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P R E F A C E 

The subject of structural dynamics is an important branch of structural engineering. 
Its importance has increased with the need for more and more flexible structures 
such as tall buildings, long span bridges, cable roofs, etc., many founded in 
earthquake prone areas of the world. Many books covering either the theoretical 
aspects of structural dynamics or the mathematical aspects of eigen-value problems 
or the finite element method or listing of finite element programs are available, but 
rarely in the same book. The calculations involved in structural dynamics are by 
their very nature numerically intensive and the use of a digital computer is almost 
obligatory, even for the solution of simple problems. The existing books do give 
some simple programs, almost as an afterthought, but rarely in any detail. 

The object of this book is to provide, in a single comprehensive volume, both 
the theory and the associated computer programs. Only methods amenable to 
automatic computation are included and all hand calculation methods are omitted. 
Full details of the theory of solution methods for linear eigen-value problems, finite 
element and finite strip methods are given. A l l concepts are explained in detail and 
illustrated by numerous fully worked out numerical examples. Corresponding 
elementary programs follow many of the methods. These programs have two main 
aims. Firstly to teach the reader the steps needed to convert theory to computer 
programs and secondly to provide programs which the reader can use to check their 
working of numerical examples. These programs are finally translated to 'full 
blown' programs in FORTRAN-90 for the eigen-value solution of two-dimensional 
rigid-jointed frames, plane grids, elastic plates, with the dynamic stiffness matrices 
established using finite element and finite strip methods. Programs are also 
provided for the solution by direct integration of differential equations. It is hoped 
that the book wil l be welcomed both by students studying courses in structural 
dynamics and also by practicing engineers. 

As in any such undertaking, many people have helped and I express my sincere 
thanks to all. To my colleague Mr Robert Watson for some of the diagrams, to 
Mrs Tessa Bryden for enthusiastic secretarial assistance, to the late Ernie Hinton 
for enthusiastic review of the initial proposal and subsequent unstinting 
encouragement and provision of his programs, to Sheila, Arun and Ranjana for 
constantly asking me 'When is the book going to finish?', to the many editors at 
Spon Press for mild pressure and for being very understanding. Finally when 
deciding on the 'balance' between various topics of the book, to Ovid for the 
advice 'Medio tutissimus ibis' (you wil l go most safely in the middle). 

P. Bhatt 
2nd October (Mahatma Gandhi's birthday) 2001, Glasgow 



CHAPTER 1 

SINGLE DEGREE OF FREEDOM 
SYSTEM -1 

1.1 INTRODUCTION 

Structures in practice are subjected to a variety of forces, both static and dynamic. 
Static forces, such as gravity forces, remain constant with time. Structures are also 
subjected to dynamic forces, which vary with respect to time. Some of these forces 
can act over a long period of time while others act over a relatively short period. 
Typical of forces which act over a long period of time are vehicular loading on a 
bridge and wind loads on buildings. On the other hand, forces due to an earthquake 
or an explosion act over a fairly short period of time. In the vast majority of design 
situations, the dynamic forces affect the serviceability limit state. For example, 
vibrations could cause discomfort to users of a structure such as a building or a 
bridge. In some cases vibrations could lead to the malfunctioning of delicate 
apparatus. In extreme cases, dynamic forces could affect the ultimate limit state by 
causing collapse due to violent shaking during an earthquake or cause fatigue 
failure of joints and components. As will be shown later, dynamic properties of a 
structure are governed mainly by the mass and stiffness of the structure. Many 
design advances of recent years, such as the use of higher strength materials, the 
use of welding or friction grip bolts in steel structures, the wide spread use of 
prestressed concrete, the emergence of flexible structures such as long span bridges 
and tall buildings, have all made structures more sensitive to dynamic forces. 
Many of the changes in construction practice have also reduced the inherent 
damping present in structures, making them more susceptible to vibration. It is for 
these reasons that the study of structural dynamics has assumed great importance. 
The nature of the dynamic forces that act on a structure vary widely. Some, such as 
the force due to a rotating machine, can be described almost completely as a 
function of time both in magnitude and direction. Such forces are deterministic 
forces. On the other hand, forces due to wind can only be described in terms of 
statistical properties, such as mean and standard deviation. Such forces are called 
stationary random forces. Forces due to an earthquake are even more complicated. 
Each earthquake is almost unique. Earthquake forces cannot be described even in 
statistical terms. Such forces are called non-stationary random forces. In this book, 
only analysis of structures subjected to deterministic force is considered. 
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1.2 I N E R T I A L F O R C E 

According to Newton's second law of motion, the resultant force acting on a 
particle and the corresponding acceleration are related by the equation 

Resultant force = Mass x Acceleration 
I f a particle is in static equilibrium, then the acceleration is equal to zero and, 

hence, the resultant force should also be equal to zero. It should be remembered 
that since both force and acceleration are vector quantities, the relationship is a 
vector equation. 

In contrast to a problem in statics, while considering equilibrium in a dynamic 
problem, acceleration is not equal to zero. Newton's second law can be restated as 

Resultant force on the mass - Mass x Acceleration = 0 
This shows that a dynamic problem can be treated as an equivalent static 

problem by including, in addition to external forces acting on the mass, an 
additional force equal to - (mass x acceleration). This additional force is called 
inertial force. This way of looking at equilibrium under dynamic situation is called 
D'Alembert's principle. 

1.3 DAMPING F O R C E 

When a structure is vibrating, it moves relative to the surrounding medium, such as 
air as in the case of most structures or water as in the case of structures such as oil 
rigs. The surrounding medium resists motion of the structure and causes additional 
forces to act on the structure. These forces generated by the relative motion with 
respect to the surrounding medium are called damping forces. It should be 
appreciated that damping forces can also arise due to relative motion between parts 
of the structure such as at a bolted joint in a steel structure or across cracks in a 
reinforced concrete structure. 

1.4 S I N G L E D E G R E E O F F R E E D O M S Y S T E M 

Consider the simple 'structure' shown in Fig. 1.1. The mass M is attached to the 
support through a 'weightless' spring of stiffness K and a dashpot simulating 
damping normally present in all structures. It is assumed for simplicity, that the 
mass can move only horizontally. In other words, the structure has only one degree 
of freedom of movement. 

Figure 1.2 shows some real structures modelled for mathematical purposes as 
single degree freedom systems. Fig. 1.2a shows a simply supported beam of span L 
and flexural rigidity EI, supporting a concentrated mass at midspan. The 'spring' 
stiffness K is the force required to cause unit displacement at the midspan of a 
simply supported beam. Therefore K = 48 EI/L 3 . 
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Fig. 1.1 Mass-spring-damper System 
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Fig. 1.2a A simply supported beam 

I 
I 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 

X X X 

Fig. 1.2b Single bay portal frame 

Figure 1.2b is a single bay portal. The height of the columns is H and their 
flexural rigidity is EI. It is assumed that the beam is sufficiently rigid to prevent 
rotation of the columns at the top so that the motion of the mass can be described 
by the sway displacement at the top of columns. In this case, the 'spring' stiffness 
K is the force required to cause unit sway displacement of the two legs of the portal 
frame. 

Fixed feet columns, K = 2 legs x {12 EI/H 3 ] . 
Pinned feet column, K = 2 legs x {3 EI/H 3 ] . 

The assumption that the spring is 'weightless' is made purely to simplify the 
problem at this early stage of discussion. In reality, the columns and beams, which 
contribute to spring stiffness, are not weightless. 
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In Fig. 1.1, the damping present in the structure is shown by a dashpot. It 
should be appreciated that in real structures, in general, there are no identifiable 
dashpots causing damping. A dashpot is only a simple way of modelling the 
presence of damping in structures. 

The rest of this chapter is devoted to the study of single degree of freedom 
systems. The study of SDOF systems is important because it brings out many of 
the important properties affecting the behaviour of structures subjected to dynamic 
loads. Very often in practice, an SDOF system is the simplest idealisation used for 
the preliminary study of quite complex structures. In addition, as will be shown in 
Chapter 3, multi-degree freedom systems can be 'reduced' to a series of SDOF 
systems, thus facilitating the study of complex systems. 

1.5 M A T H E M A T I C A L STUDY O F T H E SDOF S Y S T E M 

The differential equation governing the behaviour of the system shown in Fig. 1.1 
is established quite simply by using the concept of dynamic equilibrium. Consider 
the forces acting on the free body shown in Fig. 1.3. 

Fig. 1.3 Forces on the free body 

The forces acting on the mass are the spring force, damping force, inertial force 
and external force. It should be remembered that the damping force always 
opposes motion. The dynamic equilibrium requires that the sum of the forces is 
equal to zero. Assuming that the positive direction of motion is to the right, let the 
displacement of the mass be u(t). The forces acting on the mass are 

i . Spring force acting on the mass = K u(t) 

i i . Inertial force = - M 
d2u 

dt2 

Note that the inertial force acts in the positive direction. 

i i i . Damping force 
It is conventional to assume that damping force is proportional to the velocity of the 
mass. Therefore 

du 
Damping force = C 

dt 
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C = Coefficient of viscous damping. 
iv. External force = F(t), which is a function of time, t. 
Summing up the forces to zero for dynamic equilibrium, we have 

M £ ± . + C—+ Ku = F{t) (1.1) 
dt2 dt 

For convenience in writing mathematical expressions, let 
K/M=a?,C/M = 2p (1.2) 

The differential equation (1.1) can therefore be expressed as 

d2u „ ndu 2 F(0 
—- + 2B—+co2u=—— (1.3) 
dt2 dt M 

1.6 I N F L U E N C E O F GRAVITATIONAL F O R C E S 

Consider the system shown in Fig. 1.4. The system is identical in all respects to 
that shown in Fig. 1.1, except that the motion is vertical. Under static conditions, 
the displacement of the mass is equal to the extension A of the spring due to the 
weight W. Therefore, A is equal to W/ K. Under dynamic conditions, when 
considering the forces acting on the mass, in addition to the forces shown in Fig. 
1.3, we have to include the weight, W = Mg, g = acceleration due to gravity. The 
equilibrium equation is therefore given by 

M d 2 ( U + A K C ^ l ^ + K(u + A) = W + F(t) (1.4) 
dt2 dt 

In the above equation, the displacement u is measured from the static position. 
Therefore, (u + A) is the total displacement. Since A is a constant and KA = W, the 
above equation simplifies to equation (1.1). This shows that equation 1.1 is 
applicable to cases where acceleration due to gravity is to be included provided that 
the dynamic displacement is measured from the static position of rest as the origin. 

1.7 SOLUTION O F T H E D I F F E R E N T I A L EQUATION 

The differential equation (1.1) is an ordinary differential equation with constant 
coefficients. The solution is obtained as the sum of a complementary solution and 
the particular integral. 

Complementary solution is the solution to the equation when F(t) is equal to 
zero. Therefore, complementary function is the solution of the equation 
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Fig. 1.4 Mass-spring-damper system 

d U 0 du 2 ^(0 /1 cx 
— r + — + c o 2 u = — — (1.5) 
dt2 dt M 

The solution to u(t) in the above equation is obtained by assuming that 
u(t)=Aeat (1.6) 

where A is an arbitrary constant and a is yet to be determined. 
Differentiating u(t) with respect to time f, we have 

u(t) = aAeca = au(t) (1.7) 

u"(t) = o? Ae m = a? u(t) (1.8) 
Substituting equations (1.7) and (1.8) in equation (1.5), and simplifying 

(o? + 2 ap + o?)u(t) = 0 (1.9) 
Since u(t) is not equal to zero, the terms inside the bracket must be zero 

a2 + 2ap+G? = 0 (1.10) 
This is called the characteristic equation of the differential equation. Since the 
characteristic equation is a quadratic equation, the roots are given by 

aj,a2 = -p±^02-a?} (1.11) 
The complementary equation is thus given by 

u(t) = Aiea" +A1ea* (1.12) 

The constants A! and A 2 are determined from the initial conditions prescribing the 
displacement and velocity at t = 0. 

The particular integral is the solution of the equation, when the force F(t) is 
present but without any reference to the initial conditions. 

Because the complementary function part of the solution depends on the initial 
boundary conditions and exists even when the external force F(t) is zero, the 
complementary function is called the natural motion solution. Similarly, because 
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the particular integral part of the solution depends on the external force, this 
solution is called the forced motion solution. 

Depending on the presence of damping and external force, the solution to the 
differential equation is obtained for two distinct cases as follows. 
i . Free vibration: Free vibration refers to the case when the external force is equal 
to zero and the motion results when the system is disturbed from its state of rest and 
allowed to vibrate. I f damping is equal to zero, then such a motion is called 
undamped free vibration. On the other hand, i f damping is present, then the 
resulting motion is called damped free vibration. 
i i . Forced vibration: When vibration takes place due to an external vibratory force 
acting on the system, then the resulting motion is described as forced vibration. As 
in the case of free vibration, depending on the presence or absence of damping, one 
can have damped forced vibration or undamped forced vibration respectively. 

1.8 SOLUTION TO T H E F R E E VIBRATION P R O B L E M 

The solution to u(t) is given by the equations (1.11) and (1.12). Depending on the 
sign of (a? - ft) in equation (1.11), three possible cases arise, as follows. 
i . p < ca. This is called an underdamped case for reasons to be explained in the next 
section. 
Setting G>d= V {o? - ft}, then from equation (1.11), 
a 1 , a 2 = - P ± i c o d , i = V - l 
The roots a j , a 2 are complex. Substituting for 04, oc2 in equation (1.12) u(t) is 
given by 

u(t) = Aj e(-P + ' ®$ + A2 e(-P" ic°/ d-13) 
where Aj and A 2 are conjugate complex constants to be determined from boundary 
conditions. 
Noting that 

cos codt = 0.5{e[ <°J + e- io)Jj 
sin cod t = -0.5i{e* w j - e'ia)Jl 

u(t) = e'P ffBj coscojt + B2 sincojt} (1.14) 
where Bj and B 2 are real constants of integration to be determined so as to satisfy 
the initial conditions. 
i i . P = ca This is called the critically damped case. In this case there are two real 
repeated roots a j = a 2 = - p. The solution is given by 

u(t) = e'PtfBj +B2t] (1.15) 
where Bj and B2 are integration constants. 
i i i . p > ca This is called the over damped case. In this case there are two real roots. 
The solution is given by 

u(t) = Aj e(-P + w / + A 2 ef'P ' 0-16) 
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The hyperbolic sine and cosine functions are related to the exponential functions 
by 

coshcodt = 0.5 {e^J + e'^J} 
sinhcodt = OJfe^J - e~wJl 

u(t) = e'P 1{B j coshcodt + B2 sinhcorf} (1.17) 
The solutions to the above three cases are discussed in more detail in the next 
section. 

1.9 UNDAMPED F R E E VIBRATION 

The displacement u(t) is given by equation (1.14). The constants Bj and B2 are 
determined from initial conditions. I f the system is disturbed from its initial 
stationary position by giving an initial displacement of u0 and an initial velocity of 
uQ' at t = 0, then u0 = Bj and u0' = B2 co. 

u o 
u(t) = un cos cot+{ } sin cot (1.18) 

CO 
The above expression can be expressed more elegantly as follows. Let 

RcosO , — = RsinO, 
co 

(1.19) 

+ ( ^ - ) 2 , 0 = t a n - 1 ( ^ - ) 
CO coun 

u(t) = Rfcosca cosO + sin cot sinO) = R cos (ca - 0 ) (1.20) 
This indicates that the motion is described by a cosine curve with an amplitude 
equal to R and a time lag of tQ = 0/co. 

It is perhaps worth noting that the frequency of vibration is independent of the 
amplitude R. This is of course true only i f the amplitude is not large enough to 
invalidate the basic assumptions involved in the derivation of the equations of 
motion. 

Since the trigonometric cosine and sine functions are periodic functions with a 
period of 2n, the motion is periodic with a period T. The system vibrates with a 
period of T or a frequency f. The three quantities CO, f and T are related as follows 

circular frequency co = co radians/seconds (1.21a) 

frequency/=— = — Hertz (1.21b) T In 

f 
period T = — seconds (1.21c) 
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1.9.1 Units Used in Dynamic Analysis 

In vibration problems, both mass and force units occur. It is therefore important 
that a consistent system of units is used. It is suggested that the following 
consistent system be adopted. By definition, a force of 1 N acting on a mass of 1 
kg produces an acceleration of 1 m/sec2. Therefore, consistency of units is satisfied 
when length is expressed in metres, force in Newtons, mass in kilograms and time 
in seconds. 

1.9.2 Example 

A simply supported beam of 3 m span supports a load at midspan of 100 kN. 
Calculate the natural frequency of vibration. It is given that the second moment of 
area I of the beam is equal to 11710 cm4, Young's modulus E = 210 kN/mm 2. 
Solution: Express all parameters in terms of units specified in Section 1.9.1. 
I = 11710 cm 4 = 11710 x 1 0 8 m 4 , E = 210 kN/mm 2 = 210 x 103 x 10 6 N/m 2 

EI = 24.591 x 106 Nm 2 , L = span = 3 m 
As the beam is a simply supported and carries a mass at the midspan, 

K = 48 EI/L 3 = 48 x [24.591 x 106]/33 = 43.717 x 106 N/m 
Load W acting at midspan = 1 0 0 k N = 1 0 0 x l 0 3 N 
Assuming that the gravitational constant g ~ 10 m/sec/sec, the corresponding mass 
M = W/g. Therefore 

M = 100 x 10 3 /g= 10 x 10 3kg 
co - ^{K/M} = 66.11 radians/second 

co 1 
f = — = 10.52 Hertz, T = — = 0.095 seconds 

In f 
Figure 1.5 shows a plot of variation of u(t) with t. Calculations were made on 

the assumption that u0 = 0. As can be seen, the motion is a simple harmonic and 
repeats itself indefinitely. 

1.10 DAMPED F R E E VIBRATION 

Damped free vibrations are similar to undamped free vibrations considered in 
Section 1.9, except that the damping constant C is not equal to zero. We have to 
consider three separate cases as follows. 

1.10.1 Underdamped System (p < co) 

In this case, the solution is given by equation (1.14). Assuming that the system is 
given at time t = 0, u(t) = u0 and u'(t) = u0' then 

u0 = Bj and u0' = -j3 B; + B2cod 

Bt = ua, B2 = fu0' + Pu0}/cOd 
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u(t) = e P t [u0 coscodt + {(u0' + P u0)/cOd fsincfyt] (1.22) 
Using steps similar to those used in deriving equation (1.19) 

u(t) = eptR cosicodt -6)= e'^R cos(codt -6) (1.23) 
R2 = u0

2 + {(u(; + p uj/cou}2, land = {u0' + p u0}/(u0 cod) 

As can be seen, cos(codt - 9) is periodic with a period Td - CQj /(2n) but the presence 
of e"p 1 term damps out the vibration. As the value of C is increased, the vibrations 
are damped out at a greater rate per cycle. 

Fig. 1.5 Undamped free vibration 

1.10.2 Critically damped case (3 = co) 

The solution to u(t) is given by equation (1.15). Assuming that u(t) = uQ and u'(t) = 
ua' at t = 0, 

Bj = u(), B2 = Pu0 + u0' 

u(t) = e P t (ua(l + pt) + u(f't) (1.24) 
As can be seen, vibratory motion is completely damped out. The smallest amount 
of damping constant C required to damp out all vibration is called critical damping 
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1.5 n 

-1 J 

t, seconds 

Fig. 1.6 Damped free vibrations 

1.11 C R I T I C A L DAMPING 

Critical damping Ccr can be expressed in terms of M and K as follows. At critical 
damping P = ca, but p = CC/(2M) and co= <(K/M). Therefore 

Ccr = 2<(KM) (1.25) 
Using the expression for Ccr, the expression for CQj in the case of an under damped 
system is given by 

cad = <(ca2- p2) = ca<{l - (p/co)2} 
Substituting for P = C/(2M), co= <(K/M), Ccr = 2<(KM) 

(p/caf = Cf/(4KM) = (C/Ccr)2 

Letting C/Ccr = £, damping ratio and ft = £co 

cad=co<{l-?} (1.26) 
Fig. 1.6 shows a plot of the variation of u(t) with t. Calculations were made for the 
same simply supported beam considered in Section 1.9.2 assuming that u 0 = 0 and 
using damping ratio t, of 5%, 10% and 50%. 

1.12 DAMPING IN STRUCTURES 

Damping in structures has various origins. The simplest is friction due to relative 
movement between parts of structures, for example at bolted joints in steel 
structures and at cracked surfaces in the case of concrete structures. This type of 
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frictional damping is called Coulomb damping. It is independent of velocity. On 
the other hand when a body moves in a fluid, such as air or water, then the 
resistance is normally proportional to the square of velocity. In the interest of 
simplicity, damping force is often assumed to be proportional to velocity. This 
type of damping is called linear 'Viscous damping'. In addition to the above 
external causes, there is also energy dissipated due to internal friction caused by 
slipping and sliding of particles at internal planes during deformation. The 
phenomenon of damping in structures is thus very complex involving many causes. 
It is almost impossible to determine what proportion of damping can be assigned to 
a particular aspect. Therefore in practice the value of damping present is assumed 
as a percentage of critical damping. Some experimental data obtained from 
measurements on actual structures, such as buildings and bridges, exist. These 
values provide reasonable guidance for practical calculation. Table 1.1 shows 
typical values of C/Ccr met in practice. As can be seen, in practice the damping 
present is such that C/Ccr < 15%. I f C/Ccr = 0.15, then cad = 0.99 ca Therefore it 
can be concluded that the effect of a small amount of damping is mainly to damp 
out the vibrations but leaving the frequency of vibration practically unaltered from 
the undamped value. 

Table 1.1 Damping ratios in practical structures 

C/Ccr% 
Type and condition of structure Working 

stress 
Near yield 

Welded steel, prestressed concrete, 
well reinforced concrete 

2-3 5-7 

Reinforced concrete with considerable 
cracking 

3-5 7-10 

Bolted steel, wood structures with nailed 
or bolted joints 

5-7 10-15 

In practical calculations it is safe to ignore damping, because it has the effect of 
reducing the stresses under dynamic loading. As will be shown in Chapter 2, in the 
case of sudden dynamic loading, such as wind gusts or earthquake disturbance, 
there is generally insufficient time for damping to have any significant effect. 
However, it is desirable to include it in the case of continuous dynamic loading. 

1.13 OVERDAMPED S Y S T E M 

As indicated in Section 1.12, the amount of damping present in practical situations 
is very small. The case of an overdamped system where (p > co) does not 
commonly occur in problems of structural engineering interest. The general 
expression for displacement is given by equation 1.17. 
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Assuming that the system is given at time t = 0, u(t) = u0 and u'(t) = u0' then 
ua = Bj and u0' = -ft Bj + B2 coj 

Bj = u0,B2 = {u0' + pu0}/caj 
u(t) = e'pt [u0 coshcojt + f(u0 u0)/ coj fsinhcojt] (1.27) 

t, seconds 

Fig. 1.7 Underdamped, critically damped and overdamped systems 

It is interesting to note that from equation (1.27), that although both cosh (Oj t and 
sinh cuj t, tend to infinity as t tends to infinity, but because of the presence of the e"pt 

term, vibrations are damped out. Fig. 1.7 shows a plot of displacement of the 
simply supported beam considered before for three cases of damping of viz. 
underdamped with £ = 0.10, critically damped with £ = 1.0 and an overdamped 
system with ^ = 1.5. It is worth noting that the displacements of an overdamped 
system are larger than that of the critically damped system, although in both cases 
all vibratory motion is completely suppressed and displacements fade out 
exponentially. 

1.14 M E A S U R E M E N T O F DAMPING 

In the case of underdamped systems, which are of practical interest, a simple 
measure of damping is the ratio of displacements at times one cycle apart. I f T d is 
the period of vibration, using equation (1.14), the ratio between displacements T d 

apart can be calculated as follows 
u(t) = e ^{Bj coscodt + B2 sincajt} 

u(t + Td) = e p<t + T J {Bj coscodt + Td) + B2 sincodt + Td)j 
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Td = 2n/cod,(Od=(Q<{l- (C/Ccr)2} 
cos(Od(t + Td) = cosfcajt + 2K) = cosotyjt 
sin(Oj(t + Td) - sin((adt + 2K) = sincajt 

u(t + Td) = e'^t + TJ{B1 coscoat + B2 sino^t] 
Therefore the ratio of displacements T d apart is given by 

u(t)/u(t + Td) = e m 

pTd=loge[u(t)/u(t + Td)] 
The term log e [u(t)/u(t+Td)] is called log decrement 6. 
As 

P = £C0(0D = C0<{1 - <f7, Td = 2K/(Dd 
S=f)Td = [2KZ]/<{l-e} 

Since the damping ratio £ is generally less than 0.10, 

d~2K,{~d/(2K) (1.28) 
Note that i f £ = 0.10, then 5 = 0.63 and the ratio of displacements at times T d apart 
is equal to e p T d = 1.88. Since 1/1.88 ~ 0.5, as a rough rule of thumb, 10% critical 
damping reduces the amplitude by 50% per cycle. From the point of view of 
calculating the damping ratio from an actual displacement versus time plot, i f the 
ratio of displacements n cycles apart is used, then 

u(t)/u(t + nTd) = efinTd 

npTd = loge [u(t)/u(t + nTd) 

nS = loge [u(t)/u(t + nTd)] (1.29) 
This allows a damping ratio to be calculated to a better accuracy than i f the 

ratio of displacements just T d apart are used. 
In general, using accelerometers, it is easier to measure acceleration at a point 

in a structure rather than the corresponding displacement, because measurement of 
displacement requires a datum. Assuming that the system is given at time t = 0, u(t) 
= u 0 and u'(t) = 0 then, using equation (1.23), 

u(t) = e^ R cos(cajt - 0) 
R^uJ + fPujG),}2 

tanO = {u0' + p u0J/(u0 cod) 
Differentiating displacement twice with respect to t, acceleration is given by 
U"(t) = e & Rf(p2 - co/) coscodt - tj + 2 p coj sincajt - t0)j 
Using the same steps as used in deriving equation (1.22) in Section 1.9, the 
acceleration is given by 

u"(t) = co2 e'^ R cosfcoyt - 6 + <p) 
Rt^u' + fPuJ/to,}2 

tan (p = (-2P cajyco2 

This shows that plots of u(t) and u{t)/tS, will be identical except for a phase shift 
of (p. This means that acceleration-time plot rather than displacement-time plot 
can be used to calculate damping present in real structures. 
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1.15 SUMMARY O F F R E E VIBRATION ANALYSIS 

The results of free vibration response can be summarised as follows: 
i . With zero damping, motion is purely simple harmonic. 
i i . When damping is below critical damping, the motion is still periodic but there 
is amplitude decay. 
i i i . As damping is increased up to critical damping all vibratory motion is 
completely damped out. 
iv. The factors, which affect the free vibration response are mass M , stiffness K 
and damping C of the system. 
v. Damping present in practical situations is in less than 10% of critical damping. 
The effect of light damping is to cause amplitude decay leaving the frequency of 
vibration practically unaltered. 
vi. The frequency of vibration in the case of lightly damped system is given by 

co ~ V(K/M), f ~ co/(2rc), T ~ 2TT/CO. 

vii . Logarithmic decrement 5 is given by 
6 = loge [(u(t)/u(t + Td)] = 2K (C/Ccr). 

1.16 SYSTEMS S U B J E C T E D TO HARMONIC E X C I T A T I O N 

In the previous sections, motion in the absence of external forces was considered. 
As an introduction to the study of SDOF systems subjected to external force and 
also to bring out the important concept of resonance, the underdamped system 
shown in Fig. 1.1 subjected to an external sinusoidal force F = F0 sinQt will be 
studied. It is interesting to mention in passing that because a general periodic force 
can be expressed as a Fourier series in terms of sine and cosine functions, the 
results obtained in this section are of more general interest than might appear at 
first glance. 

The differential equation to be solved is 

M - ^ - f + C— + Ku = F(t) = F0 sin at (1.30) 
dt dt 

The solution to the differential equation (1.30) is the sum of complementary 
solution (also called natural motion solution or starting transient) and particular 
integral (also called forced motion solution or steady state solution). In the case of 
an underdamped system, the complementary solution is given by 
Complementary Function = e pt{Bl coscajt + B2 sincajt} 
The particular integral is assumed to be given by 
Particular Integral = (Dj cosQt + D2 sinQt) 
where Dj and D 2 are constants. 
Substituting the P.I. in equation (1.30) 

- Q2 (Dj cosQt + D2 sinQt) + 2 fiQ (-Dj sinQt + D2 cosQt) 
+ (Dj cosQt + D2 sinQt) = (F/M) sinQt 

Equating the coefficients of terms in sinDt and cosClt we have 
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-2/6 Q Dj + (co2 -QL)D2=. F0/M 
2 fiQD2 + (co2 -Q2 )Dj =0 

Adopting the notation r = Q/co and since fi/co = C/Ccr - £ and K/M = co2, Dj and D 2 

can be expressed as follows 

D | = ~ f ^ ' ^ = Y i i - F d l , l t 2 = ( 1 " r 2 ) 2 + ( 2 r § ) 1 

PI = -^j [(1 - r 2 ) sin Qt - 2r% cos Q.t] 
KR 

This can be simplified further by setting 
(l-r2)=R cosO ,2r{ = R sinO, tanO = (2rQ/(l - r2) 

PI = (Fo/KR) si (Qt - 0) 

u(t) = e p'{Bj coscojt + B2 sincodt} + (FJKR) sin(Qt - 0) (1.31) 
I f starting from rest, then 

fi7 = (Fo/KR) sin0 
B2 = (Fo/KR) [(p/coj) sin9 - (Q/coJ cos0] 

The complementary solution represents damped free vibration. In the presence 
of damping, the effect of this is quickly damped out. Remembering that damping 
equal to only 10% critical damping reduces the amplitude by 50% per cycle, the 
presence of the e"pt term in the complementary solution ensures rapid decay of this 
part of the solution. This is why the complementary solution is also called starting 
transient. Once the effect of the starting transient has disappeared, we are left with 
the particular integral part of the solution. This is why the particular integral is also 
called steady state solution. Therefore the steady state motion is given by 

u(t) = (Fo/KR) sin(Qt - 0) (1.32) 
Since the applied force F = Fo sinQt, it is clear that the frequency of vibration 

is the same as the frequency of the applied force except that the motion lags behind 
the applied force by t„ = 0/Q. It should be noted that since 

tan0 = (2rQ / (1-r2), t0 = 0if£ = 0 
Therefore damping present in the system causes the lag between the displacement 
and the applied force. 

1.17 DYNAMIC MAGNIFICATION F A C T O R 

The steady state response is given by 
u(t) = Fo/(KR)] sinQ(t -10) 

u(t)max = (Fo/KR) 
Since Fo/K = maximum static deflection A s t , the maximum dynamic deflection 

can be expressed as 
u(t)max=Ast/R 

Therefore the maximum dynamic deflection is 1/R maximum static deflection. 
1/R is called dynamic magnification factor (DMF). 
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DMF = , 1 (1.33) 
V [ ( l - r 2 ) 2 + ( 2 r £ ) 2 ] 

where r = Q/co, the ratio of applied to undamped natural frequency of the system. 
Evidently DMF is a function of frequency ratio r and damping ratio Fig. 1.8, 

shows a plot of DMF versus r for various values of 
For a given value of damping ratio, DMF is a maximum when 

d(DMF)/dr = 0 
Carrying out the differentiation and simplifying 

1 - r2 - 2 ? = 0, r = <(1 - 2 <?) 
For lightly damped system (i.e. £ = < 0.10), the maximum DMF occurs when r is 
almost equal to 1 and the maximum DMF is equal to 0.5/£. I f £ = C/C c r = 0.10, the 
maximum dynamic displacement is five times the corresponding maximum static 
displacement. 

Figure 1.8 shows that for values of r less than about 0.5, DMF remains fairly 
near unity. This corresponds to a quasi-static situation and dynamic effects can be 
safely ignored and only static analysis carried out. 

Similarly i f r is greater than about 1.5, the dynamic magnification is less than 
unity. This is the case where the structure is being isolated from the effects of 
vibration. The structure will show little response to forces pulsating at frequencies 
above the resonant frequency. The region where it is important to consider 
dynamic is 0.5 < r < 1.5. 

1.17.1 Response Near Resonance 

In the previous section, it was shown that i f the frequency of applied force is the 
same as the frequency of the system, then large displacements can result. In the 
case of undamped system, the solution to the differential equation is given by 

u"+co2u = (l/M)Fo sinQt 
The solution is given by 

u(t) = (Bj cosca + B2 sincot} + {Dj cosQt + D2 sinQt} 
I f co = Q, then because of the repeated nature of the Complementary Function and 
Particular Integral part of the solution, the solution is given by 

u(t) = (Bj cos cot + B2 sincot)+ t{D} coscot + D2 sincot} 
In order to satisfy the differential equation, the values of constants Dx and D 2 

become 
D2 = 0,D} = -F(/(2Mco) 

Therefore 
u(t) = {Bj cosca + B2 sinca) - F(/(2Mco) t cosQt 

Clearly, because of the presence of the term t, the displacements can become very 
large. However it also takes time to build up a large amplitude. Hence it is a safe 
procedure to accelerate a machine through a resonant frequency so long as the 
normal working frequency is well above the resonant frequency. 
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Fig. 1.8 Dynamic magnification factor versus frequency ratio 

1.18 RESPONSE T O BASE E X C I T A T I O N 

In Section 1.17, the SDOF system subjected to an external force was studied. As 
an introduction to the study of systems subjected to forces arising from the 
acceleration of the foundation such as that due to seismic disturbance, the SDOF 
system shown in Fig. 1.1 subjected to foundation movement will be studied. Let the 
displacement of the base be u b and the displacement of the mass be u m . The forces 
acting on the mass are 
a. Inertial force which depends purely on the acceleration of the mass = -M u "m 

b. Damping force which depends on the relative velocity of the mass with respect 
to the base = -C(u'm - u'b) 
c. Spring force which depends on the extension of the spring = -K(um - ub) 
Using D'Alembert's principle, the equation of equilibrium is given by 

Mu"m + C(um - uh) + K(um -ub) = 0 (1.34) 
Adding - Mu" b to both sides of the equation 

M (u"m - u"b) + C(u'm - u'b) + K(um- ub) = -M u"b 
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Setting u = u m - u b , the differential equation can be written as 

Mu" + CM' + Ku = -Mu"b (1.35) 
where u is the relative displacement of the mass with respect to the foundation. As 
can be seen, equation (1.35) is identical to equation (1.1) except that F(t) has been 
replaced by -Mub". In other words, the analysis of systems subjected to 
acceleration of the base is similar to the analysis of systems subjected to external 
force. 



CHAPTER 2 

S I N G L E D E G R E E O F F R E E D O M 
S Y S T E M - I I 

2.1 INTRODUCTION 

In Chapter 1, the response of a single degree of freedom (SDOF) system to free and 
forced vibration under a harmonic force was investigated. It was shown that for 
lightly damped systems, the frequency is dependent mainly on the mass and 
stiffness of the system. It was also shown that i f the frequency of the applied force 
is nearly equal to the natural frequency of the system then the system resonates 
resulting in very large displacements. In this chapter the response of the SDOF 
system to general loads will be investigated and methods both analytical and 
numerical will be described for solving the differential equation viz. 

— - + 2/3 — + co2 u = —— (2.1) 
dt2 H dt M 

co2 = KIM, £ = C/Ccn (Dd = <D>l(l -?),p = ta> 

2.2 L A P L A C E TRANSFORM METHOD 

The differential equation (2.1) is best solved using the Laplace transform method 
especially because the forcing function F(t) is, in general, discontinuous and the 
constants of integration are determined on the basis of initial conditions. As some 
readers might not be familiar with the method, the procedure is set out in some 
detail along with some simple examples. 

It is perhaps worth reminding the reader that the Laplace transform method is 
similar to Macaulay's Method (also called Singularity Functions Method) used in 
the solution of beam deflection problems when the lateral load on the beam is 
discontinuous. 

The Laplace transform O(s) of a function O(f) is defined by 

0>(s) = ] O(f) e~" dt (2.2) 
0 

where s is complex. 
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2.2.1 Laplace Transform: Examples 

The basic step of calculating the Laplace transform is illustrated by a few simple 
examples. 

Example 1: Calculate the Laplace transform of O(t) = e a t . 
Using equation (2.2), 

6 ( 5 ) = J O ( 0 e'" dt = )eat e'" dt = j V ( * - f l ) ' dt 
0 0 0 

(s-a) 1 0 ( j - a ) 
The last step is obtained by noting that e~l tends to zero as t tends to infinity. 
As a corollary, i f 3> = (e a t - eb t), then from the result in Example 1, 

1 1 (a-b) 
0(s) = 

(s-a) (s-b) (s-a)(s-b) 

Example 2: Calculate the Laplace transform of O(t) = t. 
Using equation (2.2), 

ch(s) = J<&(0 e~st dt =]t e~st dt 
0 0 

Integrating by parts, 

6 ( 5 ) =e-st\-- - \ ] 
s s2 

2.3 I N V E R S E L A P L A C E TRANSFORM 

Examples in Section 2.2.1, showed how to calculate the Laplace transform for a 
given function. In the solution of differential equations using this method, it is 
necessary to calculate the original function, i f only the transform of the function is 
given. Unfortunately this 'Inverse' process is not straightforward. Fortunately, 
with the help of ready-made tables, which tabulate for a large number of well-
known functions corresponding to transforms, the reverse process can be 
accomplished. 

2.3.1 Inverse Laplace Transform: Examples 

A simple example to illustrate the inverse process. 
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Example 1: Calculate the function d>(t), given that the Laplace transform is 
s 

(s-a)(s-b) 
Using the concept of partial fractions, the transform can be written as 

(s -a) (s-b) (s-a)(s-b) (a-b) 
Using the result from Example 1 in Section 2.2.1, the function corresponding to 
each of the partial fractions can be determined. Therefore 

* ( 0 = —^-rSaeat - b e b t } 
(a-b) 

2.4 L A P L A C E TRANSFORM O F D E R I V A T I V E S 

The Laplace transforms of derivatives of O(t) are obtained as follows, 

i . First derivative of O (t): 
The Laplace transform of the first derivative of O(t) is, by definition, given by 

*•(,) = } I*® e- dt 
I dt 

Integrating by parts 

ti>'(s)=e"Q(t)\~ +s J « ( 0 e" dt 
0 

The integral on the right-hand side is equal to O and since e"st tends to zero as t 
approaches infinity 

4>\s) = - 0 ( 0 ) + s 4>(s) (2.3) 

i i Second derivative of O (t): 
The Laplace transform of the second derivative of 0(t) is, by definition, given by 

0«(s) = | e~' dt 
i dt2 

Integrating by parts once 

6 " ( 5 ) = * ' ( J ) * " " T + 5 I e ~ * d t 

0 o dt 

The integral on the right-hand side is evidently <J>' (s). Substituting for <S>' (s) and 
in addition noting that since e"st tends to zero as t approaches infinity 
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0"(j) = - 0 (0)-s<D(0)+.y2 o W (2.4) 

2.5 SOLUTION O F D I F F E R E N T I A L EQUATION 

In order to solve the differential equation (2.1), by the Laplace transform method, 
we take the Laplace transform of both sides of the above equation. Substituting for 
the Laplace transform of u(t) and u (t) in terms of the Laplace transform of u(t) and 
its initial conditions u(0) and u(0), we have 

{-w'(O) - sw(0) + s 2 «(*)}+ 2/3 {-w(0)+ su(s)} + CO2 u(s) = 
M 

Simplifying 

{s 2 + 2/3 ^ + 6) 2}w(s) = + (2/3 + s) k(0) + (2.5) 
M 

Factorising, { s 2 + 2/3 5 + CD2} as (s-a) (s-b), where, 

a=-p + jcoil, b=-p - jcod ,j = 4 - i ,cod = J(co2 - p2) 

The Laplace transform of u becomes 

u(s)=u'(o)g(s)+ (2/3+ s)u(0)g(s)+^-F(s) g(s) (2.6) 
M 

i 

(s~a)(s-b) 
I f the system is undamped, then p = 0 and 

g ^ = 7~T~~ 17 
(J - 6 ) ) 

The solution to u(t) is obtained by taking the inverse transform of both sides of 
equation (2.6). 

2.6 SOME U S E F U L R E S U L T S 

Application of Laplace transform for the solution of practical problems is 
facilitated by the introduction of some special functions and some important 
'theorems'. These are discussed in this section. 
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2.6.1 Unit Step Function 

In studying the response of SDOF systems to general loading, the unit step function 
(also called Heaviside step function) is useful for defining discontinuous loading. 
As shown in Fig. 2.1, it is defined as follows 

H(t-z) =0, ift<xandH(t-x) = / , i f r > r (2.7) 

H(t-T) 

Fig. 2.1 Unit step function 

Unit step function is similar to uniformly distributed load in the case of beam 
problems, where the uniformly distributed load does not start from the origin. 
Substituting for 0ft) = H(t - x), the Laplace transform of unit step function is given 
by 

6 = ]H(t-T)e-" dt = ]e~stdt= - - e 
s 

, 1 
= — e (2.8) 

0 T 

Note that because H(t - x) = 0/\it<x, the lower limit of integration changes from 0 
to T. 
Note that i f an impulse lasts only over the period t = tj to t = t 2, then the 
corresponding O(t) is given by 

0(t)=H(t-tj)-H(t-t2) 
The corresponding Laplace transform is given by 

O = ){H(t-t{)~ H(t-t2)}e-st dt = -{e 
o S 

-st2 }(2.9) 

2.6.2 Shift Theorems 

There are two useful theorems that facilitate the evaluation of Laplace transforms 
and their respective inverses. 
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2.6.2.1 Shift Theorem 1 

If 0ft) = Wft) efl',then 

<D (S) = J O ( 0 e~* dt = jpF(f) eat ] e~st dt = J ¥ ( 0 «- ( 1" a )' A 
0 0 0 

I f *F(s) = J*r*(0 e~'v' , then comparing the two expressions, one can see that 
0 

6 ( 5 - ) = * F ( j - a ) 
The theorem can be stated as follows 

O(r) = *F(r) <X>0) = Y O - a ) (2.10) 
As a simple application of Shift Theorem 1, let ¥ = t 2. Using the definition for 
Laplace transform and also successively integrating by parts 

¥(s) = ]t2 e"' dt = --t2 e~" \~+ -]t e~st dt 
o S ° 5 o 

= i 0 - ] + 4 l « - " * 
5 5" 5 o 

5 o 5 5 5 

2 
Therefore if *F(f) = f 2, then = — . From the Shift Theorem 1, the 

5 
2 at 2 

Laplace transform of t e is equal to . 
(5 - a) 

2.6.2.2 Shift Theorem 2 

I f 0ft) = Wft - a) H(t - a), then 

6(5) = J O ( 0 = ) "¥{t-a) H(t -a) e~st dt 
0 0 

Note that in the last integral the lower limit changes from 0 to a. This is because 
H(t -a) = 0fort<a. 

0>(5) = a) e"1 dt 
0 

Substituting (t - a) = u, then 
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O ( j ) = e -as j ¥(u) e~su du = e"" *¥ (u) 
0 

Therefore, the second shift can be stated as follows. I f <P(t) is a given function, 

then the Laplace transform of the product of 0(t - a) H(t - a) is equal to O e'as. 

For example, the Laplace transform of t 2 is equal to . Therefore the Laplace 
2 

transform of (t-a)2 H(t-a) is given by — e a s 

s 

2.6.3 Convolution Theorem 

Convolution theorem is useful for evaluating the inverse transform of the product 
of the transforms of individual functions. This is particularly important in 
obtaining the particular integral of ordinary differential equations. The theorem 
says that i f 0(t) and W(t) are two functions whose Laplace transforms are, 

respectively, O and 4* , then the inverse transform of the product O *F is given 
by 

| < D ( T ) f (t - x) dx = j * ( f - x ) ¥ ( T ) d f 
0 0 

The proof of this theorem is quite simple. By definition 

*F = j 1 ? e-'dt = O jNP e" dt 
0 0 

Note that W is a function of t but O is a function of s. Taking O which is a 

function of s inside the integral sign 

0> ^ = [O e-" ]dt (2.11) 
0 

In order to avoid confusion with t later on, we can, in the above integral, change the 
variable t to u without making any difference. Therefore 

= j ¥ [ i e ' " ]du 
0 

However from the second shift theorem, O e~s" is equal to the Laplace transform 
of <P(t-u) H(t - u). Therefore 

<I> e5u = jO(r - u) H(t - u) e~st dt 

0 

Substituting the above integral into the original expression for O *F , we have 

O V = / ¥ [ / < & ( * - ! < ) H(t -u)e -sl dt ] du 
0 0 

Reorganizing the above expression as follows (which is permissible in this case), 
we get 
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<D y = J [ { ®(t - u) H(t - u) Vdu] e " dt 
0 0 

We notice now that the variable in the inside integral is u I f t is the variable, then 
H(t-u) = 0, i f t < u andH(t-u) = 1, if t>u (2.12a) 

However i f u is treated as the variable, then 
H(t-u) = 0, if u> t andH(t-u) = l,ifu<t (2.12b) 

Since in the inside integral, u is the variable, using equation (2.12b), the upper limit 
changes from infinity to t because H(t - u) is zero for all values of u > t. 

Introducing this change, the expression for the product 3> *P can be written as 

<D*F = Jf [ j O ( f - i i ) *¥du] e'" dt 
0 0 

This shows that the right-hand side is nothing but the Laplace transform of inner 
integral inside square brackets. Therefore we can say that the inverse Laplace 
transform of O Hf is equal to 

J <D(/ - w) ¥ du 
0 

In a similar way we can show that the inverse Laplace transform of O ^ is also 
equal to 

( O ^ f - u) du 
0 

This result is known as convolution integral theorem and will be used in later 
sections to derive the particular integral part of the solution to the differential 
equation. 

2.7 SUMMARY O F SOME R E S U L T S 

As already remarked, using a table of functions and their transforms, knowing 

O(^) , one can determine the corresponding O(t). Table 2.1 gives some standard 
results. 

The following results (see Example 1 in Section 2.2.1) will be useful in applying 
Laplace transforms to the solution of the differential equation. 

I f a = - p + j coj, b = - p - j (Od, (a - b) = 2 j cod, then i f 

( i ) ° ( 5 ) = 7 — h — ^ ' 
(s-a)(s-b) 

R \J°>d t _ - i ° > d t , -fit 

0 ( O = e - fi < i f i 1 = £ — s i n w t 

2jcod cod 

lfp = 0 for an undamped system, then 
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0(0 = — sincot 
co 

(ii) 0 ( , ) = s-
(s-a)(s-b) 

Q>(t)=e 
B, {{-P + JCQd)ei(*dt -(-P-Jcod)e-J(0dt] 

2jcod 

P eJ<°d t _ e - j » d t 

0(t)=e~litl 
2 cod 2j 

I f p = 0 for an undamped system, then 
0(0 = cos 6) t 

P ] = e p '[cos codt —sin codt] 
<°d 

(iii) Shift Theorem 1: 0(0 = *F(f) eat, O(J) = *F(j-a) 

(iv) Shift Theorem 2: The Laplace transform of <P(t - a) H(t - a) = O e'as 

(v) Convolution Theorem: The inverse transform of the product O *F is given 

by JO(T) ¥ ( r - T ) < / r or jO(f - r ) ¥(T)JT 

Table 2.1 Laplace transforms 

Function Transform 

1 [e- e1"] 
1 

(s-a)(s-b) 

—-—[ae" - be1"] 
s 

(s-a)(s-b) 
H ( t - T ) e'TS 

s 

F( t -T ) .H( t -T) 
e~TS F(s) 

J<D(T)g(f-T)dT 
0 

O(s) g{s) 

r 
n\ 

1 
s(n+l) 

2.8 G E N E R A L SOLUTION OF D U H A M E L I N T E G R A L 

Using equation (2.6) and the results of Sections 2.7, the solution to the differential 
equation (2.1) can be written as 
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u(t) = e p t {COSC0J + — sincodt} u(0) + e p t { — sincD^r}w'(0) 

+ Inverse transform of [ — F(s) g(s)] 
M 

where 

* ( J > = 7 Z—ZT' a = -P + JQ)J >b = -P -J°>J 

(s-a)(s-b) 

g(t)= e'pt {—sincodt}, 8(t-r)= e-pit-{) —sincod(t-r) 

From the Convolution theorem (Section 2.6.3), the inverse Laplace transform of 
O(s) g(s) is j O ( T ) g ( f - T ) d T . Therefore the inverse Laplace transform of 

0 
-j-F(s)g(s) is 
M 

JL'fF(T)g(t-T)dT = ——jF(r) e-pi'-r)smcod(t-r) dr 
Mo M COd 0 

The solution to the differential equation (2.1) is 
P 1 

u(t) = e p {coscodt+-!— sin codt] u(0) + e p t { s i n ^ / } w ' ( 0 ) 
ad Q)d 

+ — — J F ( T ) c" / , ('" r ) s i n o / f - T ) </T (2.13) 
M 0 

In many cases it is simpler to operate on the above integral as it is. However, using 
the relationship for compound angles, 

sincojt - T) = sincoj coscojz - coscodt sincoDT 

- I j F ( T ) g{r-t) dz= —— J F ( T ) e-p(-*} sin cod(t -r) dt 
Mo M COd 0 

/ / ^ ( T ) epT [sin co/ coso) r fr - cos codt sin codT ] d r 
M cod 0 

[sin <yrf tjF(r)ePT coscod rdr - coscod t jF(r) e&x sin codz dt] 
M cod 

(2.14) 
The above integrals are commonly known as Duhamel integrals. This 
representation is generally convenient for numerical evaluation of the integral. 


