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7.1.4.1 Von Kármán spectrum . . . . . . . . . . . . 231
7.1.4.2 Kolmogorov spectrum . . . . . . . . . . . . . 232
7.1.4.3 Gaussian spectrum . . . . . . . . . . . . . . . 233

7.1.5 Spectral representation of the effective correlation
function . . . . . . . . . . . . . . . . . . . . . . . . . 233

7.2 Phase and log-amplitude fluctuations for arbitrary spectra . 234
7.2.1 Rytov method . . . . . . . . . . . . . . . . . . . . . . 234
7.2.2 Spectral domain . . . . . . . . . . . . . . . . . . . . . 236
7.2.3 Plane wave propagation . . . . . . . . . . . . . . . . . 237



x Contents

7.2.4 Spherical wave propagation . . . . . . . . . . . . . . . 241
7.3 Phase and log-amplitude fluctuations for the turbulence spectra 244

7.3.1 Statistical moments of plane waves . . . . . . . . . . . 245
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Preface

This book offers a complete and rigorous study of sound propagation and scat-
tering in moving media with deterministic and random inhomogeneities in the
sound speed, density, and medium velocity. This area of research is of great
importance in many fields including atmospheric and oceanic acoustics, aero-
acoustics, acoustics of turbulent flows, infrasound propagation, noise pollution
in the atmosphere, theories of wave propagation, and even astrophysics, with
regard to acoustic waves in extraterrestrial atmospheres. Over the past several
decades, understanding of acoustics in moving media has grown rapidly, in re-
sponse to its importance for practical applications such as prediction of sound
propagation from highways, airports, and factories; acoustic remote sensing
and tomography of the atmosphere and ocean; detection, ranging, and recog-
nition of acoustic sources; and the study of noise emission by nozzles and
exhaust pipes.

In the atmosphere, the wind velocity and its fluctuations usually lead to
significant changes in sound and infrasound propagation, such as ducting in
the downwind direction and scattering into shadow zones. Strong oceanic cur-
rents and tides can affect the phase and amplitude of acoustic signals. Sound
propagation in gases or fluids are influenced by the mean flow. Propagation
of sound waves emitted by moving sources is closely related to acoustics in
moving media and is considered in this book. The bulk of the book presents
systematic and rigorous formulations of sound propagation in inhomogeneous
moving media, which may be applied in many areas of acoustics. Experimental
data and numerical predictions considered in the book are pertinent mainly
to atmospheric and oceanic acoustics. When studying outdoor sound propa-
gation, the most advanced models for the vertical profiles of temperature and
wind velocity and their fluctuations in the atmospheric surface layer and for
the ground impedance are used.

Part I of the book considers sound propagation through moving media
with deterministic inhomogeneities, such as vertical profiles of temperature
and wind velocity in the atmosphere. Chapter 1 presents the history of acous-
tics in moving media, its applications, typical values of wind and current ve-
locities in the atmosphere and ocean, and their effects on sound propagation.
This chapter contains useful background for those new to the subject. In Chap-
ter 2, classical and new equations for sound waves in inhomogeneous moving
media are systematically derived from a set of linearized fluid-dynamic equa-
tions. This chapter provides appropriate starting equations for solving many
particular problems. In Chapter 3, the main results of geometrical acoustics
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in an inhomogeneous moving medium are formulated systematically using the
Debye series and Hamiltonian formalism. Among these are the law of acoustic
energy conservation, the eikonal equation, refraction laws for the sound ray
and the normal to the wavefront, and equations for the sound ray path. Geo-
metrical acoustics is particularly useful for the visualization of sound propaga-
tion. Chapter 4 deals with the wave theory of sound propagation in stratified
moving media (the atmosphere and ocean). The results presented elucidate
the effects of the medium motion on propagation of plane and spherical sound
waves. Chapter 5 covers the study of sound fields emitted by moving sources.
The sound field due to a point source moving with an arbitrary velocity in a
homogeneous, motionless medium is analyzed. The bulk of the chapter con-
siders the effects of both source and medium motion on the sound field, such
as the Doppler effect and sound aberration in moving media.

The classical theories of wave propagation in media with fluctuations in
the sound speed (or light velocity) are well developed and presented in many
books. However, in the turbulent atmosphere and ocean, in liquid marine sed-
iments, and in the turbulent flows, the statistical moments of a sound field are
affected not only by these fluctuations, but also by the density and medium ve-
locity fluctuations. In Part II, we present rigorous and systematic formulations
for the various statistical moments of a sound field propagating in a medium
with random inhomogeneities in the sound speed, density, and medium veloc-
ity. In Chapter 6, the statistical description of random inhomogeneities in a
medium is considered, including most widely used spectra of turbulence. The
sound scattering cross section in a turbulent medium is calculated and applied
to the analysis of sound scattering in the atmosphere. In Chapter 7, the vari-
ances and correlation functions of the phase and log-amplitude fluctuations,
the mean sound field, and the mutual coherence function are considered for
line-of-sight sound propagation. Multipath sound propagation in a random
moving medium is analyzed in Chapter 8. This geometry can occur due to
reflection of a sound wave from a surface (e.g., the ground), refraction, or
sound scattering at large angles.

Part III describes numerical methods for performing calculations involving
equations from the first two parts. Such numerical methods are often needed
for practical problems involving sound propagation in the atmosphere, ocean,
and other moving media, since the complex and dynamic nature of these envi-
ronments often prevents the derivation of general, analytical results. Although
the example calculations in Part III pertain to outdoor sound propagation
near the ground, the techniques can be readily applied to other environments.
Techniques for synthesizing realistic random media, as appropriate to wave
propagation calculations, are described in Chapter 9. Chapter 10 describes
implementation of ray-based methods for the atmosphere, and also provides
some background material on boundary conditions for ground surfaces and in-
teraction of sound waves with porous materials. Wave-based methods, in the
frequency and time domains, are the subject of Chapters 11 and 12, respec-
tively. The former includes solution of parabolic equations and wavenumber
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integration techniques. The emphasis of Chapter 12 is on finite-difference,
time-domain (FDTD) calculations. Lastly, in Chapter 13, we explore incorpo-
ration of randomness and uncertainty in the outdoor environment (atmosphere
and terrain) into propagation calculations.

When writing this book, the authors have endeavored to derive results sys-
tematically from first principles. Ranges of applicability are rigorously formu-
lated before interpreting the physical meaning of the results. Such an approach
is desirable since heuristic approaches for sound propagation in moving media
have, in the past, led to some errors and misconceptions. The main quantities
describing sound propagation have the same notation in all chapters of this
book. Nevertheless, in each chapter all notations are introduced anew, so that
it can be read independently of the other chapters.

This book has been significantly revised and extended from the first edition
[290], which was published in 1997. Part I incorporates new results obtained
since that time. Part II is significantly rewritten and extended with systematic
formulations of sound propagation and scattering in random moving media.
Part III, describing numerical methods, is entirely new with this edition.

This book should provide valuable background and a reference resource for
engineers and scientists working in industry, government, and military labora-
tories on research problems involving outdoor noise control, acoustic detection
and ranging in the atmosphere, and acoustic remote sensing of the atmosphere
and ocean. The step-by-step approach and careful explanations should be use-
ful to teachers and graduate students in universities, polytechnics and tech-
nical colleges, in departments of physics, mathematics, earth sciences, and
engineering, who are interested in atmospheric and oceanic acoustics, aero-
acoustics, acoustics of turbulent flows, outdoor noise, acoustic remote sensing
of the atmosphere and ocean, and the theory of wave propagation in inhomo-
geneous media.

Vladimir Ostashev Boulder, Colorado
Keith Wilson Hanover, New Hampshire
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University (Milton Keynes, United Kingdom), and NOAA/Environmental
Technology Laboratory (Boulder, Colorado). He is a fellow of the Acoustical
Society of America, and an associate editor of the Journal of the Acoustical
Society of America and JASA Express Letters.

Dr. D. Keith Wilson is a research physical scientist with the U.S. Army Engi-
neer Research and Development Center (ERDC), in Hanover, New Hampshire.
He earned an M.S. in electrical engineering from the University of Minnesota
in 1987, where he was advised by Prof. Robert F. Lambert, and a PhD in
acoustics from the Pennsylvania State University in 1992, where he was ad-
vised by Prof. Dennis W. Thomson. Dr. Wilson was a research fellow at the
Woods Hole Oceanographic Institution under the guidance of Prof. George
V. Frisk from 1991–1993, and a research faculty member in the Pennsylva-
nia State University Meteorology Department under Prof. John C. Wyngaard
from 1993–1995. He joined the U.S. Army Research Laboratory in 1995 and
ERDC in 2002. Dr. Wilson has been awarded U.S. Army Research and Devel-
opment Achievement Awards on four occasions and received the U.S. Army
Meritorious Civilian Service Award in 2012. He is a fellow and recipient of the
Lindsay Award of the Acoustical Society of America, associate editor of the
Journal of the Acoustical Society of America, and founding editor of JASA
Express Letters. He is a member of the Institute for Noise Control Engineering
and the American Meteorological Society.

xvii





Acknowledgments

The first edition of this book was prepared for publication with support from
the German Acoustical Society, through arrangements by Prof. Volker Mellert
(University of Oldenburg, Germany). Frank Gerdes (University of Oldenburg)
undertook the printing of the manuscript in LATEX. Prof. Keith Attenborough
(Open University, United Kingdom) read both editions of the manuscript
carefully and provided many useful comments. The authors sincerely thank
all these people.

Both authors are grateful to their former research advisors for their men-
torship, inspiration, and kind support lasting many years: V. Ostashev to Prof.
V. I. Tatarskii (formerly with the National Oceanic and Atmospheric Adminis-
tration) and Prof. Yu. P. Lysanov (deceased), and K. Wilson to Profs. Dennis
W. Thomson, John C. Wyngaard, George V. Frisk, Robert F. Lambert, and
Kenneth E. Gilbert.

The authors also acknowledge the long-term support of the United States
Army, which was facilitated through the Army Research Office, the Engi-
neer Research and Development Center, and the Army Research Laboratory.
Indeed, a substantial portion of the research in outdoor sound propagation
described in this book, whether conducted by the authors or by others, was
sponsored by the U.S. Army.

We hope this book helps to demonstrate the tremendous progress that has
been made by the larger research community during the past several decades.

Lastly, but most definitely foremost in mind, the authors are indebted to
the unwavering support and patience of their spouses and families during this
project.

xix





Part I

Theoretical foundations of
acoustics in moving media
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In this part of the book, we analyze propagation of sound waves in mov-
ing media with deterministic inhomogeneities, such as the vertical profiles of
temperature and wind velocity in the atmosphere and synoptic eddies in the
ocean. Chapter 1 serves as introduction and acquaints readers with the his-
tory of acoustics in a moving medium and its modern applications. Parameters
affecting outdoor sound propagation are discussed and a brief overview of at-
mospheric acoustics is presented. The effects of ocean currents on propagation
of sound waves are outlined.

In Chapter 2, equations for acoustic and internal gravity waves in an in-
homogeneous moving medium are systematically derived from first principles.
An entire chapter is devoted to the derivation of these equations because (i)
certain important equations have been obtained only recently, and (ii) the
equations for sound waves are often presented in the literature without de-
tailed analysis of their ranges of applicability. These equations are used in the
subsequent chapters for analysis of sound propagation.

The main results of geometrical acoustics in an inhomogeneous moving
medium are systematically presented in Chapter 3. Starting from a complete
set of linearized fluid-dynamic equations, we formulate the law of acoustic
energy conservation and derive the eikonal equation, refraction laws for the
sound ray and the normal to the wavefront, and the equations for sound ray
paths. The ray paths are particularly helpful in visualizing sound propagation.
Examples of ray tracing in the atmosphere and ocean are presented.

Geometrical acoustics does not enable one to describe diffraction of sound
waves and is not applicable to relatively low frequencies. These difficulties can
be overcome with the wave theory of sound propagation in a stratified moving
medium, which is considered in Chapter 4. This is a rigorous theory, which has
a wider range of applicability than the effective sound speed approximation.
The results in this chapter describe the effects of medium motion on the
sound-pressure field.

Chapter 5 deals with the analysis of the sound fields emitted by mov-
ing sources and observed by moving receivers. The chapter begins with the
study of the sound field of a point source moving with an arbitrary velocity
in a homogeneous motionless medium. Then, the effects of source, receiver,
and medium motion on the sound field are analyzed. In particular, sound
aberration and the Doppler effect in an inhomogeneous moving medium are
considered.
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Introduction to acoustics in a moving
medium

This introductory chapter begins our journey through the subject of acoustics
in moving media: its history, theory, computational methods, and applications.
By moving media, we mean a medium with an ambient flow; that is, a fluid
in motion prior to the introduction of a sound wave. Such motion is called
the wind in the atmosphere, or the current in the ocean. But, much of the
underlying science applies to media other than the ocean or atmosphere, such
as wave propagation through flows of fluids. In addition to winds and currents,
the fluid motions may include random disturbances such as turbulence and
internal waves.

Section 1.1 acquaints readers with the history of acoustics in a moving
medium and with its modern applications. A brief overview of atmospheric
acoustics follows in section 1.2. This section also describes parameters af-
fecting sound propagation in the atmosphere, such as the vertical profiles of
temperature and wind velocity. In section 1.3, the parameters of ocean cur-
rents are briefly overviewed and some experimental and theoretical results on
sound propagation in the ocean with currents are presented. The subsequent
chapters, where the theory of sound propagation in inhomogeneous moving
media is systematically presented, also contain some historical perspectives,
experimental data, and numerical results, but more specifically related to the
subject of the chapter.

1.1 Historical review

Throughout this book, and particularly with regard to the following historical
discussion, we endeavor to present the subject of acoustics in moving media
based on the primary, original papers. Two review papers [26, 93], and the
historical review sections found in references [52, 71, 76, 151], were primary
references enabling us to connect the threads among the original papers on
this subject.

5
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1.1.1 First papers on acoustics in a moving medium

The study of acoustics in a moving medium initially emerged from interest
in sound propagation in the atmosphere. Long before the advent of modern
science, it had been observed that sound appeared to be louder downwind
than upwind from a source. This phenomenon was also evident in the first ex-
periments on sound propagation in the atmosphere, such as those performed
by Delaroche [95] and Arago [8]. A correct qualitative explanation of this
phenomenon was not provided, however, until 1857 by Stokes [366]. Since
the wind velocity should increase with height in the near-ground atmosphere,
sound propagating upwind bends upward and thus can pass over the head of
an observer, who is then said to be in an acoustic shadow zone (in analogy to
an optical shadow). But, in the downwind direction, the sound bends down-
ward, so that the observer is in an insonified zone. (The ray paths for sound
propagation downwind and upwind are illustrated in figures 3.4 and 3.5 of
Chapter 3.)

Nearly the same explanation for the distinct audibility in the downwind
and upwind directions was given by Reynolds [329], seventeen years after
Stokes. But, unlike Stokes, Reynolds used the concept of sound rays for this
explanation. Reynolds also verified experimentally Stokes’s assumption that
the bending of sound (a sound ray, according to Reynolds) upwind causes a
decrease in audibility. In his experiments, the height below which no sound
was heard was measured. Reynolds’s experiments confirmed that the greater
the distance from the source to the receiver, the greater this height. Further-
more, Reynolds assumed [329], and then verified experimentally [330], that a
sound ray bends upward if the temperature decreases with height. This al-
lowed Reynolds to explain why sound from a particular source can be heard
better at night than in the daytime. In the daytime, the temperature and,
hence, the speed of sound decreases with height, so that the paths of sound
rays turn upward, similarly to sound traveling upwind. On the other hand,
at night in the near-ground atmosphere, the temperature usually increases
with height and the sound rays turn downward, as in propagation downwind.
Independently of the study done by Reynolds, and practically at the same
time, the effect of wind on sound propagation in the atmosphere was stud-
ied experimentally by Henry [164]. Based on his experimental results, Henry
concluded that sound propagation is affected significantly by refraction due
to wind velocity stratification.

Rayleigh [324] developed the first mathematical description of sound prop-
agation in moving media and formulated the refraction law governing the
normal to the wavefront in a stratified moving atmosphere. Using this law,
he derived an equation for the ray path. However, Rayleigh’s derivation was
later recognized to be incomplete, because it did not distinguish between the
unit vector n normal to the wavefront and the unit vector s tangential to the
ray path. Barton [23] was the first to show that these vectors do not generally
coincide in a moving medium. Barton also formulated a rule for calculating
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the group velocity of a sound wave propagating in a stratified atmosphere.
Using this rule, Barton calculated the sound ray paths. While many papers
on acoustics in moving media have pointed out Rayleigh’s mistake, he was the
first to formulate the refraction law for the normal n to the wavefront in a
moving medium. Moreover, the distinction between the vectors n and s had
not been made prior to Rayleigh; by revealing their difference, Barton made
a key contribution to the development of acoustics in a moving medium.

Further development of this field of acoustics was motivated by two prac-
tical problems. First, for detection and ranging of artillery and airplanes, the
corrections due to refraction of sound waves in the inhomogeneous atmosphere
had to be obtained. This problem was considered in detail by Milne [253] in
1921, who revised formulas for calculating the refraction corrections. Further-
more, Milne presented the equations for the phase and group velocities of
a sound wave in a three-dimensional moving medium, and also for the ray
path. Detection and ranging of artillery and airplanes remained an important
application in atmospheric acoustics until the end of World War II. Another
important application was the study of sound propagation from large explo-
sions, which resulted in the development of geometrical acoustics for moving
media.

1.1.2 Sound propagation from large explosions

In 1904, Borne [40] was the first to detect so-called abnormal propagation of
sound in the atmosphere produced by large explosions on the earth’s surface.
It follows from the observations by Borne and many others (see references cited
in [76, 103, 277]) that the sound waves from large explosions, propagating at
small elevation angles with respect to the horizon, have turning points in the
upper atmosphere. The sound waves then return to the earth’s surface, but
at large horizontal distances from the explosive source. Therefore, a zone of
silence occurs between the initial zone of audibility near the source, and the
one resulting from the upper atmosphere return. The term abnormal sound
propagation was widely used in the first half of the 20th century to describe
this phenomenon, but is seldom used nowadays. Sound signals from supersonic
aircrafts, rocket launches, and volcanic eruptions can also have turning points
in the upper atmosphere and propagate over long ranges.

Analysis of the acoustic travel time from large explosions has shown that
turning points for the sound waves can occur in the troposphere, near the
ozone layer in the stratosphere at a height of 40–50 km, or in the thermosphere
at a height above 100 km. Sound signals with turning points in the troposphere
can propagate over long ranges. Such sound signals have been recorded reliably
at a horizontal range of 500 km from a source [103]. The cause of sound
propagation of this type is the increase in wind velocity v(z) with the height
z in the troposphere, which results in downward refraction. A waveguide is
formed between the turning points of sound waves and the earth’s surface,
thus enabling long-range propagation of low frequency signals.
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In the thermosphere, the temperature T (z) rapidly increases with height.
As a result, sound signals from large explosions propagating at certain eleva-
tion angles can have turning points in the thermosphere and return back to
the earth’s surface. Sound signals with turning points in the stratosphere are
considered in the next subsection.

Interest in sound propagation from large explosions declined significantly
after World War II because of the use of rockets in studies of the upper atmo-
sphere. Nevertheless, some research in this area continued [7, 32, 85]. Remote
sensing of the upper atmosphere by sound signals from large explosions on
the earth’s surface was a part of the “Mass” project carried out in the USSR
in the 1980s [4, 59, 60]. Sound signals from the supersonic Concorde aircraft,
which had the turning points in the thermosphere, were recorded at horizon-
tal ranges from 165 km to 104 km [21]. Sound propagating through the upper
atmosphere can also be used to detect and range nuclear explosions [311, 315].
In the mid-1990s, a network of 60 infrasound stations located worldwide was
designed to comply with the Comprehensive Nuclear Test Ban Treaty. This
has renewed interest in sound and infrasound propagation in the upper atmo-
sphere [219].

1.1.3 Sound signals with turning points in the stratosphere

In this subsection, we consider only sound propagation from large explosions
which have turning points in the stratosphere. Initially, many different ex-
planations were suggested for the observed properties of sound propagation
from large explosions; for example, by Obolenskii [277]. In 1912, Fujiwhara
[124, 125] was the first to suggest that the observations could be explained
by refraction from wind stratification in the upper atmosphere. For arbitrary
profiles of the sound speed c(z) in a motionless medium and the wind velocity
v(z), Fujiwhara derived the equation of a sound ray and obtained the height
zt of the turning point, the travel time along the path, and the location of
the audibility zones. Working independently and using a different approach,
six years later, Emden [108] rederived the equations obtained by Fujiwhara,
and calculated the sound ray paths for various profiles of c(z) and v(z). The
papers by Fujiwhara and Emden showed clearly that the effects of wind strat-
ification v(z) on the refraction of sound in the atmosphere are significant.
However, stratification of v(z) cannot by itself explain the turning points of
sound signals in the stratosphere, because the zones of audibility often have
an appearance similar to a ring [103, 277].

By the end of the 1930s, the turning points in the stratosphere were usually
attributed to the increase in the sound speed c(z) in the stratosphere, causing
refraction of sound rays and their return to the ground. In the stratosphere,
sound ray paths can be obtained from Snell’s law: c(z)/ cos θ(z) = constant.
Here, θ is the elevation angle (the angle between the direction of ray propa-
gation and the horizontal plane), and the sound speed c(z) is related to the
temperature T (z) by equation (1.1) below. It follows from this equation and
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FIGURE 1.1
Vertical profiles of the temperature T (z) and sound speed c(z) of the standard
atmosphere [365].

Snell’s law, that a sound wave can have a turning point at a height zt only if
c(zt) > c(z = 0) and, hence, T (zt) > T (z = 0).

In the decades preceding World War II, sound propagation from large ex-
plosions was studied extensively. Hundreds of explosions on the earth’s surface
were made in many European countries [103]. Tens and sometimes hundreds
of observers situated at different distances and azimuthal directions measured
the travel time ttr of sound propagation from the point of explosion to the
point of observation. Such an interest in sound propagation in the upper atmo-
sphere arose from the fact that direct measurements of temperature and wind
velocity were not possible at heights above 20 km at that time. Therefore,
scientists endeavored to reconstruct the vertical profiles of c(z) and T (z) from
the measured travel times ttr and the angles at which the sound wave arrived
at the earth’s surface, while usually assuming that v = 0. The vertical profiles
of c(z), reconstructed by this method, indicated that at heights of 40–50 km
the sound speed was much greater than its value c(z = 0) near the ground
(see, for example, references [103, 277]). But this height dependence of the
sound speed differs qualitatively from that in the standard atmosphere [365]
obtained using rocket data, as shown in figure 1.1. In the standard atmosphere
c(z) < c(z = 0) at heights z ∼ 40–50 km so that, according to Snell’s law,
sound waves cannot have turning points (at least, in the upwind direction).
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Thus, in the 1920s and 1930s, the vertical profiles of c(z) and T (z) in the
stratosphere were not reconstructed correctly, and all causes of the return
of sound signals from the stratosphere were not identified. Nevertheless, the
study of sound propagation in the upper atmosphere did lead to many impor-
tant new results for geometrical acoustics in a moving medium. Recent studies
[80] explain the return of sound and infrasound signals from the stratosphere
as scattering from the fine structure of the temperature and wind velocity
fields when random inhomogeneities are significantly elongated in a horizon-
tal direction.

1.1.4 Current applications of acoustics in a moving medium

Interest in atmospheric acoustics, and acoustics of moving media in general,
was significantly reduced after World War II, because electromagnetic waves
then became widely used for purposes such as detection and ranging, direction
finding, and sounding. But, by the beginning of the 1970s, interest in acoustic
methods reemerged in many fields of physics. This subsection describes many
of the current applications where the theories of wave propagation in moving
media are used.

Important applications of atmospheric acoustics include detection, recog-
nition, and tracking of sound sources using microphone arrays; broadcasting
over long ranges (loudspeakers can be installed near the ground and also on air-
planes and helicopters); and prediction of sound propagation near the ground,
given the temperature and wind velocity fields, terrain, and the properties of
the ground. The latter is important in predicting noise levels near highways
[328], railways [390], and airports [352], the peak and mean sound-pressure
levels from small explosions and gunfire [148, 195], and in other practical con-
cerns. The effect of temperature and wind velocity fluctuations on the rise
time and shape of sonic booms has been examined [42, 312], as these relate to
the annoyance of sonic booms from supersonic passenger aircraft, and aircraft
designs to mitigate such annoyance.

Since the beginning of the 1970s, acoustic and radio-acoustic remote sens-
ing techniques have rapidly evolved and entered into widespread usage for
measuring the structure of the lower atmosphere [44]. These techniques are en-
abled by theories of wave propagation in moving media (section 6.4), which re-
late the sensed signals to atmospheric parameters. Acoustic and radio-acoustic
sounding are also significantly affected by refraction of sound in the atmo-
sphere. For example, the maximum height of radio-acoustic sounding is re-
stricted mainly by sound beam advection due to the horizontal wind [188, 192].
Refraction of sound due to temperature and wind velocity stratification can
affect acoustic sounding in the atmosphere [43, 134, 309, 310]. Some proposed
techniques for remote sensing of the temperature of the atmosphere and the
vertical profiles of the sound speed in the ocean are based on the refraction of
sound [53, 290].

Acoustic tomography, including diffraction tomography [337], applied to
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the ocean [266, 267], the atmosphere [433], and other moving media, is a
remote sensing technique for reconstruction of the sound speed and medium
velocity fields. Acoustic travel-time tomography of the atmospheric surface
layer is considered in Chapter 3.

Aeroacoustics, which deals with the radiation and propagation of sound
waves due to aerodynamic forces and unsteady flows, is usually considered to
be a field of acoustics distinct from the acoustics of moving media. However,
the fields do have some overlapping research goals, such as investigation of the
effects of the mean profile of a turbulent jet on the emission of sound waves
[144].

Acoustics in moving media also pertains to studies of sound propagation
in ducts, nozzles, and diffusers with gas flow [61, 166, 263, 265, 371]. This is
relevant, for example, to the analysis of noise emitted by nozzles and exhaust
pipes, and the stability of propellant combustion in rocket engines.

Until the beginning of the 1970s, the effects of currents on sound propaga-
tion in the ocean had usually been ignored. However, recent theoretical and
experimental results have shown that in certain cases, currents can affect the
sound field in the ocean quite significantly. (See section 1.3.)

Acoustics of inhomogeneous moving media has applications in astrophysics
when studying acoustic and gravity waves in the solar atmosphere in the
presence of laminar or random flows, e.g., references [268, 269].

1.2 Sound propagation in the atmosphere

In this section, parameters affecting sound propagation in the air are consid-
ered. The approximation of the effective sound speed, which is used widely
in atmospheric acoustics, is introduced and discussed. A brief overview of
near-ground sound propagation is presented.

1.2.1 Parameters affecting sound propagation in the air

Sound waves propagating in the atmosphere are attenuated by relaxation and
dissipation processes in air. These phenomena have been well studied [52, 368];
the resulting absorption coefficient depends on the temperature, humidity,
acoustic frequency, and, to a lesser extent, on atmospheric pressure.

Propagation of sound is also affected by the sound speed c and wind veloc-
ity v. As will be derived later in this book (equation (6.84)), the sound speed
in the atmosphere is given by

c =
√
γaRaT (1 + 0.511q). (1.1)

Here, γa = 1.40 is the ratio of specific heats for dry air, Ra =
287.058 m2/(s2 K) is the gas constant for dry air, and q is specific humidity.
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It follows from equation (1.1) that the sound speed c is primarily affected by
temperature T , while the effect of humidity on c is smaller, but not necessarily
negligible.

The temperature T , humidity q, and wind velocity v are among the most
important parameters affecting sound propagation. Both their mean values
and fluctuating components are important. The fluctuations in T , q, and v
and their effect on sound propagation are studied in detail in Part II of this
book. It is often reasonable, for modeling purposes, to view the atmosphere as
a stratified, moving medium in which T , q, and v depend only on the vertical
coordinate z. We refer to these quantities as the mean vertical profiles. The
horizontal component of the vector v is usually much greater than its vertical
component, which is thus often assumed to be zero.

The vertical profiles of T (z), q(z), and v(z) in the atmospheric surface layer
(ASL) have been studied extensively. For neutral or unstable stratification,
the ASL extends vertically to about 100–200 m from the ground; for stable
stratification, the top of the ASL is usually lower. In the ASL, the vertical
profiles of temperature, humidity, and wind velocity can be determined with
the Monin–Obukhov similarity theory (MOST), which is considered in section
2.2.3.

Above the ASL (in the atmospheric boundary layer and free troposphere),
these profiles can be obtained using direct measurements with weather bal-
loons (tethersondes and radiosondes) and airplanes, and with the numerical
weather prediction (NWP) computer models, such as the Weather Research
and Forecasting (WRF) Model, which was developed through a collabora-
tion of multiple organizations in the United States, or the European Centre
for Medium-Range Weather Forecasts (ECMWF) Integrated Forecast Sys-
tem. NWP is improving in accuracy and resolution as a result of advances in
numerical methods and computational hardware.

Jet flows often appear in the stratosphere and upper troposphere [245].
The height of the axis of the jet flows is about 10 km in the middle latitudes.
The vertical and horizontal scales of the jet flow and the wind velocity on
its axis vary significantly; the characteristic values of these quantities are 10
km, 1500 km, and 50 m/s, respectively. The wind velocity can reach a value
of 200 m/s on the axis of the jet flow, corresponding to the Mach number
M = v/c ∼ 0.6.

The mean profiles of wind velocity and wind direction in January and July
at latitude 30◦ are presented in figures 1.2 and 1.3 [146, 189]. These figures
indicate that, in the stratosphere, the wind velocity reaches a few tens of
meters per second and the wind direction can significantly vary with height.
The vertical profile of the temperature in the standard atmosphere [365] is
shown in figure 1.1. Significant spatial-temporal variability in the temperature
and wind velocity in the atmosphere is caused by its general circulation, the
seasonal modulations, and the day-to-day variations due to planetary waves
and eddies, the tides produced by solar heating, and internal gravity waves
[90].
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FIGURE 1.2
Vertical profiles of wind speed in January and July at latitude 30◦ [189, 146].

FIGURE 1.3
Vertical profiles of wind direction in January and July at latitude 30◦ [189,
146].

1.2.2 Effective sound speed approximation

Approximations are commonly employed to represent sound propagation
through a moving medium using an effective, motionless medium. The most
common of these is the effective sound speed approximation, which involves
setting the sound speed to

ceff = c+ s · v. (1.2)

Here, s is the unit vector tangential to the sound ray path. This approxima-
tion was introduced by Rayleigh [324] and is still employed in atmospheric
acoustics, ocean acoustics, and acoustics of tubes with flow. With this ap-
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proximation, many analytical and numerical methods developed for acoustics
in a motionless medium can be applied to a moving medium.

For sound propagation near the ground, the elevation angle of the vector
s is usually small. In this case, the effective sound speed is often used in the
following form

ceff = c+ v cosψ. (1.3)

Here, ψ is the angle between the azimuthal direction of sound propagation
and the horizontal wind velocity v.

It must be kept in mind that the effective sound speed approximation is
a heuristic approach, which cannot describe many important effects that a
moving medium has on sound propagation. The ranges of applicability of this
approximation are studied in reference [139]. In particular, it is shown that
this approximation is valid for calculations of the sound-pressure field only if
v/c � 1, so that terms of order (v/c)2 can be ignored. Other assumptions
might also apply for this approximation to be valid [139].

As an example of the limitations of the effective sound speed approxima-
tion, note that, in a stratified moving medium, the actual sound ray path is
generally a three-dimensional curve, even if it is calculated to order O(v/c).
On the other hand, with the effective sound speed, a ray path is always a
two-dimensional curve. (This result does not contradict the ranges of appli-
cability of this approximation obtained in reference [139], since a ray path is
not directly related to the sound field.)

In this book, sound propagation in a moving medium is studied from first
principles rather than with the effective sound speed approximation. In some
approximate equations derived from the exact equations, the sound speed and
medium velocity can be combined into ceff . In addition to ceff , the effective
density %eff might be needed to approximately replace sound propagation in
a moving medium with that in a motionless medium with ceff and %eff . The
effective density is considered in section 4.1. It has been used in the literature
to a much lesser extent than the effective sound speed.

1.2.3 Sound propagation near the ground

Among the sources of acoustic waves propagating near the ground are cars,
trains, aircraft, working factories, wind turbines, shots from artillery and small
arms, and explosions. Sound from these sources can be heard or recorded at
distances up to a few kilometers along the earth’s surface. The frequency range
of interest is typically from about 10 Hz up to a few kHz, as sound at higher
frequencies is strongly attenuated by the air.

Propagation above a partially reflecting (impedance) ground has been
studied extensively [16]. Analytical solutions are available for the case of a
homogeneous atmosphere above flat ground. The solution is conveniently for-
mulated as a complex image source, with corrections for spherical wave re-
flection [15, 106]. Extensions incorporate decorrelation between direct and
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FIGURE 1.4
Outdoor sound propagation phenomena and their interactions.

ground-reflected ray paths resulting from turbulence [82, 86, 297, 347]. This
phenomenon raises sound levels above what would normally be observed at
locations where the direct and reflected rays interfere destructively.

The many complex effects of weather and terrain on outdoor sound prop-
agation present great challenges for modeling. Refraction and turbulent scat-
tering in the atmosphere vary dramatically in response to changing solar
radiation and wind conditions. Sound waves interact with hills, man-made
structures such as buildings, natural landcover cover (vegetation), soil, and
near-surface geology. Landcover and elevation changes also locally modify the
atmospheric flow, which in turn affects the propagation. Many of these inter-
acting phenomena are illustrated in figure 1.4. Although this book, since it
deals with the acoustics of moving media, addresses primarily the refraction
and scattering effects, in Part III we also discuss numerical modeling of some
other phenomena of interest.

1.2.3.1 Atmospheric stratification

Of particular importance for sound propagation is the stratification of the
temperature and wind velocity fields, which leads to strong vertical gradients
and the refraction of the sound. In the near-ground atmosphere, the temper-
ature T (z) and wind speed v(z) profiles can be determined with MOST; see
equations (2.45) and (2.44), respectively. The refraction effects can be most
simply understood in terms of the effective sound speed ceff defined with equa-
tion (1.3). A positive gradient in ceff leads to downward refraction of sound,
which normally enhances sound levels near the surface, whereas a negative
gradient leads to upward refraction, which normally diminishes sound levels.

A negative vertical gradient, and hence upward refraction, may be caused
by either a temperature lapse condition, which means that the temperature
(and hence the sound speed) decreases with height, or by a negative wind
shear. Negative wind shear (decreasing wind velocity with height) usually
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occurs in the upwind direction, meaning that the wind is blowing from the
receiver to the source. A positive vertical gradient and downward refraction
may be caused either by a temperature inversion condition, which means that
the temperature increases with height, or by a positive wind shear, which
usually occurs in the downwind direction. The temperature gradient and wind
shear effects are both important, in general. Depending on the atmospheric
state and propagation direction, they may combine to strengthen or diminish
the overall refractive effect.

As mentioned, downward refraction is normally associated with enhanced
sound levels, whereas upward refraction is associated with diminished levels.
However, these expectations do not always hold. For example, sound levels
may actually be elevated near the boundary of a refractive shadow zone, due
to the presence of a caustic there. Downward refraction conditions are com-
plicated by interference effects between ray paths or propagating modes, and
by interactions between ducted sound and absorbing ground surfaces.

Given the importance of vertical refraction of sound in the near-ground
atmosphere, it is important that propagation calculations incorporate this
effect. Ray-based methods can calculate refraction very efficiently, and are also
very helpful in visualizing propagation phenomena. Chapter 3 provides ray
acoustics equations that correctly incorporate the effect of wind on refraction,
whereas Chapter 9 describes the numerical solution of these equations.

The main drawback of ray acoustics is its unsuitability for low frequen-
cies. Ordinary ray methods also do not describe diffraction and scattering
into shadow regions, as occurs during strong upward refraction. The fast-
field program (FFP) and parabolic equation (PE), which were introduced
into atmospheric acoustics in the late 1980s, largely avoid the drawbacks of
ray-tracing methods. The FFP [220, 411] solves a Helmholtz type equation
(see sections 2.3 and 4.1) which has been Fourier-transformed with respect
to the horizontal coordinates. The vertical coordinate is partitioned into a
finite number of layers. The PE [137, 403] is based on a finite-angle (forward
propagating) approximation to the full wave equation. Derivations of narrow-
angle and wide-angle PEs are presented in section 2.5. A starting condition
at the source is marched forward in the horizontal range coordinate. Chapter
11 further describes the numerical implementation of the FFP and PE and
provides example calculations for sound propagation in the atmosphere.

Recently, there has been strong interest in finite-difference, time-domain
(FDTD) methods, due to their ability to readily handle many complex signal
generation and propagation phenomena. Refraction can be rigorously incorpo-
rated in FDTD calculations [38, 303]. Equations appropriate to FDTD calcu-
lations in a moving medium are derived in section 2.4, whereas their numerical
solution is described in Chapter 11.
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1.2.3.2 Turbulence

The lower atmosphere contains random motions on a variety of scales. Most
of these motions are turbulent ; that is, three-dimensional, rotational distur-
bances of temperature and wind velocity. Atmospheric turbulence is generated
by wind shear, and by buoyancy instabilities resulting from unstable stratifi-
cation. Large turbulent eddies span the depth of the atmospheric boundary
layer, which is up to roughly 2 km thick, and have time scales of many minutes,
whereas the smallest eddies have sizes less than 1 cm and produce variations
shorter than 1 s. Therefore, the sound field also undergoes random variations
on these time scales. While stable stratification suppresses turbulence, internal
gravity waves are common in such conditions.

Atmospheric turbulence leads to scattering of sound energy into refractive
shadow zones, amplitude and phase fluctuations in received sound signals,
fluctuations in the angle of arrival, coherence loss, and changes in the inter-
ference pattern between the direct and ground-reflected waves. These effects
are important for studies of noise propagation in the atmosphere, source lo-
calization with phased sensor arrays, and remote sensing techniques such as
acoustic and radio-acoustic sounding.

Representation of the turbulence is often a major challenge. Ideally, we
can derive closed-form equations for the sound-field statistics of interest (as
considered in detail in Part II of this book), as this approach often enables
a better understanding of the physics of the problem and can lead to faster
numerical calculations. Such analytical results also aid the development of re-
mote sensing techniques. However, suitable equations for the spectrum of the
turbulence are still required. Alternatively, for numerical calculations, we may
consider using a computational fluid dynamics (CFD) simulation, or synthe-
sizing the turbulence kinematically. The relative benefits of these approaches
are described in Chapter 9, which also discusses kinematic methods in detail,
since they are widely used in outdoor sound propagation. Typically, numerical
calculations are performed by a Monte Carlo approach, in which a sound field
propagates through many realizations of the turbulence field.

1.2.3.3 Uncertainties in predictions

A useful analogy can be made between predicting sound propagation out-
doors and predicting the weather. Weather forecasts are imperfect because
the numerical forecast models are initialized with atmospheric observations
that do not describe the atmospheric state with full accuracy and resolution.
The forecast models themselves have a finite resolution and do not perfectly
capture the atmospheric physics. Similarly, solutions for outdoor sound prop-
agation are based on imperfect knowledge of the environment (natural and
man-made ground cover, building materials, atmospheric wind and tempera-
ture profiles, terrain elevation variations, etc.) and cannot capture all of the
pertinent physics, such as scattering from small-scale turbulence and vegeta-
tion, and coupling of vibrations into the ground.
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FIGURE 1.5
Isotachs of the Gulf Stream in vertical planes in two locations. (a)
(60◦09′, 27◦26′) May–June 1967; (b) (80◦24′, 30◦20′) July–August 1967 [333].

Uncertainties may be attributed to both the model itself, and to the model
parameters. The literature on outdoor sound propagation modeling has typ-
ically focused on the former source of uncertainty, namely improving models
to handle more complex physics and to improve numerical methods. How-
ever, numerical methods for sound propagation can be employed much more
effectively when their predictive capabilities, relative to the inputs provided
to them and the uncertainties inherent to sound propagation, are well un-
derstood. This topic is the primary concern of Chapter 13, which considers
application of stochastic integration to problems involving sound propagation
in the presence of refraction and turbulence.

1.3 Effects of currents on sound propagation in the ocean

1.3.1 Motion of oceanic water

Many types of motion occur in ocean waters. We consider here only the most
typical types [91, 260].

The strongest currents in the world are the Antarctic circle current, the
Gulf Stream, the Kurocio current, and Cromwell’s current. The characteris-
tic parameters of these currents are nearly constant in space and time. The
vertical velocity of a current is much smaller than the horizontal velocity and
is usually ignored in oceanic acoustics. The maximum velocity of currents
reaches a value of 1.5–2 m/s.

Figure 1.5 shows isotachs of the velocity v of currents in the Gulf Stream
measured in vertical planes perpendicular to the current axis at two locations
[333]. The arrows indicate the horizontal range r at which the mean velocity
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of the current on the ocean surface is zero and z is the depth. The figure
indicates that the current velocity has its maximum on the surface and the
current does not reach the oceanic bottom. Although this dependence of v
on z is typical for some other currents, this is not the case for all currents.
For instance, the Antarctic current reaches the bottom, and the velocity of
Cromwell’s current has its maximum at a depth of 100–200 m in the eastern
part of the Pacific Ocean.

Usually, the vertical profiles of currents have fine structure. The fine struc-
ture is caused by horizontal layers existing everywhere in the ocean, with
nearly constant values of the sound speed c, temperature T , and velocity v
in the layers and large vertical gradients of these functions near their bound-
aries. The vertical scales of the layers range from ten centimeters to few tens
of meters. The horizontal scales are up to tens of kilometers, and they exist
from a few hours to a few days. Near the boundaries of the layers, the vertical
gradients of the current velocities are much greater than those in the layers
and can reach a value of 5–10 cm/s per meter. The fine structure of the current
velocity measured by a quick-response probe is seen clearly in figure 1.6 [260].

Synoptic eddies are unsteady objects in the ocean analogous to cyclones
and anticyclones in the atmosphere. The synoptic eddies are usually subdi-
vided into the eddies of the open ocean and the frontal eddies generated by
frontal currents. For example, 5–8 cyclonic and anticyclonic frontal eddies
typically break away each year from the Gulf Stream. In the Northern Hemi-
sphere, the cyclonic eddies rotate anticlockwise and contain cold water relative
to the surrounding water. The anticyclonic eddies contain warm water and ro-
tate clockwise. The characteristic scales of the frontal eddies range from 100
km to 400 km, the mean velocity of the eddy center is of the order of a few
cm/s, and the maximum velocity of water rotation in the eddy is about 1
m/s. (In some cases, this velocity can reach a value of 3 m/s.) The mean life
span of a frontal eddy is a few years, its diameter is reduced in the course
of time, and the eddy itself descends with a speed of nearly 0.6 m/day. The
structure of the cyclonic eddies of the open ocean coincides qualitatively with
that of the frontal eddies. However, the former have a smaller diameter and
lower velocity of rotation.

Currents can also be caused by tides and internal gravity waves. The ve-
locity of water motion in tides and internal gravity waves can reach a value
of 1 m/s and a few tens of cm/s, respectively. The vertical velocity of water
motion caused by an internal gravity wave may not be ignored.

1.3.2 Effects of currents on sound propagation

A typical variation of the sound speed in the ocean is |c− c0|/c0 ∼ 3× 10−2,
where c0 is a reference value of the sound speed c. On the other hand, the
ratio v/c is of the order of 10−3 (i.e., 30 times smaller than the typical value of
|c− c0|/c0), even for strong currents with v ∼ 1.5 m/s. Nevertheless, currents
can affect sound propagation as a result of at least three mechanisms.
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FIGURE 1.6
Magnitude and direction of current velocity measured by descent (↓) and lift
(↑) of a quick-response probe [260].

First, currents can change the phase of a sound wave, and hence its
travel time, if the propagation range is sufficiently large. It follows from
equation (3.97) that the phase change caused by a current is given by
∆Φ ≈ −2πfRv̄R/c

2. Here, R is the distance from the source to the receiver,
f is the acoustic frequency, and v̄R is the mean value (along the sound path)
of the current velocity component vR(z) in the direction from the source to
the receiver. This phase change is significant if |∆Φ| & π/8. Substituting the
value of ∆Φ into this inequality yields

R &
c2

16fv̄R
. (1.4)

Currents can contribute significantly to the phase change of a sound field if R
satisfies the latter inequality. If v̄R = 0.3 m/s and f = 100 Hz, it follows from
equation (1.4) that R & 4.7 km.

Second, currents can cause a noticeable change in the amplitude of a sound
field. Indeed, if two or more sound rays arrive at the observation point, and
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the phase change along at least one of the rays depends on v̄R, the amplitude
of the resulting sound field also depends on v̄R. Note that the effect of v̄R on
the sound-pressure amplitude along a sound ray can usually be ignored.

Third, currents can lead to a qualitative change of sound propagation if
|∂v/∂z| & |∂c/∂z|.

In the remaining part of this section, we shall consider these effects for
sound propagation through currents, synoptic eddies, and tides.

1.3.3 Currents

It has been shown that the currents can cause a significant change in the
amplitude and phase of a sound field and its travel time [120, 364]. The profiles
of c(z) and v(z) have been assumed to be linear or constant, and the sound
field has been calculated using geometrical acoustics (see section 3.5).

Sound propagation in the direction of water motion in the Gulf Stream and
in the opposite direction has been studied theoretically [149]. In these cases,
the ocean can be considered a stratified moving medium. Figure 1.7 shows
the vertical profiles of c(z) and v(z) that were adopted for the calculation of
the sound field [149]. These profiles are typical of the Gulf Stream, where the
ocean depth is large. It was assumed that the source and receiver are located
at a depth of 250 m and the acoustic frequency is 50 Hz. Calculations were
performed using the wave theory (section 4.1) and the effective sound speed
ceff , as defined with equation (1.3). The predicted sound intensity I versus the
horizontal range r is shown in figure 1.8 for sound propagation in the direction
of the current and in the opposite direction.

In this numerical example, |∂v/∂z| > |∂c/∂z| for z . 0.5 km. As a result,
sound propagation in the direction of the current differs qualitatively from
that in the opposite direction. In the direction of the current and for z . 0.5
km, the value of ceff decreases if the depth is increased, so that there is an
antiwaveguide sound propagation and a shadow zone exists at a horizontal
range 20 km . r . 50 km (see figure 1.8). But in the opposite direction, there
is a waveguide near the ocean surface because ceff increases with depth for
z . 0.5 km. This waveguide contains one acoustic mode. Because of the mode,
the sound intensity I is greater than that in the direction of the current by 15
dB. Since the profiles of c(z) and v(z) that have been adopted for calculations
[149] are model profiles, it would be of interest to carry out experiments to
confirm that the currents can qualitatively change the sound propagation in
the ocean. (See also section 3.5.3.)

The effect of a geostrophic flow on sound propagation in the shallow ocean
has been studied [119, 121]. To this end, a model of a geostrophic flow has
been developed [121]. It is assumed in this model that the current velocity de-
creases linearly with depth and is directed to the north. Owing to a geostrophic
balance, there is a horizontal gradient of the sound speed c in the eastern di-
rection, which depends on the current velocity vs at the ocean surface. The
dependence of c on z is linear. This model of a geostrophic flow describes
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FIGURE 1.7
Vertical profiles of (a) sound speed and (b) current velocity used for calculation
of the sound field [149] shown in figure 1.8.

FIGURE 1.8
Sound intensity I versus horizontal range r for the profiles c(z) and v(z)
shown in figure 1.7 [149]. Lines 2 and 1 correspond to sound propagation in
the direction of the current and in the opposite direction, respectively.
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approximately the profiles of c and v of the Gulf Stream in the Florida Strait.
Sound propagation perpendicular to the axis of a geostrophic flow has been
considered [119]. It has been shown that, to an accuracy of v/c, the current
does not directly affect the sound field in the geometrical acoustics approxi-
mation. However, a variation of vs causes a variation of c(r, z) (because the
horizontal gradient of c depends on vs) and, hence, a change of the sound
field. Calculations [119] have shown that the phase change of a sound field
depends linearly on the variation of vs. This result is in good agreement with
the experimental data [119] on sound propagation from Miami, Florida, to
Bimini, Bahamas, perpendicular to the Florida Strait.

1.3.4 Synoptic eddies

Let us now consider the effects of water motion in synoptic eddies on sound
propagation. Model profiles of the sound speed c(r, z) and current velocity
v(r, z) in the synoptic eddies have been constructed [163]. These profiles have
been used for studying sound propagation through the synoptic eddies over
horizontal ranges of few tens of kilometers [162, 179] and 1000 km [180]. This
work has shown that the amplitude and phase of a sound field are affected
mainly by variation of the sound speed in the eddy. Nevertheless, the water
motion in the eddy can cause a sound intensity variation greater than 10–
12 dB, and a phase change much greater than π. Thus, the effects of water
motion on sound propagation should be taken into account if a sound wave
passes through a synoptic eddy.

1.3.5 Tides

The effect of tidal currents on sound propagation in the shallow ocean has been
considered [363]. It has been assumed that c and v do not depend on the spatial
coordinates and that v varies slowly with time. It has been predicted that the
sound-pressure amplitude depends on the current velocity significantly and
that its phase is proportional to vR. The linear dependence of the phase on
vR has been confirmed by measuring sound propagation between Block Island,
Rhode Island, and Fishers Island, New York.

1.3.6 Reciprocal acoustic transmission

It has been argued above that the motion of oceanic water caused by currents,
synoptic eddies, and tides can affect sound propagation significantly. Recip-
rocal transmission paths (parallel paths that are in close proximity, but in
opposite directions) can be used to study this effect experimentally. Indeed, it
is difficult to separate the effect of currents on a sound field from the effect of
sound speed variations on the same sound field if sound signals propagate only
in one direction. According to the reciprocity principle, sound signals propa-
gating in opposite directions totally coincide if v = 0, but they are different
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if v 6= 0. Reciprocal acoustic transmission has been studied experimentally
[266]. In reference [436], an experiment was described in which two sources
were located at a depth of 1 km and the horizontal distance between them
was 25 km. This experiment showed that the travel time of the sound im-
pulse, its amplitude, and its shape depend significantly on the direction of
sound propagation.

Currents can be reconstructed using reciprocal transmission and measuring
the difference in the travel time of impulse propagation in opposite directions.
Such a remote sensing technique would enable scientists to investigate the
structures of unsteady currents, synoptic eddies, tides, and internal gravity
waves. The significance of this application has resulted in several publications
[271, 335, 336] where the effects of currents on reciprocal transmission have
been studied numerically using the parabolic equation method. The results
obtained in these papers show that currents can affect the amplitude, phase,
and travel time of sound transmissions.
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Equations for acoustic and internal gravity
waves in an inhomogeneous moving
medium

In this chapter, the equations for acoustic and internal gravity waves in inho-
mogeneous moving media are systematically derived and analyzed. The ranges
of applicability of these equations are studied in detail and they are compared
with results presented previously in the literature. The equations in this chap-
ter are used in subsequent chapters for studies of sound propagation in moving
media.

In section 2.1, a complete set of fluid dynamic equations is presented.
These equations are then linearized resulting in a set of linearized equations
of fluid dynamics which provides the most general description of both acoustic
and internal gravity waves in a moving medium. The set of linearized equa-
tions is, however, rather involved for analytical or numerical studies of sound
propagation. In a stratified moving medium (sections 2.2 and 2.3), this set
reduces exactly to a single equation for the pressure of an acoustic or internal
gravity wave, which is more convenient for analysis. In a three-dimensional
moving medium (section 2.4), with some approximations, the linearized equa-
tions of fluid dynamics reduce to two coupled equations for the sound pressure
and acoustic particle velocity. Using additional approximations, these coupled
equations reduce to wave-type and Helmholtz-type equations for the sound
pressure. In section 2.5, narrow-angle and wide-angle parabolic wave equa-
tions are derived, which are convenient for both analytical and numerical
studies of sound propagation in a three-dimensional moving medium.

The flowchart of the most important equations considered in this chapter
is shown in figure 2.1. It also provides with the ranges of applicability of these
equations and indicates where they are used.

In this chapter, we also consider equations for the pressure, density,
medium velocity, entropy, and concentrations of the components dissolved
in the medium through which acoustic and internal gravity waves propagate.
Section 2.1 presents such equations for a three-dimensional moving medium
and section 2.2 for a stratified moving medium.

25
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FIGURE 2.1
Flowchart of the most important equations considered in Chapter 2. Dashed
boxes adjacent to the arrows indicate approximations/assumptions made in

the derivations. P̃ , %̃, ṽ, S̃, and C̃i are the total pressure, density, velocity,
entropy, and the concentrations of the components dissolved in the medium;
p, η, w, s, and χi are their fluctuating components due to a propagating wave.
FDTD stands for the finite-difference, time-domain method and FFP for the
fast-field program.
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2.1 Fluid dynamic equations and their linearization

2.1.1 Fluid dynamic equations

The most general possible approach to wave propagation in an inhomogeneous
moving medium is based on the complete set of fluid dynamic equations:(

∂

∂t
+ ṽ · ∇

)
%̃i + %̃i∇ · ṽ = %̃iQ, i = 0, 1, . . . , n, (2.1)

P̃ = P̃ (S̃, %̃0, %̃1, . . . , %̃n), (2.2)(
∂

∂t
+ ṽ · ∇

)
ṽ +

1

%̃
∇P̃ − g = F, (2.3)(

∂

∂t
+ ṽ · ∇

)
S̃ = 0. (2.4)

Here, P̃ (R, t) is the pressure in the medium, %̃i(R, t) are the densities of the

components of the medium, ṽ(R, t) is the velocity vector, and S̃(R, t) is the
entropy, where R = (x, y, z) are the Cartesian coordinates and t is time.
In equations (2.1)–(2.4), %̃ =

∑n
i=0 %̃i is the total density of the medium,

∇ = (∂/∂x, ∂/∂y, ∂/∂z), g = (0, 0,−g) the vector of the acceleration due to
gravity (the direction of this vector is opposite to the direction of the vertical
z-axis), and F(R, t) and Q(R, t) characterize a force acting on the medium

and a mass source, respectively. The tilde above the quantities P̃ , %̃i, ṽ, and
S̃ indicates that the medium is perturbed by a wave propagating through it.
Equations (2.1)–(2.4) express, respectively, the law of mass conservation of the
ith component of the medium, the equation of state, the law of momentum
conservation, and the assumption of adiabatic motion of the medium. We
consider that a medium consists of n + 1 components with densities %̃i since
these components can affect sound propagation. For example, in the ocean,
the sound speed depends on the concentration of salt dissolved in the water;
in the atmosphere, fluctuations of water vapor cause fluctuations of the sound
field.

Instead of the densities %̃0, %̃1, . . . , %̃n, it is convenient to deal with the total
density %̃ of the medium and the concentrations C̃i = %̃i/%̃0 of the components
dissolved in the medium. Here, %̃0 is the density of the basic component of the
medium (the basic solvent) and the index i is redefined as i = 1, 2, . . . , n. In
this case, equations (2.1) and (2.2) take the form(

∂

∂t
+ ṽ · ∇

)
%̃+ %̃∇ · ṽ = %̃Q, (2.5)

(
∂

∂t
+ ṽ · ∇

)
C̃i = 0, i = 1, 2, . . . , n, (2.6)
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P̃ = P̃ (%̃, S̃, C̃1, C̃2, . . . , C̃n). (2.7)

Equations (2.3)–(2.7) represent a complete set of equations for P̃ , %̃, ṽ, S̃, and

C̃i. This set is referenced at the top of the flowchart of equations depicted in
figure 2.1.

2.1.2 Linearized equations of fluid dynamics

For describing a wave propagating in the medium, in equations (2.3)–(2.7) we

set P̃ = P + p, %̃ = % + η, ṽ = v + w, S̃ = S + s, and C̃i = Ci + χi. Here,
P , %, v, S, and Ci are the ambient values (i.e., the values in the absence of a
propagating wave) of the pressure, density, medium velocity, entropy, and the
concentrations of the components dissolved in the medium, and p, η, w, s,
and χi are their fluctuations due to a propagating wave. All these quantities
are functions of both R and t. In many cases, the wave propagating in the
medium disturbs this medium only slightly. In such cases, equations (2.3)–
(2.7) can be linearized with respect to p, η, w, s, and χi. Rearranging the
resulting linearized equations, we obtain

dw

dt
+ (w · ∇)v +

1

%
∇p− η∇P

%
= F, (2.8)

dη

dt
+ (w · ∇)%+ %∇ ·w + η∇ · v = %Q, (2.9)

dχi
dt

+ (w · ∇)Ci = 0, i = 1, 2, . . . , n, (2.10)

ds

dt
+ (w · ∇)S = 0, (2.11)

p = c2η + hs+ biχi. (2.12)

Here, the operator d/dt = ∂/∂t+v·∇ is the full (material) derivative, repeated
subscripts are summed from 1 to 3, c2 = ∂P/∂% is the square of the sound
speed, h = ∂P/∂S, and bi = ∂P/∂Ci. Hereafter, when calculating the partial
derivatives of the ambient pressure P , we assume that P is a function of the
thermodynamic variables %, S, C1, C2,. . ., Cn (see equation (2.17) below).
These thermodynamic variables are convenient for derivations of equations
for acoustic and internal gravity waves. When deriving equations (2.8) and
(2.9), we assumed that F and Q are of the same order of magnitude as p, η,
w, s, and χi. In other words, F and Q are the sources of waves propagating
in the medium. The ambient quantities P , %, v, S, and Ci satisfy the set of
equations (2.3)–(2.7) with F = Q = 0. Rearranging these equations, we have

dv

dt
+

1

%
∇P − g = 0, (2.13)

d%

dt
+ %∇ · v = 0, (2.14)
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dCi
dt

= 0, i = 1, 2, . . . , n, (2.15)

dS

dt
= 0, (2.16)

P = P (%, S, C1, C2, . . . , Cn). (2.17)

The complete set of the linearized equations of fluid dynamics, equa-
tions (2.8)–(2.12), provides the most general description of wave propagation
in an inhomogeneous moving medium. In order to calculate p, η, w, s, and
χi, one needs to know the ambient quantities P , %, v, S, and Ci. This set de-
scribes the propagation of both acoustic and internal gravity waves. We shall
study these waves simultaneously where it is possible (in this and following
sections). All equations for wave propagation in a moving medium are derived
in this chapter from the set of equations (2.8)–(2.12). This set is also used in
Chapter 3 as a starting point in the formulations of the geometrical acoustics.
It is referenced close to the top in the flowchart of equations in figure 2.1.
Equations (2.8)–(2.12) were first derived by Blokhintzev (sections 4 and 13 in
reference [37]).

2.1.3 Set of three coupled equations

With some assumptions or approximations, equations (2.8)–(2.12) can be re-
duced to a set of three coupled equations for p, η, and w. To this end, we
apply the operator d/dt to both sides of equation (2.12). In the resulting
equation, dχi/dt and ds/dt are expressed in terms of w using equations (2.10)
and (2.11), respectively. As a result, we have

dp

dt
= c2

dη

dt
+ η

dc2

dt
+ s

dh

dt
+ χi

dbi
dt
− hw · ∇S − biw · ∇Ci. (2.18)

The full derivative dc2/dt appearing in this equation is recast in the form:

dc2

dt
=

d

dt

∂P

∂%
=
∂2P

∂%2

d%

dt
+

∂2P

∂S∂%

dS

dt
+

∂2P

∂Ci∂%

dCi
dt

= β
d%

dt
, (2.19)

where β = ∂2P/∂%2. In equation (2.19), we took into account that dS/dt =
dCi/dt = 0 (see equations (2.15) and (2.16)). Analogously, we can derive
equations for dh/dt and dbi/dt:

dh

dt
= α

d%

dt
,

dbi
dt

= τi
d%

dt
, (2.20)

where α = ∂2P/∂%∂S and τi = ∂2P/∂%∂Ci.
We apply the operator w · ∇ to both sides of the equation of state (2.17).

Taking into account the definitions of c2, h, and bi, we obtain

w · ∇P = c2w · ∇%+ hw · ∇S + biw · ∇Ci. (2.21)



30 Equations for acoustic waves

Substituting the values of dc2/dt, dh/dt, and dbi/dt into this equation and,
then, adding equations (2.18) and (2.21), we have

dp

dt
+ w · ∇P = c2

dη

dt
+ c2w · ∇%+ c̃2

d%

dt
, (2.22)

where c̃2 = βη + αs + τiχi. It can be shown that c̃2 represents fluctuations
in the sound speed squared, caused by a wave propagating in the medium. In
the equation for c̃2, we replace s with its value obtained from equation (2.12):
s = (p− c2η − biχi)/h. As a result, we obtain the expression for c̃2:

c̃2 =
1

h

[(
hβ − αc2

)
η + αp+ Ωχi

]
, (2.23)

where Ω is given by:

Ω = hτi − αbi =
∂P

∂S

∂2P

∂%∂Ci
− ∂P

∂Ci

∂2P

∂%∂S
. (2.24)

We multiply equation (2.9) by c2, add the resulting equation and equa-
tion (2.22), and replace d%/dt with −%∇·v using equation (2.14). As a result,
we have

dp

dt
+ %c2∇ ·w + w·∇P+

(
c2η + %c̃2

)
∇ · v = 0. (2.25)

Substituting for c̃2 using equation (2.23), we arrive at the following equation
for dp/dt:

dp

dt
+ %c2∇ ·w + w · ∇P

+
{[
%β + c2(1− α%/h)

]
η + (α%/h) p+ (%Ω/h)χi

}
∇ · v = %c2Q. (2.26)

This equation is an exact consequence of the linearized equations of fluid
dynamics (2.8)–(2.12). It contains the following unknown functions: p, η, w,
and χi.

Now let us omit the term (%Ω/h)χi appearing on the left-hand side of equa-
tion (2.26), the justification for which is discussed later. Then, this equation
simplifies to [303]:

dp

dt
+ %c2∇ ·w + w · ∇P

+
{[
%β + c2(1− α%/h)

]
η + (α%/h) p

}
∇ · v = %c2Q. (2.27)

Equations (2.8), (2.9), and (2.27) comprise a desired set of three coupled
equations for p, η, and w. This set describes propagation of both acoustic
and internal gravity waves. In the set, one needs to know the following ambi-
ent quantities: c, %, v, and P ; the coefficients α, β, and h can be calculated
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with the equation of state (2.17). Equation (2.27) has been derived from the
linearized equations of fluid dynamics assuming that (%Ω/h)χi = 0. This as-
sumption is valid if the medium consists of only one component (Ci = χi = 0)
or if Ω = 0. The latter equality might hold for a particular medium; for exam-
ple, it is valid for the medium consisting of two components with the equation
of state P (%, S, C) = f1(%)f2(S)f3(C). Note that, generally, Ω 6= 0. If neither
of the equalities Ci = 0 and Ω = 0 are valid, the set of equations (2.8), (2.9),
and (2.27) describes approximately propagation of acoustic and internal grav-
ity waves. This set can potentially be used for finite-difference, time-domain
(FDTD) calculations of wave propagation in a moving medium, which are
performed typically with partial differential equations that are first order in
time. Figure 2.1 shows this set in the flowchart of equations.

Equation (2.27) can be simplified for an ideal gas. In this case, the equation
of state is given by:

P = P0(%/%0)γ exp[(γ − 1)µ(S − S0)/R], (2.28)

where R is the universal gas constant, µ is the molecular weight of the gas,
γ = cP /cV is the ratio of the specific heat at constant pressure cP to the
specific heat at constant volume cV , and P0, %0, and S0 are the reference
values of the corresponding ambient quantities. Using equation (2.28), the
sound speed c and the coefficients α, β, and h appearing in equation (2.27)
can be calculated: c2 = γP/%, α = γ(γ − 1)µP/(%R), β = γ(γ − 1)P/%2, and
h = (γ − 1)µP/R. Substituting these values into equation (2.27), we have

dp

dt
+ %c2∇ ·w + w · ∇P + γp∇ · v = %c2Q. (2.29)

Equations (2.8), (2.9), and (2.29) together provide a complete set of three
coupled equations for p, η, and w for the case of an ideal gas. To solve these
equations, one needs to know the following ambient quantities: c, %, v, and
P . With some approximations [303], this set can be reduced to the set of two
coupled equations for p and w which was used in reference [346] for FDTD
calculations of sound propagation in the atmosphere.

2.1.4 Energy considerations

Generally, a linear wave propagating in an inhomogeneous moving medium
can exchange energy with the ambient medium so that the wave energy is not
conserved. Indeed, in fluid dynamics, the law of energy conservation has the
form

∂

∂t
(%̃ ṽ2/2 + Ξ̃) +∇ ·

[
%̃ ṽ(ṽ2/2 + P̃ /%̃+ Ξ̃)

]
= 0, (2.30)

where Ξ̃ is the internal energy. Let P̃ = P + p+ p2 + . . ., %̃ = %+ η+ η2 + . . .,
ṽ = v + w + w2 + . . ., and Ξ̃ = Ξ + ε + ε2 + . . .. The first two terms in
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these series have been introduced above (except for Ξ and ε) and describe the
ambient medium and a linear wave propagating through the medium. The
third terms p2, η2, w2, and ε2 describe a weakly nonlinear wave; note that
p2 ∼ p2, η2 ∼ η2, w2 ∼ w2, and ε2 ∼ ε2. In the absence of a wave propagating
in the medium, equation (2.30) takes the form

∂

∂t
(%v2/2 + Ξ) +∇ ·

[
%v(v2/2 + Ξ + P/%)

]
= 0. (2.31)

The most consistent approach for deriving the law of energy conservation
would be to subtract this equality from equation (2.30) and then to neglect
terms of the order of p3, η3, w3, and ε3. The resulting equation would, however,
contain not only the quantities p, η, and w characterizing a linear wave, but
also the quantities p2, η2, w2, and ε2, which are not considered in the linear
theory.

Thus, generally, it is not possible to formulate a law of energy conservation
and, hence, to define the energy density and its flux in a wave propagating
in an inhomogeneous moving medium. Such a law can be derived only with
certain assumptions about a moving medium or a propagating wave. In section
3.1, the law of acoustic energy conservation is formulated in the approximation
of geometrical acoustics.

2.1.5 Reduction of the linearized equations of fluid dynamics
to a single equation

The complete set of linearized equations of fluid dynamics, equations (2.8)–
(2.12), describes, in principle, the propagation of acoustic and internal gravity
waves in moving media. However, this set is rather involved and inconvenient
for solving particular problems. In the general case of an inhomogeneous mov-
ing medium, equations (2.8)–(2.12) cannot be exactly reduced to a single
equation, which would be more convenient for analysis.

Equations (2.8)–(2.12) can be reduced exactly to a single equation if we
make certain assumptions about the ambient quantities P , %, v, S, and Ci.
Such exact equations are the Andreev–Rusakov–Blokhintzev equation (sec-
tion 2.4), derived assuming that g = 0, S = constant, and rot v = 0; the
Goldstein equation for sound waves in a parallel shear flow (section 2.3); and
the equation for acoustic and internal gravity waves in a stratified moving
medium, derived by Ostashev [281, 283] and considered in detail in section 2.3.
Moreover, the set of equations (2.8)–(2.12) can be simplified or reduced to a
single equation using various approximations. The approximate equations for
sound waves in a three-dimensional moving medium are considered in sec-
tions 2.4 and 2.5.


