Taylor & Francis Series in Remote Sensing Applications Qihao Weng, Series Editor

Remote Sensing of Impervious Surfaces in Tropical and Subtropical Areas

Hongsheng Zhang • Hui Lin Yuanzhi Zhang • Qihao Weng

Remote Sensing of Impervious Surfaces in Tropical and Subtropical Areas

Taylor & Francis Series in Remote Sensing Applications

Series Editor

Qihao Weng

Indiana State University Terre Haute, Indiana, U.S.A.

Remote Sensing of Impervious Surfaces in Tropical and Subtropical Areas, Hui Lin, Yuanzhi Zhang, and Qihao Weng

Global Urban Monitoring and Assessment through Earth Observation, *edited by Qihao Weng*

Remote Sensing of Natural Resources, edited by Guangxing Wang and Qihao Weng

Remote Sensing of Land Use and Land Cover: Principles and Applications, *Chandra P. Giri*

Remote Sensing of Protected Lands, edited by Yeqiao Wang

Advances in Environmental Remote Sensing: Sensors, Algorithms, and Applications, *edited by Qihao Weng*

Remote Sensing of Coastal Environments, edited by Qihao Weng

Remote Sensing of Global Croplands for Food Security, edited by Prasad S. Thenkabail, John G. Lyon, Hugh Turral, and Chandashekhar M. Biradar

Global Mapping of Human Settlement: Experiences, Data Sets, and Prospects, *edited by Paolo Gamba and Martin Herold*

Hyperspectral Remote Sensing: Principles and Applications, *Marcus Borengasser, William S. Hungate, and Russell Watkins*

Remote Sensing of Impervious Surfaces, edited by Qihao Weng

Multispectral Image Analysis Using the Object-Oriented Paradigm, Kumar Navulur

Remote Sensing of Impervious Surfaces in Tropical and Subtropical Areas

Hongsheng Zhang Hui Lin Yuanzhi Zhang Qihao Weng

CRC Press is an imprint of the Taylor & Francis Group, an **informa** business

CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742

© 2016 by Taylor & Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works Version Date: 20150702

International Standard Book Number-13: 978-1-4822-5486-0 (eBook - PDF)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at http://www.taylorandfrancis.com

and the CRC Press Web site at http://www.crcpress.com

Contents

List	of Fig	gures			ix
List	of Tal	oles			xiii
Prefa	ace				xvii
Ackı	nowle	edgmer	ıts		xxiii
List	of Ab	breviat	ions		xxv
1.	Intro	ductior	۱		1
	1.1	Resear	ch Backg	round	1
	1.2	Signifi	cance of	Impervious Surface	3
		1.2.1	Environ	mental Significance	4
			1.2.1.1	Hydrological Impacts	4
			1.2.1.2	Urban Heat Islands	5
		1.2.2	Socioeco	onomic Significance	6
	1.3	Challe	nges of I	SE	7
		1.3.1	Land Co	over Diversity and Spectral Confusion Issues	s7
		1.3.2	Scale Ef	fects	7
		1.3.3	Influence	e from Climatology and Phenology	9
			1.3.3.1	Humid Subtropical Climate	9
			1.3.3.2	Humid Subtropical Phenology	10
			1.3.3.3	Seasonal Effects from Climatology	
				and Phenology	10
		1.3.4	Multise	nsor Fusion	11
	1.4	Object	ives and	Significance	12
	1.5	Órgan	ization o	f This Book	13
2	Imno	wione	Surface	Estimation Using Pomoto Sonsing	15
Z.	1111pe 2 1	Over	Surface I	e Methodology	15
4	2.1 2.2	ICE LIG	iew of the	e Nethodology	13
4	2.2	13E US	Spootrol	Mixture Analysis	10
		2.2.1	2 2 1 1	Endmomber Selection	10
			2.2.1.1	Linear Spectral Mixture Model	10
			2.2.1.2	and Exaction Imagos	17
			2212	Importation Surface Estimation	1/
		222	2.2.1.3	impervious Surface Estimation	10
		2.2.2	Normal	NDICI	19
			2.2.2.1	NDISI	19
		222	Z.Z.Z.Z	DCI	
		2.2.3	Artificia	in Neural Network (Multilayer Perceptron	01
			and Self	-Organizing Map)	
			2.2.3.1	Multilayer Perceptron	
			2.2.3.2	50M	23

		2.2.4	Support Vector Machine	24
		2.2.5	Classification and Regression Tree	26
		2.2.6	Object-Oriented Analysis	27
		2.2.7	Multiprocess Classification Model	28
	2.3	ISE U	sing Multiple Data Sources	28
		2.3.1	Optical and Lidar Data	28
		2.3.2	Optical and SAR Data Using Random Forest	29
	2.4	Concl	usion	31
3.	Met	hodolog	gy of Combining Optical and SAR Data	33
	3.1	Study	Area	33
		3.1.1	Site A: Guangzhou	33
		3.1.2	Site B: Shenzhen	35
		3.1.3	Site C: Hong Kong	35
		3.1.4	Site D: Sao Paulo	36
		3.1.5	Site E: Mumbai	37
		3.1.6	Site F: Cape Town	38
	3.2	Satelli	ite Data	38
		3.2.1	Landsat ETM+	38
		3.2.2	SPOT-5	39
		3.2.3	ENVISAT ASAR	39
		3.2.4	TerraSAR-X	40
	3.3	Digita	al Orthophoto Data	40
	3.4	In Sitı	ı Data	40
	3.5	Frame	ework of Methods	42
		3.5.1	Per-Pixel Modeling of Impervious Surfaces	42
		3.5.2	Investigation of Seasonal Effects	44
		3.5.3	Feature Extraction	45
			3.5.3.1 Conventional Feature Extraction	45
			3.5.3.2 SAN Feature Extraction	46
		3.5.4	Fusing the Optical and SAR Data	52
		3.5.5	Result Validation and Accuracy Assessment	53
	3.6	Concl	usion	53
4.	Impa	act of C	Climate Zone on Impervious Surface Estimation and	
	Map	ping		55
	4.1	Introc	luction	55
	4.2	Datas	ets and Methodology	56
	4.3	Resul	ts and Discussion	58
		4.3.1	Guangzhou	58
		4.3.2	Mumbai	61
		4.3.3	Sao Paulo	65
		4.3.4	Cape Town	70
	4.4	Discu	ssion	74
	4.5	Concl	usion	77

5.	Asses	ssing tl	he Urban Land Cover Complexity	79
	5.1	Introd	uction	79
	5.2	Datase	ets and Methodology	79
	5.3	Result	s and Discussion	80
		5.3.1	Guangzhou	80
		5.3.2	Mumbai	
		5.3.3	Sao Paulo	
		5.3.4	Cape Town	85
	5.4	Conclu	usion	
6.	Com	parativ	e Studies with Different Image Data and Fusior	ı
	Meth	ods		
	6.1	Comp	arison of ISE with Single Optical and SAR Data	
		6.1.1	Parameter Configurations of ANN and SVM	
			for Optical Data	
		6.1.2	Parameter Configurations of ANN and SVM	
			for SAR Data	90
		6.1.3	Comparative Results of ISE	92
			6.1.3.1 Guangzhou	92
			6.1.3.2 Mumbai	94
			6.1.3.3 Sao Paulo	96
			6.1.3.4 Cape Town	99
		6.1.4	Discussion and Implications	
	6.2	Comp	arison of Different Levels of Fusion Strategies	101
		6.2.1	Feature Extraction from Optical and SAR Data	
		6.2.2	Fusion Strategies at Different Levels	
		6.2.3	Fusion Results on Different Levels	
			6.2.3.1 Shenzhen	
			6.2.3.2 Mumbai	
			6.2.3.3 Sao Paulo	
			6.2.3.4 Cape Town	107
		6.2.4	Comparisons of the Accuracy Assessment	
		6.2.5	Discussion and Implications	111
	6.3	Comp	arison of Different Image Features	112
		6.3.1	Experiment Design	112
		6.3.2	Results of Feature Extractions	113
			6.3.2.1 Features of Optical Images	113
			6.3.2.2 Features of SAR Images	119
		6.3.3	ISE and Comparisons	
			6.3.3.1 LULC Classification	
			6.3.3.2 ISE	
		6.3.4	Discussion and Implications	

		101		
7. In-Depth Study: ISE Using Optical and SAK Data				
7.1 Introduction				
7.2 Study Areas and Datasets				
7.2.1	Study Areas	132		
7.2.2	Satellite Data and Coregistration	133		
Featu	re Extraction of Optical and SAR Data	134		
7.4 Classification Strategy and Accuracy Assessment				
7.5 Optimization of RF				
7.5.1	Determining the Optimal Number of Features			
	in Each Decision Tree	137		
7.5.2	Determining the Optimal Numbers of Decision			
	Trees in the RF	139		
ISE w	ith Optimized Models	141		
Discu	ssion and Implications	146		
clusion	s and Recommendations	149		
Concl	usions	149		
8.1.1	Seasonal Effects of ISE in Tropical and Subtropical			
	Areas	149		
8.1.2	Feature Extraction Methods	150		
0.1.0	reardine Extraction medicate de			
8.1.3	Comparison between Optical and SAR Data	151		
8.1.3 8.1.4	Comparison between Optical and SAR Data Fusion Level and Fusion Methods	151 152		
8.1.3 8.1.4 Futur	Comparison between Optical and SAR Data Fusion Level and Fusion Methods	151 152 152		
8.1.3 8.1.4 Futur 8.2.1	Comparison between Optical and SAR Data Fusion Level and Fusion Methods e Directions Feature Extraction	151 152 152 152		
8.1.3 8.1.4 Futur 8.2.1 8.2.2	Comparison between Optical and SAR Data Fusion Level and Fusion Methods e Directions Feature Extraction Study Area Selection and Design	151 152 152 152 152		
8.1.3 8.1.4 Futur 8.2.1 8.2.2 8.2.3	Comparison between Optical and SAR Data Fusion Level and Fusion Methods e Directions Feature Extraction Study Area Selection and Design Validation with <i>In Situ</i> Data	151 152 152 152 153 153		
8.1.3 8.1.4 Futur 8.2.1 8.2.2 8.2.3 8.2.3	Comparison between Optical and SAR Data Fusion Level and Fusion Methods e Directions Feature Extraction Study Area Selection and Design Validation with <i>In Situ</i> Data Fusion Level and Strategy	151 152 152 152 153 153 153		
8.1.3 8.1.4 Futur 8.2.1 8.2.2 8.2.3 8.2.3 8.2.4 8.2.5	Comparison between Optical and SAR Data Fusion Level and Fusion Methods e Directions Feature Extraction Study Area Selection and Design Validation with <i>In Situ</i> Data Fusion Level and Strategy Fusion Methods	151 152 152 152 153 153 153 153		
8.1.3 8.1.4 Futur 8.2.1 8.2.2 8.2.3 8.2.4 8.2.5	Comparison between Optical and SAR Data Fusion Level and Fusion Methods e Directions Feature Extraction Study Area Selection and Design Validation with <i>In Situ</i> Data Fusion Level and Strategy Fusion Methods	151 152 152 152 153 153 154		
8.1.3 8.1.4 Futur 8.2.1 8.2.2 8.2.3 8.2.4 8.2.5	Comparison between Optical and SAR Data Fusion Level and Fusion Methods e Directions Feature Extraction Study Area Selection and Design Validation with <i>In Situ</i> Data Fusion Level and Strategy Fusion Methods	151 152 152 152 153 153 154 157		
8.1.3 8.1.4 Futur 8.2.1 8.2.2 8.2.3 8.2.4 8.2.5	Comparison between Optical and SAR Data Fusion Level and Fusion Methods e Directions Feature Extraction Study Area Selection and Design Validation with <i>In Situ</i> Data Fusion Level and Strategy Fusion Methods	151 152 152 152 153 153 153 154 157		
	Introc Study 7.2.1 7.2.2 Featur Classi Optim 7.5.1 7.5.2 ISE w Discu nclusion 8.1.1 8.1.2	Introduction		

List of Figures

Figure 1.1	Organization of this book.	14
Figure 2.1	Structure of MLP	22
Figure 2.2	A node in the hidden layers	22
Figure 3.1	Locations of the six cities from four countries in this study	34
Figure 3.2	(a) Landsat ETM+ (RGB: 5-4-3) and (b) ENVISAT ASAR images of the study site in Guangzhou.	34
Figure 3.3	(a) SPOT-5 (RGB: 4-1-2) and (b) ENVISAT ASAR images of the study site located in Shenzhen.	35
Figure 3.4	(a) SPOT-5 (RGB: 3-1-2) and (b) TerraSAR-X images of the study site in Hong Kong	36
Figure 3.5	(a) Landsat TM (RGB: 5-4-3) and (b) ENVISAT ASAR images of the study site in Sao Paulo	36
Figure 3.6	(a) Landsat TM (RGB: 5-4-3) and (b) ENVISAT ASAR images of the study site in Mumbai	37
Figure 3.7	(a) Landsat TM (RGB: 5-4-3) and (b) ENVISAT ASAR images of the study site in Cape Town.	38
Figure 3.8	Image from Google Earth showing the area where field data was collected	41
Figure 3.9	Devices employed for field data collection	41
Figure 3.10	Framework of the methodology of this research.	43
Figure 3.11	Illustration of a SAN of point A	46
Figure 3.12	Optical-SAR fusion for ISE	52
Figure 4.1	Estimation of impervious surfaces in Guangzhou using ANN	59
Figure 4.2	Estimation of impervious surfaces in Guangzhou using SVM	60
Figure 4.3	Estimation of impervious surfaces in Guangzhou using LSMA	62
Figure 4.4	Estimation of impervious surfaces in Mumbai using ANN	63

Figure 4.5	Estimation of impervious surfaces in Mumbai using SVM64
Figure 4.6	Estimation of impervious surfaces in Mumbai using LSMA
Figure 4.7	Estimation of impervious surfaces in Sao Paulo using ANN
Figure 4.8	Estimation of impervious surfaces in Sao Paulo using SVM
Figure 4.9	Estimation of impervious surfaces in Sao Paulo using LSMA
Figure 4.10	Estimation of impervious surfaces in Cape Town using ANN71
Figure 4.11	Estimation of impervious surfaces in Cape Town using SVM72
Figure 4.12	Estimation of impervious surfaces in Cape Town using LSMA
Figure 4.13	Average digital numbers of different land use types in humid areas75
Figure 4.14	Effects of seasonal changes of typical targets76
Figure 5.1	LULC classification in Guangzhou80
Figure 5.2	LULC classification in Mumbai82
Figure 5.3	LULC classification in Sao Paulo
Figure 5.4	LULC classification in Cape Town
Figure 6.1	Impacts of parameter configuration for Landsat imagery90
Figure 6.2	Effects of parameter configuration for ASAR imagery91
Figure 6.3	ANN training RMS with 4000 iterations91
Figure 6.4	ISE using optical and SAR images alone in Guangzhou93
Figure 6.5	ISE using optical and SAR images alone in Mumbai95
Figure 6.6	ISE using optical and SAR images alone in Sao Paulo97
Figure 6.7	ISE using optical and SAR images alone in Cape Town99
Figure 6.8	ISE with optical SAR fusion in Shenzhen 104
Figure 6.9	ISE with optical SAR fusion in Mumbai105
Figure 6.10	ISE with optical SAR fusion in Sao Paulo 107

Figure 6.11	ISE with optical-SAR fusion in Cape Town 108
Figure 6.12	Spectral features of optical images in Hong Kong and Sao Paulo
Figure 6.13	GLCM-based textures of SPOT image in Hong Kong 115
Figure 6.14	GLCM-based textures of SPOT images in Sao Paulo 116
Figure 6.15	SAN-based textures and shape features in Hong Kong 117
Figure 6.16	SAN-based textures and shape features in Sao Paulo
Figure 6.17	GLCM-based textures of TerraSAR-X images in Hong Kong120
Figure 6.18	GLCM-based textures of TerraSAR-X images in Sao Paulo121
Figure 6.19	LULC classification results in Hong Kong123
Figure 6.20	LULC classification results in Sao Paulo
Figure 6.21	ISE by combining LULC subtypes in Hong Kong 126
Figure 6.22	ISE results in Sao Paulo127
Figure 7.1	Impacts of different numbers of variables (or features) in each decision tree
Figure 7.2	Impacts of different numbers of trees in the RF 140

List of Tables

Table 3.1	Definition of the Land Covers Used in This Study	.45
Table 4.1	Landsat Images for Four Study Sites	. 57
Table 4.2	Accuracy Assessment of the Classification Results by ANN	.60
Table 4.3	Accuracy Assessment of the Classification Results by SVM	. 61
Table 4.4	Accuracy Assessment of the Classification Results by LSMA	. 62
Table 4.5	Accuracy Assessment of the Classification Results in Mumbai by ANN	.63
Table 4.6	Accuracy Assessment of the Classification Results in Mumbai by SVM	.65
Table 4.7	Accuracy Assessment of the Classification Results in Mumbai by LSMA	.66
Table 4.8	Accuracy Assessment of the Classification Results in Sao Paulo by ANN	. 67
Table 4.9	Accuracy Assessment of the Classification Results in Sao Paulo by SVM	. 69
Table 4.10	Accuracy Assessment of the Classification Results in Sao Paulo by LSMA	.70
Table 4.11	Accuracy Assessment of the Classification Results in Cape Town by ANN	.71
Table 4.12	Accuracy Assessment of the Classification Results in Cape Town by ANN	.72
Table 4.13	Accuracy Assessment of the Classification Results in Cape Town by LSMA	. 74
Table 5.1	Confusion Matrix of ISE in Guangzhou Using ANN	. 81
Table 5.2	Confusion Matrix of ISE in Guangzhou Using SVM	. 81
Table 5.3	Confusion Matrix of ISE in Mumbai Using ANN	.83
Table 5.4	Confusion Matrix of ISE in Mumbai Using SVM	.83
Table 5.5	Confusion Matrix of ISE in Sao Paulo Using ANN	.84
Table 5.6	Confusion Matrix of ISE in Sao Paulo Using SVM	.85

Table 5.7	Confusion Matrix of ISE in Cape Town Using ANN	6
Table 5.8	Confusion Matrix of ISE in Cape Town Using SVM8	;7
Table 6.1	Datasets of Four Cities for Comparing Optical and SAR Images9	0
Table 6.2	Impervious Surface Estimation in Guangzhou9	14
Table 6.3	Accuracy Assessment of Impervious Surface Estimation in Mumbai9	96
Table 6.4	Accuracy Assessment of Impervious Surface Estimation in Sao Paulo9	98
Table 6.5	Accuracy Assessment of Impervious Surface Estimation in Cape Town10	0
Table 6.6	Datasets of Four Cities for Comparing Different Fusion Levels)2
Table 6.7	Fusion Strategies of Three Different Levels	13
Table 6.8	Comparison of Accuracy Assessment in Shenzhen 10	19
Table 6.9	Comparison of Accuracy Assessment in Mumbai10	19
Table 6.10	Comparison of Accuracy Assessment in Sao Paulo10	19
Table 6.11	Comparison of Accuracy Assessment in Cape Town11	.0
Table 6.12	Datasets of Two Cities for Comparing Different Features 11	.2
Table 6.13	Selection of Feature Measures of Optical and SAR Images 11	2
Table 6.14	Design of Combinational-Level Fusion	.3
Table 6.15	Accuracy Assessment of Different Combinations of Datasets and Features12	25
Table 6.16	Accuracy Assessment of Different Combinations of Dataset and Features12	28
Table 7.1	Datasets of the First Group for Optimization Investigation of the RF Algorithm	3
Table 7.2	Datasets of the Second Group for ISE Using Optimized RF13	3
Table 7.3	Coregistration Design between Optical and SAR Images 13	4
Table 7.4	Number of Bands and Features for the First Group of Datasets	55
Table 7.5	Number of Features for the Second Group of Datasets13	5

Table 7.6	Parameter Settings for the Number of Features (<i>m</i>) and Decision Trees (<i>T</i>)	141
Table 7.7	Confusion Matrices for Urban Land Cover Classification (ASAR)	142
Table 7.8	Confusion Matrices for Urban Land Cover Classification (TSX)	143
Table 7.9	Confusion Matrices for Impervious Surface Mapping	145

Preface

Remote Sensing for Urbanization in Tropical and Subtropical Regions—Why and What Matters?

The twenty-first century is the first "urban century" according to the United Nations Development Program. Although urbanized land currently covers only approximately 2% of global land area, more than half of the world's population live in the urban environment. By 2030, urbanized areas will expand to provide homes for 81% of the world's population, with the majority of the population increase coming from developing countries. Thus, there is a rapidly growing need for technologies that will allow for the monitoring of the world's urban assets and management of the exposure to natural and manmade risks. This need is further driven by increased concern over global climate change. Geographically, most developed countries are located in the tropical and subtropical regions. The continued urbanization in the tropical and subtropical regions has an important implication in biodiversity, the well-being of tropical rainforest ecosystem, and global climate change.

A characteristic change associated with urbanization is the expansion of impervious surface. Satellite remote sensing provides the only viable option to detect and monitor impervious surface from space in an efficient, affordable, and timely manner. Numerous previous studies have utilized satellite imagery of different spatial resolutions to estimate and map impervious surface (Weng 2012). The nightlight derived from the DMSP OLS and MODIS land cover products was used to produce the global urban dataset at 1 km resolution (Elvidge et al. 1997; Imhoff et al. 1997; Friedl et al. 2002; Schneider et al. 2003; Zhou et al. 2014). Global urban maps at coarse resolution can cover large areas and also be updated frequently. However, due to the complexity of urban landscapes and inherent resolution of human activities, coarseresolution global urban maps are difficult to use for many applications at local to regional scales (Small 2003). Medium-resolution satellite imagery possesses unique advantages in mapping urban areas more accurately. Sensors on board the Landsat series of satellites have been providing Earth observation data continuously since the early 1970s (Townshend et al. 1991; Loveland and Shaw 1996), which have been applied in numerous urbanization studies at the local, regional, and continental scales (Seto et al. 2002; Jantz et al. 2005; Schneider et al. 2005). As part of the National Land Cover Dataset, impervious surface maps were produced for the United States from Landsat data for 2006 and 2011 (Xian et al. 2011). However, the majority of previous urban land cover and land use studies tended to focus on a single image at one time (Schneider et al. 2003). Applications using Landsat data are surging due to the availability of free Landsat data from the US Geological Survey since 2008 (Woodcock et al. 2008). New methods and techniques are being developed to utilize abundant medium-resolution images and produce consistent maps for monitoring urban expansion (Sexton et al. 2013; Zhu and Woodcock 2014). The Landsat time-series data will also allow for more detailed studies to determine the impacts of urbanization on energy, water, carbon cycles, vegetation phenology, and surface climate (Weng and Fu 2014).

Continuity of medium-resolution data is critical for monitoring land use and land cover changes worldwide. However, the failure of the Scan-Line Corrector on board the Landsat 7 satellite in 2003 caused a loss of 25% of the data toward the edges of each image; Landsat 5 suspended operations in November 2011. Although Landsat-8 OLI data was available after 2013, maintaining the continuity of Landsat-like data is precarious. This situation highlights the need to combine the capabilities of existing and future international sensors to provide a more robust observational record (Weng et al. 2014). When considering international satellite missions such as Sentinel, CBERS-2, and IRS, the rich source of medium-resolution remotely sensed data suggests that we may now move urban mapping from the local and regional, to the global scale. Despite the great potential for the combined use of existing and future medium-resolution imagery, many issues deserve to be studied further, including cross-sensor comparison and normalization (Schroeder et al. 2006; Wulder et al. 2008), multisensor fusion (Gao et al. 2006; Weng et al. 2014), and utilization of full suite of Landsat-like data for any location and date (Powell et al. 2007; Gao et al. 2012). Significant challenges remain for mapping urbanization over large areas, in terms of validation and systematically processing data from multiple times, various sources/instruments, and different seasons (Gao et al. 2012).

In the tropical and subtropical regions, remote sensing of urban environment faces more challenges than in the temperate zones due to all-yearround cloudy and rainy climate conditions, complex hydrological systems that often display a strong seasonal change in water surface area, and vegetation phenology and morphological and species complexity. Optical data frequently show their weakness in remote sensing in the tropical and subtropical regions, which prompts researchers to use different sources of imagery from microwave remote sensing. Synthetic aperture radar (SAR), for instance, was widely employed previously to provide complementary information to optical imagery because it works on all-weather conditions, free from the influence of clouds and rains. Previous studies show that SAR is very sensitive to ground surface roughness, shape, structure, and dielectric properties of illuminated ground targets (Henderson and Xia 1997).