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Introduction to the Series 

The problems of modem society are both complex and interdisciplinary. Despite the 

apparent diversity of problems, tools developed in one context are often adaptable to an 

entirely different situation. For example, consider the Lyapunov's well known second 

method. This interesting and fruitful technique has gained increasing significance and has 

given a decisive impetus for modem development of the stability theory of differential 

equations. A manifest advantage of this method is that it does not demand the knowledge 

of solutions and therefore has great power in application. It is now well recognized that 

the concept of Lyapunov-like functions and the theory of differential and integral inequal

ities can be utilized to investigate qualitative and quantitative properties of nonlinear 

dynamic systems. Lyapunov-like functions serve as vehicles to transform the given com

plicated dynamic systems into a relatively simpler system and therefore it is sufficient 

to study the properties of this simpler dynamic system. It is also being realized that the 

same versatile tools can be adapted to discuss entirely different nonlinear systems, and 

that other tools, such as the variation of parameters and the method of upper and lower 

solutions provide equally effective methods to deal with problems of a similar nature. 

Moreover, interesting new ideas have been introduced which would seem to hold great 

potential. 

Control theory, on the other hand, is that branch of application-oriented mathematics 

that deals with the basic principles underlying the analysis and design of control systems. 

To control an object implies the influence of its behavior so as to accomplish a desired 

goal. In order to implement this influence, practitioners build devices that incorporate 

various mathematical techniques. The study of these devices and their interaction with 

the object being controlled is the subject of control theory. There have been, roughly 

speaking, two main lines of work in control theory which are complementary. One is based 

on the idea that a good model of the object to be controlled is available and that we wish 

to optimize its behavior, and the other is based on the constraints imposed by uncertainty 

about the model in which the object operates. The control tool in the latter is the use 

of feedback in order to correct for deviations from the desired behavior. Mathematically, 

stability theory, dynamic systems and functional analysis have had a strong influence on 

this approach. 



2 INTRODUCTION TO THE SERIES 
Volume 1, Theory of Integra-Differential Equations, is a Jomt contribution by 

V Lakshmikantham (USA) and M. Rama Mohana Rao (India). 

Volume 2, Stability Analysis: Nonlinear Mechanics Equations, is by AA Martynyuk 

(Ukraine). 
Volume 3, Stability of Motion of Nonautonomous Systems: The Method of Limiting 

Equations, is a collaborative work by J. Kato (Japan), AA. Martynyuk (Ukraine) and 

AA Shestakov (Russia). 
Volume 4, Control Theory and its Applications, is by E.O. Roxin (USA). 

Volume 5, Advances in Nonlinear Dynamics, is edited by S. Sivasundaram (USA) and 

AA Martynyuk (Ukraine) and is a multiauthor volume dedicated to Professor S. Leela. 
Volume 6, Solving Differential Problems by Multistep Initial and Boundary Value 

Methods, is a joint contribution by L. Brugnano (Italy) and D. Trigiante (Italy). 

Volume 7, Dynamics of Machines with Variable Mass, is by L. Cveticanin (Yugoslavia). 
Volume 8, Optimization of Linear Control Systems: Analytical Methods and Compu-

tational Algorithms, is a joint work by F.A Aliev (Azerbaijan) and VB. Larin (Ukraine). 

Volume 9, Dynamics and Control, is edited by G. Leitmann (USA), F.E. Udwadia (USA) 
and AV Kryazhimskii (Russian) and is a multiauthor volume. 

Volume 10, Volterra Equations and Applications, is edited by C. Corduneanu (USA) 

and I.w. Sandberg (USA) and is a multiauthor volume. 
Volume 11, Nonlinear Problems in Aviation and Aerospace, is edited by S. Sivasundaram 

(USA) and is a multiauthor volume. 

Volume 12, Stabilization of Programmed Motion, is by E.Ya. Smimov (Russia). 
Volume 13, Advances in Stability Theory at the end of the 20th Century, is edited by 

A.A. Martynyuk. 

Volume 14, Dichotomies and Stability in Nonautonomous Linear Systems, is by Yu.A 
Mitropolskii, AM. Samoilenko and VL. Kulik. 

Volume 15, Almost Periodic Solutions of Differential Equations in Banach Spaces, is 
by Yoshiyuki Hino, Toshiki Naito, Nguyen Van Minh and Jong Son Shin 

Due to the increased interdependency and cooperation among the mathematical sciences 

across the traditional boundaries, and the accomplishments thus far achieved in the areas 
of stability and control, there is every reason to believe that many breakthroughs await 
us, offering existing prospects for these versatile techniques to advance further. It is in 

this spirit that we see the importance of the 'Stability and Control' series, and we are 
immensely thankful to Gordon and Breach Science Publishers for their interest and 

cooperation in publishing this series. 



Preface 

Almost periodic solutions of differential equations have been studied since the very beginning 

of this century. The theory of almost periodic solutions has been developed in connection 

with problems of differential equations, dynamical systems, stability theory and its 

applications to control theory and other areas of mathematics. The classical books by C. 

Corduneanu [50], A.M. Fink [67], T. Yoshizawa [231], L. Amerio and G. Prouse [7], RM. 

Levitan and v.v. Zhikov [137] gave a very nice presentation of methods as well as results 

in the area. In recent years, there has been an increasing interest in extending certain 

classical results to differential equations in Banach spaces. In this book we will make an 

attempt to gather systematically certain recent results in this direction. 

We outline briefly the contents of our book. The main results presented here are concerned 

with conditions for the existence of periodic and almost periodic solutions and its connection 

with stability theory. In the qualitative theory of differential equations there are two classical 

results which serve as models for many works in the area. Namely, 

Theorem A A periodic inhomogeneous linear equation has a unique 

periodic solution (vith the same period) if 1 is not an eigenvalue of its 
monodromy operator. 

Theorem B A periodic inhomogeneous linear equation has a periodic 
solution (uith the same period) if and only if it has a bounded solution. 

In our book, a main part will be devoted to discuss the question as how to extend these 

results to the case of almost periodic solutions of (linear and nonlinear) equations in Banach 

spaces. To this end, in the first chapter we present introductions to the theory of semigroups 

of linear operators (Section 1), its applications to evolution equations (Section 2) and the 

harmonic analysis of bounded functions on the real line (Section 3). In Chapter 2 we present 

the results concerned with autonomous as well as periodic evolution equations, extending 

Theorems A and B to the infinite dimensional case. In contrast to the finite dimensional 
case, in general one cannot treat periodic evolution equations as autonomous ones. This is 

3 



4 PREFACE 

due to the fact that in the infinite dimensional case there is no Floquet representation, 

though one can prove many similar assertions to the autonomous case (see e.g. [78], [90], 
[131]). Sections I, 2 of this chapter are devoted to the investigation by means of evolution 

semigroups in translation invariant subspaces of BUe (R, X) (of bounded uniformly 
continuous X-valued functions on the real line). A new technique of spectral decomposition 

is presented in Section 3. Section 4 presents various results extending Theorem B to periodic 

solutions of abstract functional differential equations. In Section 5 we prove analogues of 

results in Sections 1, 2. 3 for discrete systems and discuss an altemati ve method to extend 

Theorems A and B to periodic and almost periodic solutions of differential equations. In 

Sections 6 and 7 we extend the method used in the previous ones to semilinear and fully 

nonlinear equations. The conditions are given in terms of the dissipativeness of the equations 

under consideration. 

In Chapter 3 we present the existence of almost periodic solutions of almost periodic 

evolution equations by using stability properties of nonautonomous dynamical systems. 

Sections 1 and 2 of this chapter extend the concept of skew product flow of processes to 

a more general concept which is called skew product flow of quasi-processes and investigate 

the existence of almost periodic integrals for almost periodic quasi-processes. For abstract 

functional differential equations uith infinite delay, there are three kinds of definitions of 

stabilities. In Sections 3 and 4. we prove some equi valence of these definitions of stabilities 

and show that these stabilities fit in with quasiprocesses. By using results in Section 2, we 

discuss the existence of almost periodic solutions for abstract almost periodic evolution 

equations in Section 5. Concrete applications for functional partial differential equations 

are given in Section 6. 
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CHAPTER 1 

Co-SEMIGROUPS, WELL POSED EVOLUTION 

EQUATIONS, SPECTRAL THEORY A ND 

A LMOST PERIODICITY OF FUNCTIONS 

1 . 1. STRONGLY CONTINUOUS SEMIGROUPS OF LINEAR OP
ERATORS 

In this section we collect some well-known facts from the theory of strongly contin
uous semigroups of operators on a Banach space for the reader's convenience. We 
will focus the reader's attention on several important classes of semigroups such as 
analytic and compact semigroups which will be discussed later in the next chapters. 
Among the basic properties of strongly continuous semigroups we will put emphasis 
on the spectral mapping theorem. Since the materials of this section as well as of 
the chapter in the whole can be found in any standard book covering the area, here 
we aim at freshening up the reader's memory rather than giving a logically self 
contained account of the theory. 

Throughout the book we will denote by X a complex Banach space . The set 
of all real numbers and the set of nonnegative real numbers will be denoted by 
R and R+ , respectively. BC(R, X) ,  BUC(R, X) stand for the spaces of bounded, 
continuous functions and bounded , uniformly continuous functions ,  respectively. 

1.1.1. Definition and Basic Properties 

Definition 1.1 A family (T (t) k ::o of bounded linear operators acting on a Banach 
space X is a strongly continuous semigroup of bounded linear operators, or briefly, 
a Co-semigroup if the following three properties are satisfied: 

i) T(O) = I, the identity operator on X; 

ii) T(t)T(s) = T(t + s) for all t ,  s � 0; 

iii) limq.o I IT(t)x - x ii = 0 for all x E X. 

The infinitesimal generator of (T(t) k�o , or briefly, the generator, is the linear op
erator A with domain D(A) defined by 

D(A) {x E X :  lim � (T (t)x - x) exists} , tto t 

Ax = lim �(T (t)x - x) , x E D(A) . ttO t 

The generator is always a closed , densely defined operator. 

7 



8 CHAPTER 1 .  PRELIMINARIES 

Theorem 1 . 1  Let (T(t)k20 be a Co -semigroup. Then there exist constants w 2:: ° 
and M 2:: 1 such that 

I IT(t) 1 1  :::; Mewt , Vt 2:: o. 

Proof. For the proof see e.g. [179, p. 4]. 

Corollary 1 . 1  If (T(t) ) t>o is a Co -semigroup, then the mapping (x, t) � T(t)x is 
a continuous function from X x R+ --+ X. 

Proof. For any x, y E X and t:::; s E R+ : =  [0, 00) , 

I IT(t)x - T(s)y l l  < I IT(t)x - T(s)xll + I IT(s)x - T(s) y l l  
< Mews l lx - y l l  + I IT(t) I I I IT(s - t)x - x i i  
< Mews l lx - y l l  + Mewt l lT(s - t)x - xI I . (1.1) 

Hence, for fixed x, t (t :::; s) if (y , s) --+ (x, t) , then I IT(t)x - T(s)y l l  --+ O. Similarly, 
for s :::; t 

I IT(t)x - T(s)Y I I  < I IT(t)x - T(s)x l l  + I IT(s)x - T(s)y l l  
< Mews l lx - y l l  + I IT(s) I I I IT(t - s)x - x i i  
< Mews l lx - y l l  + MeWS I IT(t - s)x - xI I . (1.2) 

Hence, if (y ,  s) --+ (x, t) , then I IT(t)x - T(s) y l l  --+ O. 

Other basic properties of a Co-semigroup and its generator are listed in the following: 

Theorem 1 .2  Let A be the generator of a Co -semigroup (T(t)k::.o on X. Then 

i) For x E X, 

I 1t+h 
lim -h T(s)xds = T(t)x. 
h�O t 

ii) For x E X, J� T(s)xds E D(A) and 

A (lot 
T(S)XdS) = T(t)x - x. 

iii) For x E D(A) , T(t)x E D(A) and 

d 
dt 

T(t)x = AT(t)x = T(t)Ax. 

iv) For x E D(A) , 

T(t)x - T(s)x = It 
T(T)AxdT = It 

AT(T)xdT. 
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Proof. For the proof see e.g. [ 179, p. 5) . 

9 

We continue with some useful fact about semigroups that will be used through
out this book. The first of these is the Hille- Yosida theorem, which characterizes 
the generators of Co-semigroups among the class of all linear operators . 

Theorem 1 .3  Let A be a linear operator on a Banach space X, and let w E R and 
M � 1 be constants. Then the following assertions are equivalent: 

i) A is the generator of a Co -semigroup (T(t)k:�o satisfying I IT(t) 1 1  :::; Mewt for 
all t � 0; 

ii) A is closed, densely defined, the half-line (w,oo ) is contained in the resolvent 
set peA) of A, and we have the estimates 

v>.. > w, n = 1 , 2 ,  . . .  ( 1 .3) 

Here, R(>", A) := (>.. - A) -1 denotes the resolvent of A at >... If one of the 
equivalent assertions of the theorem holds, then actually {Re>.. > w} C p( A) and 

VRe>.. > w, n = 1 , 2 ,  . . .  

Moreover, for Re>.. > w the resolvent i s  given explicitly by 

R(>", A)x = 100 
e-)'tT(t)x dt, Vx E X. 

( 1 .4) 

( 1 .5) 

We shall mostly need the implication (i) => (ii) , which is the easy part of the 
theorem. In fact , one checks directly from the definitions that 

R).x:= 100 
e-)'tT(t)x dt 

defines a two-sided inverse for>.. - A. The estimate ( 1 .4) and the identity ( 1 .5) follow 
trivially from this. 

A useful consequence of ( 1 .3) is that 

lim I I>..R(>.. , A)x - xii = 0, Vx E X. ).-+00 ( 1 .6) 

This is proved as follows. Fix x E D(A) and I-" E peA) , and let y E X be such that 
x = R(I-", A)y .  By ( 1 .3) we have I IR(>", A) I I  = 0(>..- 1 ) as >.. -t 00 .  Therefore, the 
resolvent identity 

R(>", A) - R(I-", A) = (I-" - >..)R(>.., A)R(I-", A) ( 1 . 7) 

implies that 

lim I I>..R(>.., A)x - x I I  = lim I IR(>.., A)(I-"R(I-", A)y - y ) 1 I = 0. ).-+00 ).-+00 
This proves ( 1 .6) for elements x E D(A) . Since D(A) is dense in X and the operators 
>..R(>.., A) are uniformly bounded as >.. -t 00 by ( 1 .3) , ( 1 .6) holds for all x E X. 
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1 . 1 .2 .  Compact Semigroups and Analytic Strongly Continuous Semi
groups 

Definition 1 .2 A Co-semigroup (T(t) ) t>o is called compact for t > to if for every 
t > to , T (t) is a compact operator. (T(t))t2':o is called compact if it is compact for 
t > 0. 

If a Co-semigroup (T(t) ) t>o is compact for t > to , then it is continuous in the 
uniform operator topology-for t > to . 

Theorem 1 .4  Let A be the generator of a Co -semigroup (T(t) ) t>o . Then (T(t) ) t>o 
is a compact semigroup if and only if T(t) is continuous in the uniform operat�r 
topology for t > ° and R()...; A) is compact for)... E p(A) . 

Proof. For the proof see e.g. [179, p .  49] . 

In this book we distinguish the notion of analytic Co-semigroups from that of 
analytic semigroups in general. To this end we recall several notions. Let A be a 
linear operator D(A) c X -+ X with not necessarily dense domain. 

Definition 1 .3  A is said to be sectorial if there are constants w E R, B E 
(n)2, 7f) , M > ° such that the following conditions are satisfied: { i) p(A)::) S(J,w = {.\ E C : )... ::j:. w, larg(,\ - w) 1 < B}, 

ii) IIR()"', A)II :::; M/I)... - wi V)'" E S(J,w' 

If we assume in addtion that p(A) ::j:. 0, then A is closed. Thus , D(A) , endowed 
with the graph norm 

IlxIID(A) := Ilxll + IIAxll, 

is a Banach space. For a sectorial operator A, from the definition , we can define a 
linear bounded operator etA by means of the Dunford integral 

where r > 0,7] E (7f /2, B) and 'Yr,T/ is the curve 

{.\ E C : larg)...1 = 7], 1)... 1 2: rll} U {)... E C : larg)... 1 :::; 7] , 1)...1 = r}, 

oriented counterclockwise. In addition, set eOAx = x, Vx E X. 

( 1 .8) 

Theorem 1.5 Under the above notation, for a sectorial operator A the following 
assertions hold true: 

i) etAx E D(Ak ) for every t > o,X E X, k E N. ff x E D(Ak ), then 
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iii) There are posi tive constants Mo, M1, M2, •• • , such that {(a) IletAII:S Moewt, t � 0, 

(b) Iltk(A - wI)ketAII :S lvhewt, t � 0,  

1 1  

where w is de termined from Defini tion 1.3. In particular, for every c > 0 and 
k E N there is Ck,E such tha t  

iv) The func tion t f-t etA belongs to COO((O, +oo),L(X)), and 

dk _etA = AketA t > 0 
dtk " 

moreover i t  has an analytic extension in the sec tor 

s = p E e :  largAI < B - 7r /2} .  

Proof. For the proof see [140, pp .  35-37] . 

Definition 1 .4 For every sectorial operator A the semigroup (etAk::o defined in 
Theorem 1 .5 is called the analytic semigroup generated by A in X. An analytic 
semigroup is said to be an analy tic s trongly con tinuous semigroup if in addition , it 
is strongly continuous. 

There are analytic semigroups which are not strongly continuous, for instance, the 
analytic semigroups generated by non densely defined sectorial operators. From the 
definition of sectorial operators it is obvious that for a sectorial operator A the 
intersection of the spectrum a(A) with the imaginary axis is bounded. 

1 . 1.3. Spectral Mapping Theorems 

If A is a bounded linear operator on a Banach space X, then by the Dunford 
Theorem [63] a(exp(tA)) = exp(ta(A)), \:It � O .  It is natural to expect this relation 
holds for any Co-semigroups on a Banach space. However, this is not true in general 
as shown by the following counterexample 

Example 1 . 1  

For n = 1 , 2 , 3 , . . .  , let An b e  the n x n matrix acting on en defined by 

o 
1 

o 
o . . . 

... ) 
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Each matrix An is nilpotent and therefore a(An) = {O} . Let X be the Hilbert space 
consisting of all sequences x = (Xn)nEN with Xn E en such that 

I 

JJxJJ : = (� JJxnJJ�n) 2 < 00. 

Let (T(t)k�o be the semigroup on X defined coordinatewise by 

(T(t) ) = (eintetAn)nEN' 

It is easily checked that (T(t) ) t>o is a Co-semigroup on X and that (T(t) ) t>o extends 
to a Co-group. Since I IAnJJ = f for n 2': 2, we have l I etAn I I  � et and hence JJT(t)J 1 � 
et, so wo( (T(t)k::o) � 1 ,  where 

wo( (T(t) )t�o) := inf{a:: : 3N 2': 1 such that JJT(t)JJ :::; Neat , Vt 2': O} . 

First , we show that s (A) = 0, where A is the generator of (T(t»t>o and s (A) : =  
{sup ReA, A E a(A)}. To see this, we note that A i s  defined coordin<1tewise by 

A = (in + An)n2:1 . 
An easy calculation shows that for all ReA > 0,  

l im JJR(A, An + in)JJcn = O. n ..... oo 

It follows that the operator (R(A, An +in) )n>l defines a bounded operator on X, and 
clearly this operator is a two-sided inverse Of A -A. Therefore {ReA> O} C rho(A) 
and s (A) � O. On the other hand, in E a(in+An) C a(A) for all n 2': 1, so s(A) = O. 

Next, we show that wo( (T(t) )t>o) = 1. In view of wo( (T(t) )t>o) :::; 1 it suffices 
to show that wo( (T(t) ) t2:o) 2': 1. For each n we put 

-

Then, JJxnJJcn = 1 and ( )2 
1 

n-l m tj -L L-:-; n m=O j=O J. 

= 

� � (f= �!:�) m=O j,k=O 
1 

n-l 2m 
. 1 

� LLt> L '!k! m=O i=O j+k=i J 
1 

n-l 2m ti i i! 
= � L L iT � j!(i - j)! m=O >=0 J=O 
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For 0 < q < 1 ,  we define Xq E X by Xq : =  (ntqnXn)n�1. It is easy to check that 
Xq E D(A) and 

00 l: nq2nlletAnxnll2 
n=1 

> f: nq2n (� 2�2 2��i ) 
n=1 n i=O z. 

00 2 iti � 
= l:-.-, � q2n 

. z. { }  .=0 n= i/2 +1 
00 q2{i/2}+2 2iti 

= � 1 - q2 i! 
3 

> _q_e2tq 
1 - q2 

Here {a} denotes the least integer greater than or equal to a; we used that 2{ k /2} + 
2 � k + 3 for all k = 0, 1 ,  . . .  Thus, wo ( (T(t) ) t>o) � q for all 0 < q < 1 ,  so 
wo ( (T(t) ) t>o) � 1 .  Hence, the relation a(T(t) )  ;, et<T(A) does not holds for the 
semigroup -(T(t) ) t�o .  

In this section we prove the spectral inclusion theorem: 

Theorem 1 .6  Let (T(t))t�O be a Co -semigroup on a Banach space X,  with gener
ator A. Then we have the spectral inclusion relation 

a (T(t) ) ::J et<T(A), \It � o. 

Proof. By Theorem 1 .2 for the semigroup (TA (t) )t�O := {e-AtT(t) h�o generated 
by A - A, for all A E C and t � 0 

and 

(A - A) lot 
eA(t- s)T(s)x ds = (eAt - T(t) )x ,  \Ix E X, 

lot 
eA(t- s)T(S) (A - A)x ds = (eAt - T(t) )x ,  \Ix E D(A) . (2 . 1 . 1 )  

Suppose eAt E p(T(t) ) for some A E C and t � 0, and denote the inverse of eAt - T(t) 
by QA,t. Since QA,t commutes with T(t) and hence also with A, we have 
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(A - A) lo
t 

e)..(t-s)T(s)Q)..,tx ds = x, 'Vx E X, 

and 

lo
t 
e)..(t-s)T(s)Q)..,t(:>-' - A)x ds = x, 'Vx E D(A) . 

This shows the boundedness of the operator B).. defined by 

is a two-sided inverse of A - A. It follows that A E g(A) . 

As shown by Example 1 . 1  the converse inclusion 

exp(ta(A» :) a(T(t»\{O} 

in general fails . For certain parts of the spectrum, however ,  the spectral mapping 
theorem holds true. To make it more clear we recall that for a given closed operator 
A on a Banach space X the poin t spec trum ap(A) is the set of all A E a(A) for 
which there exists a non-zero vector x E D(A) such that Ax = AX, or equivalently, 
for which the operator A - A is not injective; the residual spec trum areA) is the set 
of all A E a(A) for which A - A does not have dense range; the approxima te poin t 
spec trum aa(A) is the set of all .x E a(A) for which there exists a sequence (xn) of 
norm one vectors in X, Xn E D(A) for all n, such that 

lim I IAxn - AXn l 1  = O. n-+oo 
Obviously, ap(A) C aa(A) . 

Theorem 1 .7  Le t (T ( t)k�o be a Co -semigroup on a Banach space X, wi th gener
a tor A. Then 

Proof. For the proof see e.g. [179, p. 46J. 

Recall that a family of bounded linear operators (T(t»tER is said to be a s trongly 
con tinuous g roup if it satisfies 

i) T(O) = I, 

ii) T( t + s) = T(t)T(s) ,  'Vt, s E R, 

iii) limHo T( t)x = x, 'Vx E X .  
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Similarly to  Co-semigroups , the generator of  a strongly continuous group (T(t»tER 
is defined to be the operator 

Ax := lim T(t)x - x 
t-tO t ' 

with the domain D(A) consisting of all elements x E X such that the above limit 
exists .  For bounded strongly continuous groups of linear operators the following 
weak spectral mapping theorem holds: 

Theorem 1.8 Let (T(t»tER be a bounded strongly continuous group, i .e. , there 
exists a positive M such that I IT(t) 1 1  � M, 'tit E R with generator A .  Then 

a(T(t» = etO"(A), 'tit E R. ( 1 .9) 

Proof. For the proof see e.g. [163] or [173, Chapter 2] . 

Example 1 . 2  Let M be a closed translation invariant subspace of the space of X
valued bounded uniformly continuous functions on the real line BUC(R, X) , i .e . , 
M is closed and S(t)M c M, 'tit, where (S(t»tER is the translation group on 
BUC(R, X) . Then 

a(S(t) IM) = etO"(VM), 'tit E R, 

where'DM is the generator of (S(t) IM)tER ( the restriction of the group (S(t»tER 
to M). 

In the next chapter we will again consider situations similar to this example which 
arise in connection with invariant subspaces of so-called evolution semigroups . 

1 .2 .  EVOLUTION EQUATIONS 

1 . 2 . 1 .  Well-Posed Evolution Equations 

Homogeneous and inhomogeneous equations 

For a densely defined linear operator A let us consider the abstract Cauchy problem 

{ d��t) = Au(t) , 'tit > 0,  
u(O) = x E D(A) . 

( 1 . 10) 

The problem ( 1 . 10) is called well posed if p(A) "I 0 and for every x E D(A) there is 
a unique (classical) solution u :  [0, 00) -+ D(A) of ( 1 . 10) in C1 ( [0 , 00) , X) .  The well 
posedness of ( 1 . 10) involves the existence, uniqueness and continuous dependence 
on the initial data. The following result is fundamental . 

Theorem 1 .9  The problem (1 . 1 0) is well posed if and only if A generates a Co -
semigroup on X. In this case the solution of (1 . 1 0) is given by u(t) = T(t)x, t > 0 .  
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Proof. The detailed proof of this theorem can be found in [71 , p. 83] . 

In connection with the well posed problem (1 . 10) we consider the following Cauchy 
problem 

{ d��t) = Au (t) + f (t) , Vt > 0,  
u (o) = uo. (1 . 1 1 )  

Theorem 1 . 10  Let the problem (l.lO) be well posed and uo E D(A) . Assume either 

i) f E C ([O, (0 ) , X) takes values in DCA) and AfO E CC [O, oo) , X) ,  or 

ii) f E C1 ([O, oo), X) . 

Then the problem ( 1. 1 1) has a unique solution u E C1 ([O, 00) , X) with values in 
D(A). 
Proof. The detailed proof of this theorem can be found in [71 , pp. 84-85] . 

Even when the conditions of Theorem 1 . 10 are not satisfied we can speak of mild 
solutions by which we mean continuous solutions of the equation 

{ u(t) = T (t - s)u (s) + J: T (t - �)f(�)d�, Vt � s � ° 
u(O) = Uo, Uo E X, 

(1 . 12 )  

where (T (t)k:o i s  the semigroup generated by A and f i s  assumed to  be continuous .  
I t  is easy to  see that there exists a unique mild solution of Eq. ( 1 . 12) for every x E X. 

N onautonomous equations 

To a time-dependent equation 

{ d�lt) = A (t)u (t) ,  Vt � s � 0, 
u (s) = x, 

(1 . 13 )  

where A (t) i s  in  general unbounded linear operator, the notion of  well posedness 
can be extended, roughly speaking, as follows: if the initial data x is in a dense set 
of the phase space X, then there exists a unique (classical) solution of (1 . 13) which 
depends continuously on the initial data. Let us denote by U (t ,  s)x the solution of 
(1 .13) . By the uniqueness we see that (U (t ,  s)k::s�o is a family of bounded linear 
operators on X with the properties 

i) U (t , s)U (s , r ) = U (t , r) , Vt � s � r � 0;  

i i )  U (t ,  t) = I, Vt � 0 ;  

iii) U( "  ·) x i s  continuous for every fixed x E X. 

In  the next chapter we will deal with families (U (t , s) t>s>o rather than with the 
equations of the form (1 . 13) which generate such families .  This general setting 
enables us to avoid stating complicated sets of conditions imposed on the coefficient
operators ACt) . We refer the reader to [71 , pp. 140- 147] and [ 179, Chapter 5] for 
more information on this subject . 
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Semilinear evolution equations 

The notion of well posedness discussed above can be extended to semilinear equa
tions of the form 

dx 
dt 

= Ax + Bx , x E X ( 1 . 14) 

where X is a Banach space, A is the infinitesimal generator of a Co-semigroup S(t) , 
t � 0 of linear operators of type w, i.e. 

I I S(t)x - S(t)YI I  � ewtllx - y l l , V t � 0 ,  x,  Y E X ,  

and B is an everywhere defined continuous operator from X to X .  Hereafter, by a 
mild solution x(t) , t E [s ,  T] of equation ( 1 . 14) we mean a continuous solution of the 
integral equation 

x (t) = S(t - s)x + it 
S(t - e)Bx(e)de, 'Is � t � T. ( 1 . 15) 

Before proceeding we recall some notions and results which will be frequently 
used later on. We define the bracket [ . , .] in a Banach space Y as follows (see e.g. 
[142] for more information) 

[x , y] = lim I I x + hy l l  - I I y l l  = inf I I x + hy l l  - I I y l l  
h-HO h h>O h 

Definition 1 .5  Suppose that F is a given operator on a Banach space Y. Then 
(F + "I I) is said to be accretive if and only if for every >. > 0 one of the following 
equivalent conditions is satisfied 

i) ( 1 - >'''I) I Ix - y l l  � I Ix - y + >'(Fx - Fy) I I , Vx, y E D (F) ,  

ii) [x - y ,  Fx - Fy] � -"I1 1x - YI I , 'Ix ,  y E D(F) .  

In particular, if "I = 0 , then F is said to be accretive. 

Remark 1 . 1  From this definition we may conclude that (F + "II) is accretive if 
and only if 

I I x - y l l  � I Ix - y + >' (Fx - Fy) I I  + >'''I 1 1x - y l l  
for all x, y E D(F) ,  >. > 0 ,  1 � >'''1 . 

( 1 . 16) 

Theorem 1 . 1 1  Let the above conditions hold true. Then for every fixed s E R and 
x E X there exists a unique mild solution x ( · )  of Eq. {1 . 14) defined on [s, +(0) . 
Moreover, the mild solutions of Eq. {1 . 14) give rise to a semigroup of nonlinear 
operators T(t) , t � 0 having the following properties: 

i) T(t)x = S(t)x + lot 
S(t - e)BT(e)xde, 'It � O, X  E X, ( 1 . 17 )  

ii ) I IT(t)x - T(t)y l l  � e(w+'Y)tllx - y l l , 'It � 0,  x, Y E X .  ( 1 . 18) 

More detailed . . information on this subject can be found in [ 142]. 


