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Particulate Discrete Element
Modelling

This is the first dedicated work on the use of particulate DEM
in geomechanics and provides key information needed for engineers
and scientists who want to start using this powerful numerical
modelling approach. The book is a concise point of reference for
users of DEM, allowing them to maximize the insight they can
gain their material response using DEM covering:

• The background theory

• Details of the numerical method

• Advice on running simulations

• Approaches for interpreting results of simulations

• Issues related to available particle types, contact modelling
and boundary conditions.

Particulate Discrete Element Modelling is suitable both for
first time DEM analysts as well as more experienced users. It will
be of use to professionals, researchers and higher level students,
as it presents a theoretical overview of DEM as well as practical
guidance on how to set up and run DEM simulations and how to
interpret DEM simulation results.

Catherine O’Sullivan is a Senior Lecturer in the Department
of Civil and Environmental Engineering at Imperial College, UK.
She obtained her undergraduate and master’s degrees at Univer-
sity College Cork, Ireland. Dr. O’Sullivan’s interest in DEM was
sparked during her doctoral studies in Civil Engineering at the
University of California at Berkeley, USA. Following graduation
from UC Berkeley in 2002, she spent two years working as a lec-
turer at University College Dublin, prior to moving to Imperial
College in 2004.
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Chapter 1

Introduction

1.1 Overview

Particulate DEM in geomechanics

Discrete element modelling (DEM) is a numerical modelling or
computer simulation approach that can simulate soil and other
granular materials. The unique feature of this approach is that it
explicitly considers the individual particles in a granular material
and their interactions. DEM presents an alternative to the typi-
cal approach adopted when simulating the mechanical behaviour
of granular materials (soils in particular), which uses a contin-
uum mechanics framework. In a continuum model soil is assumed
to behave as a continuous material and the relative movements
and rotations of the particles inside the material are not consid-
ered. Sophisticated constitutive models (i.e. equations relating
the stress and strain in the soil) are then needed to capture the
complexity of the material behaviour that arises owing to the par-
ticulate nature of the material. In DEM, even if simple numerical
models are used to simulate the inter-particle contacts, and ideal,
approximate, particle geometries are used, many of the mechanical
response features associated with soil can be captured. Simplify-
ing the particle shapes (e.g. using spheres) and adopting very
basic models of the contact response reduces the computational
cost of the simulation and thus allows systems involving relatively
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large numbers of particles to be analysed while still capturing the
salient response characteristics of soil behaviour.

There are a range of established and emerging numerical meth-
ods that can be used to simulate granular material response and
so it is worth clarifying what the term “discrete element method”
means in the context of this text. In a discrete element simulation
a numerical model made up of a large number of discrete particles
or bodies is created. A discrete element method is a simulation
method where the finite displacements and rotations of discrete
bodies are simulated (e.g. Cundall and Hart (1993)). Within the
system it is possible for the particles to come into contact with
each other and lose contact, and these changes in contact status
are automatically determined. This definition excludes from con-
sideration the meshless or meshfree continuum methods including
smoothed particle hydrodynamics (SPH). In these methods the
“particles” are interpolation points, rather than being physical
particles, and so they are very similar to the nodes in a finite
element model.

Particulate DEM is used across a variety of disciplines, ranging
from food technology to mining engineering, however the seminal
publication in this area by Cundall and Strack (1979a), was pub-
lished in a soil mechanics journal (Géotechnique). Interest in the
method amongst geotechnical engineers has grown since this orig-
inal publication, with a marked increase in interest in recent years
as a result of the increase in computing power.

Figure 1.1: Simulation of a direct shear test using DEM

2
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There are two main motivations to use DEM amongst both
researchers and practitioners in the area of geomechanics. In the
first case, in a DEM model, loads and deformations can be applied
to virtual samples to simulate physical laboratory tests, and the
particle scale mechanisms that underlie the complex overall ma-
terial response can be monitored and analysed. In a DEM model
the evolution of the contact forces, the particle and contact ori-
entations, the particle rotations, etc., can all easily be measured.
It is incredibly difficult (and arguably impossible) to access all
this information in a physical laboratory test. Figure 1.1 illus-
trates a simulation of a direct shear test using particulate DEM.
The DEM model allows us to look inside the material and under-
stand the fundamental particle interactions underlying the com-
plex, macro-scale response. To date knowledge of soil response has
relied largely on empirical observation of the overall material re-
sponse in laboratory and field tests. DEM simulations thus present
geotechnical engineers with a valuable set of tools to complement
existing techniques as they seek to develop a scientifically rigor-
ous understanding of soil behaviour with likely improvements in
our ability to predict response in the field. DEM therefore is now
established as an essential tool in basic research in geomechanics.

A second, more applied, motivation for the use of DEM is that
it allows analysis of the mechanisms involved in large-displacement
problems in geomechanics. These problems cannot easily be mod-
elled using more widespread continuum approaches such as the
finite element method. Figure 1.2 illustrates a two-dimensional
DEM simulation of the insertion of a cone penetrometer into a con-
tainer of 117,828 disks (for details refer to Kinlock and O’Sullivan
(2007)). The particles are shaded according to the amount of
rotation they experience, with the particles distant from the pen-
etrometer coloured white as they experience little disturbance, and
those closest to the cone penetrometer (coloured black) being ro-
tated and displaced during the penetration. This figure indicates
that DEM can effectively accommodate the large displacements
involved in the penetration mechanism. Failures in geomechan-
ics often involve very large displacements or deformations, DEM
models can therefore inform our understanding of important fail-

3
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ure mechanisms. Examples of mechanisms that cannot be simu-
lated using a continuum approach include internal erosion, scour
and sand production in oil reservoirs. Figure 1.3 shows a bridge
that collapsed in Ireland in 2009 following scour of its foundations,
highlighting the importance of being able to simulate this class of
problem.

Figure 1.2: Two-dimensional DEM simulation of cone penetrom-
eter penetrating a granular material (disk shading indicates mag-
nitude of rotation)

Outline of book

The objective of this book is to serve as an introduction to the
use of discrete element modelling to analyse the response of gran-
ular materials, focussing on applications in soil mechanics and
geotechnical engineering. The intended audience is people who
are thinking about using DEM, or people who are just starting to
use DEM, rather than those with years of experience. However,
hopefully users with some experience and DEM code developers
will also find aspects of the text interesting and useful. In any
case, it is assumed that someone interested in DEM is likely to be
a graduate or post graduate engineer or scientist with some idea

4
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Figure 1.3: Collapse of railway bridge in Malahide, Dublin, Ireland
in August 2009, Photo Courtesy Sarah McAllister

of the basic principles of numerical modelling and a knowledge of
mechanics.

The overall aim is to provide answers to a few key questions:

1. What is the theoretical basis of DEM ? What is the fun-
damental modelling approach used? (Chapters 2, 3, 4 and
6).

2. How does someone run a DEM simulation and what infor-
mation can they get from it? (Chapters 5, 7, 8 and 11).

3. How do you interpret data from a DEM simulation? (Chap-
ters 9 and 10).

4. What has already been achieved using DEM? (Chapter 12).

There is an emphasis on soil mechanics-related applications;
however much of the content of this book has a broader appli-
cation and should prove useful to those working in the fields of
in powder technology, chemical engineering, geology, mining en-
gineering, physics, and other disciplines where there is interest
in analysing material response at a particulate scale. There are
many particulate discrete element codes in use at present, some of
which have been developed by individuals solely for research ap-
plications, while others are commercially available. This book is

5
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not written with any particular code in mind, rather the material
and discussions presented here should be of interest to users (and
possibly developers) of many different codes.

This initial Chapter aims to introduce the general principles
of DEM and presents some of the mathematical concepts used in
later Chapters.

1.2 Particulate Scale Modelling of Gran-

ular Materials

Figure 1.4: Analogy between a granular material and a highly
complex, statically redundant structural frame

In discussing the need for computer simulation to facilitate
analysis of particulate systems at the micro-scale, Rapaport (2004)
points out the similarity between the interaction of a large system
of particles and the classical “n-body” problem that has attracted
the attention of physicists for hundreds of years. The n-body
problem considers the evolution of a system of n “bodies” sub-
ject to Newtonian gravitational forces. The initial motivation to
analyse this problem was a desire to understand the dynamics

6
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of the solar system. There is no general closed-form solution to
this problem for systems with more than 3 bodies, consequently
numerical methods and computer models are required to analyse
these systems.

The need to adopt a computer-based model to analyse gran-
ular materials at the particle scale can be appreciated by looking
at the system from the perspective of a structural engineer. As
illustrated in Figure 1.4, an analogy can be drawn between an as-
sembly of contacting particles and a structure with many elements
connecting the nodes of the structure. Engineers, in particular
civil engineers, understand that a structure with a large number
of connections is statically indeterminate. In a statically inde-
terminate structure, the forces in each structural member cannot
be calculated by considering the static equilibrium of the system
alone. More more sophisticated (and nowadays) computer-based
models that include consideration of the deformations and hence
the stiffness of the structural elements are required to determine
the forces within the structure.

Both Duran (2000) and Zhu et al. (2007) divide the numeri-
cal techniques used in DEM into two categories called soft sphere
models and hard sphere models. A major differentiation between
the methods in each category is whether the particles are approx-
imated to be “soft”, in which case penetration is allowed at the
particle contacts or “hard”, when no deformation or penetration is
considered. Figure 1.5 illustrates schematically both approaches.
Both types of simulation are transient, or time dependent. This
means that the evolution of the system over a period of time is
considered by examining the state of the assembly of particles at
distinct time intervals.

The hard particle, or hard sphere, approximation is at the basis
of the so-called “collisional” or “event driven” (ED) models. The
word hard refers to the absense of interpenetration or deformation
during impact of particles. The collision itself is not necessarily of
interest and may be assumed to be instantaneous. The ED models
start from the equations governing momentum exchange and the
particle contact force is often not explicitly considered (Zhu et al.,
2007). This type of model recognizes that when particles collide
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Hard Sphere - Event Driven Approaches Soft Sphere - Molecular Dynamics Approaches
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contact forces calculated using
contact constitutive model, inertia)

Figure 1.5: “Hard Sphere” and “Soft Sphere” approaches to DEM

energy is dissipated by plastic deformation and heat. The resultant
loss of momentum when a collision occurs is characterized solely by
means of the coefficients of elastic restitution. Different values for
the normal and tangential coefficients of restitution are specified.

Event driven algorithms analyse events sequentially in the or-
der in which they occur. This means that at any time during the
simulation at most only one collision can occur at a given time in
the analysis. The time increment used in the simulations varies,
and equals the time between one collision and the next. Between
collisions the particles move along a uniform trajectory.

Applications suited to the use of the event driven modelling ap-
proach are generally those involving rapid granular flow, where the
granular material has been partially or completely fluidized, e.g.
avalanches, or rapid flow through conduits in manufacturing pro-
cesses. For example, Hoomans et al. (1996) used this approach to
simulate fluidized beds for process engineering applications, and
Campbell and Brennan (1985) used a hard sphere approach to
simulate granular material flow. Delaney et al. (2007) correctly
argue that, while it is computationally cheaper than other meth-
ods, the hard sphere approach fails to capture the fine details of
the response of dense materials involving multiple simultaneous
contacts. Delaney et al. also highlight the limitation in the ability
to accurately model the tangential or frictional forces between in-
teracting particles. Campbell (2006) considered this method to be
inappropriate for considering dense systems as it is non-physical:
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the real mechanism of force transfer in a granular material involves
deformation of the contacting particles. For further information
on event driven approaches refer to Brilliantov et al. (2996) or Ra-
paport (2009). Pöschel and Schwager (2005) describe two alter-
native algorithms for implementation of an event driven computer
code. As hard sphere approaches are not commonly considered in
current geotechnical engineering research or practice, they are not
considered further here.

The principle behind the soft sphere approach is to solve, in
increments of discrete time, the equations governing the linear and
angular dynamic equilibrium of the colliding or contacting parti-
cles. This contrasts with the strategy used in ED models, which
start from the equations governing momentum exchange. The
word “soft” is a misnomer; the particles in the “soft sphere” sim-
ulations are rigid, however they can overlap at the contact points.
(As discussed above, no overlap is allowed in the “event driven”
methods.) In this approach, friction and elastic restitution come
into effect only when spheres penetrate each other. In the soft
sphere models, the normal component of the inter-particle force
is calculated considering either the particle overlap at the con-
tact point (for compressive forces) or the particle separation at
the contact point (where tensile force transmission occurs). In
geomechanics applications in particular, a key assumption is that
the compressive overlap or tensile separation will be small. The
shear or tangential forces are calculated from the cumulative rel-
ative displacement at the contact points in a direction orthogonal
to the contact normal orientation. In contrast to the hard sphere
approach where only one collision is considered at each time in-
crement, the soft sphere models can handle systems with multiple
simultaneous contacts, as typically arise in static or quasi-static
problems. As outlined by O’Sullivan (2002), various algorithms
that fall within this “soft sphere” category exist however, the most
commonly used approach is the distinct element method, as origi-
nally described by Cundall and Strack (1979a). Given the preva-
lence of Cundall and Strack’s approach the terms “discrete element
method” and “distinct element method” are essentially used inter-
changeably. Strictly speaking the distinct element method really is

9
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a type of discrete element method. The distinct element method is
the method given the most consideration in this text. Other soft
sphere approaches that are algorithmically similar to DEM in-
clude the discontinuous deformation analysis method (DDA) (Shi
(1988), adapted for particle systems by Ke and Bray (1995)), and
the implicit methods proposed by Kishino (1989) and Holtzman
et al. (2008).

There are a few documented geomechanics research studies
that have adopted a method called contact dynamics (e.g. Lanier
and Jean (2000)). This method does not strictly fall within either
the event driven or soft sphere frameworks and is sometimes re-
ferred to as rigid body dynamics (Pöschel and Schwager, 2005).
The general idea is that the contact forces between the particles
are determined so that there is no particle deformation (i.e. “hard
spheres”, but with finite contact durations). The tangential forces
are determined by considering the forces required to keep the parti-
cles from sliding. Pöschel and Schwager (2005) state that while the
algorithm associated with this method is more complex than DEM
or molecular dynamics, and there are more calculations involved
in each time increment, there is not a corresponding increase in
computational cost, as the time increments in the analysis are
larger.

Another particle-scale approach that is used to analyse granu-
lar materials is the Monte Carlo method. As in the event driven
approach, penetration of particles is not allowed; however the
contacts are finite in duration. As outlined by Sutmann (2002),
amongst others, in this simulation approach at each iteration each
particle is subject to a number of trial moves. The change in en-
ergy generated by each of these moves is calculated and the move-
ment leading to the lowest energy is that selected for progressing
to the next configuration. This approach is applicable only to the
study of systems in static equilibrium, i.e. it cannot be applied
to consider flow of granular materials. A less well-established sta-
tistically based approach involving the application of the Markov
stochastic process was described by Kitamura(1981a,b).

10



i
i

“dembookwcrop” — 2011/2/22 — 18:06 — page 11 — #23 i
i

i
i

i
i

Particulate Discrete Element Modelling: A Geomechanics Perspective

Molecular dynamics

It is important to be aware of the similarities between particulate
DEM and molecular dynamics. Molecular dynamics is an analysis
tool used in chemistry, biochemistry and materials science. Us-
ing this method, materials are studied at the most fundamental
level by simulating the interactions between individual molecules
or atoms. The objective of these simulations is to relate the bulk
properties of a material (be it liquid, solid or gas) and fundamental
atomistic interactions. These particles are modelled as point-like
centres that interact via pair or multi-particle interaction poten-
tials (e.g. the Leonard-Jones potential). The time scales of interest
in molecular dynamics are of the order of 1 µs, and the trajectory
lengths are between 10 and 100 Ångstroms (Sutmann, 2002).

Liquids tend to be the materials most commonly considered
in molecular dynamics simulations, with consideration often be-
ing given to analysis of phase transformation, for example. In
fact the method was initially proposed by Alder and Wainwright
(1957) who described the phase transformation of a system of rigid
spheres, these authors later outlined the general methodology of
molecular dynamics in Alder and Wainwright (1959). Sutmann
(2002) outlines the history of molecular dynamics, while Rapaport
(2004) provides an overview of molecular dynamics, including de-
tails of the implementation of a molecular dynamics code. Pöschel
and Schwager (2005) suggest that typical molecular dynamics sim-
ulations are less computationally intensive than particulate DEM
simulation as in DEM the particles exert forces on each other only
when they are in contact. The numerical stability requirements
necessitate a smaller time step for particulate DEM as the con-
tact response is relatively stiff (the influence of contact stiffness
on the simulation time increment is considered in some detail in
Chapter 2). However, some molecular dynamics methods (ab ini-
tio molecular dynamics) consider explicitly the interaction of the
particles at the electron scale and are significantly more complex
than granular DEM (e.g. the ONETEP algorithm proposed by
Skylaris et al. (2005)).

As noted above meshless methods, including SPH, are another
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type of particle-based model used in geomechanics. The basic idea
in meshless methods is that the “particles” are used as interpo-
lation points where the material displacement is tracked, and the
material is continuous between these points. These methods differ
significantly from the particulate DEM methods considered in this
text and they are not given further consideration here. Readers
seeking additional information on the meshless methods may wish
to refer to Belytschko et al. (1996).

1.3 Use of Block DEM Codes in

Geomechanics

Two types of discrete element model are used in geomechanics, re-
ferred to here as block DEM and particulate DEM. Both types of
model considers systems made up of numerous individual bodies,
either blocks or particles. These discrete bodies can move relative
to each other and they can rotate. Contacts can form between
the bodies, and as the system deforms, these contacts can break
and new contacts can form. Typically a small amount of overlap
is allowed at the contact between the bodies, and this overlap is
analogous to the deformation that occurs at the contacts between
the real bodies. Simple “contact constitutive models” are used to
relate the contact forces between the bodies to the contact overlap.
The shear components of the contact force impart a moment to the
bodies. Knowing the contact forces and the inertia of the body,
by considering the dynamic equilibrium of each body, its acceler-
ation can be calculated. From these accelerations, displacements
of the particles over small time increments can be determined. By
advancing forward using these small time steps the evolution of
the system can be simulated.

While the focus of this book is on particulate DEM, it is im-
portant to be aware of the use of block DEM simulations in ge-
omechanics. This type of analysis is used to model systems of
polygonal rock blocks or masonry structures; for example Powrie
et al. (2002) analysed dry stone retaining walls, while Basarir et al.
(2008) simulated excavation of rock. Examples of block discrete

12
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element codes include the commercial code UDEC (Itasca (1998))
and the Discontinuous Deformation Analysis code (DDA) (e.g.
Shi (1988), MacLaughlin (1997), Doolin (2002)). In these codes a
system of orthogonal, stiff (“penalty”) springs are used to calcu-
late the contact forces, while minimizing the overlap between the
blocks. The blocks are typically simply deformable (linear elastic).
The ability of the blocks to deform is the principal difference be-
tween the block codes and the particle codes. As a consequence of
the block deformability, for two equivalent simulations using the
same number of particles and same particle geometries, the calcu-
lations are more time-consuming in comparison with a simulation
using a particle code with rigid particles.

Figure 1.6 illustrates the application of the DDA block code
to analyse the Vaiont landslide that took place in Italy in 1963.
As described by Sitar et al. (2005), when compared with limit
equilibrium analyses, the DDA simulations yielded reasonable re-
sults and facilitated parametric studies considering the influence
of the number of discontinuities on the deformation mode. This
approach to discrete element modelling is not considered in detail
in this text, however many of the basic principles underlying the
particulate discrete element modelling codes described here also
apply to block discrete element codes.

(a) 12 block discretiza-
tion

(b) 105 block discretiza-
tion

Figure 1.6: Back analysis of Vaiont Landslide using the Block Dis-
crete Element Method, DDA. Solid lines indicate deformed block
configuration, dashed lines indicate original slope geometry. Sitar
et al. (2005)
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1.4 Overview of Particulate DEM

As noted above, the distinct element method is the type of discrete
element method that is currently most popular in geomechanics.
The basic formulation for the distinct element method for gran-
ular materials was proposed and described by Peter Cundall and
Otto Strack in two reports to the US National Science Foundation,
Cundall and Strack(1978 and 1979b) and a subsequent paper in
the journal Géotechnique (Cundall and Strack, 1979a).

An overview of the sequence of calculations involved in a DEM
simulation is given in Figure 1.7. To carry out a DEM simulation
initially the user inputs the geometry of the system to be anal-
ysed, including the particle coordinates and boundary conditions.
The material properties are usually input by specifying the con-
tact model parameters, including stiffness and friction coefficient.
The user specifies a schedule for loading or deforming the system.
Then the simulation progresses as a transient, or dynamic, analy-
sis, typically for a specified number of time increments. At each
time step the contacting particles are identified. The magnitude of
the inter-particle forces relate to the distance between contacting
particles. Having calculated these inter-particle forces, the resul-
tant force and moment or torque acting on each particle can be
determined. Except when particle rotation is inhibited, at each
time increment two sets of equations for the dynamic equilibrium
of the particles are solved. The translational movement of each
particle is determined from the resultant applied force, and the re-
sultant applied moment is used to calculate the rotational motion.
Knowing the particle inertia, the translational and rotational ac-
celerations of the particles can be calculated. The displacement
and rotation of the particles over the current time-step is then
found through a simple central-difference-type integration through
time. The resultant forces and moments that impart these transla-
tional and rotational accelerations on the particles are sometimes
called “out-of-balance” forces (e.g. Thornton and Antony (2000),
Itasca (2004)). Using these incremental displacements and rota-
tions, the particle positions and orientations are updated, in the
next time step the contact forces are then calculated using this
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updated geometry, and the series of calculations are repeated. A
discrete element analysis is therefore a transient or dynamic, anal-
ysis, even if the system of interest is responding in an almost static
manner.

t=0: Input
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Figure 1.7: Schematic diagram of sequence of calculations in a
DEM simulation

As illustrated in Figure 1.8 within each time increment there
are two main series of calculations. In the first instance the par-
ticle velocities and incremental displacements are calculated by
considering the equilibrium of each particle in sequence. Then
having updated the system geometry the forces at each contact in
the system are calculated. The tangential component of the con-
tact force will always impart a rotational moment to the particles,
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and in many cases the normal contact force component will also
generate a moment. These forces and moments are distributed to
the particles and then used to adjust the particle positions in the
next time increment.

Figure 1.8: Indication of calculation sequence within a DEM time
step

A clear statement of the assumptions inherent in DEM is im-
portant from the outset, although it must be acknowledged that
not every implementation of DEM may adhere exactly to these as-
sumptions, particularly as the complexity of DEM codes increases.
However, using the lists proposed by Kishino (1999) and Potyondy
and Cundall (2004) as a basis, the following key assumptions typ-
ically made in particle-based DEM simulations can be stated:

1. The basic particles are rigid, they possess a finite inertia
(mass and rotational inertia) and they can be analytically
described.

2. The particles can move independently of each other and can
translate and rotate.
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3. The program automatically identifies new contacts between
particles.

4. The contact between particles occurs over an infinitesimal
area and each contact involves only two particles.

5. The particles are allowed to overlap slightly at the contact
points and this overlap is analagous to the deformation that
occurs between real particles. The magnitude of the defor-
mation of the each particle at the contact point is assumed
to be small.

6. The compressive inter-particle forces can be calculated from
the magnitude of the overlap.

7. At the contact points, it is possible for particles to transmit
tensile and compressive forces in the contact normal direc-
tion as well as a tangential force orthogonal to the normal
contact force.

8. Tensile inter-particle forces can be calculated by considering
the separation distance between two particles. Once the ten-
sile force exceeds the maximum tensile force for that contact
(which may be 0), the particles can move away from each
other and the contact is deleted and no longer considered
when calculating the contact forces.

9. The time increment chosen in a DEM simulation should
be small enough that the motion of a particle over a given
time step is sufficiently small to only influence its immediate
neighbouring particles.

10. Agglomerates of the rigid base particles can be used to rep-
resent a single physical particle, and the relative motion of
these base particles within the agglomerate may cause a
measurable deformation of the composite particles. Alter-
natively these agglomerates may themselves be rigid.

From the analyst’s point of view there are many similarities
between the overall process involved in a DEM simulation and the
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Figure 1.9: Generic Flow Chart for Numerical Analysis in Me-
chanics

process involved in a continuum-based analysis, e.g. using finite
element analysis. A generic flowchart for numerical analysis in
mechanics is given in Figure 1.9. There are some key differences
between the effort associated with a DEM analysis and a con-
ventional continuum analysis. Undoubtedly mesh generation for
finite element analysis of bodies with highly complex geometries
is non-trivial. However, t generating the initial positions of the
particles in the problem domain to be analysed is probably more
difficult and typically involves DEM calculation cycles. In fact, it
is possible for this model creation phase to be at least as compu-
tationally expensive as the main simulation. As calculation cycles
are involved in the specimen generation stage, the discussion of
this phase of the analysis is given in Chapter 7, after the details

18
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on the method have been considered in Chapters 2–5.

The non-linearity of the systems considered and the explicit ap-
proach to time integration used mean that a small time increment
must be adopted in DEM simulations. It is these considerations,
combined with the need to include large numbers of particles, that
make DEM simulations so computationally intensive.

A DEM simulation generates basic results in terms of individ-
ual particle positions and inter particle contact forces, rather than
in terms of stress and strain. A postprocessing procedure is re-
quired to interpret these results in a useful or meaningful manner
and relate them to our continuum-mechanics based understanding
of soil behaviour. A wide variety of interpretation techniques have
been proposed in the literature, some of which are not easy to
implement and typically involve greater effort and more abstract
concepts (including statistical mechanics) than the methods used
to interpret continuum analyses. Chapters 8–10 provide overviews
of various interpretation approaches.

For readers accustomed to continuum-based geomechanics anal-
yses it may be useful to consider how DEM meets the theoretical
requirements for a valid analysis. In conventional continuum me-
chanics a method of analysis is typically required to satisfy four
theoretical requirements, namely equilibrium, compatibility, con-
stitutive behaviour and boundary conditions. In a DEM simula-
tion equilibrium is accounted for by considering the dynamic equi-
librium of each particle at each time increment during the analysis.
As discussed further in Chapter 11, for quasi-static analyses the
user must also consider the overall equilibrium of the system as a
test to establish the validity of a particular simulation. In a con-
tinuum analysis the compatibility requirement is satisfied, mean-
ing that as the system deforms holes should not appear and the
material does not develop overlaps. As outlined by Potts (2003),
amongst others, from a mathematical perspective this requirement
implies that components of strain exist and are continuous and the
derivatives of strain exist to at least second-order. This require-
ment is effectively violated in a particulate DEM simulation. No
strain occurs within the rigid bodies, they are allowed to overlap
and the displacement field is highly non-uniform. A discussion on
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interpreting DEM analysis by calculating strains from the particle
displacements is given in Chapter 9.

In continuum-based materials modelling, the constitutive ma-
trix relates the stresses and strains within the material and this
relationship can be linear or non-linear. No constitutive model
is required in a DEM model; rather, as discussed in many DEM
related papers, the constitutive model “emerges” from the DEM
simulation results. A model describing the response at the particle
contacts is required and this is somewhat analogous to the consti-
tutive model. A direct mapping of the contact model to a contin-
uum constitutive model would be inappropriate. The macro-scale
or continuum response will depend on the response at the con-
tacts, the geometry of the granular material and the ability of the
particles to crush, fail or deform. Even if a linear contact model is
adopted, the overall response will be non-linear as a consequence
of the evolution of the inter-particle contacts.

Finally a statement of the boundary conditions is required;
these boundary conditions play a large role in defining the problem
to be analysed. The concepts of boundary conditions are similar
in both continuum and DEM analyses; however, the details differ
and a discussion on the various boundary conditions used in DEM
simulations is given in Chapter 5.

1.5 Use of DEM Outside of

Geomechanics

Granular materials are encountered in a variety of disciplines out-
side of soil mechanics and geotechnical engineering. Most notably,
chemical and process engineers also regularly adopt DEM in their
research. The complexity of granular material response has at-
tracted interest from mathematicians and physicists who use DEM
simulations to generate data for subsequent detailed analysis of
the fundamentals of granular material response. As in the case
of geomechanics applications, there is potential, with increasing
computational power, to apply DEM to solve industrial problems.
Recent conference proceedings, e.g. Nakagawa and Luding (2009),
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illustrate the range of applications of DEM across these disciplines.
Much information on the applicability of DEM to advance under-
standing of granular materials for geomechanics applications can
therefore be gained by reference to journals in these other disci-
plines. Two particularly useful publications are Zhu et al. (2007
and 2008) which provide reviews of the development of DEM algo-
rithms and the application of DEM respectively from a chemical
engineering perspective. The recent special editions of the jour-
nals Powder Technology, Thornton (2009), and Particuology, Zhu
and Yu (2008), also contain papers of interest to the geomechanics
community.

1.6 Introduction to Tensorial Notation

Tensorial notation (sometimes called index notation) is adopted
throughout this book. Most publications referred to in the book
also use tensorial notation and, while some authors (e.g. Potyondy
and Cundall (2004)) provide clarification, familiarity with this no-
tation tends to be assumed. This section is included to give the
reader a very brief overview of tensorial notation both to facilitate
understanding of the material in this book as well as the broader
set of publications associated with the topic. For more detailed
explanation reference to a continuum mechanics textbook (e.g.
Shames and Cozzarelli (1997)) is recommended.

Tensorial notation is attractive as it is allows vectors and op-
erations on vectors to be described concisely. It has particular
advantages when developing computer programs where data are
stored in arrays that are accessed using integer indices. In partic-
ulate DEM there are calculations and operations involving force
vectors, position vectors, displacement vectors, etc. In this book
the intrinsic form of the vector is denoted in bold typeface; thus
the particle displacements are given by u, the resultant force act-
ing on a particle is given by f, and the particle position is given by
x. These terms are then used to refer to the vectors in a general
sense as entities with a specific magnitude (|u| or |f |) and whose
directions can be described relative to a specified coordinate sys-
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tem.
Every vector will have components parallel to each of the co-

ordinate axes. Tensorial notation provides a convenient means of
describing operations on each of these components. When these
vectors are expressed in tensorial, or indicial, form they are de-
noted ui, fi and xi with the subscript i indicating that the vector
component parallel to a specific coordinate axis, i, is under con-
sideration. For example, if the term ui is used to describe the dis-
placement of a particle, this vector may have either 2 or 3 compo-
nents, depending on whether we are considering a two-dimensional
or three-dimensional analysis. In the Cartesian coordinate sys-
tem the displacement denoted ui is given by ui = (ux, uy) and
ui = (ux, uy, uz) in two-dimensional and three-dimensional analy-
ses respectively. As there is only one index (i) the vector ui is a
first-order tensor.

Extending consideration to two-dimensional tensors, the stress
tensor is given by σ or σij and this tensor can represent either a
two-dimensional or three-dimensional state of stress. In this case,
even if the stress state is fully three-dimensional, there are two
indices (i and j) and this tensor is then a second-order tensor.
The indices i and j are considered “free indices” as they are both
“free” to adopt independently any of the values x, y (and z in
3D). The stress tensor for two-dimensional analysis is represented
in matrix form as

σij =

(
σxx σxy
σyx σyy

)
(1.1)

while in 3D the stress tensor is given by

σij =

 σxx σxy σxz
σyx σyy σyz
σzx σzy σzz

 (1.2)

Here compressive stresses and forces are taken to be positive
as this is the convention typically adopted in geomechanics (refer
to Figure 1.10(a)). The components along the diagonal (σxx, σyy,
σzz) are the normal or direct stresses, while the off-diagonal terms
(σxy, σyx, σzx, etc.) are the shear stresses. When a material is

22



i
i

“dembookwcrop” — 2011/2/22 — 18:06 — page 23 — #35 i
i

i
i

i
i

Particulate Discrete Element Modelling: A Geomechanics Perspective

in a state of static equilibrium with equal complementary shear
stresses, then the stress tensor is symmetric and we can say σij =
σji. As illustrated in Figure 1.10 for every stress state (two- or
three-dimensional) planes oriented at θ and θ+ 1

2
π to the horizontal

can be found in the material along which no shear stresses are felt.
The direct stresses acting on these planes are called the principal
stresses and the normals to the planes give the principal stress
orientations. The principal stresses are given by the eigenvalues of
the stress tensor, while the eigenvectors give the principal stress
orientations. Typically the maximum or major principal stress
is denoted by σ1 and the minimum or minor principal stress is
denoted by σ3. In 3D there will also be an intermediate principal
stress σ2, with σ1 > σ2 > σ3.

Figure 1.10: Illustration of two-dimensional stress state

The notation for addition and subtraction of vectors using
tensors is straightforward. For example consider two contacting
(touching) particles a and b. If the centroid of particle a has a
position vector xai and the centroid of particle b has a position
vector xbi , then the vector giving the location of particle b relative
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to particle a (called the branch vector) is given by li = xbi −xai . In
3D this operation expands as follows:

li =

 lx
ly
lz

 =

 xbx − xax
xby − xay
xbz − xaz

 (1.3)

As noted above, the tensorial notation system includes many
ways for expressing mathematical operations involving vectors (1D
arrays) and matrices concisely. The “dummy index” is used to
indicate that we are considering terms along the diagonal, and
less intuitively it denotes summation. Using this approach the
trace of the stress tensor is given by σii, and this is given by

σii = σxx + σyy (2D)
σii = σxx + σyy + σzz (3D)

(1.4)

The sum σii is the first invariant of the stress tensor (Iσ). This
parameter is “invariant” (i.e. unchanging) if the tensor is subject
to an orthogonal rotation, e.g. if the tensor is rotated to consider
the components along the principal axes of stress.

The dummy index concept can be extended to operations in-
volving more than one tensor. For example, consider the contact
force vector between two particles to be denoted by fi and the
branch vector to be denoted by li. In the expression fili, i is a
dummy index and indicates reference to the inner product, i.e.

fili = fxlx + fyly (2D)

fili = fxlx + fyly + fzlz (3D)
(1.5)

In a similar manner, in three dimensions, the magnitude of a
vector |v| is given by

| v |=
√
vivi =

√
vxvx + vyvy + vzvz (1.6)

The use of free indices gives the expression filj and this can be
used to represent fxly when i = x and j = y or fxlx when i = x
and j = x. Expressions similar to

∑
N
filj are used throughout
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this book. The expansions of this expression in two and three
dimensions are:

∑
N
filj =


∑
N
fxlx

∑
N
fxly∑

N
fylx

∑
N
fyly

 (2D)

∑
N
filj =


∑
N
fxlx

∑
N
fxly

∑
N
fxlz∑

N
fylx

∑
N
fyly

∑
N
fylz∑

N
fzlx

∑
N
fzly

∑
N
fzlz

 (3D)

(1.7)

Note that the product filj is called the dyadic product of the
two vectors f and l, and this can also be expressed as f

⊗
l.

In another example involving the use of the dummy index, the
stress acting along a direction specified by the normal (unit) vector
nj can be calculated by multiplying the normal vector by the stress
tensor. In tensorial notation this operation is expressed as σijnj.
As above, repetition of the index j (the dummy index in this case)
in the term σijnj indicates that there will be a summation. The
expansion (in 3D) is given by

σijnj = σixnx+σiyny+σiznz =

 σxxnx + σxyny + σxznz

σyxnx + σyyny + σyznz

σzxnx + σzyny + σzznz

 (1.8)

Gradients are often of interest in geomechanics, and in the cur-
rent context the use of a deformation gradient to calculate strain
is important. Tensorial notation provides a concise notation for
partial derivatives. In this case a comma, “ , ”, is used to indicate
a partial derivative, i.e. the notation vi,j indicates the spatial par-
tial derivative of the terms in vector vi with respect to coordinate
j. For example, if the vector describing the incremental displace-
ment of a particle is given by ui the displacement gradient is given
by ui,j and in the 3D case this expands to
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ui,j =


∂ux

∂x
∂ux

∂y
∂ux

∂z
∂uy

∂x
∂uy

∂y
∂uy

∂z
∂uz

∂x
∂uz

∂y
∂uz

∂z

 (1.9)

In addition to spatial derivatives we also need to consider tem-
poral derivatives, i.e. rates. The notation u̇i is used to denote the
rate of change of the tensor ui with respect to time, i.e.

u̇i =


∂ux

∂t
∂uy

∂t
∂uz

∂t

 (1.10)

Finally in relation to tensorial notation it is useful to introduce
two specific tensors, the Kronecker delta δij and the alternating
tensor eijk. The Kronecker delta is defined to have the property

δij =


1

0

when i = j

when i ̸= j
(1.11)

The product of the Kronecker delta and a second-order tensor is
given by

σijδjk = σik (1.12)

In this expression j is a dummy index and the free indices on each
side of the equation are the same.

The alternating tensor is given by

• eijk = 1 when the indices are in the order xyz, yzx, zxy, i.e.
cyclic order of indices.

• eijk = −1 when the indices are in the order xzy, yzx, zyx,
i.e. anticyclic order of indices.

• eijk = 0 when there are repeated indices, e.g. xxy, xxz, xyy,
etc.
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The alternating tensor can be used to calculate the cross prod-
uct of two tensors; in three dimensions the cross product is given
by c = a× b where

ci = eijkajbk (1.13)

The vector c will be orthogonal to both a and b.

1.7 Orthogonal Rotations

Chapters 2, 5 and 8 all refer to rotation of parameters. For exam-
ple, when moving from a coordinate system defined by the prin-
cipal axes of inertia of a given particle to the global coordinate
system. To achieve this rotation an orthogonal rotation tensor
is required. If a rotation is orthogonal then the product of two
successive rotations is given by

TijTkj = δik (1.14)

Furthermore the transpose of T will equal the inverse of T, TT =
T−1. We can rotate any vector a, with components (ax, ay, az)
using a rotation tensor, using the tensor product a′i = Tijaj where
the tensor a′i gives the rotated components of the vector a. The
magnitude of the vector will remain unchanged, i.e. |aj| = |a′i|.

In three dimensions to rotate a vector ai through an angle θ
about the z−axis the following expression is used:

 a′x
a′y
a′z

 = T

 ax
ay
az

 =

 cosθ −sinθ 0
sinθ cosθ 0
0 0 1


 ax
ay
az


(1.15)

where ai represents the original vector and a′i is the rotated
vector. When a vector is multiplied by an orthogonal rotation
matrix a rigid body rotation is achieved, i.e. the vector length is
preserved as the orientation changes.

While the basic DEM calculations are almost exclusively opera-
tions on one-dimensional vectors (i.e. particle velocity vector, con-
tact force vector), analysis of the system typically involves the use
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of second-order tensors (2D matrices), including the stress tensor,
the strain tensor and the fabric tensor. To rotate a second-order
tensor (σij) from one coordinate system to another the operation
is given by (

σ′
xx σ′

xy

σ′
yx σ′

yy

)
= T

(
σxx σxy
σyx σyy

)
TT (1.16)

1.8 Tessellation

The particulate systems considered in this book comprise discrete
particles and their contacts. The creation of triangulations of
the system is useful for applications including construction of the
initial specimen geometry (Chapter 7), application of boundary
stresses (Chapter 5), calculation of strain (Chapter 9), and anal-
ysis of the material fabric (Chapter 10). An overview of triangu-
lation is therefore included at this point. More detailed consid-
erations of the application of Delaunay triangulation in granular
mechanics are given by Li and Li (2009), Goddard (2001), Ferrez
(2001) and Bagi (1999a). Rapaport (2004) describes the imple-
mentation of a subroutine to construct a Voronoi polygon to anal-
yse the structure of particulate systems in a molecular dynamics
code, while Ferrez (2001) discusses the use of triangulation for
contact detection. It may also be possible to use triangulation to
couple DEM particle codes with continuum mechanics to represent
a fluid phase.

A tessellation is a general term to describe the division of a
space into a set of subspaces that do not overlap and that fill the
space completely (i.e. with no gaps). These tessellations can exist
in two- and three-dimensional space. Amongst the most commonly
used tessellations are the Delaunay triangulation and the Voronoi
diagram; these geometrical constructs are closely related and each
is said to be the “dual” of the other. From a geomechanics per-
spective it is useful to realize that Delaunay triangulation is often
used in mesh generation for finite element analyses of complex
geometries.

Referring to Shewchuk (1999), for example, a triangulation of
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a set of n points or nodes, P = {P1, Pk, Pn}, is a set of m (m ̸= n)
triangles, T = {T1, Tk, Tm} whose interiors do not intersect each
other. A Delaunay triangulation of a nodal set has the property
that no node in the nodal set falls in the interior of the circumcir-
cle (circle that passes through all three vertices) of any triangle in
the triangulation. The Delaunay triangulation of the vertex set is
unique. Higher-dimensional Delaunay triangulations are a gener-
alization of the two-dimensional Delaunay triangulation. In three
dimensions, the triangulation of V yields a set, T, of tetrahedra,
whose vertices are V, and whose interiors do not intersect each
other. In this case no node in the nodal set falls in the interior of
the circumsphere (sphere that passes through all four vertices) of
any tetrahedron in the triangulation. The Delaunay triangulation
of 10 random points (nodes) in two dimensions is illustrated in
Figure 1.11(b) and a three-dimensional triangulation is illustrated
in Figure 1.12.

(a) (b) (c)

Figure 1.11: (a) 10 random points (b) Delaunay triangulation (c)
Voronoi diagram
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Figure 1.12: (a) 10 random points (b) Tetrahedra generated by
3D Delaunay triangulation

As discussed by Okabe et al. (2000), there are a number of
different algorithms available for the implementation of Delaunay
triangulation. Most of the triangulations used in this work were
calculated using MATLAB, which uses the qhull algorithm (Bar-
ber et al., 1996).

As noted above, the Delaunay triangulation is related to (or
is the dual of) a second geometrical construct called the Voronoi
diagram or the Voronoi tessellation. The Voronoi diagram of a
set of n nodes P = {P1, Pk, Pn}, is a set of n polygons, V =
{V1, Vk, Vm}. Each polygon Vk is centred around a corresponding
node Pk. The polygon Vk encloses an area or volume, such that
every point within that polygon that is closer to the node Pk than
to any other node in the set P. The Voronoi diagram for the
system of points given in Figure 1.11(a) is illustrated in Figure
1.11(c).

1.9 General Comments on Computer

Modelling

A DEMmodel is an idealization of the real physical system and the
extent of the idealizations used in creating the model will be dis-
cussed at various points in this text. It is important also to always
be aware that a DEM simulation is a computer simulation and the
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calculations are performed using finite, floating point representa-
tions of the real numbers, i.e. representations of the real numbers
containing only a finite number of digits. An introduction to some
of the issues associated with floating point arithmetic is given by
Burden and Faires (1997) and a more detailed discussion is given
by Goldberg (1991). The error associated with representing a real
number in the floating point format used by computers is called a
round-off error. The calculations in DEM simulations are there-
fore carried out on approximate representation of real numbers
and the results of the calculations themselves are also subject to
a round-off, which will introduce a further error into the system.
One way to reduce round-off error is to reduce the number of error
generating calculations. Care should also be taken in the choice of
algorithm used to accurately resolve the contact geometry or the
time integration approach. These issues are considered further in
Chapter 4.
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Chapter 2

Particle Motion

2.1 Introduction

A discrete element analysis is a dynamic or transient analysis that
considers the dynamic interaction of a system of interacting par-
ticles. A particulate DEM model creates an ideal system of rigid
particles that can move, connected by rigid springs that simulate
the contact interactions. (The contact spring formulations are
outlined in Chapter 3). As particles move away from each other
contacts are broken and some of the springs will be removed; at
the same time additional springs will be introduced as new con-
tacts are formed. The continuous removal and introduction of
contact springs results in a change in the overall system stiffness.
A reduction in stiffness will also occur if a contact starts to slide.
Therefore the analysis is non-linear. This non-linearity could be
described as a geometrical non-linearity as it arises owing to a
change in the local packing geometry of the particles. As will be
discussed in Chapter 3, the contact constitutive model used to
describe the force displacement response at the contacts is often
non-linear, and this adds a material non-linearity to the system.
These two particle-scale sources of non-linearity combine to give an
overall non-linear macro-scale material response. At larger strains
where sliding occurs the geometric non-linearity caused by gross
movements at the contacts and “buckling” mechanisms that can
develop in local groups of particles will dominate the response,
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while the influence of the non-linear response at the contacts will
be more evident at small strain levels, before the onset of sliding.

The basic principles of DEM are normally introduced by di-
rectly considering the dynamic equilibrium of the individual par-
ticles. Here DEM is introduced in a slightly different way. Civil
engineers are usually familiar with the basic theories of matrix
structural analysis and finite element analysis. In these approaches
typically a large system of linear equations or stiffness matrix is
formed. The displacements of the structural elements are deter-
mined by inverting this stiffness matrix. Particulate DEM uses
a different solution strategy that introduces a greater risk of nu-
merical instability (it is conditionally rather than unconditionally
stable). To understand why the conditionally stable approach is
preferred in particulate DEM, it is useful to initially consider DEM
from the perspective of matrix structural analysis. As was already
shown in Figure 1.4, the particles are analogous to the degrees of
freedom in a matrix structural analysis (i.e. the end points of the
structural elements) or alternatively the nodes in a finite element
mesh. Using this analogy, the overall governing equation for the
system can be expressed as the standard governing equation for
a dynamic analysis in structures or continuum finite element or
finite difference analysis, so that

Mü+Cu̇+K(u) = ∆F (2.1)

where M is the mass matrix (or more correctly the inertia ma-
trix , including both mass and rotational inertia), C is a damping
matrix, u is the incremental displacement vector (including both
translational and rotational displacements) and ∆F is the incre-
mental force vector (including moments). The global stiffness ma-
trix K depends upon the system geometry, i.e. which particles are
contacting. The incremental displacements are the movements of
the particles over the current time step. The objective of the anal-
ysis is to solve for the incremental displacements. The velocity and
acceleration vectors are given by u̇ and ü. The particles in a DEM
model are then analagous to the nodes in a finite element anal-
ysis. However, as the particles are free to rotate, a particle in a
2D DEM analysis has three degrees of freedom (two translational
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and one rotational), while a particle in a 3D DEM analysis has six
degrees of freedom (three translational and three rotational).

Equation 2.1 is the dynamic equilibrium equation for the sys-
tem. Broadly speaking, two approaches can be used to solve the
dynamic equilibrium equation for a multi-nodal system. These
approaches are termed implicit and explicit . In the implicit ap-
proach a single vector u can be created to represent the combined
incremental displacements for all the particle centroids in the sys-
tem. This is similar to the use of a single vector to represent the
displacements of all the nodes in a finite element analysis, i.e.

u =



u1x

u1y

u1z

upx

upy

upz

uNp
x

uNp
y

uNp
z



(2.2)

where upx, u
p
y, u

p
z, are the incremental translational displacements

of particle p in the three coordinate directions respectively and
there are Np particles in the system. (To simplify the discus-
sion rotations are not considered at this point.) The incremental
force vector ∆F is constructed in a similar manner. The global
mass M, stiffness K and damping C matrices are combined as for
the finite element method or in structural analysis. The global
stiffness matrix construction is not detailed here and interested
readers should refer to the finite element or structural analysis
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texts of Zienkiewicz and Taylor (2000a) or Sack (1989) for guid-
ance on stiffness matrix construction. Ke and Bray (1995) discuss
the stiffness matrix formation for the implicitly particulate DEM
algorithm DDAD (Discontinuous Deformation Analysis for Disks).

Where algorithms that involve assembly of a stiffness matrix
are adopted to solve the dynamic equilibrium equation (Equation
2.33), a large system of simultaneous equations is generated, as in
the finite element method, and solution will involve inversion of
a highly sparse stiffness matrix. For a relatively small 3D system
with 1,000 particles, the stiffness matrix will have 36× 106 entries
including the 0 valued terms as each particle has 6 degrees of free-
dom. Even if efficient algorithms to solve sparse systems of linear
equations are used, the sequence of calculations will be very com-
putationally expensive, both in terms of the number of operations
required to solve the system and in terms of memory requirements.
While some further consideration to this type of approach is given
in Section 2.5 below, most geomechanics researchers use an alter-
native explicit approach that was originally outlined by Cundall
and Strack (1979a,b).

In Cundall and Strack’s distinct element approach, and in
molecular dynamics, solution of the global system of equations
is avoided by considering the dynamic equilibrium of the indi-
vidual particles rather than solving the entire system simultane-
ously. This approach also avoids creation and storage of the large
global stiffness matrix and, as highlighted by Potyondy and Cun-
dall (2004), relatively modest amounts of computer memory are
then required to consider large populations of particles. The im-
plementation is somewhat similar to the implementation used for
finite difference continuum analysis. Referring to Zhu et al. (2007)
probably the most general format for expressing the equation gov-
erning the translational dynamic equilibrium of a particle p with
mass mp is

mpüp =
Nc,p∑
c=1

Fcon
pc +

Nnc,p∑
j=1

Fnon−con
pj + Ff

p + Fg
p + Fapp

p (2.3)

where üp is the acceleration vector for particle p, Fcon
pc are the con-
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tact forces due to contact c when there are Nc,p contacts between
particle p and either other particles or boundaries, and Fnon−con

ck

are non-contact forces between particle p and Nnc,p other parti-
cles (or boundaries). From a geomechanics perspective, the most
likely origin of non-contact forces would be capillary forces in un-
saturated soil. Ff

p is the fluid interaction force acting on particle
p, Fg

p is the gravitational (body) force and Fapp
p is a specified ap-

plied force (for example this may arise where a “stress-controlled
membrane” is used as discussed in Section 5.4). Comparing Equa-
tions 2.1 and 2.3, there is no explicit consideration of damping in
Equation 2.3, rather the contribution from damping is included in
the calculation of the contact force (refer to the viscous dashpots
described in Chapter 3 and also to Section 2.7 below).

The torque generated at each contact point is calculated as
the cross-product of the contact force and a vector from the cen-
tre of the particle to the contact point. The dynamic rotational
equilibrium is given by

Ip
dωp

dt
=

Nmom∑
j=1

Mpj (2.4)

where ωp is the angular velocity vector and Mpj is the moment
applied by the jth moment transmitting contact forces involving
particle p and there are a total of Nmom moment transmitting
contacts. As will be discussed in more detail in Chapter 3, at each
contact point there will be a component of the contact force that
is normal to the contact and a second component that acts along
or tangential to the contact. The tangential forces will always
impart a moment; however, the normal forces will only impart a
moment if their line of action does not pass through the centroid of
the particle (i.e. if the particles are non-circular or non-spherical).
Moment transmitting contact models, e.g. rotational springs or
the parallel bond model, have also been proposed.

During the deformation of a granular material the particle posi-
tions and the forces acting on the particles continuously evolve. In
a DEM simulation time is discretized; this means that the system
is examined at specific points in time and the real, continuously
changing physical system is not accurately captured. As illus-
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trated in Figure 1.8 in Chapter 1, at each time step there are two
main sequences of calculations. The contact forces are calculated
based on the most recently updated particle positions. This means
that the applied forces and torques in Equations 2.3 and 2.4 are
assumed to be known. Then Equations 2.3 and 2.4 can therefore
easily be manipulated to give the particle translational and rota-
tional accelerations, ω̇p and üp, i.e. equilibrium equations generate
two sets of ordinary differential equations for each particle.

2.2 Updating Particle Positions

Knowing the resultant forces acting on the particles we can calcu-
late the accelerations for particle p from the equation of dynamic
equilibrium for the particle. If the translation motion of the par-
ticle is isolated, this equation is simply given by:

mpa
t
p = Ft

p (2.5)

where mp is the inertia (mass) matrix, at
p = üt

p is the accelera-
tion vector at time t, and Ft is the resultant force vector. Note
that the acceleration vector, at considers only the translational
degrees of freedom and has 2 components in two dimensions and
3 components in three dimensions. The force vector Ft also has 2
components in two dimensions and 3 in three dimensions. In the
two-dimensional case the mass (inertia) matrix is given by

mp =

(
mp 0
0 mp

)
(2.6)

where mp is the particle mass, calculated as the particle density
times the volume. In three dimensions the mass matrix, mp is
a 3 × 3 matrix, with the diagonal terms equal to mp, and the
off-diagonal terms equal to 0.

The next stage in the analysis involves using these acceler-
ation values to obtain incremental displacements and hence up-
date the particle positions. In numerical analysis, the techniques
used to update parameters given their first and second derivatives
with respect to time (i.e. to get displacements from accelerations),
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are called time integration methods. Many time integration algo-
rithms exist (reference to Wood (1990b) may be useful for readers
specifically interested in this topic). It is important to appreciate
that for general 3D particles, analysis of the rotational motion is
significantly more complex than the translational motion.

In most DEM codes a time integration approach similar to the
central-difference method with a time increment ∆t is used. This
approach can most easily be understood by considering the rela-
tionship between the acceleration and velocity vectors, as follows:

at
p =

1

∆t
(vt+∆t/2

p − vt−∆t/2
p ) (2.7)

where vt−∆t/2
p and vt+∆t/2

p are the velocity vectors at t−∆t/2 and
t+∆t/2 respectively for particle p. Rapaport (2004) terms this
time integration approach a “leap-frog” method as the velocities
and displacements are calculated with a time lag of ∆t/2. Other
authors (e.g. Munjiza (2004)) refer to it as the position Verlet time
integration scheme. As with Fp and ap, the vp vector has 3 com-
ponents in two dimensions and 6 components in three dimensions.
The velocity at time t+∆t/2 is then calculated as:

vt+∆t/2
p = vt−∆t/2

p +∆tm−1
p (Ft

p) (2.8)

The velocity at time t+∆t/2 is taken to equal the average
velocity over the time increment t to t+∆t. Then we can calculate
the updated particle position dt+∆t

p as:

xt+∆t
p = xt

p +∆t× vt+∆t/2
p (2.9)

where the particle position vector x gives the particle Cartesian
coordinates and the total rotation about the principal axis (axes
in 3D).

For two-dimensional discrete element simulations there is no
coupling between the three degrees rotational of freedom. This
means that the particle’s rotational or angular velocities can be
calculated by considering the following dynamic rotational equi-
librium equation:

Ip,zω̇p,z =Mp,z (2.10)
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where ωp,z is the angular velocity about an axis through the centre
of the particle orthogonal to the analysis plane. For a circular or

disk particle the moment of inertia Ip,z equals
ρπr4p
2

where rp is the
particle radius and ρ is the particle density. The central-difference
time integration approach can easily be applied to incrementally
solve this equation as follows:

ωt+∆t/2
p,z = ωt−∆t/2

p,z +∆t
M t

p,z

Ip,z
(2.11)

This angular velocity is used to calculate the tangential com-
ponent of the contact force (refer to Section 3.7). It is also used
to update the position of the edges of non-spherical particles, and
to calculate the total particle rotations (rotations are important
as an indicator of localizations within the material (Chapter 8).
A key decision to be made by the analyst is to choose the value of
the time increment, ∆t, to be used in the simulation.

2.3 Time integration and Discrete

Element Modelling: Accuracy

and Stability

In their description of the distinct element method Cundall and
Strack (1979a) proposed the use of the computationally efficient,
explicit, central-difference type time integration scheme. A limita-
tion of this scheme is that it is only conditionally stable, so small
time steps must be used. However, this restriction on the size
of the time increment due to numerical stability considerations is
not as limiting as it might initially appear. To successfully capture
the inherent non-linearity of the problem (changing contact con-
ditions and non-linear contact response) the incremental changes
in the particle positions and contact forces in a given time-step
must be small. This translates into a constraint on the time in-
crement to be small to capture the non-linearity of the system.
Ideally the time increment chosen in a DEM simulation should be
small enough that the motion of a particle over a given time step
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is sufficiently small to only influence its immediate neighbouring
particles. Cundall and Strack (1978) stated that a fundamental
idea of DEM is that the time step chosen be sufficiently small that
in a single time step disturbances cannot propagate from a disk
further than its nearest neighbours.

In the context of analysis of physical systems, a numerical al-
gorithm is a procedure involving a sequence of calculations devel-
oped to model the response of the system. In DEM there is a
set of calculations where information about the current configu-
ration of particles is used to step forward and predict the system
state at a future time. This prediction will be approximate, rather
than exact. It is important to carefully consider the limitations
and approximations involved in the numerical model. In DEM it
is important to consider the accuracy, stability and robustness of
the time integration algorithm used. Sutmann (2002) considers
these issues from a molecular dynamics perspective. During each
cycle in a DEM simulation the dynamic equilibrium equation is
solved for each particle in the assembly. The system of differential
equations is an idealization of the real physical system, limiting
accurate prediction. Specific approximation errors are introduced
when the equation is solved numerically. The round-off error in-
troduced in calculations using computers is considered briefly in
Section 1.9. A second, much larger, error is introduced as a con-
sequence of the approximations used to calculate the particle in-
cremental displacements from the calculated accelerations. This
error is called the truncation error.

In any numerical model that simulates the response of a tran-
sient or dynamic system there will be truncation errors introduced
at each time step. The truncation error can be understood by ref-
erence to the Taylor series expansion. The Taylor series expansion
provides an estimate for the value of a parameter, say the position,
at time t+∆t as given by xt+∆t, in terms of the position at time
t and the temporal derivatives of the position at time t, as

xt+∆t
p = xt

p+∆t

(
dxp

dt

)t

+
∆t2

2!

(
d2xp

dt2

)t

+
∆tn

n!

(
dnxp

dtn

)t

+O
(
∆tn+1

)
(2.12)
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The term O (∆tn+1) is the truncation error. This is the error
introduced in the approximate, calculated value of xt+∆t

p by consid-
ering only the first n derivatives of xp at time t in the prediction.
This truncation error is a measure of the amount by which the
exact solution to the differential equation describing the particle
motion differs from the approximate solution. The error is pro-
portional to ∆tn+1. As ∆t will be a small number, i.e. ∆t << 1,
then the higher the value of n, and hence the greater the number
of derivatives that are included in the approximation, the smaller
the error will be. The error will also be reduced using a smaller
∆t value, with the resultant improvement in accuracy being much
greater for large values of n. In a transient simulation, where we
are calculating the values of xt over many time increments, this er-
ror is considered to be a “local” truncation error that is introduced
at each time increment.

Most DEM codes used in geomechanics use either the central-
difference time integration algorithm or a slightly modified version
of the central-difference method. As noted by Wood (1990b) there
is more than one expression available for the central-difference time
integration approach. The Verlet equations used in DEM are given
by

vt+∆t/2
p = vt−∆t/2

p +∆tat
p

xt+∆t
p = xt

p +∆tvt+∆t/2
p

(2.13)

In an alternative form of the central-difference method, the
incremental displacement is calculated directly from the particle
accelerations at time t (Wood, 1990b), so that

∆xt→t+∆t
p = ∆xt−∆t→t

p +∆t2at
p (2.14)

where ∆xt→t+∆t
p is the incremental displacement over the time

increment from t to t + ∆t, i.e. ∆xt→t+∆t = xt+∆t
p − xt

p and
∆xt−∆t→t

p = xt
p − xt−∆t

p . This means that Equation 2.14 gives the
acceleration as

at
p =

(xt+∆t
p −2∆xt

p+∆xt−∆t
p )

∆t2
(2.15)
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In either form, the central-difference algorithm is a second-
order scheme, i.e. the accuracy of the calculated displacement de-
pends on the square of the time increment, ∆t2. This time integra-
tion scheme has also been implemented for consideration of struc-
tural dynamics problems, and reference to Chopra (1995) may be
useful to aid in developing an understanding of this method. One
author who discusses the issue of accuracy arising from the trun-
cation error explicitly is Cleary (2000) who stated that for this
method between 20 and 50 time increments are needed to accu-
rately resolve each collision in his simulations, resulting in very
small time increments.

When choosing a method to integrate the particle accelerations
and calculate the updated particle coordinates, it is important that
the method chosen be both consistent and convergent. If the local
truncation error at step i is τ , then the method is consistent if
lim∆t→0 |τ | = 0 for all steps in the calculation sequence. A method
is convergent if lim∆t→0 |xexact,t−xt| = 0 where xexact,t is the exact
solution to the differential equation describing the particle motion
at time t, and xt is the calculated (approximate) value at the
same time. The truncation error will be magnified as the analysis
proceeds, so at time t = n∆t the error will be magnified n times.

The algorithm must also be “stable.” There are a number of
ways of explaining what is meant by “stability” in the context of
numerical modelling. In general, for a stable system if there are
small changes in the initial data input to the model, the resul-
tant changes in the output will also be small. If an error, E0, is
introduced at a given point in time, the error after n subsequent
calculations, En, is the global error. As noted by Burden and
Faires (1997) it is difficult to determine the global error, but there
is a close correlation between the local error and the global error.
Typically a linear growth in the global error will be unavoidable,
meaning that if a local error E0 is introduced at some point in the
calculation, the cumulative effect of the error after n time incre-
ments is En = CnE0, where C is a constant. If the relationship
between the local and global truncation errors is En = CnE0 then
the algorithm is typically stable, however if En = CnE0 where
n > 1, then there will be an exponential growth in error and the
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method is considered to be unstable. In mechanics applications
analysts sometimes monitor the stability of a numerical model by
calculating the total energy of the system. The components of the
total energy include the strain energy stored in the contact springs
and the particles’ kinetic energy (refer to Section 2.6). Where the
numerical integration is stable there will be no drift in the energy
of the system. In an unstable system there will be a non-physical
increase in energy in the system, i.e. energy is not conserved.

2.4 Stability of Central Difference Time

Integration

The stability of the central-difference time integration approach
is outlined in many basic numerical analysis texts (e.g. Burden
and Faires (1997)). The basic idea of any time integration is that
knowing the position and acceleration of a body we can predict
its future displacement. Typically in numerical analysis/dynamics
courses the concept is introduced by considering the free vibration
of a particle of mass, m, suspended on a simple, elastic sphere with
stiffness k. The dynamic equilibrium equation for this single de-
gree of freedom system is then given by a = −kx, where a = ẍ.
For this simple system, if the central-difference approach is used,
the maximum time increment that can be used is ∆t = T

π
, where

T is the period for free oscillation of the system. This period is
calculated as T = 2π

√
m
k
. If predictions are made using a time

increment that exceeds this critical value the results quickly be-
come physically unreasonable and the analysis is said to be unsta-
ble. These restrictions on the choice of time increment that occur
when using the central-difference approach to this simple, single
degree of freedom system also apply in the multi degree of freedom
simulations in DEM.

The critical time increment for stable analysis can be calculated
using linear stability analysis by considering the amplification ma-
trix, Zienkiewicz and Taylor (2000a). In general the amplification
matrix, A, is defined such that xt+∆t = Axt. If any eigenvalue µi

of A has a magnitude exceeding 1 (i.e. if |µi| > 1) any initially
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small errors will increase without bound and the analysis will be
unstable. Note that the spectral radius of A, ρ(A), is the max-
imum magnitude of an eigenvalue of A, i.e. ρ(A) = max (|µi|)
Munjiza (2004) adopts a slightly different approach and defines
an amplification matrix A∗ for a single degree of freedom system
with position x so that

(
ẋt+∆t∆t
xt+∆t

)
=

(
1 −∆t2k

m

1 1− ∆t2k
m

)(
ẋt∆t
xt

)
= A∗

(
ẋt∆t
xt

)
(2.16)

Munijza shows that where ∆t2k
m

≤ 4 the spectral radius of A∗,

ρ(A∗) will be 1, however once ∆t2k
m

> 4 the spectral radius will
increase beyond 1 and the simulation of the single degree of free-
dom system will be unstable. Stability analyses are completed by
considering the undamped dynamic equilibrium equation, as is the
case here. Wood (1990b) states that for simple algorithms, this
assumption is valid.

Accepting this limitation of the central-difference method, it is
necessary to examine the implications of the stability limitation for
the multi degree of freedom systems encountered in DEM analy-
ses. A DEM system is significantly more complex than the simple,
single degree of freedom system. Each particle will have multiple
contacts and multiple contact springs. At each contact there are
two orthogonal springs acting normal and tangential to the con-
tact. There will also most likely be a range of particle inertia
values. O’Sullivan and Bray (2003b) proposed an approach to cal-
culate a bound on the critical time increment for DEM simulations
by drawing an analogy between a discrete element framework, and
a finite element framework. In their analysis, the discrete element
particles correspond to finite element nodes and that the inter-
particle contacts correspond to the finite elements, as illustrated
in Figure 2.1. A global stiffness matrix can be assembled as in
a finite element analysis, with the contact between particle i and
particle j forming an “element” stiffness matrix, Ke

ij and the mass
matrix including the inertia of the particles. Itasca (2008) give an
alternative derivation for the stiffness at a contact point that also
accounts for translational and rotational motion.
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