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Green’s Functions with Applications, Second Edition Dean G. Duffy

Introduction to Financial Mathematics Kevin J. Hastings

Linear and Integer Optimization: Theory and Practice, Third Edition      
   Gerard Sierksma and Yori Zwols

Markov Processes James R. Kirkwood

Pocket Book of Integrals and Mathematical Formulas, 5th Edition 
   Ronald J. Tallarida 

Stochastic Partial Differential Equations, Second Edition Pao-Liu Chow



Advances in Applied Mathematics

CRC  
Standard Curves  

and Surfaces  
with Mathematica®  

Third Edition

David H. von Seggern

University of Nevada
Reno, Nevada, USA



CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2016 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works
Version Date: 20160219

International Standard Book Number-13: 978-1-4822-5022-0 (eBook - PDF)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been 
made to publish reliable data and information, but the author and publisher cannot assume responsibility for the valid-
ity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright 
holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this 
form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may 
rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or uti-
lized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopy-
ing, microfilming, and recording, or in any information storage or retrieval system, without written permission from the 
publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://
www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 
978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For 
organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for 
identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

http://www.taylorandfrancis.com
http://www.crcpress.com
http://www.copyright.com
http://www.copyright.com/
http://www.copyright.com/


Contents

Preface to the Third Edition xi

Author xiii

1 Introduction 1
1.1 Concept of a Curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Concept of a Surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Coordinate Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Cartesian Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Polar Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Cylindrical Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Spherical Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Qualitative Properties of Curves and Surfaces . . . . . . . . . . . . . . . . 5
Derivative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Extent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Asymptotes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Periodicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Continuity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Singular Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Critical Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Zeroes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Integrability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Multiple Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Curvature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.5 Classification of Curves and Surfaces . . . . . . . . . . . . . . . . . . . . . 12
Algebraic Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Transcendental Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Integral Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Piecewise Continuous Functions . . . . . . . . . . . . . . . . . . . . . . . . . 14
Classification of Surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.6 Basic Curve and Surface Operations . . . . . . . . . . . . . . . . . . . . . . 15
Translation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Linear Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Reflection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Rotational Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Radial Translation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Weighting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Nonlinear Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Shear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Matrix Method for Transformation . . . . . . . . . . . . . . . . . . . . . . . 18

1.7 Method of Presentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

v



vi Contents

Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2 Algebraic Functions 23
2.0 Plotting Information for This Chapter . . . . . . . . . . . . . . . . . . . . . 23
2.1 Functions with xn/m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.2 Functions with xn and (a+ bx)m . . . . . . . . . . . . . . . . . . . . . . . . 26
2.3 Functions with (a2 + x 2) and xm . . . . . . . . . . . . . . . . . . . . . . . 42
2.4 Functions with (a2 − x 2) and xm . . . . . . . . . . . . . . . . . . . . . . . 46
2.5 Functions with (a3 + x 3) and xm . . . . . . . . . . . . . . . . . . . . . . . 50
2.6 Functions with (a3 − x 3) and xm . . . . . . . . . . . . . . . . . . . . . . . 54
2.7 Functions with (a4 + x 4) and xm . . . . . . . . . . . . . . . . . . . . . . . 57
2.8 Functions with (a4 − x 4) and xm . . . . . . . . . . . . . . . . . . . . . . . 60
2.9 Functions with

√
a + bx and xm . . . . . . . . . . . . . . . . . . . . . . . . 63

2.10 Functions with
√
a2 − x 2 and xm . . . . . . . . . . . . . . . . . . . . . . . 71

2.11 Functions with
√
x2 − a2 and xm . . . . . . . . . . . . . . . . . . . . . . . 76

2.12 Functions with
√
a2 + x 2 and xm . . . . . . . . . . . . . . . . . . . . . . . 80

2.13 Miscellaneous Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
2.14 Functions Expressible in Polar Coordinates . . . . . . . . . . . . . . . . . . 93
2.15 Functions Expressed Parametrically . . . . . . . . . . . . . . . . . . . . . . 96

3 Transcendental Functions 97
3.0 Plotting Information for This Chapter . . . . . . . . . . . . . . . . . . . . . 97
3.1 Functions with sinn(2πax) and cosm(2πbx)(n,m integers) . . . . . . . . . . 97
3.2 Functions with 1 ± sinn (2πax) and 1 ± cosm(2πbx) . . . . . . . . . . . . . 106
3.3 Functions with c sinn (ax) + d cosm(bx) . . . . . . . . . . . . . . . . . . . . 115
3.4 Functions of More Complicated Arguments . . . . . . . . . . . . . . . . . . 118
3.5 Inverse Trigonometric Functions . . . . . . . . . . . . . . . . . . . . . . . . 122
3.6 Logarithmic Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
3.7 Exponential Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
3.8 Hyperbolic Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
3.9 Inverse Hyperbolic Functions . . . . . . . . . . . . . . . . . . . . . . . . . . 141
3.10 Trigonometric Combined with Exponential Functions . . . . . . . . . . . . 144
3.11 Trigonometric Functions Combined with Powers of x . . . . . . . . . . . . 146
3.12 Logarithmic Functions Combined with Powers of x . . . . . . . . . . . . . 154
3.13 Exponential Functions Combined with Powers of x . . . . . . . . . . . . . . 159
3.14 Hyperbolic Functions Combined with Powers of x . . . . . . . . . . . . . . 164
3.15 Combined Trigonometric Functions, Exponential Functions, and Powers

of x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
3.16 Miscellaneous Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
3.17 Functions Expressible in Polar Coordinates . . . . . . . . . . . . . . . . . . 175
3.18 Functions Expressible Parametrically . . . . . . . . . . . . . . . . . . . . . 188

4 Polynomial Sets 193
4.0 Plotting Information for This Chapter . . . . . . . . . . . . . . . . . . . . . 193
4.1 Orthogonal Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
4.2 Nonorthogonal Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199



Contents vii

5 Special Functions in Mathematical Physics 201
5.0 Plotting Information for This Chapter . . . . . . . . . . . . . . . . . . . . . 201
5.1 Exponential and Related Integrals . . . . . . . . . . . . . . . . . . . . . . . 201
5.2 Sine and Cosine Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
5.3 Gamma and Related Functions . . . . . . . . . . . . . . . . . . . . . . . . . 208
5.4 Error Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
5.5 Fresnel Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
5.6 Legendre Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
5.7 Bessel Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
5.8 Modified Bessel Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
5.9 Kelvin Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
5.10 Spherical Bessel Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
5.11 Modified Spherical Bessel Functions . . . . . . . . . . . . . . . . . . . . . . 223
5.12 Airy Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
5.13 Riemann Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
5.14 Parabolic Cylinder Functions . . . . . . . . . . . . . . . . . . . . . . . . . . 228
5.15 Elliptic Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
5.16 Jacobi Elliptic Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235

6 Green’s Functions and Harmonic Functions 237
6.0 Plotting Information for This Chapter . . . . . . . . . . . . . . . . . . . . . 238
6.1 Green’s Function for the Poisson Equation . . . . . . . . . . . . . . . . . . 238
6.2 Green’s Function for the Wave Equation . . . . . . . . . . . . . . . . . . . 246
6.3 Green’s Function for the Diffusion Equation . . . . . . . . . . . . . . . . . 250
6.4 Green’s Function for the Helmholtz Equation . . . . . . . . . . . . . . . . . 255
6.5 Miscellaneous Green’s Functions . . . . . . . . . . . . . . . . . . . . . . . . 260
6.6 Harmonic Functions: Solutions to Laplace’s Equation . . . . . . . . . . . . 262
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265

7 Special Functions in Probability and Statistics 267
7.0 Plotting Information for This Chapter . . . . . . . . . . . . . . . . . . . . . 267
7.1 Discrete Probability Densities . . . . . . . . . . . . . . . . . . . . . . . . . 267
7.2 Continuous Probability Densities . . . . . . . . . . . . . . . . . . . . . . . . 271
7.3 Sampling Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281

8 Laplace Transforms 285
8.0 Plotting Information for This Chapter . . . . . . . . . . . . . . . . . . . . . 285
8.1 Elementary Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285
8.2 Algebraic Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288
8.3 Exponential Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291
8.4 Trigonometric Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297

9 Nondifferentiable and Discontinuous Functions 299
9.0 Plotting Information for This Chapter . . . . . . . . . . . . . . . . . . . . . 299
9.1 Functions with a Finite Number of Discontinuities . . . . . . . . . . . . . . 299
9.2 Functions with an Infinite Number of Discontinuities . . . . . . . . . . . . 302
9.3 Functions with a Finite Number of Discontinuities in First Derivative . . . 305
9.4 Functions with an Infinite Number of Discontinuities in First Derivative . . 307



viii Contents

10 Random Processes 311
10.0 Plotting Information for This Chapter . . . . . . . . . . . . . . . . . . . . . 311
10.1 Elementary Random Processes . . . . . . . . . . . . . . . . . . . . . . . . . 311
10.2 General Linear Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312
10.3 Integrated Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316
10.4 Fractal Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318
10.5 Poisson Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322

11 Polygons 323
11.0 Plotting Information for This Chapter . . . . . . . . . . . . . . . . . . . . . 323
11.1 Polygons with Equal Sides . . . . . . . . . . . . . . . . . . . . . . . . . . . 323
11.2 Irregular Triangles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325
11.3 Irregular Quadrilaterals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327
11.4 Polyiamonds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329
11.5 Polyominoes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331
11.6 Polyhexes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332
11.7 Miscellaneous Polygons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333

12 Three-Dimensional Curves 337
12.0 Plotting Information for This Chapter . . . . . . . . . . . . . . . . . . . . . 337
12.1 Helical Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338
12.2 Sine Waves in Three Dimensions . . . . . . . . . . . . . . . . . . . . . . . . 341
12.3 Miscellaneous 3-D Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344
12.4 Knots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350
12.5 Links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 360

13 Algebraic Surfaces 361
13.0 Plotting Information for This Chapter . . . . . . . . . . . . . . . . . . . . . 361
13.1 Functions with ax + by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361
13.2 Functions with x 2/a2 ± y2/b2 . . . . . . . . . . . . . . . . . . . . . . . . . 362

13.3 Functions with
(

x 2/a2 + y2/b2 ± c2
)1/2

. . . . . . . . . . . . . . . . . . . . 364

13.4 Functions with x 3/a3 ± y3/b3 . . . . . . . . . . . . . . . . . . . . . . . . . 367
13.5 Functions with x 4/a4 ± y4/b4 . . . . . . . . . . . . . . . . . . . . . . . . . 368
13.6 Miscellaneous Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369
13.7 Miscellaneous Functions Expressed Parametrically . . . . . . . . . . . . . . 374

14 Transcendental Surfaces 387
14.0 Plotting Information for This Chapter . . . . . . . . . . . . . . . . . . . . . 387
14.1 Trigonometric Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 387
14.2 Logarithmic Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391
14.3 Exponential Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 392
14.4 Trigonometric and Exponential Functions Combined . . . . . . . . . . . . . 394
14.5 Surface Spherical Harmonics . . . . . . . . . . . . . . . . . . . . . . . . . . 396

15 Complex Variable Surfaces 399
15.0 Plotting Information for This Chapter . . . . . . . . . . . . . . . . . . . . . 399
15.1 Algebraic Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 400
15.2 Transcendental Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405



Contents ix

16 Minimal Surfaces 411
16.0 Plotting Information for This Chapter . . . . . . . . . . . . . . . . . . . . . 411
16.1 Elementary Minimal Surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . 411
16.2 Complex Minimal Surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . 413
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 417

17 Regular and Semi-Regular Solids with Edges 419
17.0 Plotting Information for This Chapter . . . . . . . . . . . . . . . . . . . . . 419
17.1 Platonic Solids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 419
17.2 Archimedean Solids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 422
17.3 Duals of Platonic Solids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 428
17.4 Stellated (Star) Polyhedra . . . . . . . . . . . . . . . . . . . . . . . . . . . 430
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 433

18 Irregular and Miscellaneous Solids 435
18.0 Plotting Information for This Chapter . . . . . . . . . . . . . . . . . . . . . 435
18.1 Irregular Polyhedra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 435
18.2 Miscellaneous Closed Surfaces with Edges . . . . . . . . . . . . . . . . . . . 442

Index 445



This page intentionally left blankThis page intentionally left blank



Preface to the Third Edition

This third edition of this mathematical reference book (CRC Standard Curves and Sur-
faces, with Mathematica R©) comes nine years after the second edition in 2007. (In fact,
there was an earlier volume entitled CRC Handbook of Mathematical Curves and Surfaces,
published in 1990; so the current volume may be considered as really a fourth edition.) The
motivations for the current edition were several: 1) the Mathematica program has matured
considerably since 2007, thus allowing more complex curves and surfaces to be presented; 2)
the computing power of desktop computers has again increased several fold, thus allowing
many 3-D graphical plots to be computed in a reasonable time; and 3) the Mathematica
typesetting functionality has become sufficiently robust that the final copy for this edition
of the book could be transformed directly from Mathematica notebooks to LaTex input,
albeit with some editing afterward.

New curves and surfaces have been introduced in almost every chapter; several chapters
have been reorganized; and better graphical representations have been produced for many
curves and surfaces throughout. A new chapter on Laplace transforms has been added.

The overall format of the book is largely unchanged from the previous edition, with
function definitions on the left-hand pages and corresponding function plots on the right-
hand pages, thus maintaining the easy reference-like character of the volume. One significant
change is that, instead of presenting a range of realizations for most functions, this edition
presents only one curve associated with each function. The graphic output of the Manipulate
function is shown exactly as rendered in Mathematica, with the exact parameters of the
curve’s equation shown as part of the graphic display. This enables the reader to gauge
what a reasonable range of parameters might be while seeing the result of one particular
choice of parameters.

In preparing the latest edition, the author has benefited from people, too numerous
to mention here, who have communicated by letter or email concerning improvements,
corrections, and possible additions; and the author here wants to extend his appreciation
to these individuals. The author wishes to thank the Wolfram, Inc. developers for enabling
this third edition with the many new and useful features of the Mathematica program and
for providing stimulus in conferences, in newsletters, and in a rich, helpful, and extensive
website. Wolfram, Inc. staff have also helped to solve some technical problems related to
producing copy-ready text for this book and have responded quickly to special problems
arising when employing the Mathematica program in this endeavor. The author is indebted
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Introduction

1.1 Concept of a Curve

Let En be the Euclidean space of dimension n. (According to this definition, E1 is a line,
E2 is a plane, and E3 is a volume.) A curve in n-space is defined as the set of points which
result when a mapping from E1 to En is performed. In this reference work, only curves in
E2 and E3 will be considered. Let t represent the independent variable in E1. An E2 curve
is then given by

x = f(t), y = g(t)

and an E3 curve by
x = f(t), y = g(t), z = h(t)

where f, g, and h mean “function of.” The domain of t is usually (0, 2π), (−∞, ∞), or
(0, ∞). These are the parametric representations of a curve. However, in E2 curves are
commonly expressed as

y = f(x)

or as
f(x, y) = 0

which are the explicit and implicit forms, respectively. The explicit form is readily reducible
from the parametric form when x = f (t) = t in E2 and when x = f (t) = t and y = g(t)=
t in E3. The implicit form of a curve will often comprise more points than a corresponding
explicit form. For example, y2 − x = 0 has two ranges in y, one positive and one negative,
while the explicit form derived from solving the above equation gives y =

√
x for which the

range of y is positive only.
Generally, the definition of a curve imposes a smoothness criterion,1 meaning that the

trace of the curve has no abrupt changes of direction (continuous first derivative). However,
for purposes of this reference work, a broader definition of curve is proposed. Here, a curve
may be composed of smooth branches, each satisfying the above definition, provided that
the intervals over which the curve branches are distinctly defined and are contiguous. This
definition will encompass forms such as polygons or sawtooth functions.

1.2 Concept of a Surface

This reference work defines surfaces as existing only in E3. Therefore a surface is defined
as the mapping from E2 to E3 according to

x = f(s, t),

y = g(s, t),

z = h(s, t).

1
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FIGURE 1.1
The Cartesian coordinate system for two dimensions.

As for curves, the conversion from this parametric form to more common forms

z = f(x, y)

or
f(x, y, z) = 0

may not be possible in some cases. Again, a smoothness criterion1 is desirable; but the
generalized definition of surface requires that this smoothness criterion only be satisfied
piecewise for all distinct mappings of the (s,t) plane over which the surface is defined.
These generalized surfaces are termed manifolds. Cubes are examples of surfaces which can
be defined in this deterministic manner.

1.3 Coordinate Systems

The number of available coordinate systems for representing curves is large and even larger
for surfaces. However, to maintain uniformity of presentation throughout this volume, only
the following will be used:

2−D 3−D

Cartesian, polar Cartesian, cylindrical, spherical

The term parametric is often used as though it were a coordinate system, but it is really
a representation of coordinates in terms of an additional independent parameter which is
not itself a coordinate of the E3 space in which the curve or surface exists.

Cartesian Coordinates

The Cartesian coordinates system is illustrated in Figure 1.1 for two dimensions. This is the
most natural, but not always the most convenient, system of coordinates for curves in two
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FIGURE 1.2
The Cartesian coordinate system for three dimensions.

dimensions. Coordinates of a point p are measured linearly along two axes which intersect
with a right angle at the origin (0, 0). The Cartesian system is also called the rectangular
coordinate system. For three dimensions, an additional axis, orthogonal to the other two,
is placed as shown in Figure 1.2.

Polar Coordinates

Polar coordinates (r, θ) are defined for two dimensions and are a desirable alternative to
Cartesian ones when the curve is point symmetric and exists only over a limited domain
and range of the variables x and y. As illustrated in Figure 1.3, the coordinate r is the

FIGURE 1.3
The polar coordinate system for two dimensions.
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FIGURE 1.4
The cylindrical coordinate system for three dimensions.

distance of the point p from the origin and the coordinate θ is the counterclockwise angle
which the line from the origin to p makes with the horizontal line through the origin to the
right. Counterclockwise rotations are measured in positive θ, while clockwise rotations are
measured in negative θ, relative to this line. Transformations from polar to Cartesian, and
vice versa, are made according to:

x = r cos(θ),

y = r sin(θ)

and

r =
(

x2 + y2
)1/2

,

θ = arctan(y/x).

Cylindrical Coordinates

Cylindrical coordinates are used in E3. They combine the (r, θ) polar coordinates of two
dimensions with the third coordinate z measured perpendicularly from the x -y plane at
(r, θ) to the point p at (r, θ, z ) as in Figure 1.4. The normal convention is for z to be
positive upward. Transformation from cylindrical to Cartesian coordinates involves only
the polar-to-Cartesian transformations given above because the z coordinate is unchanged.
Cylindrical coordinates are often appropriate when surfaces are axially symmetric about
the z axis; for example, in representing the form r2 = z.

Spherical Coordinates

As illustrated in Figure 1.5, let a point in E3 lie at a radial distance r along a vector from
the origin. Project this vector to the x -y plane and let the angle between the vector and
its projection be ϕ. Now measure the angle θ of the projected line in the x -y plane as for
polar coordinates. Then (r, θ, ϕ) are the spherical coordinates of p. The transformations
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FIGURE 1.5
The spherical coordinate system for three dimensions.

from spherical to Cartesian coordinates, and vice versa, are given by

x = r cosθsinϕ,

y = r sinθsinϕ,

z = r cosϕ

and

r =
(

x2 + y2
)1/2

,

θ = arctan(y/x),

ϕ = arctan[
(

x2 + y2
)1/2

/z].

Spherical coordinates are often appropriate for surfaces having point symmetry about the
origin. The usual coordinates of geography, which refer to points on the earth by latitude
and longitude, are a spherical system.

1.4 Qualitative Properties of Curves and Surfaces

Curves and surfaces exhibit a wide variety of forms. Particular attributes of form are deriv-
able from the equations themselves, and many texts treat these in rigorous detail. The pur-
pose here is not to duplicate such explicit and analytical treatment but rather to present
the properties of curves and surfaces in a qualitative manner to which their visible forms are
naturally and easily related. Understanding these properties enables one to choose the ap-
propriate curve for a given purpose (for example, data fitting) or to modify, when necessary,
an equation given in this volume into one more suitable for a given purpose.

Derivative

A fundamental quantity associated with a curve, or function, is the derivative. The derivative
exists at all continuous points of the curve (except singular points as described in Section
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1.4.7). Although the definition of derivative can be made with analytical rigor,1 in graphical
terms the derivative at any point is the slope of the tangent line at that point and is written
as dy/dx for two-dimensional curves. For three-dimensional curves, the tangent line is along
the trajectory of the curve, and three such derivatives are possible using the three pairs of
(x, y, z ) coordinates. Closely associated with the derivative is a curve’s normal which is
the line perpendicular to the tangent. In two dimensions the normal is a single line, but
in three dimensions the normal sweeps out a plane perpendicular to the tangent of the
curve. As for curves, the derivative of a surface is a fundamental quantity. The derivative at
any continuous point of a surface relates to the tangent plane of the surface at that point.
For this plane, three partial derivatives exist, written as dy/dz, dz/dx, and dx/dy (or their
inverses), which are the slopes of the lines formed at the intersection of the tangent plane
with the y-z, z -x, and x -y planes, respectively. The normal np to the surface at a point is
the vector orthogonal to the surface there. It is defined at all points for which the surface
is smooth by the partial derivatives

(np) =

[(

δy
δs

δy
δt

δz
δs

δz
δt

)

,

(

δz
δs

δz
δt

δx
δs

δx
δt

)

,

(

δx
δs

δx
δt

δy
δs

δy
δt

)]

p

using the parametric representation equations. If the surface can be expressed in the implicit
form f (x, y, z ) = 0, then simply

(np) =

[

δf

δx
,
δf

δy
,
δf

δz

]

p

.

The above definitions give the (x, y, z ) components of the normal vector, and it is customary

to normalize them to (x ’, y’, z ’) by dividing them by
(

x2 + y2 + z2
)1/2

so that x′2 + y′2

+z′2 = 1.

Symmetry

For curves in two dimensions, if
y = f(x) = f(−x)

holds, then the curve is symmetric about the y axis. The curve is antisymmetric about the
y axis when

y = f(x) = −f(−x).

A simple example is powers of x given by y = xn. If n is even, the curve is symmetric; if n
is odd, it is antisymmetric. Antisymmetry is also referred to as “symmetric with respect to
the origin” or point symmetry about (x, y) = (0, 0). For surfaces, three kinds of symmetry
exist: point, axial, and plane. A surface has point symmetry when

z = f(x, y) = −f(−x,−y).

Simple examples of point symmetry are spheres or ellipsoids. A surface has axial symmetry
when

z = f(x, y) = f(−x,−y).

An example of axial symmetry is a paraboloid. Finally, a surface has plane symmetry about
the (y, z ) plane when

z = f(x, y) = f(−x, y).
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Similarly, symmetry about the (x, z ) plane implies

z = f(x, y) = f(x,−y).

Finally, symmetry about the (x, y) plane is represented by

z = f(x, y) = −f(x, y).

Examples of plane symmetry include z = xy2 and z = excos(y).

Extent

The extent of a curve is defined by the range (y variation) and domain (x variation) of the
curve. The extent is unbounded if both x and y values can extend to infinity (for example,
y = x2). The extent is semibounded if either y or x has a bound less than infinity. The
transcendental equation y = sin(x ) is such a curve because the range is limited between
negative and positive unity. A curve is fully bounded if both x and y bounds are less than
infinity. A circle is a simple example of this type of extent.

For surfaces, the concept of extent can be applied in three dimensions where domain
applies to x and y while range applies to z. Surfaces formed by revolution of a curve in the
(y, z ) or (x, z ) plane about the z axis will possess the same extent property that the two-
dimensional curve had. For example, an ellipse in the (x, z ) plane gives an ellipsoid as the
surface of revolution—both have the fully bounded property. Similarly, any surface formed
by continuous translation of a two-dimensional curve (for example, a parabolic sheet) will
have the same extent property as the original curve.

Asymptotes

The y asymptotes of a curve are defined by

ya = lim
x→±∞

f(x).

Although this definition includes asymptotes at infinity, only those with |ya| < ∞ are of
interest. Asymptotic values are often crucial in choosing and applying functions. Physically,
an equation may or may not properly describe real phenomena, depending on its asymptotic
behavior. Note that, even though a curve may be semi-bounded, its asymptote may not be
determinable. An example of a semi-bounded function with a y asymptote is y = e−x while
one without an asymptote is y = sin(x ).

The x asymptotes of a curve may be defined in a similar manner with

(xa) = lim
y→±∞

f(y)

when the function is inverted to give x = f (y). An example of a curve with a finite x

asymptote is y =
(

c2 − x2
)1/2

whose asymptote lies at x = +c or x = −c.
In addition, curves may have asymptotes that are any arbitrary lines in the plane, not

simply horizontal or vertical lines; and the limiting requirements are similar to the forms
given above for horizontal or vertical asymptotes. For instance, the equation y = x + 1/x
has y = x as its asymptote.
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Periodicity

A curve is defined as periodic on x with period X if

y = f(x+ nX)

is constant for all integers n. The transcendental function y = sin(ax ) is an example of a
periodic curve. A polar coordinate curve can also be defined as periodic with period α in
terms of angle θ if

r = f(θ + nα)

is constant for all integers n. An example of such a periodic curve is r = cos(4θ), which
exhibits 8 “petals” evenly spaced around the origin. Surfaces are periodic on x and y with
periods X and Y, respectively, if

z = f(x + nX, y+mY)

is constant for all integers n and m. A surface also may be periodic in only x or only y. A
cylindrical-coordinate surface may be periodic with period a in terms of the angle θ if

z = f(r, θ + nα)

is constant for all integers n. Another type of periodicity expressible in cylindrical coordi-
nates is in the radial direction with period R, when

z = f(r+ nR, θ)

is constant for all integers n. An example of such periodicity is given by z = cos(2πr)cos(θ),
which has a period of R = 1.

Continuity

A curve is continuous at a point x0, provided it is defined at x0, when

y+ = lim
x→x+

0

f(x)

and
y− = lim

x→x−
0

f(x)

are finite and equal. Here “+” and “−” refer to approaching x0 from the right and left,
respectively. Discontinuities may be finite or infinite: the former implies y+ 6= y− even
though they are both finite while the latter implies one or both limits are infinite. For
surfaces, the paths to a point p0 = (x0, y0) are infinite in number; and continuity exists
only if the surface is defined at p0 and

z = lim
p→p0

f(p)

is constant for all possible paths. When the curve or surface is undefined at x0 or p0 and the
above relations hold, it is said to be discontinuous, but with a removable discontinuity. For
any points at which the above relations do not hold, the curve or surface is discontinuous,
with an essential discontinuity at such points. The curve y = sin(x )/x has a removable
discontinuity and is therefore continuous in appearance while y = 1/x has an essential
discontinuity at x = 0 and is therefore discontinuous in appearance. Curves and surfaces
are differentiable (meaning the derivative exists) everywhere that they are either continuous
or have removable discontinuities.
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Singular Points

Curves and surfaces may contain singular points. Writing the function for a two-dimensional
curve as

f(x, y) = 0,

the derivative δy/δx can be written as

δy

δx
=
g(x, y)

h(x, y)

where g and h are functions of x and y. If, for a given point p(x, y), the functions g and
h both vanish, the derivative becomes the indeterminate form 0/0, and p(x, y) is then a
singular point of the curve. Singular points imply that two or more branches of the curve
meet or cross. If two branches are involved, it is a double point; if three are involved, it is a
triple point; etc. Singularities at triple or higher points are not as commonly encountered as
those at double points. Double-point singularities for two-dimensional curves are classified
as follows:

1) Isolated points (also known as acnodes or conjugate points) are where a single point is
disjoint from the remainder of the curve. In this case, the derivative is imaginary.

2) Node points (also known as crunodes) are where the two derivatives are real and unequal,
such that the curve crosses itself.

3) Cusp points (also known as spinodes) are where the derivatives of two arcs on either side
are unequal while the curve joins at this point. A cusp of the first kind involves second
derivatives of opposite sign, and a cusp of the second kind involves second derivatives
of the same sign.

4) Double cusp points (also known as tacnodes or osculation points) are where the deriva-
tives of two arcs become equal while the two arcs of the curve are continuous along both
directions away from such points. Double cusps may also be of the first or second kind,
as for single cusps.

Curves having one or more nodes will exhibit loops that enclose areas. Curves having
osculations may also exhibit loops, on one or both sides of the osculation point.

The concept of singular points is extendable to surfaces. Many surfaces are the result of
the revolution of a two-dimensional curve about some line; such surfaces retain the singular
points of the curve, except that each such point on the curve, unless on the axis of revolution,
becomes a circular ring of singular points centered on the axis of revolution. Singular points
appear on more complicated surfaces also, but an analysis of the possibilities is beyond the
scope of this volume.

Critical Points

Points of a curve y = f (x ) at which the derivative dy/dx = 0 are termed critical points, of
which there are three types:

1) Maximum points are where the curve is concave downward and thus the second deriva-
tive d2y/dx2 > 0.

2) Minimum points are where the curve is concave upward and thus the second derivative
d2y/dx2 < 0.
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3) Inflection points are where d2y/dx2 = 0 and the curve changes its direction of concavity.

For surfaces z = f (x, y), the critical points lie at dz/dx = dz/dy = 0. Maximum and min-
imum points of surfaces are defined similar to those of curves, except both second derivatives
must together be greater than zero or less than zero. In the case that they are of opposite
sign, the critical point is termed a saddle. Such critical points are nondegenerate2 and are
isolated from other critical points. More complicated types of degenerate critical points
occur for surfaces. Points can be classified as degenerate or nondegenerate, depending on
whether the determinant of

(

δ2z
δx2

δ2z
δxδy

δ2z
δxδy

δ2z
δy2

)

vanishes or not, respectively. For instance, the surface z = x2 + y2 has a single nondegen-
erate critical point while z = x2y2 has two continuous lines of degenerate critical points,
intersecting at (0, 0).

Zeroes

The zeroes of a two-dimensional function f (x ) occur where y = f (x ) = 0 and are isolated
points on the x axis. (For polynomial functions, the zeroes are often referred to as the
roots.) Similarly, the zeroes of a three-dimensional function f (x, y) occur where z = f (x,
y) = 0; but the loci of these points form one or more distinct, continuous curves in the
x -y plane. The zeroes of certain functions are important in characterizing their oscillatory
behavior; for example, the function sin(x ). The zeroes of other functions may be unique
points of interest in physical applications. Not all functions, as defined, have zeroes; for
example, the function f (x ) = 2 − cos(x ) has unity as its lower bound. However, such a
function can be translated in one or the other y directions to produce a function having
zeroes in addition to all the qualitative properties of the original function. The definition of
the exact zeroes of a function is often difficult and often must be accomplished by numerical
methods on a computer. Zeroes of many functions are tabulated in standard references such
as Abramowitz.3

Integrability

The function y = f (x ) defined over the interval [a, b] has the integral

I =

∫ b

a

f(x)dx.

The integral exists if I converges to a single, bounded value for a given interval; and the
function is said to be integrable. Note that the integral I may not exist under two abnormal
circumstances:

1) Either a or b, or both, extend to infinity.

2) The function y has an infinite discontinuity at one or both endpoints or at one or more
points interior to [a, b].

Under either of these circumstances, the integral is an improper integral. Proving the
existence of the integral of a given function is not always straightforward, and a discussion
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is beyond the scope of this volume. Transient functions always have an integral on the inter-
val [0, ∞] and are often given as solutions to physical problems in which the response of a
medium to a given input or disturbance is sought. Such responses must possess an integral
if the input was finite and measurable. Examples of such functions are y = e−ax sin(bx ) or
y = 1/(1 + x2). Surfaces given by z = f (x, y) are integrable when

I =

∫ b

a

∫ d

c

f(x, y)dx dy

exists. Improper integrals of surfaces are defined in the same manner as those of two-
dimensional curves. Transient responses exist for three dimensions and are integrable also.
A curve property that has an important consequence for integration is that of even and odd
functions. Even functions have f (x ) = f (-x ), and for such curves

I = 2

∫ a

0

f(x)dx

if the one-sided I exists over [0, a]. For odd functions f (x ) = f (−x ), and I = 0 over any
interval[−a, a]. This concept can be easily extended to surfaces.

Multiple Values

A curve is multivalued if, for a given (x, y), it has two or more distinct values. A simple
example is y2 = x. Multivalued functions are not integrable in the normal sense, although
one or more particular branches of the curve may have well-defined integrals. While a curve
may be multivalued in its Cartesian-form equation, the polar form of the equation may be
single-valued, in the sense that only one value of r exists for each value of angle θ. Compare,
for example,

(x2 + y2)3 = (x2 − y2)2,

which is the equation of a quadrifolium, with its polar equation

r = cos(2θ).

Integrability is affected by the choice of coordinate system; this example shows that, when
an integral is not defined due to a function being multivalued, it may be well defined when
the transformation to polar coordinates is made and the integral evaluated along the polar
angle θ. Similarly, surfaces may be single-valued or multivalued depending upon whether z
takes on one or more values for a given (x, y) point.

Curvature

Given that a unit of length along the curve path is δs and that the tangent line changes its
direction over δs by an angle δθ where θ is the angle of the tangent with the x axis, then
the principal curvature is given by

c =
δθ

δs
.

The radius of curvature is simply the inverse of the curvature, or ρ = 1/c. At a point of
inflection of a curve, c = 0 and ρ = ∞. Conversely, at a cusp of a curve, c = ∞ and ρ = 0.
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The curvature can be expressed in terms of the derivatives of the curve also. If the curve
is expressed implicitly as f (x, y) = 0 and if fx and fy are the first partial derivatives and
fxx , fyy , and fxy are the second partial derivatives, then

c =
fxxfy

2 − 2fxyfxfy + fyyfx
2

(

fx
2+ fy

2
)

3/2
.

For curves defined parametrically as {x (θ), y(θ)}, letting x ’ = d [x (θ)]/dθ, y’ = d [y(θ)]/dθ,
x” = d2

[

x(θ)]/dθ2, and y” = d2[y(θ)]/dθ2, one obtains the curvature as

c =
x′y”− y′x”

(

x′2+ y′2
)3/2

.

When the curve is expressed in polar coordinates r = f (θ) and the derivatives dr/dθ and
d2r/dθ2 are given by r ’ and r”, respectively, then the curvature is

c =
r2 + 2r′2 − rr”
(

r2+ r′2
)3/2

.

The radius of curvature at lobes of polar curves is of interest in order to define the “tightness”
of the lobes. At the peak of the lobe, r ’ = 0 and ρ = r2/(r - r”). This reduces to ρ = r in
the case of a circle, for which r” = 0.

For surfaces, the geometry underlying the concept of curvature is more complex. Cur-
vature of a surface at a point p is normally given as the Gaussian curvature

K = κ1κ2

where the κ’s are the principal curvatures, with κ1 being the minimum curvature at p
and κ2 being the maximum curvature at p. These curvatures are determined by the two-
dimensional curvature of the intersections of the surface with all possible planes containing
p. If κ1 and κ2 are both of the same sign, the point p is an elliptic point and the surface is
dome-like at p. If κ1 and κ2 have opposite signs, the point p is a hyperbolic point and the
surface is saddle-like at p. If either κ1 or κ2 is zero, the point p is a parabolic point. A line
separating positive and negative K regions is a parabolic line.

If a surface is defined explicitly as z = f (x, y), then the Gaussian curvature can be
calculated as

K =
zxxzyy − z2xy
1 + z2xz

2
y

where

zx = δz/δx,

zy = δz/δy,

zxx = δ2z/δx2,

zyy = δ2z/δy2,

zxy = δ2z/δxδy.

1.5 Classification of Curves and Surfaces

The family of two-dimensional and three-dimensional curves can be illustrated as in Figure
1.6. This particular schematic reflects the organization of this reference work, and every
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FIGURE 1.6
Classification of curves and surfaces.

curve which can be traced by a given mathematical equation or given set of mathematical
rules can be placed in one of the categories shown. There is a top-level dichotomy between
determinate and random curves. A determinate curve is one for which the functional re-
lationship between x and y is known everywhere from the equation or set of rules. No
realization is required to produce the curve, for it is contained wholly within its defining
equations or rules. On the other hand, a random curve will have a random factor or term
in its mathematical definition such that an actual realization is required to produce the
curve, which will differ from any other realization. For example, y = sin(x ) + w(x ) where
w(x ) is a random variable on x, defines a random curve. At the second level in Figure 1.6,
the distinction is made between algebraic, transcendental, integral, and non-differentiable
curves as described below.

Algebraic Curves

A polynomial is defined as a summation of terms composed of integer powers of x and y.
An algebraic curve is one whose implicit function

f(x, y) = 0

is a polynomial in x and y (after rationalization as described below, if necessary). Because
a curve is often defined in the explicit form

y = f(x),

there is a need to distinguish rational and irrational functions of x. A rational function of
x is a quotient of two polynomials in x, both having only integer powers. An irrational
function of x is a quotient of two polynomials, one or both of which has a term (or terms)
with power p/q, where p and q are integers. Irrational functions can be rationalized, but
the curves will not be identical before and after rationalization. In general, the rationalized
form has more branches; for example, consider y =

√
x, which is rationalized to y2 = x.

The former curve has only one branch (for positive y) if a strict definition of the radical
is used, whereas the latter has two branches, for y < 0 and y > 0. In this reference work,
the rationalized curve will be presented graphically in all cases, even though the equation
is printed in its irrational form for simplicity.

Besides simple polynomials, rational functions are often grouped into sets convenient
for certain mathematical applications. Examples of such polynomial sets are Chebyshev
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polynomials, Laguerre polynomials, and Bernoulli polynomials. Most polynomial sets have
the property of orthogonality, meaning that for any two functions f1 and f2 of the set,

∫

w(x)f1(x)f2(x)dx = 0

over the defined domain of x for the particular set, where w(x ) is a weighting function. This
property ensures that the different curves within the set make distinct contributions to the
set.

Transcendental Curves

The transcendental curves cannot be expressed as finite polynomials in x and y. These
are curves containing one or more of the following forms: exponential (ex), logarithmic
(log x ), or trigonometric (sin x, cos x ). The hyperbolic functions are often mentioned as
part of this group, but they are not really distinct because they are forms composed of
exponential functions. Any curve expressed as a mixture of transcendentals and polynomials
is considered to be transcendental. All of the primary transcendental functions can, in fact,
be expressed as infinite polynomial series:

ex =
∞
Σ

n=0

xn

n!
(−∞ < x <∞),

cosx =
∞
Σ

n=0

(−1)nx2n

(2n)!
(−∞ < x <∞),

sinx =
∞
Σ

n=0

(−1)nx2n+1

(2n+ 1)!
(−∞ < x <∞),

logx = 2
∞
Σ

n=0

1

2n− 1

(

x− 1

x+ 1

)2n+1

(x > 0).

Integral Curves

Certain continuous curves not expressible in algebraic or transcendental forms are familiar
mathematical tools. These curves are equal to the integral of algebraic or transcendental
curves by definition; examples include Bessel functions, Airy integrals, Fresnel integrals,
and the error function. The integral curve is given by

y[a, b] =

∫ b

a

f(x)dx

where the lower limit of integration a is usually a fixed point such as −∞ or 0. Like
transcendental curves, these integral curves also have expansions in terms of power series
or polynomial series, often making evaluation rather straightforward on computers.

Piecewise Continuous Functions

Members of the previous classes of curves (algebraic, transcendental, and integral) all have
the property that (except at a few points, called singular points) the curve is smooth and
differentiable. In the spirit of a broad definition of curve, a class of non-differentiable curves
appears in Figure 1.6. These curves have discontinuity of the first derivative as a basic
attribute and are quite often composed of straight-line segments. Such curves include the
simple polygonal forms as well as the intricate “regular fractal” curves of Mandelbrot.4
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Classification of Surfaces

In general, surfaces may follow the same classification scheme as curves (Figure 1.6). Many
commonly used surfaces are either rotations of two-dimensional curves about an axis, thus
giving axial, or possibly point, symmetry. In this case the independent variable x of the

two-dimensional curve’s equation can be replaced with the radial variable r =
(

x2 + y2
)1/2

to form the equation of the surface. Other commonly used surfaces are merely a continuous
translation of a given two-dimensional curve along a straight line. Such surfaces will actually
have only one independent variable if a coordinate system having one axis coincident with
the straight line is chosen.

If the two independent variables of the explicit equation of the surface, z = f (x, y), are
separable in the sense that

z = f(x)f(y),

then the surface is orthogonal. In such a case, the x dependence may fall in one of the classes
of Figure 1.6 while the y dependence falls in another. Orthogonal surfaces require fewer
operations to evaluate over a grid of the domain of x and y because the defining equation
only needs to be evaluated once along the x direction and once along the y direction, with
all other points evaluated by simple multiplication of the x and y factors appropriate to
each point on the (x, y) plane.

1.6 Basic Curve and Surface Operations

There are many simple operations that can be applied to curves and surfaces in order to
change them. Knowledge of these operations enables one to adapt a given curve or surface
to a particular need and to thus extend the curves and surfaces given in this reference
work to a larger set of mathematical forms. Only a few of the most common operations
are presented here. Of these, two (translation and rotation) are homomorphic operations,
which means that the form of the curve is preserved, with merely its position or orientation
in space being changed.

Translation

If one or more of the coordinates (x, y, z ) of a point is changed according to

x′ = x+ a,

y′ = y+ b,

z′ = z+ c,

the curve or surface undergoes a translation of amount (a, b, c) along the (x, y, z ) axes,
respectively.

1.6.2 Rotation

In polar coordinates, if the angle θ is changed by a positive amount α thus

θ′ = θ + α,
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the curve undergoes a counter-clockwise rotation of α degrees. This is convenient for polar
coordinates, but the rotation can also be expressed in Cartesian coordinates as

x′ = x cos(α) + y sin(α),

y′ = −x sin(α) + y cos(α).

In three dimensions, a surface can be rotated about any of the three axes by using these
equations on the coordinate pairs (x, y), (y, z ), or (x, z ) depending on whether the rotation
is about the z, x, or y axis, respectively.

Linear Scaling

The relations for linear scaling are

x′ = ax,

y′ = by,

z′ = cz.

These stretch the curve or surface by the factors a, b, and c along the respective axes.
When using polar, cylindrical, or spherical coordinates, a similar relation

r′ = dr

stretches or compresses the curve or surface along the radial coordinate by the factor d.

Reflection

A two-dimensional curve has a reflection about the x axis caused by letting

y′ = −y

or about the y axis by letting
x′ = −x

or through the origin by applying both these equations. In three dimensions, a curve or
surface is reflected across the (y, z ), (x, z ), or (x, y) planes when

x′ = −x,

y′ = −y,

z′ = −z,

respectively. It can be reflected through the origin when one sets

r′ = −r

in spherical coordinates and mirrored through the z axis when the same operation is made on
r for cylindrical coordinates. The application to two-dimensional polar coordinates follows
from the cylindrical case.

Rotational Scaling

For two dimensions, let
θ′ = cθ

for the polar angle; the polar curve is then stretched or compressed along the angular
direction by a factor c in a rotational scaling. The same operation can be applied to θ for
cylindrical coordinates in three dimensions or to both θ and ϕ for spherical coordinates in
three dimensions.
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Radial Translation

In two dimensions with polar coordinates, if the radial coordinate is translated according
to

r′ = r+ a,

then the entire curve moves outward by the amount a from the origin. Note that this
operation is not homomorphic like Cartesian translation because the curve is stretched
in the angular direction while undergoing the radial translation. This operation can be
performed on the radial coordinate of either cylindrical or spherical coordinate systems in
three dimensions.

Weighting

In a two-dimensional Cartesian system, let

y′ = |x|a y.

This operation performs a weighting on the curve by the factor |x|a, a symmetric operator.
If a > 0, the curve is stretched in the y direction by a factor that increases with x ; but if a
< 0, the curve is compressed by a factor that decreases with x. Similar treatments can be
performed on surfaces in three dimensions.

Nonlinear Scaling

If in two dimensions the nonlinear scaling

y′ = ya

is performed, the curve is progressively scaled upward or downward in absolute value, ac-
cording to whether a > 1 or a < 1, respectively. Note that, if y < 0 and a = 2, 4, 6, ..., then
the scaled curve will flip to the opposite side of the x axis. Similar scalings can be made in
three dimensions using any of the appropriate coordinate systems.

Shear

A curve undergoes simple shear when either all its x coordinates or all its y coordinates
remain constant while the other set is increased in proportion to x or y, respectively. The
general transformations for simple shearing of a two-dimensional curve are

x′ = x+ ay,

y′ = bx+ y.

The transformations for simple x shear are

x′ = x+ ay,

y′ = y.

and for simple y shear are

x′ = x,

y′ = bx+ y.
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Surfaces may be simply sheared along one or two axes with similar transformations. Another
special case of shear is termed pure shear, and the transformations for a two-dimensional
curve are given by

x′ = kx,

y′ = k−1y.

For surfaces, pure shear will only apply to two of the three coordinate directions, with the
remaining one having no change. Pure shear is a special case of linear scaling under this
circumstance.

Matrix Method for Transformation

The foregoing transformations can all be expressed in matrix form, which is often con-
venient for computer algorithms. This is especially true when several transformations are
concatenated together, for the matrices can then be simply multiplied together to obtain a
single transformation matrix. Given a pair of coordinates (x, y), a matrix transformation
to obtain the new coordinates (x ’, y’) is written as

(x′y′) = (x y)

(

a b
c d

)

or explicitly

x′ = ax+ cy,

y′ = bx+ dy.

According to this definition, Table 1.1 lists several of the two-dimensional x -y transfor-
mations discussed previously with their corresponding matrix.

Translations cannot be treated with the above matrix definition. An extension is required
to produce what is commonly referred to as the homogeneous coordinate representation in
computer graphics programming. In its simplest form, an additional coordinate of unity
is appended to the (x, y) pair to give (x, y, 1). A translation by u and v in the x and y
directions is then written using a 3-by-3 matrix

(x′y′1) = (x y 1)





1 0 0
0 1 0
u v 1





where explicitly,

x′ = x+ u,

y′ = y+ v,

1 = 1.

With this representation, a radial translation by s units of a curve given in (r, θ) coordinates
is effected by

(r′θ′1) = (r θ 1)





1 0 0
0 1 0
s 0 1





such that r ’ = r + s and θ is unchanged. In three dimensions similar transformations exist,
as shown in Table 1.2, mostly being simple extensions of those given in Table 1.1.
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TABLE 1.1
2-D Transformations

Operation Matrix

Rotation

(

cosα sinα
− sinα cosα

)

Linear scaling

(

a 0
0 b

)

Reflection

(

±1 0
0 ±1

)

Weighting

(

1 0
0 xa

)

Nonlinear scaling

(

1 0
0 ya

)

Simple shear

(

1 a
b 1

)

Rotational scaling

(

1 0
0 a

)

Notes:

Rotation: α is the counterclockwise angle in the x -y plane.

Reflection: Use + or − according to the desired reflection.

Simple shear: Either a or b is zero, for x or y shear, respectively.

Rotational scaling: Use with (r, θ) coordinates.

1.7 Method of Presentation

This reference work is basically intended to be illustrative; therefore all functions, whether
curves or surfaces, presented in this work will have an accompanying plot showing the form
of the function. Curves and surfaces and their plots are numbered for easy reference and
grouped according to type. Wherever popular names exist for certain curves or surfaces, they
are placed with the equations themselves. Only basic explanatory information is provided
with each curve, as needed. The interested reader can consult textbooks, or world-wide web
resources for further information on specific functions.

Equations

The equation of each algebraic or transcendental curve will be given in the explicit form
y = f (x ) or r = f (θ) wherever possible; similarly, surfaces will be given as z = f (x, y)
or r = f (θ, z ) or r = f (θ, ϕ). Whenever polar, cylindrical, or spherical coordinate forms
are used, the equation is also written in Cartesian coordinates, if possible. Because some
curves and surfaces are not amenable to explicit forms, the parametric equations will be
used as the alternative. In either case, whether explicit or parametric, the implicit functional
form will also be given, if derivable. The explicit or parametric form is usually the most
direct means to evaluate the curve or surface on a computer while the implicit form enables
one to determine the degree of the equation (if algebraic) and also easily determine the
derivatives in some cases. Notes pertinent to evaluation are given whenever they may help
to understand the figures better. For integral curves and surfaces, the equation will be given



20 CRC Standard Curves and Surfaces with Mathematica R©

TABLE 1.2
3-D Transformations

Operation Matrix

Rotation

(

cβ · cγ sα · sβ · cγ + cα · sγ −cα · sβ · cγ + sα · sγ
−cβ · sγ cα · cγ − sα · sβ · sγ sα · cγ + cα · sβ · sγ
sβ −sα · cβ cα · cβ

)

Linear scaling

(

a 0 0
0 b 0
0 0 c

)

Reflection

( ±1 0 0
0 ±1 0
0 0 ±1

)

Weighting

(

1 0 0
0 1 0
0 0 xaya

)

Nonlinear scaling

(

1 0 0
0 1 0
0 0 za

)

Simple shear

(

1 0 0
0 1 0
a 0 1

)

or

(

1 0 0
a 1 0
0 0 1

)

Rotational scaling

(

1 0 0
0 a 0
0 0 b

)

Notes:

cα, cβ , cγ = cos α , cos β , cos γ

sα, sβ, sγ = sin α, sin β , sin γ

Rotation: α, β , γ are the counterclockwise rotations about each positive axis.

Reflection: Use + or − according to the desired reflection.

Simple shear: Gives simple x shear depending on whether done along y or z direction. Similar

expressions hold for simple y or z shear.

Rotational scaling: Use with (r, θ, φ) coordinates.

as the integral y =
∫

f (x ) or z =
∫

f (x, y). Most of the integral forms have commonly used
names (for example, “Bessel functions”). Other curves or surfaces in this reference work
are expressed not by single equations, but rather by some set of mathematical rules. The
method of presentation will vary in these cases, always with the objective of providing the
reader with a means of easily constructing the curve or surface by machine computation.

Plots

Readers of previous editions will notice that, in this edition, only one realization of an
equation is given. The plots of the curves and surfaces were enabled with the Mathemat-
icar Manipulate function. All of the variable parameters were allowed to be manipulated,
to within reasonable limits, and a representative choice for printing was made using one
set of parameters. All graphs, unless there are no parameters to manipulate, include the
readout of the parameters so that the reader can see the exact realization of the function.
Many functions have a wide range of possible realizations, sometimes differing radically in
appearance; and thus the single example shown may not adequately show the behavior of
the function. Some curves and surfaces have no variable parameters, and so a simple static
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plotting function was used. Plots of two-dimensional curves are done on the (x, y) plane,
with the x and y axes being horizontal and vertical, respectively. Three-dimensional curves
and surfaces have the additional z axis and are plotted in a projection that satisfactorily
illustrates the form of each function. The implicit form of a curve often comprises more
points than a corresponding explicit form. For example y2 − x = 0 has two ranges in y, one
positive and one negative, while the explicit form derived from solving the above equation
gives y =

√
x for which the range of y is positive only; in such cases both the positive and

negative range of y are plotted.
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2

Algebraic Functions

The curves of this chapter are mostly familiar equations found in elementary algebra texts or
in tables of integrals. Many have acquired traditional or accepted names in the mathemat-
ical literature, and these names are included wherever appropriate. The last two sections
deal with curves more readily expressed in polar coordinates or parametrically; this allows
much easier computation of the curves than with the form y = f (x ), especially when curves
are multiple-valued in this form.

2.0 Plotting Information for This Chapter

The functions were plotted here utilizing the Mathematicar plotting functions Plot, Para-
metricPlot, and ContourPlot within the Manipulate function. The x axes run from −1 to
+1; but, in order to show the true nature of the curves, it is often necessary to scale in y.
Thus one sees the curve expressed as y = c f (x ) where c scales the y coordinate. Many
of the curves have discontinuities at one or more discrete x values. For curves involving
radicals, both the positive and negative branches are plotted to show the symmetry.

2.1 Functions with xn/m

2.1.1 y = cxn

Note that cases with n even are symmetrical about the y axis while cases with n odd are
anti-symmetrical about the y axis. The curve corresponding to each power of n has a
specific name:
n = 1 → linear
n = 2 → quadratic or parabola
n = 3 → cubic
n = 4 → quartic
n = 5 → quintic
n = 6 → sextic
n = 7 → septic
n = 8 → octic

23
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n = 9 → nonic
n = 10 → decic

FIGURE 2.1.1

2.1.2 y = c/xn

Note that cases with n even are symmetrical about the y axis while cases with n odd are
anti-symmetrical about the y axis. The case n = 1 gives a hyperbola.

FIGURE 2.1.2
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2.1.3 y = c|x|n/m

n = 3; m = 2 → semicubical parabola
n = 2; m = 3 → cusp catastrophe

FIGURE 2.1.3

2.1.4 y = c/ |x|n/m

FIGURE 2.1.4
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2.2 Functions with xn and (a+ bx)m

2.2.1 y = c(a + bx)

FIGURE 2.2.1

2.2.2 y = c(a + bx )2

Parabola

FIGURE 2.2.2
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2.2.3 y = c(a + bx )3

FIGURE 2.2.3

2.2.4 y = cx(a + bx)

FIGURE 2.2.4
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2.2.5 y = cx (a + bx )2

FIGURE 2.2.5

2.2.6 y = cx (a + bx )3

FIGURE 2.2.6
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2.2.7 y = cx 2(a + bx)

FIGURE 2.2.7

2.2.8 y = cx 2(a + bx )2

FIGURE 2.2.8
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2.2.9 y = cx 2(a + bx )3

FIGURE 2.2.9

2.2.10 y = cx 3(a + bx)

FIGURE 2.2.10
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2.2.11 y = cx 3(a + bx )2

FIGURE 2.2.11

2.2.12 y = cx 3(a + bx )3

FIGURE 2.2.12


