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•	 Discusses the regulatory issues involved
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Series Introduction

The primary objectives of the Biostatistics Book Series are to provide use-

ful reference books for researchers and scientists in academia, industry, and

government, and also to offer textbooks for undergraduate and/or gradu-

ate courses in the area of biostatistics. This book series will provide com-

prehensive and unified presentations of statistical designs and analyses of

important applications in biostatistics, such as those in biopharmaceuti-

cals. A well-balanced summary will be given of current and recently de-

veloped statistical methods and interpretations for both statisticians and

researchers/scientists with minimal statistical knowledge who are engaged

in the field of applied biostatistics. The series is committed to providing

easy-to-understand, state-of-the-art references and textbooks. In each vol-

ume, statistical concepts and methodologies will be illustrated through real

world examples.

In the past several decades, it has been recognized that increasing spend-

ing of biomedical research does not reflect an increase of the success rate

of pharmaceutical (clinical) development. As a result, the United States

Food and Drug Administration (FDA) kicked off a Critical Path Initiative

to assist the sponsors in identifying the scientific challenges underlying the

medical product pipeline problems. In 2006, the FDA released a Critical

Path Opportunities List that outlines 76 initial projects (six broad topic

areas) to bridge the gap between the quick pace of new biomedical discov-

eries and the slower pace at which those discoveries are currently developed

into therapies. Among the 76 initial projects, the FDA calls for advancing

innovative trial designs, especially for the use of prior experience or accu-

mulated information in trial design. Many researchers interpret it as the

encouragement for the use of adaptive design methods in clinical trials.

In clinical trials, it is not uncommon to modify trial and/or statistical

procedures during the conduct of the trials based on the review of interim

ix
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x Series Introduction

data. The purpose is not only to efficiently identify clinical benefits of the

test treatment under investigation, but also to increase the probability of

success of clinical development. The use of adaptive design methods for

modifying the trial and/or statistical procedures of on-going clinical tri-

als based on accrued data has been practiced for years in clinical research.

However, it is a concern whether the p-value or confidence interval regarding

the treatment effect obtained after the modification is reliable or correct.

In addition, it is also a concern that the use of adaptive design methods in

a clinical trial may lead to a totally different trial that is unable to address

scientific/medical questions that the trial is intended to answer. In their

book, Chow and Chang (2006) provide a comprehensive summarization of

statistical methods for the use of adaptive design methods in clinical tri-

als. This volume provides useful approaches for implementation of adaptive

design methods in clinical trials through the application of statistical soft-

ware such as SAS and R. It covers statistical methods for various adaptive

designs such as adaptive group sequential design, adaptive dose-escalation

design, adaptive seamless phase-II/III trial design (drop-the-losers design),

and biomarker-adaptive design. It would be beneficial to practitioners such

as biostatisticians, clinical scientists, and reviewers in regulatory agencies

who are engaged in the areas of pharmaceutical research and development.

Shein-Chung Chow

Editor-in-Chief
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Preface to the Second Edition

There have been remarkable advancements in methodological study and ap-

plication of adaptive trials since the publication of the first edition in 2007.

I have been thinking about the revision for years and finally I complete the

revision today.

In this revision, I have added 12 new chapters, including Chapter 6,

Adaptive Noninferiority Design with Paired Binary Data; Chapter 7, Adap-

tive Design with Incomplete Paired Data; Chapter 12, Blinded and Semi-

Blinded Sample-Size Reestimation Design; Chapter 13, Adaptive Design

with Coprimary Endpoint; Chapter 15, Pick-the-Winners Design; Chapter

16, The Add-Arm Design for Unimodal Response; Chapter 18, Biomarker-

Informed Adaptive Design; Chapter 23, Bayesian Design for Efficacy-

Toxicity Trade-Off and Drug Combination; Chapter 24, Bayesian Approach

to Biosimilarity Trial; Chapter 25, Adaptive Multiregional Trial Design;

Chapter 26, SAS and R Modules for Group Sequential Design; and Chap-

ter 27, Data Analysis of Adaptive Trial.

I have also made major changes to the following chapters: For Chapter

8, K-Stage Adaptive Designs, analytical methods in addition to the simu-

lation methods are now included. For Chapter 11, Unblinded Sample-Size

Reestimation Design, the focus is on the comparisons between and discus-

sions on different methods using simulations. I have completely rewritten

Chapter 14, Multiple-Endpoint Adaptive Design and Chapter 19, Survival

Modeling and Adaptive Treatment Switching, using analytical methods in-

stead of simulation methods. Sequential parallel designs with rerandomiza-

tion are added in Chapter 20, Response-Adaptive Allocation Design. For

Chapter 22, Adaptive Dose-Escalation Trial, I have included the skeleton

approach. In the Appendices, some utility SAS code and SAS macros for

the add-arm designs are included, and the modified R function for CRM

to include the skeleton approach is also provided. In this revision, we have

xi
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xii Preface to the Second Edition

added nearly 20 new SAS macros and R functions. We have enhanced the

exercises or problems in end of each chapter. We want to remind readers

that some of the exercises are different from those you would find in a typ-

ical textbook of elementary statistics, where all necessary information for

solving the problem is exactly given, no more or no less. Some exercises in

the book often mimic practical situations, you might be given only the basic

information to solve the problem, you need to figure out which information

is necessary, what kind of information is missing, and where to get it or

how to make assumptions. Those exercises are helpful before you design a

real life adaptive trial.

I hope with these revisions and enhancements, readers will find the book

useful in designing adaptive trials.

I want to thank Dr. Sandeep Menon for using this book and providing

me valuable feedback. I very much appreciate my students, Dr. Jing Wang,

Dr. Joseph Wu, Mr. Mike Pickard, Mr. Zhaoyang Teng, and Dr. Yansong

Cheng for their creative thinking and hard work. Their contributions are

reflected in various chapters. I also thank students in my adaptive design

class at Boston University for their engagement and feedback, and thanks

to Dr. Sandeep Menon for co-teaching the class with me.

Mark Chang
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Preface to the First Edition

This book is about adaptive clinical trial design and computer implementa-

tion. Compared to a classical trial design with static features, an adaptive

design allows for changing or modifying the characteristics of a trial based

on cumulative information. These modifications are often called adapta-

tions. The word adaptation is so familiar to us because we constantly make

adaptations in our daily lives according to what we learn over time. Some

of the adaptations are necessary for survival, while others are made to im-

prove our quality of life. We should be equally smart in conducting clinical

trials by making adaptations based on what we learn as the trial progresses.

These adaptations are made because they can improve the efficiency of the

trial design, provide earlier remedies, and reduce the time and cost of drug

development. An adaptive design is also ethically important. It allows for

stopping a trial earlier if the risk to subjects outweighs the benefit, or when

there is early evidence of efficacy for a safe drug. An adaptive design may

allow for randomizing more patients to the superior treatment arms and

reducing exposure to inefficacious, but potentially toxic, doses. An adap-

tive design can also be used to identify better target populations through

early biomarker responses.

The aims of this book are to provide a unified and concise presentation

of adaptive design theories, furnish the reader with computer programs

in SAS and R (also available at www.statisticians.org) for the design and

simulation of adaptive trials, and offer (hopefully) a quick way to master

the different adaptive designs through examples that are motivated by real

issues in clinical trials. The book covers broad ranges of adaptive methods

with an emphasis on the relationships among different methods. As Dr.

Simon Day pointed out, there are good and bad adaptive designs; a design

is not necessarily good just because it is adaptive. There are many rules

and issues that must be considered when implementing adaptive designs.

xiii
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xiv Preface to the First Edition

This book has included most current regulatory views as well as discussions

of challenges in planning, execution, analysis, and reporting for adaptive

designs.

From a “big picture” view, drug development is a sequence of decision

processes. To achieve ultimate success, we cannot consider each trial as

an isolated piece; instead, a drug’s development must be considered an

integrated process, using Bayesian decision theory to optimize the design

or program as explained in Chapter 21. It is important to point out that

every action we take at each stage of drug development is not with the

intent of minimizing the number of errors, but minimizing the impact of

errors. For this reason, the power of a hypothesis test is not the ultimate

criterion for evaluating a design. Instead, many other factors, such as time,

safety, and the magnitude of treatment difference, have to be considered

in a utility function. From an even bigger-picture view, we are working

in a competitive corporate environment, and statistical game theory will

provide the ultimate tool for drug development. In the last chapter of

the book, I will pursue an extensive discussion of the controversial issues

about statistical theories and the fruitful avenues for future research and

application of adaptive designs.

Adaptive design creates a new landscape of drug development. The

statistical methodology of adaptive design has been greatly advanced by

literature in recent years, and there are an increasing number of trials

with adaptive features. The PhRMA and BIO adaptive design working

groups have made great contributions in promoting innovative approaches

to trial design. In preparing the manuscript of this book, I have benefited

from discussions with following colleagues: Shein-Chung Chow, Michael

Krams, Donald Berry, Jerry Schindler, Michael Chernick, Bruce Turnbull,

Barry Turnbull, Sue-Jane Wang (FDA), Vladimir Dragalin, Qing Liu, Si-

mon Day (MHRA), Susan Kenley, Stan Letovsky, Yuan-Yuan Chiu, Jonca

Bull, Gorden Lan, Song Yang, Gang Chen, Meiling Lee, Alex Whitmore,

Cyrus Mehta, Carl-Fredrik Burman, Richard Simon, George Chi, James

Hung (FDA), Aloka Chakravarty (FDA), Marc Walton (FDA), Robert

O’Neill (FDA), Paul Gallo, Christopher Jennison, Jun Shao, Keaven An-

derson, Martin Posch, Stuart Pocock, Wassmer Gernot, Andy Grieve,

Christy Chung, Jeff Maca, Alun Bedding, Robert Hemmings (MHRA), Jose

Pinheiro, Jeff Maca, Katherine Sawyer, Sara Radcliffe, Jessica Oldham,

Christian Sonesson, Inna Perevozskaya, Anastasia Ivanova, Brenda Gaydos,

Frank Bretz, Wenjin Wang, Suman Bhattacharya, and Judith Quinlan.
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express my gratitude to the following individuals for sharing their clini-
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Chapter 1

Introduction

1.1 Motivation

Investment in pharmaceutical research and development has more than

doubled in the past decade; however, the increase in spending for biomed-

ical research does not reflect an increased success rate of pharmaceutical

development. (Figure 1.1). Reasons for this include the following: (1) a di-

minished margin for improvement escalates the level of difficulty in proving

drug benefits; (2) genomics and other new sciences have not yet reached

their full potential; (3) mergers and other business arrangements have de-

creased candidates; (4) easy targets are the focus as chronic diseases are

more difficult to study; (5) failure rates have not improved; and (6) rapidly

escalating costs and complexity decrease willingness/ability to bring many

candidates forward into the clinic (Woodcock, 2004).

There are several critical areas for improvement in drug development.

One of the obvious areas for improvement is the design, conduct, and anal-

ysis of clinical trials. Improvement of the clinical trials process includes (1)

the development and utilization of biomarkers or genomic markers, (2) the

establishment of quantitative disease models, and (3) the use of more infor-

mative designs such as adaptive and/or Bayesian designs. In practice, the

use of clinical trial simulation, the improvement of clinical trial monitoring,

and the adoption of new technologies for prediction of clinical outcome will

also help in increasing the probability of success in the clinical development

of promising candidates. Most importantly, we should not use the evalu-

ation tools and infrastructure of the last century to develop this century’s

advances. Instead, an innovative approach using adaptive design methods

for clinical development must be implemented.

In the next section, we will provide the definition of adaptive design

and brief descriptions of commonly used adaptive designs. In Section 1.2.8,

1
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Figure 1.1: Trends in NDAs Submitted to FDA (Data Source:

PAREXEXL, 2003)

the importance of computer simulation is discussed. In Section 1.4, we will

provide the roadmap for this book.

1.2 Adaptive Design Methods in Clinical Trials

An adaptive design is a clinical trial design that allows adaptations or

modifications to aspects of the trial after its initiation without undermining

the validity and integrity of the trial (Chang, 2005a; Chow, Chang, and

Pong, 2005). The PhRMA Working Group defines an adaptive design as a

clinical study design that uses accumulating data to decide how to modify

aspects of the study as it continues, without undermining the validity and

integrity of the trial (Dragalin, 2006; Gallo et al., 2006).

The adaptations may include, but are not limited to, (1) a group sequen-

tial design, (2) an sample-size adjustable design, (3) a drop-losers design, (4)

an adaptive treatment allocation design, (5) an adaptive dose-escalation de-

sign, (6) a biomarker-adaptive design, (7) an adaptive treatment-switching

design, (8) an adaptive dose-finding design, and (9) a combined adaptive

design. An adaptive design usually consists of multiple stages. At each

stage, data analyses are conducted, and adaptations are taken based on

updated information to maximize the probability of success. An adaptive

design is also known as a flexible design (EMEA, 2002).
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An adaptive design has to preserve the validity and integrity of the trial.

The validity includes internal and external validities. Internal validity is

the degree to which we are successful in eliminating confounding variables

and establishing a cause–effect relationship (treatment effect) within the

study itself. A study that readily allows its findings to generalize to the

population at large has high external validity. Integrity involves minimizing

operational bias, creating a scientifically sound protocol design, adhering

firmly to the study protocol and standard operating procedures (SOPs),

executing the trial consistently over time and across sites or countries, pro-

viding comprehensive analyses of trial data and unbiased interpretations of

the results, and maintaining the confidentiality of the data.

1.2.1 Group Sequential Design

A group sequential design (GSD) is an adaptive design that allows for pre-

mature termination of a trial due to efficacy or futility, based on the results

of interim analyses. GSD was originally developed to obtain clinical ben-

efits under economic constraints. For a trial with a positive result, early

stopping ensures that a new drug product can be exploited sooner. If a

negative result is indicated, early stopping avoids wasting resources. Se-

quential methods typically lead to savings in sample size, time, and cost

when compared with the classical design with a fixed sample size. Interim

analyses also enable management to make appropriate decisions regarding

the allocation of limited resources for continued development of a promis-

ing treatment. GSD is probably one of the most commonly used adaptive

designs in clinical trials.

Basically, there are three different types of GSDs: early efficacy stopping

design, early futility stopping design, and early efficacy/futility stopping

design. If we believe (based on prior knowledge) that the test treatment

is very promising, then an early efficacy stopping design should be used.

If we are very concerned that the test treatment may not work, an early

futility stopping design should be employed. If we are not certain about

the magnitude of the effect size, a GSD permitting early stopping for both

efficacy and futility should be considered. In practice, if we have a good

knowledge regarding the effect size, then a classical design with a fixed

sample-size would be more efficient.

1.2.2 Sample-Size Reestimation Design

A sample-size reestimation (SSR) design refers to an adaptive design that

allows for sample-size adjustment or reestimation based on the review of
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interim analysis results (Figure 1.2). The sample-size requirement for a trial

is sensitive to the treatment effect and its variability. An inaccurate esti-

mation of the effect size and its variability could lead to an underpowered

or overpowered design, neither of which is desirable. If a trial is under-

powered, it will not be able to detect a clinically meaningful difference, and

consequently could prevent a potentially effective drug from being delivered

to patients. On the other hand, if a trial is overpowered, it could lead to

unnecessary exposure of many patients to a potentially harmful compound

when the drug, in fact, is not effective. In practice, it is often difficult to

estimate the effect size and variability because of many uncertainties dur-

ing protocol development. Thus, it is desirable to have the flexibility to

reestimate the sample size in the middle of the trial.

Figure 1.2: Sample-Size Reestimation Design

There are two types of sample-size reestimation procedures, namely,

sample-size reestimation based on blinded data and sample-size reestima-

tion based on unblinded data. In the first scenario, the sample adjustment

is based on the (observed) pooled variance at the interim analysis to recal-

culate the required sample size, which does not require unblinding the data.

In this scenario, the type-I error adjustment is practically negligible. In the

second scenario, the effect size and its variability are reassessed, and sample

size is adjusted based on the updated information. The statistical method

for adjustment could be based on effect size or the conditional power.

Note that the flexibility in SSR is at the expense of a potential loss of

power. Therefore, it is suggested that an SSR be used when there are no

good estimates of the effect size and its variability. In the case where there

is some knowledge of the effect size and its variability, a classical design

would be more efficient.
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Figure 1.3: Drop-Loser Design

1.2.3 Drop-Loser Design

A drop-loser design (DLD) is an adaptive design consisting of multiple

stages. At each stage, interim analyses are performed and the losers (i.e.,

inferior treatment groups) are dropped based on prespecified criteria (Fig-

ure 1.3). Ultimately, the best arm(s) are retained. If there is a control

group, it is usually retained for the purpose of comparison. This type of

design can be used in phase-II/III combined trials. A phase-II clinical trial

is often a dose-response study, where the goal is to assess whether there is

treatment effect. If there is treatment effect, the goal becomes finding the

appropriate dose level (or treatment groups) for the phase-III trials. This

type of traditional design is not efficient with respect to time and resources

because the phase-II efficacy data are not pooled with data from phase-III

trials, which are the pivotal trials for confirming efficacy. Therefore, it is

desirable to combine phases II and III so that the data can be used effi-

ciently, and the time required for drug development can be reduced. Bauer

and Kieser (1999) provide a two-stage method for this purpose, where in-

vestigators can terminate the trial entirely or drop a subset of treatment

groups for lack of efficacy after the first stage. As pointed out by Sampson

and Sill (2005), the procedure of dropping the losers is highly flexible, and

the distributional assumptions are kept to a minimum. However, because

of the generality of the method, it is difficult to construct confidence in-

tervals. Sampson and Sill derived a uniformly most powerful, conditionally

unbiased test for a normal endpoint.
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1.2.4 Adaptive Randomization Design

An adaptive randomization/allocation design (ARD) is a design that allows

modification of randomization schedules during the conduct of the trial. In

clinical trials, randomization is commonly used to ensure a balance with

respect to patient characteristics among treatment groups. However, there

is another type of ARD, called response-adaptive randomization (RAR), in

which the allocation probability is based on the response of the previous pa-

tients. RAR was initially proposed because of ethical considerations (i.e.,

to have a larger probability to allocate patients to a superior treatment

group); however, response randomization can be considered a drop-loser

design with a seamless allocation probability of shifting from an inferior

arm to a superior arm. The well-known response-adaptive models include

the randomized play-the-winner (RPW) model (see Figure 1.4), an opti-

mal model that minimizes the number of failures. Other response-adaptive

randomizations, such as utility-adaptive randomization, also have been pro-

posed and are combinations of response-adaptive and treatment-adaptive

randomization (Chang and Chow, 2005).

Figure 1.4: Response Adaptive Randomization

1.2.5 Adaptive Dose-Finding Design

Dose escalation is often considered in early phases of clinical development

for identifying maximum tolerated dose (MTD), which is often considered

the optimal dose for later phases of clinical development. An adaptive dose-



October 22, 2014 16:46 K24073

Introduction 7

finding (or dose-escalation) design is a design in which the dose level used

to treat the next-entered patient is dependent on the toxicity of the previ-

ous patients, based on some traditional escalation rules (Figure 1.5). Many

early dose-escalation rules are adaptive, but the adaptation algorithm is

somewhat ad hoc. Recently more advanced dose-escalation rules have been

developed using modeling approaches (frequentist or Bayesian framework)

such as the continual reassessment method (CRM) (O’Quigley, Pepe, and

Fisher, 1990; Chang and Chow, 2005) and other accelerated escalation al-

gorithms. These algorithms can reduce the sample-size and overall toxicity

in a trial and improve the accuracy and precision of the estimation of the

MTD. Note that CRM can be viewed as a special response-adaptive ran-

domization.

Figure 1.5: Dose Escalation for Maximum Tolerated Dose

1.2.6 Biomarker-Adaptive Design

Biomarker-adaptive design (BAD) refers to a design that allows for adapta-

tions using information obtained from biomarkers. A biomarker is a charac-

teristic that is objectively measured and evaluated as an indicator of normal

biologic or pathogenic processes or pharmacologic response to a therapeutic

intervention (Chakravarty, 2005). A biomarker can be a classifier, prognos-

tic, or predictive marker.

A classifier biomarker is a marker that usually does not change over

the course of the study, such as DNA markers. Classifier biomarkers can be

used to select the most appropriate target population, or even for personal-

ized treatment. Classifier markers can also be used in other situations. For

example, it is often the case that a pharmaceutical company has to make
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a decision whether to target a very selective population for whom the test

drug likely works well or to target a broader population for whom the test

drug is less likely to work well. However, the size of the selective population

may be too small to justify the overall benefit to the patient population.

In this case, a BAD may be used, where the biomarker response at in-

terim analysis can be used to determine which target populations should

be focused on (Figure 1.6).

Figure 1.6: Biomarker-Adaptive Design

A prognostic biomarker informs the clinical outcomes, independent of

treatment. It provides information about the natural course of the disease

in individuals who have or have not received the treatment under study.

Prognostic markers can be used to separate good- and poor-prognosis pa-

tients at the time of diagnosis. If expression of the marker clearly separates

patients with an excellent prognosis from those with a poor prognosis, then

the marker can be used to aid the decision about how aggressive the therapy

needs to be.

A predictive biomarker informs the treatment effect on the clinical end-

point. Compared to a gold-standard endpoint, such as survival, a biomarker

can often be measured earlier, more easily, and more frequently. A

biomarker is less subject to competing risks and less affected by other treat-

ment modalities, which may reduce sample size due to a larger effect size.

A biomarker could lead to faster decision making. However, validating pre-

dictive biomarkers is challenging. BAD simplifies this challenge. In a BAD,

“softly” validated biomarkers are used at the interim analysis to assist in de-

cision making, while the final decision can still be based on a gold-standard

endpoint, such as survival, to preserve the type-I error (Chang, 2005b).
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1.2.7 Adaptive Treatment-Switching Design

An adaptive treatment-switching design (ATSD) is a design that allows the

investigator to switch a patient’s treatment from the initial assignment if

there is evidence of lack of efficacy or a safety concern (Figure 1.7).

To evaluate the efficacy and safety of a test treatment for progressive dis-

eases, such as cancers and HIV, a parallel-group, active-control, randomized

clinical trial is often conducted. In this type of trial, qualified patients are

randomly assigned to receive either an active control (a standard therapy

or a treatment currently available in the marketplace) or a test treatment

under investigation. Due to ethical considerations, patients are allowed to

switch from one treatment to another if there is evidence of lack of efficacy

or disease progression. In practice, it is not uncommon that up to 80% of

patients may switch from one treatment to another. Sommer and Zeger

(1991) referred to the treatment effect among patients who complied with

treatment as “biological efficacy.” Branson and Whitehead (2002) widened

the concept of biological efficacy to encompass the treatment effect as if all

patients adhered to their original randomized treatments in clinical studies

allowing treatment switching. Despite allowing a switch in treatment, many

clinical studies are designed to compare the test treatment with the active

control agent as if no patients had ever been switched. This certainly has

an impact on the evaluation of the efficacy of the test treatment, because

the response-informative switching causes the treatment effect to be con-

founded. The power for the methods without considering the switching is

often lost dramatically because many patients from two groups have even-

tually taken the same drugs (Shao, Chang, and Chow, 2005). Currently,

more approaches have been proposed, which include mixed exponential

mode (Chang, 2006a; Chow and Chang, 2006) and a mixture of the Wiener

processes (Lee, Chang, and Whitmore, 2008).

Figure 1.7: Adaptive Treatment Switching
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1.2.8 Clinical Trial Simulation

Clinical trial simulation (CTS) is a process that mimics clinical trials using

computer programs. CTS is particularly important in adaptive designs for

several reasons: (1) the statistical theory of adaptive design is complicated

with limited analytical solutions available under certain assumptions; (2)

the concept of CTS is very intuitive and easy to implement; (3) CTS can

be used to model very complicated situations with minimum assumptions,

and type-I error can be strongly controlled; (4) using CTS, not only can

we calculate the power of an adaptive design, but we can also generate

many other important operating characteristics such as expected sample-

size, conditional power, and repeated confidence interval—ultimately this

leads to the selection of an optimal trial design or clinical development plan;

(5) CTS can be used to study the validity and robustness of an adaptive de-

sign in different hypothetical clinical settings, or with protocol deviations;

(6) CTS can be used to monitor trials, project outcomes, anticipate prob-

lems, and suggest remedies before it is too late; (7) CTS can be used to

visualize the dynamic trial process from patient recruitment, drug distribu-

tion, treatment administration, and pharmacokinetic processes to biomark-

ers and clinical responses; and finally, (8) CTS has minimal cost associated

with it and can be done in a short time.

CTS was started in the early 1970s and became popular in the mid

1990s due to increased computing power. CTS components include (1) a

trial Design Mode, which includes design type (parallel, crossover, tradi-

tional, adaptive), dosing regimens or algorithms, subject selection criteria,

and time, financial, and other constraints; (2) an Execution Model, which

models the human behaviors that affect trial execution (e.g., protocol com-

pliance, cooperation culture, decision cycle, regulatory authority, inference

of opinion leaders); (3) a Response Model, which includes disease mod-

els that imitate the drug behavior (PK and PD models) or intervention

mechanism, and an infrastructure model (e.g., timing and validity of the

assessment, diagnosis tool); and (4) an Evaluation Model, which includes

criteria for evaluating design models, such as utility models and Bayesian

decision theory. The CTS model is illustrated in Figure 1.8.

1.2.9 Regulatory Aspects

The FDA’s Critical Path initiative is a serious attempt to bring attention

and focus to the need for targeted scientific efforts to modernize the tech-

niques and methods used to evaluate the safety, efficacy, and quality of
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Figure 1.8: Clinical Trial Simulation Model

medical products as they move from product selection and design to mass

manufacture. Critical Path is NOT about the drug discovery process. The

FDA recognizes that improvement and new technology are needed. The Na-

tional Institutes of Health (NIH) is getting more involved via the “roadmap”

initiative. Critical Path is concerned with the work needed to move a can-

didate all the way to a marketed product. It is clear that the FDA supports

and encourages innovative approaches in drug development. The regulatory

agents feel that some adaptive designs are encouraging, but are cautious

about others, specially for pivotal studies (EMEA, 2006; Hung, O’Neill,

Wang, and Lawrence, 2006; Hung, Wang, and O’Neill, 2006; Temple, 2006).

“Adaptive designs should be encouraged for Phases I and II trials for

better exploration of drug effects, whether beneficial or harmful, so that

such information can be more optimally used in latter stages of drug de-

velopment. Controlling false positive conclusions in exploratory phases is

also important so that the confirmatory trials in latter stages achieve their

goals. The guidance from such trials properly controlling false positives

may be more informative to help better design confirmatory trials” (Hung

et al., 2006). As pointed out by FDA statistician Dr. Stella Machado, “The

two major causes of delayed approval and nonapproval of phase III studies

is poor dose selection in early studies and phase III designs [that] don’t

utilize information from early phase studies” (“The Pink Sheet,” Dec. 18,

2006, p. 24). The FDA is granting industry a great deal of leeway in adap-

tive design in the early learning phase, while at the same time suggesting

that emphasis be placed on dose-response and exposure risk. Dr. O’Neill

said that learning about the dose-response relationship lies at the heart of

adaptive designs. Companies should begin a dialogue about adaptive de-

signs with FDA medical officers and statisticians as early as a year before

beginning a trial as suggested by Dr. Robert Powell from the FDA.
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Figure 1.9: Characteristics of Adaptive Designs

1.2.10 Characteristics of Adaptive Designs

Adaptive design is a sequential data-driven approach. It is a dynamic pro-

cess that allows for real-time learning. It is flexible and allows for modifi-

cations to the trial, which make the design cost-efficient and robust against

the failure. Adaptive design is a systematic way to design different phases of

trials, thus streamlining and optimizing the drug development process. In

contrast, the traditional approach is composed of weakly connected phase-

wise processes. Adaptive design is a decision-oriented, sequential learning

process that requires up-front planning and a great deal of collaboration

among the different parties involved in the drug development process. To

this end, Bayesian methodology and computer simulation play important

roles. Finally, the flexibility of adaptive design does not compromise the

validity and integrity of the trial or the development process (Figure 1.9).

Adaptive design methods represent a revolution in pharmaceutical re-

search and development. Using adaptive designs, we can increase the

chances for success of a trial with a reduced cost. Bayesian approaches

provide an ideal tool for optimizing trial designs and development plans.

Clinical trial simulations offer a powerful tool to design and monitor trials.

Adaptive design, the Bayesian approach, and trial simulation combine to

form an ultimate statistical instrument for the most successful drug devel-

opment programs.
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1.3 FAQs about Adaptive Designs

The following questions collected from several journalists from scientific

and technological journals (Nature Biotechnology, BioIT World, Contract

Pharms, etc.) during the interviews eight years ago are still valuable to

discuss today.

1. What is the classification of an adaptive clinical trial? Is there a

consensus in the industry regarding what adaptive trials entail?

After many conferences and discussions, there is more or less a consensus

on the definition of adaptive design. A typical definition is as follows:

An adaptive design is a design that allows modifications to aspects of

the trial after its initiation without undermining the validity and integrity

of the trial. All adaptive designs involve interim analyses and adaptations

or decision making based on the interim results.

There are many ways to classify adaptive designs. The following are

common examples of adaptive trials:

• Sample size reestimation design to increase the probability of success

• Early stopping due to efficacy or futility design to reduce cost and

time

• Response adaptive randomization design to give patients a better

chance of being assigned to superior treatment

• Drop-loser design for adaptive dose finding to reduce sample size by

dropping the inferior treatments earlier

• Add-arm design featuring adaptive selection of treatment groups

(arms) to reduce the exposure and shorten the study

• Adaptive dose escalation design to minimize toxicity while at the same

time acquiring information on maximum tolerated dose

• Adaptive seamless design combining two traditional trials in different

phases into a single trial, reducing cost and time to market

• Biomarker enrichment design to have earlier efficacy or safety readout

to select better target populations or subpopulation

2. What challenges does the adaptive trial model present?

Adaptive designs can reduce time and cost, minimize toxicity, help select

the best dose for the patients, and better target populations. With adaptive

design, we can develop better science for testing new drugs and, in turn,

better science for prescribing them.

There are challenges associated with adaptive design. Statistical meth-

ods are available for most common adaptive designs, but for more compli-

cated adaptive designs, the methodologies are still in development.
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Operationally, an adaptive design often requires real-time or near real-

time data collection and analysis. In this regard, data standardizations,

such as CDISC and electronic data capture (EDC), are very helpful in data

cleaning and reconciliation. Note that not all adaptive designs require per-

fectly clean data at interim analysis, but the cleaner the data are, the more

efficient the design is. Adaptive designs require the ability to rapidly inte-

grate knowledge and experiences from different disciplines into the decision-

making process and, hence, require a shift to a more collaborative working

environment among disciplines.

There is no regulatory guidance for adaptive designs at the moment.

Adaptive trials are reviewed on a case-by-case basis. Naturally there are

fears that a protocol using this innovative approach may be rejected, caus-

ing a delay.

The interim unblinding may potentially cause bias and put the integrity

of the trial at risk. Therefore, the unblinding procedure should be well es-

tablished before the trial starts, and frequent unblinding should be avoided.

Also, unblinding the premature results to the public could jeopardize the

trial.

3. How would adaptive trials affect traditional phases of drug develop-

ment? How are safety and efficacy measured in this type of trial?

Adaptive designs change the way we conduct clinical trials. Trials in dif-

ferent phases can be combined to create a seamless study. The final safety

and efficacy requirements are not reduced because of adaptive designs. In

fact, with adaptive designs, the efficacy and safety signals are collected

and reviewed earlier and more often than in traditional designs. Therefore,

we may have a better chance of avoiding unsafe drug exposure to large

patient populations. A phase-II and -III combined seamless design, when

the trial is carried out to the final stage, has longer-term patient efficacy

and safety data than traditional phase-II, phase-III trials; however, precau-

tions should be taken at the interim decision making when data are not

mature.

4. If adaptive trials become widely adopted, how would it impact clinical

trial materials and the companies that provide them?

Depending on the type of adaptive design, there might be requirements

for packaging and shipping to be faster and more flexible. Quick and accu-

rate efficacy and safety readouts may also be required. The electronic drug

packages with an advanced built-in recording system will be helpful.

If adaptive trials become widely adopted, the drug manufacturers who

can provide the materials adaptively will have a better chance of success.
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5. What are some differences between adaptive trials and the traditional

trial model with respect to the supply of clinical trial materials?

For a traditional or classical design, the amount of material required is

fixed and can be easily planned before the trial starts. However, for some

adaptive trials, the exact amount of required materials is not clear until

later stages of the trial. Also the next dosage for a site may not be fully

determined until the time of randomization; therefore, vendors may need

to develop a better drug distribution strategy.

6. What areas of clinical development would experience cost/time sav-

ings with the adaptive trial model?

Adaptive design can be used in any phase, even in the preclinical and

discovery phases. Drug discovery and development is a sequence of decision

processes. The traditional paradigm breaks this into weakly connected

fragments or phases. An adaptive approach will eventually be utilized for

the whole development process to get the right drug to the right patient at

the right time.

Adaptive design may require fewer patients, less trial material, some-

times fewer lab tests, less work for data collection, and fewer data queries

to be resolved. However, an adaptive trial requires much more time during

up-front planning and simulation studies.

7. What are some of the regulatory issues that need to be addressed for

this type of trial?

Regulatory documents related to the adaptive clinical trials were issued

between 2007 to 2012. They are

(1) European Medicines Agency (EMEA)—Reflection Paper on Method-

ological Issues in Confirmatory Clinical Trials Planned with an Adap-

tive Design (October 2007)

(2) U.S. Food and Drug Administration (FDA)—Draft Guidance—

Guidance for Industry Adaptive Design Clinical Trials for Drugs and

Biologics (February 2010)

(3) U.S. Food and Drug Administration (FDA)—Guidance for the Use of

Bayesian Statistics in Medical Device Clinical Trials (February 2010)

(4) U.S. Food and Drug Administration (FDA)—Draft Guidance—

Guidance for Industry on Enrichment Strategies for Clinical Trials to

Support Approval of Human Drugs and Biological Products (December

2012)

If the adaptive design is submitted with solid scientific support and

strong ethical considerations and is operationally feasible, there should not
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be any fears of rejection of such a design. On the other hand, with a signifi-

cant increase in adaptive trials in NDA submissions, regulatory bodies may

face a temporary shortage of resources for reviewing such designs. Adap-

tive designs are relatively new to the industry and to regulatory bodies;

therefore, there is a lot to learn by doing them. For this reason, it is a good

idea to start with adaptive designs in earlier stages of drug development.

1.4 Roadmap

Chapter 2, Classical Design: The classical design and issues raised from

the traditional approaches are reviewed. The statistical design methods

discussed include one- and two-group designs, multiple-group dose-response

designs, as well as equivalence and noninferiority designs.

Chapter 3, Theory of Hypothesis-Based Adaptive Design: Unified the-

ory for adaptive designs, which covers four key statistical elements in adap-

tive designs: stopping boundary, adjusted p-value, point estimation, and

confidence interval is introduced. Discuss how different approaches can be

developed under this unified theory and what the common adaptations are.

Chapter 4, Method with Direct Combination of p-values: Using the

unified formulation discussed in Chapter 3, the method with an individual

stagewise p-value and the methods with the sum and product of the stage-

wise p-values are discussed in detail for two-stage adaptive designs. Trial

examples and step-by-step instructions are provided.

Chapter 5, Method with Inverse-Normal p-values: The inverse-normal

method generalizes the classical group sequential method. The method

can also be viewed as weighted stagewise statistics and includes several

other methods as special cases. Mathematical formulations are derived and

examples are provided regarding how to use the method for designing a

trial.

Chapter 6, Adaptive Noninferiority Design with Paired Binary Data:

Classical and adaptive noninferiority designs with paired binary data are

discussed. Examples of sensitivity and specificity studies are provided.

Chapter 7, Adaptive Design with Incomplete Paired Data: When par-

tial paired data is missing, the trial data become a mixture of paired and

unpaired data. We discuss how to design an adaptive trial to consider

missing paired data.

Chapter 8, K-Stage Adaptive Designs: Chapters 4 and 5 are mainly

focused on two-stage adaptive designs because these designs are simple and

usually have a closed-form solution. In Chapter 8, we use analytical and
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simulation approaches to generalize the methods to K-stage designs using

analytical methods, SAS macros, and R functions.

Chapter 9, Conditional Error Function Method and Conditional Power:

The conditional error function method is a very general approach. We

discuss in particular the Proschan-Hunsberger method and the Muller-

Schafer method. We will compare the conditional error functions for various

other methods and study the relationships between different adaptive design

methods through the conditional error functions and conditional power.

Chapter 10, Recursive Adaptive Design: The recursive two-stage adap-

tive design not only offers a closed-form solution for K-stage designs, but

also allows for very broad adaptations. We first introduce two powerful

principles, the error-spending principle and the conditional error princi-

ple, from which we further derive the recursive approach. Examples are

provided to illustrate the different applications of this method.

Chapter 11, Unblinded Sample-Size Reestimation Design: This chap-

ter is devoted to the commonly used adaptation, unblinded sample-size

reestimation. Various sample-size reestimation methods are evaluated and

compared. The goal is to demonstrate a way to evaluate different meth-

ods under different conditions and to optimize the trial design that fits a

particular situation. Practical issues and concerns are also addressed.

Chapter 12, Blinded and Semi-Blinded Sample-Size Reestimation De-

sign: In contrast to unblinded analysis, in this chapter we will discuss

the sample-size reestimation without unblinding the treatment code. We

will first discuss different methods to estimate the treatment effect without

unblinding the randomization code, then discuss the different sample-size

reestimation methods. Finally we will see an effective sample size reesti-

mation method with a mixture of blinded and unblinded methods.

Chapter 13, Adaptive Design with Coprimary Endpoint: We will discuss

how to control type-I error in an adaptive trial with coprimary endpoints,

the stopping boundary, the power, and the conditional power, from both

analytically and simulation perspective. R-functions are provided.

Chapter 14, Multiple-Endpoint Adaptive Design: One of the most chal-

lenging issues is the multiple-endpoint analysis with adaptive design. We

will briefly review the multiplicity issues and commonly used methods in

classical trials. Then motivated by an actual adaptive design in an oncol-

ogy trial, we will discuss the methods for the multiple-endpoint issues with

coprimary endpoints in adaptive trials.

Chapter 15, Pick-the-Winners Design: We will first discuss the oppor-

tunities for phase-II and -III trials combinations. Two adaptive design
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methods will be discussed, the common pick-the-winner design and the

adaptive Dunnett test.

Chapter 16, The Add-Arm Design for Unimodal Response: In a classi-

cal drop-loser (or drop-arm) design, patients are randomized into all arms

(doses) and at the interim analysis, inferior arms are dropped. Therefore,

compared to the traditional dose-finding design, this adaptive design can

reduce the sample size by not carrying over all doses to the end of the trial

or by dropping the losers earlier. However, given a unimodal response, we

discuss a more efficient design, the add-arm design.

Chapter 17, Biomarker-Enrichment Design: In this chapter, adaptive

design methods are developed for classifier, diagnosis, and predictive mark-

ers. SAS macros have been developed for biomarker-adaptive designs. The

improvement in efficiency is assessed for difference methods in different

scenarios.

Chapter 18, Biomarker-Informed Adaptive Design: The conventional

approach uses the patient-level correlation model, together with historical

knowledge, to describe the relationship between the biomarker and the

primary endpoint. However, this approach ignores the important factor in

the relationship between the mean of biomarker response and the primary

endpoint; without this consideration, the models turn out to have little

effect of biomarker on the primary endpoint. In this chapter, we will discuss

a more advanced method that will incorporate the relationships at patient

level and the aggregate level.

Chapter 19, Survival Modeling and Adaptive Treatment Switching:

Response-adaptive treatment switching and crossover are statistically chal-

lenging. Treatment switching is not required for the statistical efficacy of

a trial design; rather, it is motivated by an ethical consideration. Sev-

eral methods are discussed, including the time-dependent exponential, the

mixed exponential, and a mixture of Wiener models.

Chapter 20, Response-Adaptive Allocation Design: Response-adaptive

randomizations/allocations have many different applications. They can be

used to reduce the overall sample-size and the number of patients exposed

to ineffective or even toxic regimens. We will discuss some commonly used

adaptive randomizations, such as randomized play-the-winner. The sequen-

tial parallel design with rerandomization is also discussed.

Chapter 21, Introductory Bayesian Approach in Clinical Trial: The

philosophical differences between the Bayesian and frequentist approaches

are discussed. Through many examples, the two approaches are compared

in terms of design, monitoring, analysis, and interpretation of results. More
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importantly, how to use Bayesian decision theory to further improve the

efficiency of adaptive designs is discussed with examples.

Chapter 22, Adaptive Dose-Escalation Trial: The adaptive dose-finding

designs, or dose-escalation designs, are discussed in this chapter. The goals

are to reduce the overall sample size and the number of patients exposed to

ineffective or even toxic regimens and to increase the precision and accuracy

of MTD (maximum tolerated dose) assessment. We will discuss oncology

dose-escalation trials with traditional and Bayesian continual reassessment

methods

Chapter 23, Bayesian Design for Efficacy-Toxicity Trade-off and Drug

Combination: In this chapter, we will study the more complex Bayesian

dose-finding models in two dimensions. Either the outcome has two di-

mensions, efficacy and toxicity, or the treatment has two dimensions, drug

combinations.

Chapter 24, Bayesian Approach to Biosimilarity Trial: Unlike small

molecule drug products, for which we can make generic versions that con-

tain the exact same active ingredient as the brand-name drug, biological

drugs, such as protein, are large molecule products that are generally pro-

duced using a living system or organism, and may be manufactured through

biotechnology, derived from natural sources, or produced synthetically. Fol-

lowing the FDA’s stepwise totality evidence approach, we will discuss sta-

tistical methods and designs that combine different sources of information

to provide the totality of the evidence for biosimilar drug approval.

Chapter 25, Adaptive Multiregional Trial Design: A global multire-

gional clinical trial (MRCT) is an international clinical trial conducted in

multiple countries with a uniform study protocol. Its goal is to get the

drug approval in multiple countries. We will discuss some regulatory re-

quirements, optimal adaptive MRCT design, and the Bayesian approach.

Chapter 26, SAS and R Modules for Group Sequential Design: We in-

troduce the SAS procedures for group sequential designs and discuss simple

examples.

Chapter 27, Data Analysis of Adaptive Trial: Data analyses of an adap-

tive trial include point and confidence parameter estimates, and adjusted

p-values. We discuss the controversial issues surrounding these topics and

different types of biases and their adjustments.

Chapter 28, Planning, Execution, Analysis, and Reporting: In this

chapter, we discuss the logistic issues with adaptive designs. The topics

cover planning, monitoring, analysis, and reporting for adaptive trials. It

also includes the most concurrent regulatory views and recommendations.
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Chapter 29, Debates in Adaptive Designs: We will present very broad

discussions of the challenges and controversies presented by adaptive de-

signs from philosophical and statistical perspectives.

Appendix A: Random Number Generation

Appendix B: A Useful Utility

Appendix C: SAS Macros for Add-Arm Designs

Appendix D: Implementing Adaptive Designs in R

Computer Programs

Most adaptive design methods have been implemented and tested in

SAS version 9, and major methods have also been implemented in R. These

computer programs are compact (often fewer than 50 lines of SAS code)

and ready to use. For convenience, electronic versions of the programs have

been made available at www.statisticians.org.

The SAS code is enclosed in >>SAS Macro x.x>> and <<SAS<<

or in >>SAS>> and <<SAS<<. R programs are presented in Appendix

B.
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Problems

1.1 What are the main differences between classical clinical trial design

and adaptive trial design?

1.2 Describe the objectives of different adaptive designs and when dif-

ferent types of adaptive designs should be used.

1.3 What challenges may we face when we adopt the adaptive design?

Provide some examples for which a classical instead of an adaptive design

should be used.
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Chapter 2

Classical Design

2.1 Overview of Drug Development

Pharmaceutical medicine uses all the scientific, clinical, statistical, regula-

tory, and business knowledge available to provide a challenging and reward-

ing career. On average, it costs about $1.8 billion to take a new compound

to market and only one in 10,000 compounds ever reaches the market.

There are three major phases of drug development: (1) preclinical research

and development, (2) clinical research and development, and (3) after the

compound is on the market, a possible “post-marketing” phase.

The preclinical phase represents bench work (in vitro) followed by an-

imal testing, including kinetics, toxicity, and carcinogenicity. An inves-

tigational new drug application (IND) is submitted to the FDA seeking

permission to begin the heavily regulated process of clinical testing in hu-

man subjects. The clinical research and development phase, representing

the time from the beginning of human trials to the new drug application

(NDA) submission that seeks permission to market the drug, is by far the

longest portion of the drug development cycle and can last from 2 to 10

years (Tonkens, 2005).

Clinical trials are usually divided into three phases. The primary objec-

tives of phase I are (1) to determine the metabolism and pharmacological

activities of the drug, the side effects associated with increasing dose, and

early evidence of effectiveness, and (2) to obtain sufficient information re-

garding the drug’s pharmacokinetics and pharmacological effects to permit

the design of well-controlled and scientifically valid phase-II clinical stud-

ies (21 CFR 312.21). Unless it is an oncology study, where the maximum

tolerated dose (MTD) is primarily determined by a phase-I dose-escalation

study, the dose-response or dose-finding study is usually conducted in phase

II, and efficacy is usually the main focus. The choice of study design and

23
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study population in a dose-response trial will depend on the phase of de-

velopment, therapeutic indication under investigation, and severity of the

disease in the patient population of interest (ICH Guideline E4, 1994).

Phase-III trials are considered confirmative trials.

The FDA does not actually approve the drug itself for sale. It approves

the labeling, the package insert. United States law requires truth in label-

ing, and the FDA ensures that claims that a drug is safe and effective for

treatment of a specified disease or condition have, in fact, been proven. All

prescription drugs must have labels, and without proof of the truth of its

label, a drug may not be sold in the United States.

In addition to mandated conditional regulatory approval and post-

marketing surveillance trials, other reasons sponsors may conduct post-

marketing trials include comparing their drug with that of competitors,

widening the patient population, changing the formulation or dose regi-

men, or applying a label extension. A simplified view of the NDA is shown

in Figure 2.1 (Tonkens, 2005).

Figure 2.1: A Simplified View of the NDA

In classical trial designs, power and sample-size calculations are a major

task. The sample-size calculations for two-group designs have been studied

by many scholars, among them Julious (2004), Chow, Shao, and Wang

(2003), Machin, et al. (1997), Campbell, Julious, and Altman (1995), and

Lachin and Foukes (1986).

In what follows, we will review a unified formulation for sample-size cal-

culation in classical two-arm designs including superiority, noninferiority,
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and equivalence trials. We will also discuss some important concepts and

issues with the designs that are often misunderstood. We will first discuss

two-group superiority and noninferiority designs in Section 2.2. Equiv-

alence studies will be discussed in Section 2.3. Three different types of

equivalence studies (average, population, and individual equivalences) are

reviewed. We will discuss dose-response studies in Section 2.4. The sample-

size calculations for various endpoints are provided based on the contrast

test.

2.2 Two-Group Superiority and Noninferiority Designs

2.2.1 General Approach to Power Calculation

When testing a null hypothesis H0 : ε ≤ 0 against an alternative hypothesis

Ha : ε > 0, where ε is the treatment effect (difference in response), the

type-I error rate function is defined as

α(ε) = Pr {reject H0 when H0 is true} .

Note: alternatively, the type-I error rate can be defined as sup
ε∈H0

{α(ε)}.

Similarly, the type-II error rate function β is defined as

β(ε) = Pr {fail to reject H0 when Ha is true} .

For hypothesis testing, knowledge of the distribution of the test statis-

tic under H0 is required. For sample-size calculation, knowledge of the

distribution of the test statistic under a particular Ha is also required. To

control the overall type-I error rate at level a constant level α∗ under any

point of the H0 domain, the condition α(ε) ≤ α∗ for all ε ≤ 0 must be

satisfied, where α∗ is a threshold that is usually larger than 0.025 unless it

is a phase-III trial. If α(ε) is a monotonic function of ε, then the maximum

type-I error rate occurs when ε = 0, and the rejection region should be

derived under this condition (for this reason we will simply use constant

α instead of α∗). For example, for the null hypothesis H0 : µ2 − µ1 ≤ 0,

where µ1 and µ2 are the means of the two treatment groups, the maxi-

mum type-I error rate occurs on the boundary of H0 when µ2 − µ1 = 0.

Let T = µ̂2−µ̂1

σ̂ , where µ̂i and σ̂ are the sample mean and pooled sample

standard deviation, respectively. Further, let Φo(T ) denote the cumulative

distribution function (cdf) of the test statistic on the boundary of the null

hypothesis domain, and let Φa(T ) denote the cdf under Ha. Given this

information, under the large sample assumption, Φo(T ) is the cdf of the


