

DTN

)
(X − P)

Equivalently, the projection is

Y =
(

I − DNT

DTN

)
X + DNT

DTN
P (2.41)

Once again, this is of the form MX + B, therefore oblique projection onto a plane is
an affine transformation. And as with the other projections, it is not invertible.

Perspective Projection onto a Plane

We now encounter a projection that is not an affine transformation, and one that
is central to rendering—the perspective projection. Points are now projected onto
a plane, but along rays with a common origin E, called the eye point . Figure 2.12
illustrates this.

The point X is projected to the point Y. The ray to use has origin E, but the
direction is determined by the vector X − E. At the moment there is no need to use a
unit-length vector for the direction. As a ray point, we have

Y = E + t (X − E)

for some scalar t > 0. Subtract the known plane point P to obtain

Y − P= (E − P)+ t (X − E)

and dot with N to obtain

0= N . (E − P)+ tN . (X − E)
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N E

P Y

X

Figure 2.12 The perspective projection of a point onto a plane using an eye point E.

This uses the fact that Y − P is perpendicular to the plane normal N. Solving for t ,
we have

t =−N . (E − P)

N . (X − E)

To reaffirm the constraint that t ≥ 0, Figure 2.12 shows the vectors P− E and X − E.
Both vectors form an obtuse angle with the normal vector, so N . (P− E) < 0 and
N . (X − E) < 0, which imply t > 0.

The projection point is, therefore, defined by

Y = E − N . (E − P)

N . (X − E)
(X − E)=

(
ENT − N . (E − P)I

)
(X − E)

N . (X − E)
(2.42)

where I is the identity matrix. It is not possible to write the expression in the form
Y =MX + B, where M and B are independent of X. What prevents this is the divi-
sion by N . (X − E). You will hear reference to this division as the perspective divide.
However, Section 2.2.5 will show a unifying format for representing linear, affine, and
perspective transformations.

Exercise
2.6

The point X is “behind the eye” when the distance from X to the plane is larger than
or equal to the distance from E to the plane. In this case, prove that the ray from E to
X cannot intersect the plane.

2.2.4 Properties of Perspective Projection

Consider the coordinate system whose origin is the eye point, whose view direction
is D, whose up direction is U, and whose right direction is R =D× U. The point to
be projected has a representation in this coordinate system as

X = E + dD+ uU + rR
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where d =D . (X − E), u=D . (X − E), and r =D . (X − E). The plane normal is in
the opposite direction of the view; namely, N =−D. The point on the plane closest
to the eye point is P= E + dminD for some distance dmin > 0. Substituting all this
into Equation (2.42), we have the projected point

Y = E + dmin(dD+ uU + rR)

d
= E + dD+ uU + rR

d/dmin

Thus, in the new coordinate system, (d , u, r) is projected to (d , u, r)/(d/dmin).
Notice that the first component is actually dmin, which is to be expected since the
projection point is on the plane d = dmin (in the new coordinate system).

Within the new coordinate system, it is relatively easy to demonstrate some prop-
erties of perspective projection. In all of the cases mentioned here, the objects are
assumed to be in front of the eye point; that is, all points on the objects are closer to
the projection plane than the eye point. Line segments must project to line segments,
or to a single point when the line segment is fully contained by a single ray emanat-
ing from E. Triangles must project to triangles, or to a line segment when the triangle
and E are coplanar. Finally, conic sections project to conic sections, with the degen-
erate case of a conic section projecting to linear components when the conic section
is coplanar with E. A consequence of verifying these properties is that we will have an
idea of how uniformly spaced points on a line segment are projected to nonuniformly
spaced points. This relationship is important in perspective projection for rendering,
in particular when depth must be computed (which is nearly always) and in interpo-
lating vertex attributes.

Lines Project to Lines

Consider a line segment with endpoints Qi = (di , ui , ri) for i = 0, 1. Using only the
two components relevant to the projection plane, let the corresponding projected
points be Pi = (ui/wi , ri/wi), with wi = di/dmin for i = 0, 1. The 3D line segment is
Q(s)=Q0+ s(Q1−Q0) for s ∈ [0, 1]. For each s, let P(s) be the projection of Q(s).
Thus,

Q(s)= (d0 + s(d1− d0), u0 + s(u1− u0), r0 + s(r1− r0))

and

P(s)=
(

u0 + s(u1− u0)

w0 + s(w1− w0)
,

r0 + s(r1− r0)

w0 + s(w1− w0)

)

=
(

u0

w0

+ w1s

w0 + (w1− w0)s

(
u1

w1

− u0

w0

)
,

r0

w0

+ w1s

w0 + (w1− w0)s

(
r1

w1

− r0

w0

))
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= P0 + w1s

w0 + (w1− w0)s
(P1− P0)

= P0 + s̄(P1− P0)

where the last equality defines

s̄ = w1s

w0 + (w1− w0)s
(2.43)

a quantity that is also in the interval [0, 1]. We have obtained a parametric equation
for a 2D line segment with endpoints P0 and P1, so in fact line segments are projected
to line segments, or if P0 = P1, the projected segment is a single point. The inverse
mapping from s̄ to s is actually important for perspectively correct rasterization, as
we will see later:

s = w0s̄

w1+ (w0 − w1)s̄
(2.44)

Exercise
2.7

Construct Equation (2.44) from Equation (2.43).

Equation (2.43) has more to say about perspective projection. Assuming w1 > w0,
a uniform change in s does not result in a uniform change in s̄. The graph of s̄ = F(s)

is shown in Figure 2.13.
The first derivative is F ′(s) = w0w1/[w0 + s(w1− w0)]2 > 0, and the second

derivative is F ′′(s)=−2w0w1/[w0+ s(w1−w0)]3 < 0. The slopes of the graph at the
endpoints are F ′(0)=w1/w0 > 1and F ′(1)=w0/w1 < 1. Since the second derivative
is always negative, the graph is concave. An intuitive interpretation is to select a
set of uniformly spaced points on the 3D line segment. The projections of these

1

0
0 1

s

s-

Figure 2.13 The relationship between s and s̄.
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points are not uniformly spaced. More specifically, the spacing between the projected
points decreases as s̄ increases from 0 to 1. The relationship between s and s̄ and
limited floating-point precision are what contribute to depth buffering artifacts, to
be discussed later.

Triangles Project to Triangles

Because line segments project to line segments, we can immediately assert that trian-
gles project to triangles, although possibly degenerating to a line segment. However,
let’s derive the parametric relationships that are analogous to those of Equations
(2.43) and (2.44) anyway.

Let Qi = (di , ui , ri) for i = 0, 1, 2 be the vertices of a triangle. The triangle is
specified parametrically as Q(s , t)= Q0 + s(Q1− Q0)+ t (Q2 − Q0) for 0≤ s ≤ 1,
0≤ t ≤ 1, and s + t ≤ 1. Let the projected points for the Qi be Pi = (ui/wi , ri/wi)

for i = 0, 1, 2, where wi = di/dmin. For each s and t , let P(s , t) be the projection
of Q(s , t). Some algebra will show the following, where � = w0 + (w1− w0)s+
(w2 − w0)t ,

P(s , t)=
(

u0 + s(u1− u0)+ t (u2 − u0)

�
,
r0 + s(r1− r0)+ t (r2 − r0)

�

)

=
(

u0

w0

+ w1s

�

(
u1

w1

− u0

w0

)
+ w2t

�

(
u2

w2

− u0

w0

)
,

y0

w0

+ w1s

�

(
r1

w1

− r0

w0

)

+w2t

�

(
r2

w2

− r0

w0

))

= P0 + w1s

�
(P1− P0)+ w2t

�
(P2 − P0)

Define

(s̄ , t̄ )= (w1s , w2t)

w0 + (w1− w0)s + (w2 − w0)t
(2.45)

in which case the projected triangle is

P(s , t)= P0 + s̄(P1− P0)+ t̄ (P2 − P0)

The inverse mapping can be used by the rasterizers for perspectively correct triangle
rasterization. The inverse is

(s , t)= (w0w2s̄ , w0w1t̄ )

w1w2 + w2(w0 − w1)s̄ + w1(w0 − w2)t̄
(2.46)



2.2 Transformations 39

Exercise
2.8

Construct Equation (2.46) from Equation (2.45).

Conics Project to Conics

Showing that the projection of a conic section is itself a conic section requires a bit
more algebra. Let Qi = (xi , yi , zi) for i = 0, 1, 2 be points such that Q1− Q0 and
Q2 − Q0 are unit length and orthogonal. The points in the plane containing the Qi

are represented by Q(s , t)=Q0 + s(Q1−Q0)+ t (Q2 −Q0) for any real numbers s

and t . Within that plane, a conic section is defined by

As2 + Bst + Ct2 +Ds + Et + F = 0 (2.47)

To show that the projection is also a conic, substitute the formulas in Equation (2.46)
into Equation (2.47) to obtain

Ās̄2 + B̄s̄t̄ + C̄t̄2 + D̄s̄ + Ēt̄ + F̄ = 0 (2.48)

where

Ā= w2
2

(
w2

0A+ w0(w0 − w1)D + (w0 − w1)
2F
)

B̄ = w1w2

(
w2

0B + w0(w0 − w2)D + w0(w0 − w1)E + 2(w0 − w1)(w0 − w2)F
)

C̄ = w2
1

(
w2

0C + w0(w0 − w2)E + (w0 − w2)
2F
)

D̄ = w1w
2
2

(
w0D + 2(w0 − w1)F

)
Ē = w2

1w2

(
w0E + 2(w0 − w2)F

)
F̄ = w2

1w
2
2F .

A special case is D =E = F = 0, in which case the conic is centered at Q0 and has axes
Q1− Q0 and Q2 − Q0. Consequently, Ā = w2

2w
2
0A, B̄ = w1w2w

2
0B, C̄ = w2

1w
2
0C,

and B̄2 − 4ĀC̄ = B2 − 4AC. The sign of B2 − 4AC is preserved, so ellipses are
mapped to ellipses, hyperbolas are mapped to hyperbolas, and parabolas are mapped
to parabolas.

Exercise
2.9

At the beginning of the discussion about projecting line segments, triangles, and
conic sections, the assumption was made that all points on these objects are in front
of the eye point. What can you say about the projections of the objects when some
points are behind the eye point?
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2.2.5 Homogeneous Points and Matrices

We have seen that linear transformations are of the form

Y =MX

where X is the 3× 1 input vector, Y is the 3× 1 output vector, and M is a 3× 3 matrix
of constants. Affine transformations extend this to

Y =MX + B

where B is a 3× 1 vector of constants. The perspective transformation did not fit
within this framework. Equation (2.42) is of the form

Y = M(X − E)

N . (X − E)

We can unify these into a single matrix representation by introducing the concept
of homogeneous points, which are represented as 4-tuples but written as 4× 1 vec-
tors when used in matrix-vector operations, and homogeneous matrices, which are
represented as 4× 4 matrices.

Using the standard naming conventions that graphics practitioners have used for
homogeneous points, the 4-tuples are of the form (x , y , z, w). I had already hinted
at using 4-tuples to distinguish between points and vectors; see Section 2.1.3. The 4-
tuple represents a point when w = 1, so (x , y , z, 1) is a point. The 4-tuple represents
a vector when w = 0, so (x , y , z, 0) is a vector. In computer graphics, though, there
is more to homogeneous points than specifying w to be zero or one.

Defining points as 4-tuples already allows us to unify linear and affine transfor-
mations into a single matrix representation. Specifically, the linear transformation is
currently of the form

⎡
⎣ y0

y1
y2

⎤
⎦= Y =MX =

⎡
⎣m00 m01 m02

m10 m11 m12
m20 m21 m22

⎤
⎦
⎡
⎣ x0

x1
x2

⎤
⎦

Appending a fourth component of 1 to the vectors and increasing the size of the
matrix, adding certain entries as needed, this equation becomes

⎡
⎢⎢⎣

y0
y1
y2
1

⎤
⎥⎥⎦=

⎡
⎢⎢⎣

m00 m01 m02 0
m10 m11 m12 0
m20 m21 m22 0

0 0 0 1

⎤
⎥⎥⎦
⎡
⎢⎢⎣

x0
x1
x2
1

⎤
⎥⎥⎦

A convenient block-matrix form is
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[
Y

1

]
=
[

M 0

0T 1

] [
X

1

]

The output vector has an upper block that is the 3× 1 vector Y. The lower block is
the (1× 1) scalar 1. The input vector is structured similarly. The matrix of coefficients
has the following structure. The upper-left block is the 3× 3 matrix M ; the upper-
right block is the 3× 1 zero vector; the lower-left block is the 1× 3 zero vector; and
the lower-right block is the (1× 1) scalar 1.

Similarly, the affine transformation currently is

⎡
⎣ y0

y1
y2

⎤
⎦= Y =MX + B=

⎡
⎣m00 m01 m02

m10 m11 m12
m20 m21 m22

⎤
⎦
⎡
⎣ x0

x1
x2

⎤
⎦+

⎡
⎣ b0

b1
b2

⎤
⎦

but may be extended to use 4× 1 points and a 4× 4 matrix,

⎡
⎢⎢⎣

y0
y1
y2
1

⎤
⎥⎥⎦=

⎡
⎢⎢⎣

m00 m01 m02 b0
m10 m11 m12 b1
m20 m21 m22 b2

0 0 0 1

⎤
⎥⎥⎦
⎡
⎢⎢⎣

x0
x1
x2
1

⎤
⎥⎥⎦

It also has a block-matrix form,[
Y

1

]
=
[

M B

0T 1

] [
X

1

]

The perspective transformation can almost be made to fit into this framework,
with two notable exceptions. First, the choice of w = 1 for the input is acceptable, but
the output value for w is generally nonzero and not 1. Second, we still cannot handle
the perspective divide. Despite this, consider the following block-matrix expression
that gets us closer to our goal:

[
Y

1

]
∼
[

Y′

w

]
=
[

M(X − E)

NT(X − E)

]
=
[

M −ME

NT −NTE

] [
X

1

]
(2.49)

where M = ENT − N . (E − P)I . The leftmost expression is what we want to con-
struct, where Y is the output vector defined by Equation (2.42). The remaining
portions of the expression are what we can construct using matrix operations. The
output of these operations has a 3× 1 vector Y′, which is not the actual output we
want. The output also has a w component, which is not necessarily 1. However, if we
were to perform the perspective divide, we obtain

Y = Y′/w
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1

(x1, mx1)

(x2, 0)

(1/m, 1)

(x0, mx0)

w

x

Figure 2.14 All homogeneous points along a line of slope m, excluding the origin, are equivalent
to the homogeneous point (1/m, 1). The points with a w-component of zero are
vectors and are said to be equivalent to the point at infinity.

The division is not a matrix operation, because it involves a quantity dependent on
the input X. The use of the symbol∼ in[

Y

1

]
∼
[

Y′

w

]

indicates that the 4-tuples are not equal but equivalent in the sense that the division
by w does produce two equal 4-tuples. This equivalence is the basis for projective
geometry.

To understand the equivalence in two dimensions, look at Figure 2.14. The figure
shows a couple of homogeneous points, (x0, mx0) and (x1, mx1), on the line of
slope m. All homogeneous points on this line, excluding the origin, are equivalent
to (1/m, 1). The homogenenous point (x2, 0) corresponds to a vector since its w-
component is zero. The division by zero cannot be performed, but the point is said
to be equivalent to the point at infinity.

Now that we have the concept of equivalence of homogeneous points, notice that
the matrix operations in the linear and affine transformations produce outputs whose
w-component is 1. If we were to divide by w anyway, we would obtain the correct re-
sults for the transformations. This allows us finally to have a unifying representation
for linear, affine, and perspective transformations—as homogeneous matrix opera-
tions. The most general form allows for inputs to have w-components that are not 1:[

Y′

w1

]
=
[

MX′ + w0B

CTX′ + dw0

]
=
[

M B

CT d

] [
X′

w0

]
(2.50)
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When necessary, the equivalent point is computed by doing the perspective division.
Linear transformations are characterized by B= 0, C = 0, d = 1, w0 = 1, and w1=
0. Affine transformations are characterized by C = 0, d = 1, w0 = 1, and w1= 0.
Perspective transformations occur when C �= 0 and, as long as w1 �= 0, you obtain
the actual 3D projection point by doing the perspective divide.

Homogeneous transformations, specifically projective ones, are a major part of
culling and clipping of triangles against the planes defining a view frustum; see Sec-
tions 2.3.5 and 2.4.3. They also occur in special effects such as planar projected shad-
ows (Section 20.11), planar reflections (Section 20.10), projected textures (Section
20.12), and shadow maps (Section 20.13).

2.3 Cameras

Only a portion of the world is displayed at any one time. This region is called the view
volume. Objects outside the view volume are not visible and therefore not drawn.
The process of determining which objects are not visible is called culling . Objects
that intersect the boundaries of the view volume are only partially visible. The visible
portion of an object is determined by intersecting it with the view volume, a process
called clipping .

The display of visible data is accomplished by projecting it onto a view plane.
In this book I consider only perspective projection, as discussed in Sections 2.2.3
through 2.2.5. Orthogonal projection may also be used for viewing. In a graphics
API, this amounts to choosing the parameters for a projection matrix.

2.3.1 The Perspective Camera Model

Our assumption is that the view volume is a bounded region in space, so the projected
data lies in a bounded region in the view plane. A rectangular region in the view plane
that contains the projected data is called a viewport . The viewport is what is drawn
on the rectangular computer screen. The standard view volume used is called the view
frustum. It is constructed by selecting an eye point and forming an infinite pyramid
with four planar sides. Each plane contains the eye point and an edge of the viewport.
The infinite pyramid is truncated by two additional planes called the near plane and
the far plane. Figure 2.15 shows a view frustum.

The perspective projection is computed by intersecting a ray with the view plane.
The ray has origin E, the eye point, and passes through the world point X. The
intersection point is Y. Equation (2.42) tells you how to construct Y from X as long
as you know the eye point and the equation of the view plane, which I mention in the
next paragraph. The combination of an eye point, a set of coordinate axes assigned to
the eye point, a view plane, a viewport, and a view frustum is called a camera model.

The camera has a coordinate system associated with it. The camera origin is the
eye point E. The camera view direction is a unit-length vector D that is perpendicular
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E
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X
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Far

Figure 2.15 An eye point E and a view frustum. The point X in the view frustum is projected to
the point Y in the viewport.

to the view plane. This direction vector is chosen to point away from the observer,
so the eye point is considered to be on the negative side of the plane. If the view
plane is at a distance dmin from the eye point, measured in the D direction, then the
view plane normal to use in Equation (2.42) is N =−D and the view plane point
to use is P = E + dminD. The camera up vector is the unit-length U vector chosen
to be parallel to two opposing edges of the viewport. The camera right vector is the
unit-length vector R chosen to be perpendicular to the camera direction and camera
up vector with R = D× U. The coordinate system {E; D, U, R} is a right-handed
system.

Figure 2.16 shows the camera model, including the camera coordinate system and
the view frustum. The six frustum planes are labeled with their names: near, far, left,
right, bottom, top. The camera location E and the camera axis directions D, U, and R
are shown. The view frustum has eight vertices. The near-plane vertices are Vt�, Vb�,
Vtr , and Vbr . Each subscript consists of two letters, the first letters of the frustum
planes that share that vertex. The far-plane vertices have the name W and use the
same subscript convention. The equations for the vertices are

Vb� = E + dminD+ uminU + rminR

Vt� = E + dminD+ umaxU + rminR

Vbr = E + dminD+ uminU + rmaxR

Vtr = E + dminD+ umaxU + rmaxR

(2.51)
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Wb� = E + dmax

dmin

(
dminD+ uminU + rminR

)

Wt� = E + dmax

dmin

(
dminD+ umaxU + rminR

)

Wbr = E + dmax

dmin

(
dminD+ uminU + rmaxR

)

Wtr = E + dmax

dmin

(
dminD+ umaxU + rmaxR

)
The near plane is at a distance dmin from the camera location and the far plane is at a
distance dmax. These distances are the extreme values in the D direction. The extreme
values in the U direction are umin and umax. The extreme values in the R direction are
rmin and rmax.

The equations of the six view frustum planes are provided here in the form that
is used for object culling. The near plane has inner-pointing, unit-length normal D.
A point on the plane is E + dminD. An equation of the near plane is

D . X =D . (E + dminD)=D . E + dmin (2.52)

The far plane has inner-pointing, unit-length normal −D. A point on the plane
is E + dmaxD. An equation of the far plane is

−D . X =−D . (E + dmaxD)=−(D . E + dmax) (2.53)

The left plane contains the three points E, Vt�, and Vb�. A normal vector that
points inside the frustum is

(Vb� − E)× (Vt� − E)= (dminD+ uminU + rminR)× (dminD+ umaxU + rminR)

= (dminD+ rminR)× (umaxU)+ (uminU)× (dminD+ rminR)

= (dminD+ rminR)× ((umax − umin)U)

= (umax − umin)(dminD× U + rminR × U)

= (umax − umin)(dminR − rminD)

An inner-pointing, unit-length normal and the left plane are

N� = dminR − rminD√
d2

min + r2
min

, N�
. (X − E)= 0 (2.54)

An inner-pointing normal to the right plane is (Vtr − E)× (Vbr − E). A similar
set of calculations as before will lead to an inner-pointing, unit-length normal and
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Figure 2.16 (a) A 3D drawing of the view frustum. The left, right, bottom, top, near, and far
planes are labeled, as are the eight vertices of the frustum. (b) A 2D drawing of the
view frustum as seen from the top side. (c) A 2D drawing of the view frustum as seen
from the right side.

the right plane:

Nr = −dminR + rmaxD√
d2

min + r2
max

, Nr
. (X − E)= 0 (2.55)
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Similarly, an inner-pointing, unit-length normal and the bottom plane are

Nb = dminU − uminD√
d2

min + u2
min

, Nb
. (X − E)= 0 (2.56)

An inner-pointing, unit-length normal and the top plane are

Nt = −dminU + umaxD√
d2

min + u2
max

, Nt
. (X − E)= 0 (2.57)

It is common when choosing a camera model to have an orthogonal view frus-
tum. The frustum is symmetric in that umin =−umax and rmin =−rmax. The four
independent frustum parameters are dmin, dmax, umax, and rmax. An alternate way to
specify the frustum is to use the field of view in the U direction and the aspect ra-
tio for the viewport. In Figure 2.16 (c), the field of view is the angle 2θu. The aspect
ratio is the width divided by height, in this case ρ = rmax/umax. The frustum is com-
pletely determined by specifying dmin, dmax, θu, and ρ. The values for umax and rmax
are determined from

umax = dmin tan(θu), rmax = ρumax (2.58)

The term orthogonal is used in this context to refer to the fact that the central axis
of the frustum is orthogonal to the near face of the frustum. It does not refer to an
orthographic projection.

Although every indication so far is that the projections of the points will be to the
entire rectangular viewport of the view frustum, there are circumstances when you
want to view a scene only in a subrectangle of the viewport. Using relative measure-
ments, the full viewport is thought of as a unit square, as shown in Figure 2.17.

The full viewport has relative coordinates between 0 and 1. A smaller viewport is
specified by choosing p�, pr , pb, and pt so that 0≤ p� < pr ≤ 1 and 0≤ pb < pt ≤
1. These relative coordinates will come into play when computing the actual pixel
locations to draw in a window. The range of d values is [dmin, dmax]. A relative depth
range is [0, 1]. The value 0 corresponds to dmin and the value 1 corresponds to dmax.
Some applications might want the depth range to be a subset [pn, pf ]⊆ [0, 1].

In summary, you specify a perspective camera model by choosing an eye point
E; a right-handed orthonormal set of coordinate axis directions D (view direction),
U (up direction), and R (right direction); the view frustum values dmin (near-plane
distance from the eye point), dmax (far-plane distance from the eye point), rmin
(minimum in right direction), rmax (maximum in right direction), umin (minimum
in up direction), and umax (maximum in up direction); the viewport values p� (left),
pr (right), pb (bottom), and pt(top); and the depth range pn (near) and pf (far).
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Figure 2.17 The full viewport of the view frustum is the full rectangle on the view plane. A smaller
viewport is shown.

2.3.2 Model or Object Space

Three-dimensional modeling packages have their own specified coordinate systems
for building polygonal models. I call the space in which the models are built model
space. Others sometimes call this object space. I suppose if you are used to the art
content being called models, you use model space, and if you are used to the content
being called objects, you use object space.

2.3.3 World Space

The coordinate system that is most prominent in a game is the world coordinate
system, or world space. The choice is not important from a theoretical standpoint.
From a practical standpoint, the choice might be related to constraints you place on
the artists regarding the coordinate systems they use in their modeling packages. For
example, if a modeling package has the convention that the positive y-axis is in the
upward direction, then you might very well choose the world coordinates to use the
positive y-axis for the upward direction. Most likely if you chose a world coordinate
system for your previous project, you will choose the same one for the next project.

The main problem in dealing with both a world space and a model space is
positioning, orienting, and possibly scaling the models so that they are correctly
placed in the world. For example, Figure 2.18 (a) shows a tetrahedron built in a
coordinate system provided by a modeling package.

The tetrahedron vertices in model space are P0 = (0, 0, 0), P1= (1, 0, 0), P2 =
(0, 1, 0), and P3= (0, 0, 1). We want each tetrahedron vertex Pi to be located in world
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(a) Object in model space (b) Object in world space

Figure 2.18 (a) A tetrahedron built in the model coordinate system. The origin is (0, 0, 0) and the
up direction is (0, 1, 0). (b) The tetrahedron placed in the world coordinate system
whose origin is O, whose view direction is D, whose up direction is U = (0, 0, 1),
and whose right direction is R.

space at the point Qi = O+ diD+ uiU + riR, 0 ≤ i ≤ 3. This is accomplished by
constructing an affine transformation that maps the point P0 to the point Q0 and that
maps the vectors Pi − P0 to the vectors Qi −Q0 for 1≤ i ≤ 3. The transformation is

Q=Q0 +M(P− P0)

where M(Pi − P0)=Qi −Q0. In algebraic terms, we need

M [ P1− P0 P2 − P0 P3− P0 ]= [ Q1−Q0 Q2 −Q0 Q3−Q0 ]

where the two block matrices have columns using the vectors as indicated. The matrix
M is therefore

M = [ Q1−Q0 Q2 −Q0 Q3−Q0 ] [ P1− P0 P2 − P0 P3− P0 ]−1

The matrix M is said to be the model-to-world transformation for the tetrahedron,
sometimes called the model transformation and sometimes called the world transfor-
mation. Other transformations involved in converting model-space points to points
in other spaces have names that indicate the range of the transformation—the set of
outputs from the transformation. To be consistent with this terminology, I will use
the term world transformation.

Given a 3× 3 matrix M , which represents scaling, rotation, reflection, shearing,
and other linear operations, given a 3×1 translation vector B, and given a 3×1
model-space point Xmodel, the corresponding 3× 1 world-space point Xworld is
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generated by the homogeneous equation[
Xworld

1

]
=
[

M B

0T 1

] [
Xmodel

1

]
=Hworld

[
Xmodel

1

]
(2.59)

The matrix Hworld is the world matrix in homogeneous form. Naturally, as long as M

is invertible, we can map world-space points to model-space points by[
Xmodel

1

]
=
[

M−1 −M−1B

0T 1

] [
Xworld

1

]
=H−1

world

[
Xworld

1

]
(2.60)

where H−1
world is the inverse world matrix in homogeneous form.

In the sample applications that ship with Wild Magic, the choice of the world
space varies. Any objects that are loaded from disk are repositioned or reoriented as
needed so that they are placed correctly in the world.

2.3.4 View, Camera, or Eye Space

So far we know about model space, the space where objects are created by the artists,
and we know about world space, the space for the game environment itself. The
objects are loaded into the game, but it is necessary to associate with them their world
transformations. Model-space points are mapped to world-space points as needed.

A world-space point may also be located within the camera coordinate system.
Once it is, the point is said to be in view space or camera space or eye space (all used
by various people in the industry). The point must be represented as

Xworld = E + dD+ uU + rR

where {E; D, U, R} is the coordinate system for the camera. The coefficients are

d =D . (Xworld − E), u= U . (Xworld − E), r = R . (Xworld − E)

The eye point and camera directions are chosen to be consistent with your world
coordinate system. In the beginning, there was nothing—except for Cartesian space.
Your intent is to fill Cartesian space with your beautiful creations, and then place an
observer in the world to admire them. Of course, this requires you to impose a world
coordinate system. In many cases, you will have an idea of which direction you want
to be the up direction. Two directions perpendicular to the up direction are chosen to
complete your coordinate axes. The choice of origin is made. The world coordinates
are of your choosing. How you position and orient the observer is a separate matter.
Nothing prevents you from placing the observer on the ground standing on his head!
However, the typical placement will be to have the observer’s up direction align with
the world’s up direction. What the observer sees is determined by your camera model.
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The coefficients of X in the camera coordinate system are stored in a 3× 1 vector
and referred to as the view coordinates for the world point,

Xview =
⎡
⎣ r

u

d

⎤
⎦=

⎡
⎣ R . (Xworld − E)

U . (Xworld − E)

D . (Xworld − E)

⎤
⎦=

⎡
⎣ RT

UT

DT

⎤
⎦ (Xworld − E)

= [ R U D ]T (Xworld − E)

where the first equality defines Xview. Please observe that I am listing the components
in the order (r , u, d), not in the natural order (d , u, r) that is associated with the
coordinate system {E; D, U, R}! Effectively, (r , u, d) are the coordinates for the per-
muted coordinate system {E; R , U, D}, which happens to be left-handed. The Wild
Magic software renderer implements the camera model in this way so that the last
component of Xview is the view direction component. This choice was made to be
consistent with the camera model of Direct3D, which is left-handed. OpenGL’s cam-
era coordinate system is internally stored as {E; R , U, −D}, which is right-handed.
My initial attempt at dealing with this choice was to apply a sign change to the in-
ternal representation to produce D. Having a consistent ordering is particularly im-
portant in vertex shader programs that transform and manipulate points and vectors
in view space. My goal is to allow for the vertex shader programs to work with Wild
Magic’s software renderer, with the Direct3D renderer, and with the OpenGL ren-
derer. The sample application for spherical environment mapping is a prototypical
example where you manipulate view-space data.

Struggling with all the graphics APIs to make them consistent amounted to mak-
ing programmatic adjustments to information obtained by API calls. For example,
the camera coordinate system may be specified through Direct3D’s utility functions
D3DXDXMATRIXLookAt*. In OpenGL, the camera coordinate system may be specified
through the utility function gluLookAt. For projections, Direct3D has utility func-
tions D3DXMatrixPerspective* and D3DXMatrixOrtho*, whereas OpenGL has func-
tions glFrustum and glOrtho. In the end, I tired of struggling and simply set the
matrices directly—according to the coordinate system conventions I wanted, not the
ones the graphics APIs want. The renderers were greatly simplified and a lot of code
was factored into the base class for the renderers, a pleasant consequence. More de-
tails about this issue are found in Sections 2.8.3 and 2.8.4.

In homogeneous matrix form,

[
Xview

1

]
=
[

QT −QTE

0T 1

] [
Xworld

1

]
=Hview

[
Xworld

1

]
(2.61)

where Q= [R U D]is the orthogonal matrix whose columns are the specified vectors.
The homogenous matrix Hview in Equation (2.61) is referred to as the view matrix
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and maps points from world space to view space. Points may be mapped from view
space to world space using the inverse,

[
Xworld

1

]
=
[

Q E

0T 1

] [
Xview

1

]
=H−1

view

[
Xview

1

]
(2.62)

Just a reminder: Section 2.8.3 goes into great detail on the view matrix representation
for Wild Magic, OpenGL, and Direct3D. These details were essential in making a
single vertex shader program work for all the graphics APIs. You should definitely
read the details if you plan on using more than one graphics API.

2.3.5 Clip, Projection, or Homogeneous Space

We are now ready to take our points in view coordinates and project them to obtain
2D coordinates for the screen. The process is factored into a few steps. The first step
is to look more closely at the projection of Equation (2.42). We already looked at the
projection in terms of camera coordinates in Section 2.2.4. The presentation here is in
terms of homogeneous matrices so that you become comfortable with this approach
rather than always relying on manipulating one component of a vector at a time.

The eye point E was chosen to be on the side of the projection plane (view
plane) to which the normal vector N points. For our camera model, this direction
is opposite to the view direction; namely, N =−D. A point on the view plane is P=
E + dminD. Using these choices and dividing the numerator and the denominator by
−1, Equation (2.42) becomes

Y =
(

EDT + dminI
)
(X − E)

DT(X − E)

The homogeneous form of this equation, which by convention does not include
the perspective divide, and whose general form is Equation (2.49), is shown in the
following equation:

[
Y′world

wworld

]
=
[

EDT + dminI −(EDT + dminI )E

DT −DTE

] [
Xworld

1

]

Notice that I have subscripted the various terms to make it very clear that they are
quantities in world coordinates. Since we already know how to map points from
model space to world space, and then from world space to view space, it will be
convenient to formulate the homogeneous equation so that its inputs are points in
view space and its outputs are points in homogeneous view space, so to speak. We can
convert the output from world space to view space using the view matrix of Equation
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(2.61), replace the world-space input with the inverse view matrix of Equation (2.62)
times the view-space input, and use M = EDT + dminI to obtain

[
Y′view

wview

]
=
[

QT −QTE

0T 1

] [
Y′world

wworld

]

=
[

QT −QTE

0T 1

] [
M −ME

DT −DTE

] [
Xworld

1

]

=
[

QT −QTE

0T 1

] [
M −ME

DT −DTE

] [
Q E

0T 1

] [
Xview

1

]

=
[

dminQ
T −dminQ

T E

DT −DTE

] [
Q E

0T 1

] [
Xview

1

]

=
[

dminI 0

DTQ 0

] [
Xview

1

]

=
[

dminXview

DTQXview

]

=

⎡
⎢⎢⎢⎢⎣

dminr

dminu

dmind

d

⎤
⎥⎥⎥⎥⎦

(2.63)

where you will recall that Xview = (r , u, d). The perspective divide produces the
actual projection,

Yproj=
Y′view

wview

=
⎡
⎣

dminr

d
dminu

d

dmin

⎤
⎦ (2.64)

The last component of Yproj makes sense because the view plane is dmin units of
distance from the eye point and we designed the projection to be onto the view plane.

The axis of the view frustum is the ray that contains both the origin and the center
point of the viewport. This ray is parameterized by d in view coordinates as

(
(rmin + rmax)d

2dmin

,
(umin + umax)d

2dmin

, d

)
, dmin ≤ d ≤ dmax
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It is convenient to transform the (possibly) skewed view frustum into an orthogonal
frustum with viewport [−1, 1]2. We accomplish this by removing the skew, then
scaling the result:

r ′ = 2

rmax − rmin

(
dminr − rmin + rmax

2
d

)
,

u′ = 2

umax − umin

(
dminu− umin + umax

2
d

) (2.65)

To keep consistent with the primed notation r ′ and u′, define

w′ = d (2.66)

The view frustum is now delimited by |r ′| ≤w′, |u′| ≤w′, and dmin ≤w′ ≤ dmax. The
projection is (r ′/w′, u′/w′), so |r ′/w′| ≤ 1 and |u′/w′| ≤ 1.

It is also convenient to transform the d-values in [dmin, dmax] so that the new
range is [0, 1]. This is somewhat tricky because the transformation should be con-
sistent with the perspective projection. The affine transformation d ′ = (d − dmin)/

(dmax − dmin) is not the correct one to use. Equation (2.43) saves the day. The d-
values in [dmin, dmax] can be written as

d = (1− s)dmin + sdmax

for s ∈ [0, 1]. We can solve this for s = (d − dmin)/(dmax − dmin) and use Equation
(2.43) with w0 = dmin, the minimum w′-value, and w1= dmax, the maximum w′-
value, to obtain

s̄ = w1s

w0 + (w1− w0)s
= dmax

dmax − dmin

(
1− dmin

d

)

Observe that s̄ ∈ [0, 1]. This value plays the role of a normalized depth in rendering.
The equation for s̄ already has the perspective division. Before division, we can define

d ′ = dmax

dmax − dmin

(
d − dmin

)
(2.67)

so that s̄ = d ′/w′.
Equations (2.65) through (2.67) may be combined into a homogeneous matrix

transformation that maps (r , u, d , 1) to (r ′, u′, d ′, w′):
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Xclip =

⎡
⎢⎢⎢⎢⎣

r ′

u′

d ′

w′

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

2dmin
rmax−rmin

0 −(rmax+rmin)

rmax−rmin
0

0 2dmin
umax−umin

−(umax+umin)

umax−umin
0

0 0 dmax
dmax−dmin

−dmaxdmin
dmax−dmin

0 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

r

u

d

1

⎤
⎥⎥⎥⎥⎦

=Hproj

[
Xview

1

]

(2.68)

This equation defines two quantities, the homogeneous projection matrix Hproj and
the homogeneous point Xclip, which is a point said to be in clip space and its compo-
nents are referred to as clip coordinates.

Clip coordinates are used both for culling back-facing triangles and for clipping
triangles against the view frustum. Although you could do these calculations in world
space or in view space, the number of calculations is fewer in clip space. Moreover,
the access to the graphics pipeline provided via vertex shaders essentially requires you
to compute points in clip coordinates, which are then returned to the graphics driver
for rasterization.

All that said, you might have looked at Equation (2.68) and concluded that it
looks neither like OpenGL’s projection matrix nor like Direct3D’s projection ma-
trix. I will explicitly compare these in Sections 2.8.3 and 2.8.4. Suffice it to say that
my OpenGL and Direct3D renderers have been implemented to use the exact same
view and projection matrices, thereby ignoring the defaults that occur when you go
through utility functions provided by the graphics APIs.

Just as I have provided the inverses for the world matrix and the view matrix, the
inverse of the projection matrix is

H−1
proj=

⎡
⎢⎢⎢⎢⎢⎣

rmax−rmin
2dmin

0 0 rmax+rmin
2dmin

0 umax−umin
2dmin

0 umax+umin
2dmin

0 0 0 1

0 0 − dmax−dmin
dmaxdmin

1
dmin

⎤
⎥⎥⎥⎥⎥⎦ (2.69)
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2.3.6 Window Space

The clip-space point (r ′, u′, d ′, w′) has the properties that |r ′| ≤ w′, |u′| ≤ w′,
0 ≤ d ′ ≤ dmax, and dmin ≤ w′ ≤ dmax. We finally perform the perspective division
to obtain

Xndc =

⎡
⎢⎢⎣

r ′′
u′′
d ′′
1

⎤
⎥⎥⎦=

⎡
⎢⎢⎣

r ′/w′
u′/w′
d ′/w′
w′/w′

⎤
⎥⎥⎦ (2.70)

where r ′′ ∈ [−1, 1], u′′ ∈ [−1, 1], and d ′′ ∈ [0, 1]. The 3-tuples (r ′′, u′′, d ′′) are said to
be normalized device coordinates (NDCs). The term normalized was intended to refer
to the components of the 3-tuples being somehow in intervals [0, 1] or [−1, 1]. The
normalization, however, is not normal across APIs. Wild Magic and Direct3D use
d ′′ ∈ [0, 1]. OpenGL has a default projection matrix that leads to a projected value
d ′′ ∈ [−1, 1]. This is yet another API convention you need to be aware of; see Section
2.8.4 for more details. But as I have mentioned repeatedly, my implementations of
the renderers all use the same projection matrix, so in fact my OpenGL renderer has
d ′′ ∈ [0, 1].

The goal now is to map (r ′′, u′′) to a pixel of the window created by your ap-
plication. One important detail is that (r ′′, u′′) are right-handed coordinates with
respect to the viewport on the view plane. The r ′′-values increase as you move to the
right within the viewport and the u′′-values increase as you move up within the view-
port. The window pixels have coordinates (x , y) that are left-handed. The x-values
increase as you move to the right in the window and the y-values increase as you move
down the window. The conversion from (r ′′, u′′) to (x , y) requires a reflection in u′′
to switch handedness. If the window has width W pixels and height H pixels, then
0≤ x < W , 0≤ y < H , and a mapping is x =W(1+ r ′′)/2 and y =H(1− u′′)/2.
The computations are real-valued, but in software the values are truncated to the
nearest integer and then clamped to be within the valid pixel domain to produce the
indices into video memory for the screen. This mapping takes clip-space points to
the full viewport on the view plane. As mentioned in Section 2.3.1, you might want
the drawing of objects to occur in a subrectangle of the viewport. The camera model
includes parameters p�, pr , pb, and pt with 0≤ p� < pr ≤ 1 and 0≤ pb < pt ≤ 1.
The mapping from (r ′′, u′′) ∈ [−1, 1]2 to the subrectangle is

x =
(

1− r ′′

2

)
p�W +

(
1+ r ′′

2

)
prW = W

2

[
(pr + p�)+ (pr − p�)r

′′]

y =H −
[(

1− u′′

2

)
pbH +

(
1+ u′′

2

)
ptH

]

= H

2

[
(2− pt − pb)+ (pb − pt)u

′′]
(2.71)
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The slightly more complicated conversion for u′′ has to do with the switch from right-
handed to left-handed coordinates.

The depth values d ′′ ∈ [0, 1] can also be mapped to a depth range that is a subset
of [0, 1]. Section 2.3.1 introduced the depth range interval [pn, pf ]⊆ [0, 1]. The new
depth values for this range are

δ = (pf − pn

)
d ′′ + pn (2.72)

Equations (2.71) and (2.72) may be combined into a single 4-tuple, which I will
call the window coordinates of the corresponding clip-space point:

[
Xwindow

1

]
=

⎡
⎢⎢⎢⎢⎣

W(pr−p�)

2 0 0 W(pr+p�)

2

0 H(pb−pt)

2 0 H(2−pt−pb)

2

0 0 pf − pn pn

0 0 0 1

⎤
⎥⎥⎥⎥⎦
[

Xndc

1

]

=Hwindow

[
Xndc

1

]
(2.73)

The CD-ROM accompanying this book contains a software renderer that imple-
ments all the transformations described in this section. The vertex shader unit takes
model-space points and produces clip-space points. The rasterizer clips the points
and generates the pixels that are covered by a triangle via interpolation. Each inter-
polated clip-space point is mapped to a window-space point to produce the pixel
location and depth. The pixel shader unit processes each such pixel.

Exercise
2.10

The window matrix of Equation (2.73) was developed using the mapping of r ′′ ∈
[−1, 1] to x ∈ [p�W , prW ] and u′′ ∈ [−1, 1] to y ∈ [pbH , ptH ], with a reflection
when computing the y-value. This choice was made to be consistent with OpenGL,
according to the documentation describing this mapping. The DirectX documen-
tation [Cor] does not mention the precise details of the mapping. When the full
viewport is used (p� = 0, pr = 1, pb = 0, pt − 1), notice that r ′′ = 1 is mapped to
x =W and u′′ = −1 is mapped to y = H , but actual pixel coordinates must sat-
isfy x ≤W − 1 and y ≤ H − 1, so clamping will always occur at these extremes.
What differences in visual behavior would you expect if you were to use a different
mapping?

One alternative is to map r ′′ to x ∈ [p�W , prW − 1] and u′′ to y ∈ [pbH , ptH − 1],
with a reflection. What is the window matrix for this transformation?

Another alternative is to map r ′′ to x ∈ [p�(W − 1), pr(W − 1)] and u′′ to y ∈
[pb(H − 1), pt(H − 1)], with a reflection. What is the window matrix for this trans-
formation?
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Try experimenting with these in the software renderer contained on this book’s com-
panion CD-ROM. For each suggested alternative, also modify the OpenGL and Di-
rect3D rendering code (functions OnViewportChange) and see how the visual behavior
changes.

Exercise
2.11

What is the inverse matrix for the window matrix of Equation (2.73)?

2.3.7 Putting Them All Together

The application of transformations from model space to window space is referred
to as the geometric pipeline. The following diagram shows all the steps, including
references to the equations that define the transformations.

Xmodel

↓ world matrix, Hworld, Equation (2.59)

Xworld

↓ view matrix, Hview , Equation (2.61)

Xview

↓ projection matrix, Hproj, Equation (2.68)

Xclip

↓ perspective divide, Equation (2.70)

Xndc

↓ window matrix, Hwindow , Equation (2.73)

Xwindow

(2.74)

A software renderer implements the entire geometric pipeline. The companion
CD-ROM has such a renderer to illustrate the concepts discussed in this book. A
hardware-accelerated renderer implements the pipeline and allows you, through a
graphics API, to specify the matrices in the pipeline, either directly or indirectly.

Example
2.4

A triangle is created in a model space with points labeled (x , y , z). The model-
space vertices are V0 = (0, 0, 0), V1= (1, 0, 0), and V2= (0, 0, 1). Figure 2.19 shows
a rendering of the triangle in model space. The world space is chosen with origin
(0, 0, 0) and with an up vector in the direction of the positive z-axis. The model
triangle is to be rotated and translated so that the world-space vertices are W0 =
(1, 1, 1), W1= (1, 2, 1), and W2 = (1, 1, 2). Figure 2.20 shows a rendering of the
triangle in world space. The world matrix is
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Hworld =

⎡
⎢⎢⎢⎢⎣

0 −1 0 1

1 0 0 1

0 0 1 1

0 0 0 1

⎤
⎥⎥⎥⎥⎦

and transforms (Vi , 1) to (Wi , 1) for all i.

V1 = (1, 0, 0)V0 = (0, 0, 0)

(0, 0, 1) = V2
z

x

y

Figure 2.19 A model triangle to be sent through the geometric pipeline.

W2 = (1, 1, 2)

W1 = (1, 2, 1)
W0  = (1, 1, 1)

x

y

z

Figure 2.20 The world triangle corresponding to the model triangle of Figure 2.19.
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The screen is chosen to have a width of 640 pixels and a height of 480 pixels. The
camera is positioned in the world with eye point at E = (5/2, 3, 7/2), with view
direction D= (−1, −1, −1)/

√
3, and up direction U = (−1, −1, 2)/

√
6. The right

direction is R =D× U = (−1, 1, 0)/
√

2. The view matrix is

Hview =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−1√
2

1√
2

0 −1
2
√

2

−1√
6

−1√
6

2√
6

−3
2
√

6

−1√
3

−1√
3

−1√
3

9√
3

0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

An orthogonal frustum will be used to render the triangle. The frustum near and far
parameters are chosen to be dmin = 1 and dmax = 10, respectively. The vertical field of
view is chosen to be 2θu = π/3 and the aspect ratio is ρ = 4/3= 640/480. Equation
(2.58) is used to compute umax = dmin tan(θu)= 1/

√
3 and rmax = ρumax = 4/(3

√
3).

By symmetry, umin =−umax and rmin =−rmax. The projection matrix is

Hproj=

⎡
⎢⎢⎢⎢⎣

3
√

3
4 0 0 0

0
√

3 0 0

0 0 10
9

−10
9

0 0 1 0

⎤
⎥⎥⎥⎥⎦

We will use the full viewport, so p� = pb = 0 and pr = pt = 1. Also, we will use the
full depth range, so pn = 0 and pf = 1. The screen matrix is

Hscreen =

⎡
⎢⎢⎢⎢⎣

639
2 0 0 639

2

0 −479
2 0 479

2

0 0 1 0

0 0 0 1

⎤
⎥⎥⎥⎥⎦

All the matrices are ready to use, so let us transform the model-space vertices and see
where they land on the screen. To make Table 2.2 typesetting friendly, I will write the
4-tuples in the form (a , b, c; d), using a semicolon to separate the last component
from the first three. Computing the screen-space coordinates, the final points (x , y)

and normalized depths δ ∈ [0, 1] are

(x0, y0; δ0)= (277.139884, 312.831599; 0.790360)

(x1, y1; δ1)= (370.332138, 386.163198; 0.726210)

(x2, y2; δ2)= (268.667861, 210.167360; 0.726210)
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Table 2.2 Results of the transformations applied during the geometric pipeline.

Space Vertex 0 Vertex 1 Vertex 2

Model (0, 0, 0; 1) (1, 0, 0; 1) (0, 0, 1; 1)

World (1, 1, 1; 1) (1, 2, 1; 1) (1, 1, 2; 1)

View
(
−1

2
√

2
, −3

2
√

6
, 6√

3
; 1
) (

1
2
√

2
, −5

2
√

6
, 5√

3
; 1
) (

−1
2
√

2
, 1

2
√

6
, 5√

3
; 1
)

Clip
(−3

√
3

8
√

2
, −3

2
√

2
, 20

3
√

3
− 10

9 ; 6√
3

) (
3
√

3
8
√

2
, −5

2
√

2
, 50

9
√

3
− 10

9 ; 5√
3

) (−3
√

3
8
√

2
, 1

2
√

2
, 50

9
√

3
− 10

9 ; 5√
3

)

NDC
(
−3

16
√

2
, −

√
3

4
√

2
, 10

9 − 5
√

3
27 ; 1

) (
9

40
√

2
, −

√
3

2
√

2
, 10

9 − 2
√

3
9 ; 1

) (
−9

40
√

2
,
√

3
10
√

2
, 10

9 − 2
√

3
9 ; 1

)

Screen
(

639
2 − 1917

32
√

2
, 479

2 + 479
√

3
8
√

2
,

10
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√
3

27 ; 1
)

(
639

2 + 5751
80
√

2
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2 + 479
√

3
4
√

2
,

10
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√
3

9 ; 1
)

(
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2 − 5751
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√

2
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2 − 479
√

3
20
√

2
,
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9 − 2

√
3

9 ; 1
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The x and y values are rounded to the nearest integer, so the actual pixel locations for
the projected vertices are (277, 313), (370, 386), and (269, 210). Figure 2.21 shows
the final image drawn by the Wild Magic software renderer to a 640× 480 window.
The coordinate axes were drawn as three separate polylines. The 640× 480 image was
reduced in size, with averaging, to a 320× 240 image. The border around the window
and the axis labels were added via a paint program.

Naturally, the geometric pipeline is part of the rendering system. The application
code that led to Figure 2.21 created the model-space triangle, the world matrix, and a
simple scene, and it did some basic setup for rendering. The application header file is

#ifndef GEOMETRICPIPELINE_H
#define GEOMETRICPIPELINE_H

#include "Wm4WindowApplication3.h"
using namespace Wm4;

class GeometricPipeline : public WindowApplication3
{

WM4_DECLARE_INITIALIZE;
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z

x y

Figure 2.21 A software-rendered image of the triangle.

public:
GeometricPipeline ();

virtual bool OnInitialize ();
virtual void OnTerminate ();
virtual void OnIdle ();

protected:
void CreateScene ();

NodePtr m_spkScene;
TriMeshPtr m_spkTriangle;
PolylinePtr m_spkAxes;
Culler m_kCuller;

};

WM4_REGISTER_INITIALIZE(GeometricPipeline);

#endif

The application source code is

#include "GeometricPipeline.h"

WM4_WINDOW_APPLICATION(GeometricPipeline);
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//--------------------------------------------------------------------------
GeometricPipeline::GeometricPipeline ()

:
WindowApplication3("GeometricPipeline",0,0,640,480,ColorRGBA::WHITE)

{
}
//--------------------------------------------------------------------------
bool GeometricPipeline::OnInitialize ()
{

if (!WindowApplication3::OnInitialize())
{

return false;
}

// Create the camera model.
m_spkCamera->SetFrustum(60.0f,4.0f/3.0f,1.0f,10.0f);
Vector3f kCLoc(2.5f,3.0f,3.5f);
Vector3f kCDir(-1.0f,-1.0f,-1.0f);
kCDir.Normalize();
Vector3f kCUp(-1.0f,-1.0f,2.0f);
kCUp.Normalize();
Vector3f kCRight = kCDir.Cross(kCUp);
m_spkCamera->SetFrame(kCLoc,kCDir,kCUp,kCRight);

CreateScene();

// The initial update of objects.
m_spkScene->UpdateGS();
m_spkScene->UpdateRS();

// The initial culling of the scene.
m_kCuller.SetCamera(m_spkCamera);
m_kCuller.ComputeVisibleSet(m_spkScene);

InitializeCameraMotion(0.1f,0.01f);
InitializeObjectMotion(m_spkScene);
return true;

}
//--------------------------------------------------------------------------
void GeometricPipeline::OnTerminate ()
{

m_spkScene = 0;
m_spkTriangle = 0;
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m_spkAxes = 0;
WindowApplication3::OnTerminate();

}
//--------------------------------------------------------------------------
void GeometricPipeline::OnIdle ()
{

MeasureTime();

if (MoveCamera())
{

m_kCuller.ComputeVisibleSet(m_spkScene);
}

if (MoveObject())
{

m_spkScene->UpdateGS();
m_kCuller.ComputeVisibleSet(m_spkScene);

}

m_pkRenderer->ClearBuffers();
if (m_pkRenderer->BeginScene())
{

m_pkRenderer->DrawScene(m_kCuller.GetVisibleSet());
DrawFrameRate(8,GetHeight()-8,ColorRGBA::WHITE);
m_pkRenderer->EndScene();

}
m_pkRenderer->DisplayBackBuffer();

UpdateFrameCount();
}
//--------------------------------------------------------------------------
void GeometricPipeline::CreateScene ()
{

// Create the model-space triangle.
Attributes kAttr;
kAttr.SetPChannels(3);
VertexBuffer* pkVBuffer = WM4_NEW VertexBuffer(kAttr,3);
pkVBuffer->Position3(0) = Vector3f(0.0f,0.0f,0.0f);
pkVBuffer->Position3(1) = Vector3f(1.0f,0.0f,0.0f);
pkVBuffer->Position3(2) = Vector3f(0.0f,0.0f,1.0f);

IndexBuffer* pkIBuffer = WM4_NEW IndexBuffer(3);
int* aiIndex = pkIBuffer->GetData();
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aiIndex[0] = 0;
aiIndex[1] = 1;
aiIndex[2] = 2;

m_spkTriangle = WM4_NEW TriMesh(pkVBuffer,pkIBuffer);

// Set the world matrix.
m_spkTriangle->Local.SetTranslate(Vector3f(1.0f,1.0f,1.0f));
m_spkTriangle->Local.SetRotate(Matrix3f(Vector3f::UNIT_Z,Mathf::HALF_PI));

// Attach a material to the triangle.
MaterialState* pkMS = WM4_NEW MaterialState;
pkMS->Diffuse = ColorRGB(0.5f,0.5f,0.5f);
m_spkTriangle->AttachGlobalState(pkMS);
m_spkTriangle->AttachEffect(WM4_NEW MaterialEffect);

// Create the coordinate axes.
pkVBuffer = WM4_NEW VertexBuffer(kAttr,6);
pkVBuffer->Position3(0) = Vector3f::ZERO;
pkVBuffer->Position3(1) = 2.0f*Vector3f::UNIT_X;
pkVBuffer->Position3(2) = Vector3f::ZERO;
pkVBuffer->Position3(3) = 2.0f*Vector3f::UNIT_Y;
pkVBuffer->Position3(4) = Vector3f::ZERO;
pkVBuffer->Position3(5) = 2.0f*Vector3f::UNIT_Z;

m_spkAxes = WM4_NEW Polyline(pkVBuffer,false,false);

// Attach a material to the axes.
pkMS = WM4_NEW MaterialState;
pkMS->Diffuse = ColorRGB::BLACK;
m_spkAxes->AttachGlobalState(pkMS);
m_spkAxes->AttachEffect(WM4_NEW MaterialEffect);

m_spkScene = WM4_NEW Node;
m_spkScene->AttachChild(m_spkTriangle);
m_spkScene->AttachChild(m_spkAxes);

}
//--------------------------------------------------------------------------

In Wild Magic, the application layer is agnostic of renderer type. The code works
for the OpenGL renderer, for the Direct3D renderer, and for the Wild Magic software
renderer.
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Exercise
2.12

Repeat the calculations in Example 2.4, but using a camera positioned at E= (4, 4, 4)

and with a far-plane distance of dmax = 4. Also repeat the calculations with the origi-
nal settings, except place the camera at E = (1, −1, 3/2). How is the rendering of the
triangle in this case different from the rendering in Figure 2.21?

Exercise
2.13

Suppose you want your application to support selecting a window pixel with the
left button of the mouse. When the selected pixel is part of a rendered 3D object,
compute the world-space coordinates for the 3D object point that was rendered to the
selected pixel. Add this code to the GeometricPipeline application whose source code
was listed previously. Write text to the upper-left corner of the screen that displays
the (x , y) value you selected with the mouse and the corresponding world-space
coordinates of the object drawn to that pixel.

2.4 Culling and Clipping

Culling and clipping of objects reduces the amount of data sent to the rasterizer for
drawing. Culling refers to eliminating portions of an object, possibly the entire object,
that are not visible to the eye point. For an object represented by a triangle mesh,
the typical culling operations amount to determining which triangles are outside the
view frustum and which triangles are facing away from the eye point. Clipping refers
to computing the intersection of an object with the view frustum, and with additional
planes provided by the application such as in a portal system (see Section 6.3), so that
only the visible portion of the object is sent to the rasterizer. For an object represented
by a triangle mesh, the typical clipping operations amount to splitting triangles by the
various view frustum planes and retaining only those triangles inside the frustum.

2.4.1 Object Culling

Object culling involves deciding whether or not an object as a whole is contained in
the view frustum. If an object is not in the frustum, there is no point in consuming
CPU or GPU cycles to process the object for the rasterizer. Typically, the application
maintains a bounding volume for each object. The idea is to have an inexpensive
test for nonintersection between bounding volume and view frustum that can lead
to quick rejection of an object for further processing. If the bounding volume of an
object does intersect the view frustum, then the entire object is processed further
even if that object does not lie entirely inside the frustum. It is also possible that the
bounding volume and view frustum intersect, but the object is completely outside
the frustum.

A test to determine if the bounding volume and view frustum intersect can be an
expensive operation. Such a test is said to be an exact culling test . An inexact culling test
is designed to be faster, reporting nonintersections in most cases, but is conservative
in that it might report an intersection when there is none. The idea is that the total
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time for culling and drawing is, hopefully, less than the total time if you were to use
exact culling. Specifically, what you hope to be the common situation is

Cost(inexact_culling) < Cost(exact_culling)

Cost(inexact_drawing) > Cost(exact_drawing)

Cost(inexact_culling)+ Cost(inexact_drawing) < Cost(exact_culling)+
Cost(exact_drawing)

The only way you can test this hypothesis is by experimenting within your own ap-
plications and graphics framework. If you find that over the lifetime of your appli-
cation’s execution the total time of culling and drawing is smaller when using exact
culling, then you should certainly use exact culling. Some exact culling tests are de-
scribed in Section 15.7.

The standard approach to inexact culling against the view frustum is to compare
the object’s bounding volume against the view frustum planes, one at a time. Figure
2.22 illustrates the various possibilities for culling by testing a plane at a time. The
situation shown in Figure 2.22 (a) occurs whether you use exact culling or inexact
culling of bounding volumes. The problem is simply that the bounding volume is an
approximation of the region that the object occupies; there will always be situations
when the bounding volume intersects the frustum but the object does not. The
situation shown in Figure 2.22 (c) is what makes the plane-by-plane culling inexact.
The bounding volume is not outside any frustum plane, but it is outside the entire
view frustum.

2.4.2 Back-Face Culling

Object culling is an attempt to eliminate the entire object from being processed
by the renderer. If an object is not culled based on its bounding volume, then the
renderer has the opportunity to reduce the amount of data it must draw. The next
level of culling is called back-face culling . The triangles are oriented so that their
normal vectors point outside the object whose surface they comprise. If the triangle
is oriented away from the eye point, then that triangle is not visible and need not be
drawn by the renderer. For a perspective projection, the test for a back-facing triangle
is to determine if the eye point is on the negative side of the plane of the triangle (the
triangle is a “back face” of the object to be rendered). If E is the world eye point and
if the plane of the triangle is N . X = d , then the triangle is back facing if N . E < d .
Figure 2.23 shows the front view of an object. The front-facing triangles are drawn
with solid lines. The back-facing triangles are indicated with dotted lines (although
they would not be drawn at all by the renderer).

The vertex data that is sent to the graphics driver stores only vertex positions,
not triangle normals. This means the renderer must compute the normal vector for
each triangle to use in the back-face test. Mathematically, it does not matter in which
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(b) Not culled

(a) Not culled

(c) Not culled

(d) Culled

View frustum

Figure 2.22 Attempts to cull objects, whose bounding volumes are spheres, a frustum plane at a
time. In (a), (b), and (c), the bounding volumes are not outside any of the frustum
planes, so an attempt will be made to draw those objects. In (a), the bounding
volume is not outside any of the frustum planes, so an attempt is made to draw the
object. The object is outside the frustum even though its bounding volume is not.
The renderer processes the object and determines that no part of it will be drawn on
the screen. In (b), part of the object is inside the frustum, so the renderer will draw
that portion. In (c), the object and its bounding volume are outside the frustum, but
because the bounding volume was not outside at least one of the frustum planes, the
object is sent to the renderer and it is determined that no part of it will be drawn on
the screen. In (d), the bounding volume is outside the right plane of the frustum, so
the object is outside and no attempt is made to draw it.

coordinate system you do the back-face culling. However, vertex shader programs
require you to transform the vertex positions from model-space coordinates to clip-
space coordinates for the purpose of clipping, so it is natural to do the back-face
culling in these same coordinates. The transformation of the triangle vertices from
model space to view space produces points Vi = (ri , ui , di , 1) for 0≤ i ≤ 2. A triangle
normal vector is

N = (V1− V0

)× (V2 − V0

)
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Figure 2.23 Object with front-facing and back-facing triangles indicated.

V1

V2

P

V0

N

Figure 2.24 A triangle that is front facing to the observer. Because the camera coordinate system
is left-handed, the sign test for the dot product of vectors is the opposite of what you
are used to.

The eye point in view coordinates is P = (0, 0, 0, 1). Figure 2.24 shows the situ-
ation when the triangle is deemed visible to the observer. The vector P − V0 =
(−r0, −u0, −d0, 0) must form an acute angle with the normal vector N. The test
for the triangle to be front facing is

0 < (P− V0) . N = det

⎡
⎣ −r0 r1− r0 r2 − r0
−u0 u1− u0 u2 − u0
−d0 d1− d0 d2 − d0

⎤
⎦

Define the homogeneous matrix

M =

⎡
⎢⎢⎣

r0 r1 r2 0
u0 u1 u2 0
d0 d1 d2 0
1 1 1 1

⎤
⎥⎥⎦

The first three columns of the matrix are the triangle vertices and the last column
of the matrix is the eye point, all listed in view coordinates. The determinant of the
matrix is computed as follows, using a cofactor expansion in the last column.
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det(M)=− det

⎡
⎣ r0 r1 r2

u0 u1 u2
d0 d1 d2

⎤
⎦ Cofactor expansion is by last column.

=− det

⎡
⎣ r0 r1− r0 r2 − r0

u0 u1− u0 u2 − u0
d0 d1− d0 d2 − d0

⎤
⎦ Subtracting columns preserves

determinants.

= det

⎡
⎣ −r0 r1− r0 r2 − r0
−u0 u1− u0 u2 − u0
−d0 d1− d0 d2 − d0

⎤
⎦ Changing column sign

reverses determinant sign.

= (P− V0) . N

Thus, the triangle is visible when det(M) > 0.
Multiplying M by the projection matrix of Equation (2.68), we have

HprojM =

⎡
⎢⎢⎢⎣

r ′0 r ′1 r ′2 0

u′0 u′1 u′2 0

d ′0 d ′1 d ′2 − dmaxdmin
dmax−dmin

w′0 w′1 w′2 0

⎤
⎥⎥⎥⎦

Using a cofactor expansion on the last column, we may compute the determinant of
this matrix:

det
(
HprojM

)
=− dmaxdmin

dmax − dmin

⎡
⎣ r ′0 r ′1 r ′2

u′0 u′1 u′2
w′0 w′1 w′2

⎤
⎦

A front-facing triangle occurs when det(M) > 0, so equivalently it occurs when
det(HprojM)= det(Hproj) det(M) < 0. That is, the triangle is front facing when

det

⎡
⎣ r ′0 r ′1 r ′2

u′0 u′1 u′2
w′0 w′1 w′2

⎤
⎦> 0

This expression is what the Wild Magic software renderer implements, and is found
in the file Wm4SoftDrawElements.cpp, function SoftRenderer::DrawTriMesh.

2.4.3 Clipping to the View Frustum

Clipping is the process by which the front-facing triangles of an object in the world
are intersected with the view frustum planes. A triangle either is completely inside
the frustum (no clipping necessary), is completely outside the frustum (triangle is
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culled), or intersects at least one frustum plane (needs clipping). In the last case the
portion of the triangle that lies on the frustum side of the clipping plane must be
calculated. That portion is either a triangle itself or a quadrilateral.

Plane-at-a-Time Clipping

One possibility for a simple clipping algorithm is to clip the triangle against a frustum
plane. If the portion inside the frustum is a triangle, process that triangle against
the next frustum plane. If the portion inside the frustum is a quadrilateral, split it
into two triangles and process both against the next frustum plane. After all clipping
planes are processed, the renderer has a list of triangles that are completely inside the
view frustum. The pseudocode for this process is shown next.

set<Triangle> input, output;
input.Insert(initialTriangle);
for each frustum plane do
{

for each triangle in input do
{

set<Triangle> inside = Split(triangle,plane);
if (inside.Quantity() == 2)
{

output.Insert(inside.Element[0]);
output.Insert(inside.Element[1]);

}
else if (inside.Quantity() == 1)
{

output.Insert(inside.Element[0]);
}
else
{

// Inside is empty, triangle is culled.
}
input.Remove(triangle);

}
input = output;

}

for each triangle in output do
{

// Draw the triangle.
}
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Figure 2.25 Four configurations for triangle splitting. Only the triangles in the shaded region are
important, so the quadrilaterals outside are not split. The subscript c indicates clip
vertices.

The splitting of a triangle by a frustum plane is accomplished by computing the
intersection of the triangle edges with the plane. The three vertices of the triangle are
tested for inclusion in the frustum. If the frustum plane is N . X = d and if the vertices
of the triangle are Vi for 0≤ i ≤ 2, then the edge with endpoints Vi0

and Vi1
intersects

the plane if pi0
pi1

< 0, where pi = N . Vi − d for 0≤ i ≤ 2. This simply states that
one vertex is on the positive side of the plane and one vertex is on the negative side of
the plane. The point of intersection, called a clip vertex, is

Vclip = Vi0
+ pi0

pi0
− pi1

(
Vi1
− Vi0

)
(2.75)

Figure 2.25 illustrates the possible configurations for clipping of a triangle against
a plane. The vertices Vi0

, Vi1
, and Vi2

are assumed to be in counterclockwise order.
The pseudocode for clipping a single triangle against a plane is given next. After

splitting, the new triangles have vertices that are in counterclockwise order.

void ClipConfiguration (pi0,pi1,pi2,Vi0,Vi1,Vi2)
{

// assert: pi0*pi1 < 0
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Vc0 = Vi0+(pi0/(pi0-pi1))*(Vi1-Vi0);
if (pi0 > 0)
{

if (pi2 > 0) // Figure 2.25, top left
{

Vc1 = Vi1+(pi1/(pi1-pi2))*(Vi2-Vi1);
add triangle <Vc0,Vc1,Vi0> to triangle list;
add triangle <Vc1,Vi2,Vi0> to triangle list;

}
else // Figure 2.25, top right
{

Vc1 = Vi0+(pi0/(pi0-pi2))*(Vi2-Vi0);
add triangle <Vc0,Vc1,Vi0> to triangle list;

}
}
else
{

if (pi2 > 0) // Figure 2.25, bottom left
{

Vc1 = Vi0+(pi0/(pi0-pi2))*(Vi2-Vi0);
add triangle <Vc0,Vi1,Vi2> to triangle list;
add triangle <Vc0,Vi2,Vc1> to triangle list;

}
else // Figure 2.25, bottom right
{

Vc1 = Vi1+(pi1/(pi1-pi2))*(Vi2-Vi1);
add triangle <Vc0,Vi1,Vc1> to triangle list;

}
}

}

void ClipTriangle ()
{

remove triangle <V0,V1,V2> from triangle list;

p0 = Dot(N,V0)-d;
p1 = Dot(N,V1)-d;
p2 = Dot(N,V2)-d;

if (p0*p1 < 0)
{

// Triangle needs splitting along edge <V0,V1>.
ClipConfiguration(p0,p1,p2,V0,V1,V2);

}
else if (p0*p2 < 0)
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{
// Triangle needs splitting along edge <V0,V2>.
ClipConfiguration(p2,p0,p1,V2,V0,V1);

}
else if (p1*p2 < 0)
{

// Triangle needs splitting along edge <V1,V2>.
ClipConfiguration(p1,p2,p0,V1,V2,V0);

}
else if (p0 > 0 || p1 > 0 || p2 > 0)
{

// Triangle is completely inside frustum.
add triangle <V0,V1,V2> to triangle list;

}
}

To avoid copying vertices, the triangle representation can store pointers to vertices
in a vertex pool, adding clip vertices as needed.

Polygon-of-Intersection Clipping

The plane-at-a-time clipping algorithm keeps track of a set of triangles that must
be clipped against frustum planes. Processing only triangles leads to simple data
structures and algorithms. The drawback is that the number of triangles can be larger
than is really necessary.

An alternate method for clipping computes the convex polygon of intersection
of the triangle with the frustum. After clipping, a triangle fan is generated for the
polygon and these triangles are drawn. The number of triangles in this approach
is smaller than or equal to the number produced by the plane-at-a-time clipping
algorithm. An illustration of this is provided by the sequence of images shown in
Figures 2.26 through 2.30. For the sake of simplicity, the example is shown in two
dimensions with the frustum drawn as a rectangle. Figure 2.26 shows a triangle
intersecting a frustum. The convex polygon of intersection has seven vertices. The
triangle fan is drawn, indicating that the renderer will draw five triangles.

Let us clip the triangle against the four frustum planes one at a time. Figure 2.27
shows the triangle clipped against the bottom frustum plane. Two clip vertices are
generated. The portion of the triangle on the frustum side of the bottom plane is a
quadrilateral, so it is split into two triangles T1 and T2.

Figure 2.28 shows the triangles clipped against the top frustum plane. The triangle
T1 is clipped, generates two clip vertices, and is split into two triangles, T3 and T4. The
triangle T2 is clipped, generates two clip vertices, and is split into two triangles, T5
and T6.



T0

Figure 2.26 A triangle T0 intersecting a frustum in multiple faces. The convex polygon of
intersection has seven vertices and is represented by a triangle fan with five triangles.

T2

T1

Figure 2.27 The triangle is clipped against the bottom frustum plane.

T6
T4

T3

T5

Figure 2.28 The triangles are clipped against the top frustum plane.
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T8

T7

T5

Figure 2.29 The triangles are clipped against the left frustum plane.

T11
T13

T9

T8

T7

T12

T10

Figure 2.30 The triangles are clipped against the right frustum plane.

Figure 2.29 shows the triangles clipped against the left frustum plane. In this case,
only triangle T3 intersects the left frustum plane. It generates two clip vertices and the
quadrilateral inside the frustum is split into two triangles, T7 and T8.

Finally, Figure 2.30 shows the triangles clipped against the right frustum plane.
Triangle T4 is clipped and split into triangles T9 and T10. Triangle T5 is clipped and
split into triangles T11 and T12. Triangle T6 is clipped, producing a single triangle T13.
The end result is a collection of nine vertices and seven triangles in contrast to the
polygon-of-intersection clipping algorithm, which produced seven vertices and five
triangles.

At first glance, the polygon-of-intersection clipping algorithm is attractive be-
cause it tends to generate fewer triangles than the plane-at-a-time clipping algorithm.
However, the example here is slightly misleading because the triangle is very large
compared to the frustum size. In a realistic application, the observer is positioned so
that triangles are generally small compared to the frustum size, so you would expect a
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triangle to be clipped by one frustum plane (triangle intersects a face of the frustum),
by two frustum planes (triangle intersects near an edge of the frustum), or three frus-
tum planes (triangle intersects near a corner of the frustum). In these cases, either
clipping method should perform equally well.

Exercise
2.14

The Wild Magic software renderer implements the polygon-of-intersection clipping
algorithm. Modify the renderer to use the plane-at-a-time clipping algorithm. Devise
an experiment to test the performance of the two clipping algorithms and compare
the results.

2.5 Rasterizing

Rasterization is the process of taking a geometric entity in window space and selecting
those pixels to be drawn that correspond to the entity. The standard objects that
most engines rasterize are line segments and triangles, but rasterization of circles and
ellipses is also discussed here. You might have a situation where you want to rasterize
such objects to a texture and then use the texture for one of your 3D objects. The
constructions contained in this section all assume integer arithmetic since the main
goal is to rasterize as fast as possible. Floating-point arithmetic tends to be more
expensive than integer arithmetic.

Exercise
2.15

This is a large project. The Wild Magic software renderer uses floating-point arith-
metic for its rasterization; that is, the renderer is not optimized for speed (it was de-
signed to illustrate concepts). If you feel adventuresome, reimplement the rasterizing
code to use integer arithmetic. This code is found in files Wm4SoftDrawElements.cpp
and Wm4SoftEdgeBuffers.cpp.

2.5.1 Line Segments

Given two screen points (x0, y0) and (x1, y1), a line segment must be drawn that
connects them. Since the pixels form a discrete set, decisions must be made about
which pixels to draw in order to obtain the “best” line segment, which Figure 2.31
illustrates. If x1= x0 (vertical segment) or y1= y0 (horizontal segment), it is clear
which pixels to draw. And if |x1− x0| = |y1− y0|, the segment is diagonal and it is
clear which pixels to draw. But for the other cases, it is not immediately apparent
which pixels to draw.

The algorithm should depend on the magnitude of the slope. If the magnitude is
larger than 1, each row that the segment intersects should have a pixel drawn. If the
magnitude is smaller than 1, each column that the segment intersects should have a
pixel drawn. Figure 2.32 illustrates the cases. The two blocks of pixels in (a) illustrate
the possibilities for drawing pixels for a line with a slope whose magnitude is larger
than 1. The case in (a) draws one pixel per column. The case in (b) draws one pixel
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Figure 2.31 Pixels that form the best line segment between two points.

(a) (b)

Figure 2.32 Pixel selection based on slope.

per row, the correct decision. The two blocks of pixels in (b) illustrate the possibilities
for drawing pixels for a line with a slope whose magnitude is less than 1. The bottom
case draws one pixel per row. The top case draws one pixel per column, the correct
decision.

The process of pixel selection, called Bresenham’s algorithm [Bre65], uses an
integer decision variable that is updated for each increment in the appropriate input
variable. The sign of the decision variable is used to select the correct pixel to draw at
each step. Define dx = x1− x0 and dy = y1− y0. For the sake of argument, assume
that dx > 0 and dy �= 0. The decision variable is di, and its value is determined by
the pixel (xi , yi) that was drawn at the previous step. Figure 2.33 shows two values si
and ti, the fractional lengths of the line segment connecting two vertical pixels. The
value of si is determined by si = (y0 − yi)+ (dy/dx)(xi + 1− x0) and si + ti = 1.
The decision variable is di = dx(si − ti). From the figure it can be seen that

If di ≥ 0, then the line is closer to the pixel at (xi + 1, yi + 1), so draw that pixel.

If di < 0, then the line is closer to the pixel at (xi + 1, yi), so draw that pixel.


