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PREFACE

Engineered nanopolymer and nanoparticles, with their extraordinary mechanical 
and unique electronic properties, have garnered much attention in the recent years. 
With a broad range of potential applications, including nanoelectronics, compos-
ites, chemical sensors, biosensors, microscopy, nanoelectromechanical systems, and 
many more, the scientific community is more motivated than ever to move beyond 
basic properties and explore the real issues associated with carbon nanotube-based 
applications.

Engineered nanopolymer and nanoparticles are exceptionally interesting from 
a fundamental research point of view. They open up new perspectives for various 
applications, such as nano-transistors in circuits, field-emission displays, artificial 
muscles, or added reinforcements in alloys. This text is an introduction to the physi-
cal concepts needed for investigating carbon nanotubes and other one-dimensional 
solid-state systems. Written for a wide scientific readership, each chapter consists of 
an instructive approach to the topic and sustainable ideas for solutions.

A large part of the research currently being conducted in the fields of materi-
als science and engineering mechanics is devoted to Engineered nanopolymer and 
nanoparticles and their applications. In this process, modeling is a very attractive 
investigation tool due to the difficulties in manufacturing and testing of nanoma-
terials. Continuum modeling offers significant advantages over atomistic model-
ing. Furthermore, the lack of accuracy in continuum methods can be overtaken by 
incorporating input data either from experiments or atomistic methods. This book 
reviews the recent progress in application of Engineered nanopolymer and nanopar-
ticles and their composites. The advantages and disadvantages of different methods 
are discussed. The ability of continuum methods to bridge different scales is em-
phasized. Recommendations for future research are given by focusing on what each 
method has to learn from the nano-scale. The scope of the book is to provide cur-
rent knowledge aiming to support researchers entering the scientific area of carbon 
nanotubes to choose the appropriate modeling tool for accomplishing their study 
and place their efforts to further improve continuum methods.
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CHAPTER 1

INFLUENCE OF A STRONG ELECTRIC 
FIELD ON THE ELECTRICAL, 
TRANSPORT AND DIFFUSION 
PROPERTIES OF CARBON 
NANOSTRUCTURES WITH POINT 
DEFECTS STRUCTURE

S. A. SUDORGIN1,2 and N. G. LEBEDEV1

1Volgograd State University, Volgograd, Russia
2Volgograd State Technical University, Volgograd, Russia 
E-mail: sergsud@mail.ru, lebedev.ng@mail.ru
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2	 Nanomaterials and Nanotechnology for Composites

ABSTRACT

Examines the influence of defects on the electrical properties of carbon nanostruc-
tures in an external electric field. Defects are the hydrogen atoms, which adsorbed 
on the surface of carbon nanostructures. Carbon nanostructures are considered the 
single-walled “zigzag” carbon nanotubes Atomic adsorption model of hydrogen on 
the surface of single-walled “zigzag” carbon nanotubes based on the single-impurity 
Anderson periodic model. Theoretical calculation of the electron diffusion coeffi-
cient and the conductivity of “zigzag” carbon nanotubes alloy hydrogen atoms car-
ried out in the relaxation time approximation. Revealed a decrease in the electrical 
conductivity and the electron diffusion coefficient with increasing concentration of 
adsorbed hydrogen atoms. The nonlinearity of the electrical conductivity and the 
diffusion coefficient of the amplitude of a constant strong electric field at the con-
stant concentration of hydrogen adatoms shown at the figures.

This work was supported by the Russian Foundation for Basic Research (grant 
№ 13–03–97108, grant № 14–02–31801), and the Volgograd State University grant 
(project № 82–2013-a/VolGU).

1.1  INTRODUCTION

Despite the already long history of the discovery of carbon nanotubes (CNT) [1], the 
interest in the problem of obtaining carbon nanostructures with desired characteris-
tics unabated, constantly improving their synthesis. Unique physical and chemical 
properties of CNTs can be applied in various fields of modern technology, electron-
ics, materials science, chemistry and medicine [2]. One of the most important from 
the point of view of practical applications is the transport property of CNTs.

Under normal conditions, any solid surfaces coated with films of atoms or mol-
ecules adsorbed from the environment, or left on the surface in the diffusion process 
[3]. The most of elements adsorption on metals forms a chemical bond. The high 
reactivity of the surface of carbon nanotubes makes them an exception. Therefore, 
current interest is the study of the influence of the adsorption of atoms and various 
chemical elements and molecules on the electrical properties of carbon nanostruc-
tures.

In the theory of adsorption, in addition to the methods of quantum chemistry, 
widely used the method of model Hamiltonians [3]. In the study of the adsorption 
of atoms and molecules on metals used primarily molecular orbital approach – self-
consistent field, as this takes into account the delocalization of electrons in the met-
al. Under this approach, the most commonly used model Hamiltonian Anderson [4, 
5], originally proposed for the description of the electronic states of impurity atoms 
in the metal alloys. The model has been successfully applied to study the adsorption 
of atoms on the surface of metals and semiconductors [6], the adsorption of hydro-
gen on the surface of graphene [7] and carbon nanotubes [8, 9].
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In this chapter, we consider the influence of the adsorption of atomic hydrogen 
on the conducting and diffusion properties of single-walled “zigzag” CNTs. Interac-
tion of hydrogen atoms adsorbed to the surface of carbon nanotubes is described in 
terms of the periodic Anderson model. Since the geometry of the CNT determines 
their conductive properties, then to describe the adsorption on the surface of CNTs 
using this model is justified. Transport coefficients (conductivity and diffusion co-
efficient) CNT electron calculated by solving the Boltzmann equation [10] in the 
relaxation time approximation.

This technique was successfully applied by authors to calculate the ideal trans-
port characteristics of carbon nanotubes [11], graphene bilayer graphene [12] and 
graphene nanoribbons [13].

1.2  MODEL AND BASIC RELATIONS

However, with the discovery of new forms of carbon model can be successfully 
applied to study of the statistical properties of CNTs and graphene. Carbon atom in 
the nanotube forms three chemical connection σ-type. Lodging with nearest neigh-
bor atoms with three-sp2 hybridization of atomic orbitals. The fourth p-orbital in-
volved in chemical bonding π-type which creates π-shell nanotube describing state 
of itinerant electrons, that define the basic properties of CNTs and graphene. This 
allows us to consider the state of π-electron system in the framework of the Ander-
son model. The model takes into account the kinetic energy of electrons and their 
Coulomb interaction at one site and neglected energy inner-shell electrons of atoms 
and electrons involved in the formation of chemical bonds σ-type, as well as the 
vibrational energy of the atoms of the crystal lattice.

In general, the periodic Anderson model [5] considers two groups of electrons: 
itinerant s-electrons and localized d-electrons. Itinerant particles are considered free 
and localized – interact by Coulomb repulsion on a single node. With the discovery 
of new forms of carbon model can be successfully applied to study the statistical 
properties of carbon structures are the CNT and the graphene. Carbon atom in the 
graphene layer has three forms chemical bonds σ-type with its immediate neigh-
bors. The fourth orbital p-type forms a chemical bond π-type, describing the state of 
itinerant electrons. States localized electrons created by the valence orbitals (in this 
case, the p-type) impurity atoms. This allows us to consider the state of π-electrons 
in the framework of the Anderson model. The model takes into account the kinetic 
energy of the electrons in the crystal and impurity electrons interacting through a 
potential hybridization, and neglects the energy of the electrons of the inner shells 
of atoms and electrons involved in the formation of chemical bonds σ-type, as well 
as the vibrational energy of the atoms of the crystal lattice [5].

In the periodic Anderson model state of the electrons of the crystal containing 
impurities in the π-electron approximation and the nearest neighbor approximation 
is described by the effective Hamiltonian, having the following standard form [5]:
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where ∆t is the electron hopping integral between the neighboring lattice sites of the 

crystal; U is the constant of the Coulomb repulsion of the impurity; σjc  and 
+
σjc  

are the Fermi annihilation and creation operators of electrons in the crystal node j 
with spin σ; σjd  and +

σjd  are the Fermi annihilation and creation operators of elec-

trons on the impurities l with spin σ; 
d
ln σ  is the operator of the number of electrons 

on impurities l with spin σ; σε l  is the energy of the electron by the impurity l with 
spin σ; ljV  is the matrix element of hybridization of impurity electron l and atom j 
of the crystal.

After the transition to k-space by varying the crystal by Fourier transformation 
of creation and annihilation of electrons and crystal use the Green function method, 
the band structure of single-walled CNTs with impurities adsorbed hydrogen atoms 
takes the form [8, 9]:

	 ( )
1
22 21( ) 4

2
k imp

k l k l

N
E V

Nσ σε ε ε ε
   = + ± − +   
  

,	 (2) 

where N – number of carbon atoms in the lattice, determines the size of the crystal, 
Nimp – the number of adsorbed hydrogen atoms, V – hybridization potential, σε l = 
–5.72 eV – electron energy impurities – the band structure of an ideal single-walled 
nanotubes, for tubes, for example, “zigzag” type dispersion relation is defined as 
follows [1]:

	 ( ) ( ) ( )2( ) 1 4cos cos / 4cos /p xE ap s n s nγ π π= ± + + 	 (3) 

where 2/3da = , 142.0=d  nm is the distance between adjacent carbon atoms in 
graphene, p = (px, s) is the quasimomentum of the electrons in graphene, px is the 
parallel component of the graphene sheet of the quasimomentum and s = 1, 2, …, n 
are the quantization numbers of the momentum components depending on the width 
of the graphene ribbon. Different signs are related to the conductivity band and to 
the valence band accordingly.

Used in the calculation of the Hamiltonian parameters: the value of the hopping 
integral t0 = 2.7 eV, hybridization potential V = –1.43 eV estimated from quantum 
chemical calculations of the electronic structure of CNTs within the semiempiri-
cal MNDO [14]. Electron energy impurity εlσ = −5.72 eV was assessed using the 
method described in Refs. [6, 7].
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Consider the effect of the adsorption of atomic hydrogen on the response of 
single-walled “zigzag” CNTs to an external electric field applied along the x-axis is 
directed along the axis of the CNT (Fig. 1.1).

FIGURE 1.1  Geometry configuration. CNT type “zigzag” is in an external electric field. 
Field strength vector E is directed along the axis of the CNT.

Method of calculating the transport coefficients of electrons in carbon nanotubes 
described in detail in Refs. [11–13]. Evolution of the electronic system was simu-
lated in the semiclassical approximation of the relaxation time. Electron distribution 
function in the state with momentum p = (px, s) is of the t – approximation using 
Boltzmann equation [10]:

	 0( , ) ( , ) ( , ) ( , ) ,p r p r p r p rF
p

s s s sf f f f
t τ

∂ ∂ −+ =
∂ ∂

	 (4) 

where ),( rpsf  – the Fermi distribution function EF e=  – acting on the particle 
constant electrostatic force.
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To determine the dependence of the diffusion and conductive characteristics of 
CNTs on the external electric field using the procedure outlined in Ref. [15]. The 
longitudinal component of the current density j = jx has the following form:

	 ( ) ( ) ( )E E E xnj x D
n

σ ∇= + 	 (5) 

For the case of a homogeneous temperature distribution T (r) = const in the 
linear approximation in magnitude [11], expressions for the transport coefficients of 
single-walled nanotubes: conductivity and diffusivity of electrons. Electrical con-
ductivity of CNT type “zigzag” given following expression [11]:
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Expression for the diffusion coefficient of electrons in CNT type “zigzag” has 
the form [11]:
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where the following notation:
4 4 4 2 2 2 2 2 2 2[ ( 2 ) 2 ( ) 1][ 1]K E m m m m E m m E m= + − + + + +′ ′ ′
2 2 2 2 2[ 1] [ 1]P E m E m= + +′

cos( )sin( ) cos( )cos( ) sin( )sin( )x x x x x xR mp m p mp m p mp m p= + −′ ′ ′
sin( )sin( ) sin( )cos( ) cos( )sin( )x x x x x xM mp m p mp m p mp m p= + +′ ′ ′

[cos( )cos( ) sin( )cos( )]x x x xT mp m p Em mp m p= −′ ′
2 2[sin( ) cos( )][sin( ) 2 cos( ) sin( )]x x x x xF m p Em m p mp Em mp E m mp= + + −′ ′

msA , m sA ′  are the coefficients of the Fourier expansion of the dispersion rela-
tion of electrons in CNT, m and m’ order Fourier series. For the convenience of 
visualization and qualitative analysis performed procedure and select the following 
dimensionless relative unit of measurement of the electric field E0 = 4.7×106 V/m.

1.3  RESULTS AND DISCUSSION

To investigate the influence of an external constant electric field on the transport 
properties of single-walled CNT type “zigzag” with adsorbed hydrogen atoms 
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selected the following system parameters: temperature T ≈ 300 K, the relaxation 

time is 
1210τ −≈ s in accordance with the data [16]. For numerical analysis consid-

ered type semiconducting CNT (10,0).
It should be noted that a wide range of external field behavior of the specific 

conductivity σ(E) for nanotubes with hydrogen adatoms has the same qualitative 
nonlinear dependence as for the ideal case of nanoparticles, which was discussed in 
detail in Ref. [11]. In general, the dependence of conductivity on the electric field 
has a characteristic for semiconductors form tends to saturate and decreases mono-
tonically with increasing intensity. This phenomenon is associated with an increase 
in electrons fill all possible states of the conduction band. Behavior of electrical 
conductivity under the influence of an external electric field is typical for semicon-
ductor structures with periodic and limited dispersion law [17].

Figure 1.2 shows the dependence of conductivity σ(E) on the intensity of the ex-
ternal electric field E for ideal CNT (10,0) and CNT (10,0) with adsorbed hydrogen 
at relatively low fields. The graphs show that the addition of single adsorbed atom 
(adatom) hydrogen reduces the conductivity by a small amount (about 2×10–3 S/m). 
Lowering the conductivity of the hydrogen atom in the adsorption takes place due to 
the fact that one of the localized electron crystallite forms a chemical bond with the 
impurity atom and no longer participates in the charge transport by CNT.

FIGURE 1.2  Dependence of the conductivity σ(E) on the magnitude of tension external 
electric field E: for ideal CNT (10,0) – solid line and the CNT (10,0) with hydrogen adatom – 
dashed line. x-axis is a dimensionless quantity of the external electric field E (unit corresponds 
to 4.7×106 V/m), the y-axis is dimensionless conductivity σ(E) (unit corresponds to 1.9×103 
S/m).
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Also analyzed the dependence of the conductivity σ(E) on the intensity of the 
external electric E for CNT (10,0) type, containing different concentrations of hy-
drogen adatoms (Fig. 1.3). The increasing of the number of adsorbed atoms reduces 
the conductivity of “zigzag” CNT proportional to the number of localized adsorp-
tion bonds formed. When you add one hydrogen adatom conductivity of CNT type 
(10,0) is reduced by 0.06%, adding 100 adatoms by 0.55%, adding 300 adatoms by 
1.66%, adding 500 adatoms by 2.62%.

FIGURE 1.3  Dependence of the conductivity σ(E) on the magnitude of tension E external 
electric impurity for CNT (10,0) one hydrogen adatom – solid line; 100 adatoms – dashed line; 
300 adatoms – dotted line; 500 adatoms – dash-dot line. x-axis is a dimensionless quantity 
of the external electric field E (unit corresponds to 4.7×106 V/m), the y-axis is dimensionless 
conductivity σ(E) (unit corresponds to 1.9×103 S/m).

Figure 1.4 shows that this behavior is typical for semiconductor conductivity of 
CNTs with different diameters. With the increasing diameter of the nanotubes have 
high electrical conductivity, since they contain a larger amount of electrons, which 
may participate in the transfer of electrical charge. The graphs in Fig. 1.4 shows for 
the (5,0), (10,0) and (20,0) CNT with the addition of 100 hydrogen adatoms.
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FIGURE 1.4  Dependence of the conductivity σ(E) on the magnitude of tension external 
electric E for different types of CNTs with the addition of hydrogen adatoms 100 (20,0) – 
solid line, (10,0) – dashed line; (5,0) – the dotted line. x-axis is a dimensionless quantity of 
the external electric field E (unit corresponds to 4.7×106 V/m), the y-axis is dimensionless 
conductivity σ(E) (unit corresponds to 1.9×103 S/m).

The electron diffusion coefficient D(E) from the electric field in the single-
walled “zigzag” CNT with adsorbed hydrogen atoms has a pronounced nonlinear 
character (Fig. 1.5). Increase of the field leads to an increase in first rate, and then to 
his descending to a stationary value. This phenomenon is observed for all systems 
with intermittent and limited electron dispersion law [17]. Electron diffusion coef-
ficient can be considered constant in the order field amplitudes E ≈ 5×106 V/m. The 
maximum value of the diffusion coefficient for semiconductor CNTs observed at 
field strengths of the order of E ≈ 4.8×105 V/m.

When adding the adsorbed hydrogen atoms the electron diffusion coefficient, as 
well as the conductivity is reduced by 0.05% (Fig. 1.5). This behavior of the diffu-
sion coefficient in an external electric field is observed for different concentrations 
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of hydrogen adatoms (Fig. 1.6) and semiconductor CNTs with different diameters 
by adding 100 adatoms (Fig. 1.7).

FIGURE 1.5  Dependence of the electron diffusion coefficient D(E) on the intensity of the 
external electric field E: for CNT (10,0) ideal – solid line and hydrogen adatom – dashed 
line. x-axis is a dimensionless quantity of the external electric field E (unit corresponds to 
4.7×106 V/m), the y-axis is a dimensionless diffusion coefficient D(E) (unit corresponds to 
3.5×102A/m).
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FIGURE 1.6  Dependence of the electron diffusion coefficient D(E) on the intensity of the 
external electric E for impurity CNT (10,0) one hydrogen adatom – solid line; 100 adatoms – 
dashed line; 300 adatoms – dotted line; 500 adatoms – dash-dot line. x-axis is a dimensionless 
quantity of the external electric field E (unit corresponds to 4.7×106 V/m), the y-axis is a 
dimensionless diffusion coefficient D(E) (unit corresponds to 3.5×102A/m).

FIGURE 1.7  Dependence of the electron diffusion coefficient D(E) on the intensity of the 
external electric E for different types of CNTs with the addition of hydrogen adatoms 100 
(20,0) – solid line, (10,0) – dashed line; (5,0) – the dotted line. x-axis is a dimensionless 
quantity of the external electric field E (unit corresponds to 4.7×106 V/m), the y-axis is a 
dimensionless diffusion coefficient D(E) (unit corresponds to 3.5×102A/m).
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The presented results can be used for the preparation of carbon nanotubes with 
desired transport characteristics and to develop the microelectronic devices, which 
based on carbon nanoparticles.

1.4  CONCLUSION

We formulate the main results in the conclusion.
1.	 The method for theoretical calculation of the semiconducting “zigzag” CNT 

transport properties with adsorbed hydrogen atoms developed. Analytical 
expressions for the conductivity and the electron diffusion coefficient in 
“zigzag” CNT with hydrogen adatoms in the presence of an electric field.

2.	 Numerical calculations showed nonlinear dependence of the transport coef-
ficients on the electric field. For strong fields coefficients tend to saturate.

3.	 Atomic hydrogen adsorption of the semiconducting “zigzag” CNT reduces 
their conductivity by several percent. The electron diffusion coefficient also 
decreases with increasing concentration of adsorbed hydrogen atoms, and a 
decrease of the diffusion coefficient is more pronounced than the decrease 
of electrical conductivity for each of the above types of semiconducting 
CNTs at a larger number of adatoms.

4.	 Transport properties of nanotubes with adatoms increases with the diameter. 
A physical explanation for the observed effect.
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ABSTRACT

A new approach of obtaining of the molded composites on the basis of the mixtures 
of the powders of nano-dispersed polyethylene, cellulose and the ultra-dispersed 
carbonic materials is developed. These materials possess the assigned sorption prop-
erties and the physic-mechanical characteristics. They are suitable for the usage at 
the process of cleaning and separation of gas mixture.

2.1  INTRODUCTION

In solving problems of environmental protection, medicine, cleaning and drying 
processes of hydrocarbon gases are indispensable effective sorbents, including poly-
mer nanocomposites derived from readily available raw materials.

The nature of the binder and the active components, and molding conditions are 
especially important at the process of sorption-active composites creating. These 
factors ultimately exert influence on the development of the porous structure of the 
sorbent particles and its performance. In this regard, it is promising to use powders 
of various functional materials having nanoscale particle sizes at the process of such 
composites creating. First, high degree of homogenization of the components facili-
tates their treatment process. Secondly, the high dispersibility of the particles allows 
them to provide a regular distribution in the matrix, whereby it is possible to achieve 
improved physical and mechanical properties. Third, it is possible to create the com-
posites with necessary sorption, magnetic, dielectric and other special properties 
combining volumetric content of components [1].

Powders of low density polyethylene (LDPE) prepared by high temperature 
shearing (HTS) used as one of prospective components of the developing functional 
composite materials [2, 3].

Development of the preparation process and study of physicochemical and me-
chanical properties of sorbents based on powder mixtures of LDPE, cellulose (CS) 
and carbon materials are conducted. As the basic sorbent material new – ultrafine 
nanocarbon (NC) obtained by the oxidative condensation of methane at a treatment 
time of 50 min (NC1) and 40 min (NC2) having a specific surface area of 200 m2/g 
and a particle size of 30–50 nm is selected [4]. Ultrafine form of NC may give rise 
to technological difficulties, for example, during regeneration of NC after using in 
gaseous environments, as well as during effective separation of the filtrate from the 
carbon dust particles. This imposes restrictions on the using of NC as an indepen-
dent sorbent. In this connection, it should be included in a material that has a high 
porosity. LDPE and CS powders have great interest for the production of such mate-
rial. It is known that a mixture of LDPE and CS powders have certain absorption 
properties, particularly, they were tested as sorbents for purification of water surface 
from petroleum and other hydrocarbons [5].
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Thus, the choice of developing sorbents components is explained by the follow-
ing reasons:

1. 	 LDPE has a low softening point, allowing to conduct blanks molding at 
low temperatures. The very small size of the LDPE particles (60 to 150 nm) 
ensures regular distribution of the binder in the matrix. It is also important 
that the presence of binder in the composition is necessary for maintaining 
of the material’s shape, size, and mechanical strength.

2. 	 Usage of cellulose in the composite material is determined by features of 
its chemical structure and properties. CS has developed capillary-porous 
structure, that’s why it has well-known sorption properties [5] towards polar 
liquids, gases and vapors.

3. 	 Ultrafine carbon components [nanocarbon, activated carbon (AC)] are used 
as functionalizing addends due to their high specific surface area.

2.2  EXPERIMENTAL PART

Ultrafine powders of LDPE, CS and a mixture of LDPE/CS are obtained by high 
temperature shearing under simultaneous impact of high pressure and shear defor-
mation in an extrusion type apparatus with a screw diameter of 32 mm [3].

Initial press-powders obtained by two ways. The first method is based on the 
mechanical mixing of ready LDPE, CS and carbon materials’ powders. The second 
method is based on a preliminary high-shear joint grinding of LDPE pellets and 
sawdust in a specific ratio and mixing the resulting powder with the powdered acti-
vated carbon (БАУ-А mark) and the nanocarbon after it.

Composites molding held by thermobaric compression at the pressure of 
127 kPa. Measuring of the tablets strength was carried out on the automatic catalysts 
strength measurer ПК-1.

The adsorption capacity (A) of the samples under static conditions for condensed 
water vapor, benzene, n-heptane determined by method of complete saturation of 
the sorbent by adsorbate vapor in standard conditions at 20°C [6] and calculated by 
the formula: A = m/(M·d), where m is the mass of the adsorbed benzene (acetone, 
n-heptane), g; M is the mass of the dried sample, g; d is the density of the adsorbate, 
g/cm3.

Water absorption coefficient of polymeric carbon sorbents is defined by the for-

mula: absorbed..water  

sample

m 100%
m

Κ = × , where mabsorbed water is the mass of the water, retained by 

the sorbent sample, msample is the mass of the sample.
Experimental error does not exceed 5% in all weight methods at P = 0.95 and the 

number of repeated experiments n = 3.
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2.3  RESULTS AND DISCUSSION

Powder components are used as raw materials for functional composite molding 
(including the binder LDPE), because molding of melt polymer mixtures with the 
active components has significant disadvantages. For example, the melt at high de-
grees of filling loses its fluidity, at low degrees of filling flow rate is maintained, but 
it is impossible to achieve the required material functionalization.

It is known that amorphous-crystalline polymers, which are typical heteroge-
neous systems, well exposed to high-temperature shear grinding process. For ex-
ample, the process of HTS of LDPE almost always achieves a significant results [3]. 
Disperse composition is the most important feature of powders, obtained as result of 
high-temperature shear milling. Previously, on the basis of the conventional micro-
scopic measurement, it was believed that sizes of LDPE powder particles obtained 
by HTS are within 6–30 micrometers. Electron microscopy gives the sizes of 60 to 
150 nm. The active powder has a fairly high specific surface area (up to 2.2 m2/g).

The results of measurement of the water absorption coefficient and of the static 
capacitance of LDPE powder by n-heptane vapor are equal to 12% and 0.26 cm3/g, 
respectively. Therefore, the surface properties of LDPE powder more developed 
than the other polyethylene materials’.

Selection of molding conditions of sorbents based on mixtures of LDPE, CS and 
ultrafine carbon materials’ powders.

Initial press-powders are obtained by two ways. The first method is based on 
the mechanical mixing of ready LDPE, CS and carbon materials’ powders and the 
second method is based on a preliminary high-shear joint grinding of LDPE pellets 
and sawdust in a specific ratio and mixing the resulting powder with the powdered 
activated carbon and the nanocarbon after it. The method of molding – thermobaric 
pressing at a pressure of 127 kPa.

The mixture of LDPE/CS compacted into cylindrical pellets at a temperature of 
115–145°C was used as a model mixture for selection of composites molding con-
ditions. Pressing temperature should be such that the LDPE softens but not melts, 
and at the same time forms a matrix to prevent loss of specific surface area in the 
ready molded sorbent due to fusion of pores with the binder. The composites molded 
at a higher temperature, have a lower coefficient of water absorption than the tab-
lets produced at a lower temperature, that’s why the lowest pressing temperature 
(120°C) is selected. At a higher content of LDPE the water absorption coefficient 
markedly decreases with temperature.

Cellulose has a high degree of swelling in water (450%) [5], this may lead to the 
destruction of the pellets. Its contents in samples of composites, as it has been ob-
served by the sorption of water, should not exceed 30 wt.%. There is a slight change 
of geometric dimensions of the pellets in aqueous medium at an optimal value of the 
water absorption coefficient when the LDPE content is 20 wt.%.

Samples of LDPE/CS with AC, which sorption properties are well studied, are 
tested for selecting of optimal content of ultrafine carbon. The samples containing 
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more than 50 wt.% of AC have less water absorption coefficient values. Therefore, 
the total content of ultrafine carbon materials in all samples must be equal to 50 
wt.%.

Static capacitance measurement of samples, obtained from mechanical mixtures 
of powders of PE, CS and AC, conducted on vapors of n-heptane and benzene, to 
determine the effect of the polymer matrix on the sorption properties of functional-
izing additives. With a decrease of the content of AC in the samples with a fixed (20 
wt.%) amount of the binder, reduction of vapor sorption occurs. It indicates that the 
AC does not lose its adsorption activity in the composition of investigated sorbents.

Strength of samples of sorbents (Fig. 2.1) is in the range of 620–750 N. The 
value of strength is achieved in the following molding conditions: t = 120°C and a 
pressure of 127 kPa.

Thus, optimal weight composition of the matrix of LDPE/CS composition – 
20/30 wt.% with 50 wt.% containing of carbon materials.

FIGURE 2.1  Comparison of strength of pellets, based on LDPE, CS (different species of 
wood) and AC powders [1 – sorbent of LDPE/AC/CS = 20/50/30 wt.% based on the powders 
of jointly dispersed pellets of LDPE and softwood sawdust with subsequently addition of 
AC; 2 – sorbent of LDPE/AC/CS = 20/50/30 wt.% based on the powders of jointly dispersed 
pellets of LDPE and hardwood sawdust with subsequently addition of AC; 3 – sorbent of 
LDPE/AC/CS = 20/50/30 wt.% based on the mechanical mixtures of the individual powders 
of LDPE, CS from softwood and AC; 4 – AC tablet; 5 – sorbent of LDPE/CS = 20/80 wt.%; 
6 – sorbent of LDPE/AC = 20/80 wt.%].

Sorption properties of carbon – polymer composites by condensed vapors of volatile 
liquids

For a number of samples of sorbents static capacitance values by benzene va-
por is identified (Fig. 2.2). They indicate that the molded mechanical mixture of 
20/25/25/30 wt.% LDPE/AC/NC1/CS has a maximum adsorption capacity that 
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greatly exceeds the capacity of activated carbon. High sorption capacity values by 
benzene vapor appears to be determined by weak specific interaction of π-electron 
system of the aromatic ring with carbocyclic carbon skeleton of the nanocarbon [7].

Static capacitance of obtained sorbents by heptane vapors significantly inferiors 
to capacity of activated carbon (Fig. 2.3), probably it is determined by the low polar-
izability of the molecules of low-molecular alkanes. Consequently, the investigated 
composites selectively absorb benzene and can be used for separation and purifica-
tion of mixtures of hydrocarbons.

Molded composite based on a mechanical mixture of LDPE/AC/NC1/CS = 
20/25/25/30 wt.% has a sorption capacity by acetone vapor comparable with the 
capacity of activated carbon (0.36 cm3/g) (Fig. 2.4).

FIGURE 2.2  Static capacitance of sorbents, A (cm3/g) by benzene vapor (20°C) [1 –molded 
mechanical mixture of LDPE/AC/NC1/CS= 20/25/25/30wt.%; 2 – molded mechanical 
mixture of LDPE/AC/NC2/CS = 20/25/25/30 wt.%; 3 – molded mechanical mixture of 
LDPE/AC/CS=20/50/30 wt.%; 4 – AC medical tablet (controlling)].

FIGURE 2.3  Static capacitance of sorbents, A (cm3/g) by n-heptane vapor (20°C). 
1 – molded mechanical mixture of LDPE/AC/NC1/CS= 20/25/25/30wt.%; 2 – molded 
mechanical mixture of LDPE/AC/NC2/CS = 20/25/25/30 wt.%; 3 – molded mechanical 
mixture of PE/AC/CS=20/50/30 wt.%; 4 – AC medical tablet (controlling).
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FIGURE 2.4  Static capacitance of sorbents, A (cm3/g) acetone vapor (20°C). 1 – molded 
mechanical mixture of LDPE/AC/NC1/CS= 20/25/25/30wt.%; 2 – molded mechanical 
mixture of LDPE/AC/NC2/CS = 20/25/25/30 wt.%; 3 – molded mechanical mixture of 
LDPE/AC/CS=20/50/30 wt.%; 4 – AC medical tablet (controlling).

Sorbents’ samples containing NC2 have low values of static capacity by ben-
zene, heptanes and acetone vapor. It can be probably associated with partial occlu-
sion of carbon material pores by remnants of resinous substances – by products of 
oxidative condensation of methane, and insufficiently formed porous structure.

The residual benzene content measuring data (Table 2.1) shows that the minimal 
residual benzene content after its desorption from the pores at t = 70°C for 120 min 
observes in case of sorbent LDPE/AC/NC1/CS composition = 20/25/25/30 wt.%. It 
allows to conclude that developed sorbents have better ability to regenerate under 
these conditions in comparison with activated carbon.

TABLE 2.1  Sorbents’ Characteristics: Total Pore Volume Vtot.; Static Capacitance (А) by 
Benzene Vapors at the Sorption Time of 2 days; Residual Weight of the Absorbed Benzene 
After Drying at t = 70°C for 120 min

LDPE/AC/NC/CS sorbent 
composition, wt.%

Vtot.,  cm3/g А,  cm3/g Residual benzene 
content as a result 
of desorption, %

20/25/25/30 1.54 0.5914 2.9

20/50/ – /30 1.21 0.1921 10.3

– /100/ –/– 1.60 0.3523 32.0
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2.4  CONCLUSIONS

Thus, the usage of nanosized LDPE as a binder gives a possibility to get the molded 
composite materials with acceptable absorption properties. Optimal conditions for 
molding of sorbents on the basis of mixtures of powdered LDPE, cellulose and 
ultrafine carbon materials were determined: temperature 120°C and pressure of 
127 kPa, content of the binder (polyethylene) is 20 wt.%.

Varying the ratio of the components of the compositions on the basis of ternary 
and quaternary mixtures of powdered LDPE, cellulose and ultrafine carbon materi-
als it is possible to achieve the selectivity of sorption properties by vapors of certain 
volatile liquids. Established that molded mechanical mixture of LDPE/AC/NC1/
CS 20/25/25/30wt.% has a static capacity by condensed vapors of benzene and ac-
etone 0.6 cm3/g and 0.36 cm3/g, respectively, what exceeds the capacity of activated 
carbon. The static capacitance of the compositions by the n-heptane vapors is 0.21 
cm3/g, therefore, the proposed composites are useful for separation and purification 
of gaseous and steam mixtures of different nature.

Developed production method of molded sorption-active composites based on 
ternary and quaternary mixtures of powdered LDPE, cellulose and ultrafine carbon 
materials can be easily designed by equipment and can be used for industrial pro-
duction without significant changes.
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