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Preface

The past decade has witnessed substantial advances in sensor technology. The emerg-

ing new field of nanotechnology and nanofabrication has allowed the creation of a

new array of sensors and transducers with remarkable properties. Pressure sensors,

gas sensors, optical sensors, biological sensors, etc., have all seen dramatic improve-

ments in characteristics such as sensitivity and dynamic range, in addition to sub-

stantial miniaturization. This book presents a summary of the state of the art of sen-

sor and transducer technology as of 2014. Although a very large number of books

on nanotechnology in general currently exist in the marketplace, recent advances in

micro- and nano-scale sensors and transducers are not adequately represented in the

literature. This book attempts to fill that gap. The intended audience for this book is

practicing industry engineers, corporate and government researchers, and graduate

students in electrical engineering, mechanical engineering, and physics.

The main topics covered in the book are the following:

� Pressure Sensors (Chapter 1): The first chapter presents the novel new struc-

tures of pressure sensors, used extensively in such applications as mechani-

cal pressure sensing, gas pressure sensing, atmospheric pressure sensing, etc.

Pressure sensors that are based on capacitance variation, in particular, have

benefited from the recent advances in nanotechnology and nanofabrication,

and this type of pressure sensor is covered extensively.

� Motion and Acceleration Sensors (Chapter 2): Motion and acceleration sen-

sors are used in many applications, from automobile air bags to projectiles

to smart tablets and cell phones. This category of sensors has also bene-

fited greatly from the nanotechnology/nanofabrication revolution. The novel

structures of the new motion and acceleration sensors that appeared recently

in archival publications along with their amazing characteristics are pre-

sented in Chapter 2.

� Gas and Smoke Sensors (Chapter 3): Highly sensitive and miniature gas and

ix



x � Preface

smoke sensors that are based on nanostructured electrodes have been intro-

duced recently in the literature. Chapter 3 describes these sensors.

� Moisture Sensors (Chapter 4): Novel new techniques based on nanotechnol-

ogy for detecting atmospheric moisture as well as moisture inside small elec-

tronic components have also appeared in the literature recently. Although not

yet available commercially, these anticipated new sensors are ultraminiature

in size yet ultrasensitive. Chapter 4 introduces these sensors.

� Optoelectronic and Photonic Sensors (Chapter 5): Nanotechnology has rev-

olutionized a number of classical applications by allowing the integration of

optical sensing techniques into such applications. Advanced new products

in this category include optical microphones, fingerprint readers, and highly

sensitive seismic sensors. These advanced new applications are covered in

Chapter 5.

� Biological Sensors, Chemical Sensors, and the so-called “Lab-on-a-Chip”

(Chapter 6): Another important revolution based on nanotechnology has cul-

minated in multipurpose biological and chemical analysis devices where

each device is fully contained in one integrated circuit (the so-called Lab-

on-a-Chip) in addition to other advanced chemical and biological sensors. A

survey of these sensors is given in Chapter 6.

� Electric, Magnetic, and RF/Microwave Sensors (Chapter 7): Enormous ad-

vances in electric field, magnetic field, and RF/Microwave sensors, driven

by nanotechnology, have occurred recently. A description of these sensors,

along with their applications, is given in Chapter 7.

� Integrated Sensor/Actuator Units and Special Purpose Sensors (Chapter 8):

The last chapter of the book is dedicated to integrated sensor/actuator units

and special-purpose sensors. New devices that benefited from nanotechnol-

ogy, such as new icing detectors for aircraft, new microfluidic sensor/actuator

units for microrobots and inkjet printers, etc., are described in Chapter 8.

With the information provided in this book, the corporate researcher or design

engineer will be able to:

� understand the differences between the new sensor and transducer technol-

ogy (which is mainly based on nanotechnology and nanofabrication) and the

older or “classical” sensor technologies;

� make an informed selection of a sensor or transducer for a particular appli-

cation;

� become knowledgeable about the technologies that are available commer-

cially at the present time and the technologies that are anticipated to become

available within a time span of a few months to a few years.

Each chapter of the book ends with a set of quizzes/short questions, along with

answers.
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Chapter 1

Pressure Sensors

1.1 Capacitive Pressure Sensors

Among the pressure sensors that are widely used in the industry, capacitive pres-

sure sensors are particularly noteworthy. These sensors are characterized by very

low temperature hysteresis and pressure hysteresis, in addition to low power con-

sumption [1–8]. Traditional capacitive pressure sensors, however, suffer from inher-

ently poor resolution (a typical capacitive pressure sensor offers a total change in

capacitance of only a few pico-farads, which usually necessitates the use of a sophis-

ticated interface/compensation circuit to sense the very small variations in capaci-

tance). New capacitive pressure sensors with extremely high resolution and sensitiv-

ity, based on nanotechnology, were introduced recently [9]. This section introduces

the mercury droplet capacitive pressure sensor, the sensor with the highest reported

sensitivity and resolution. This type of sensor is currently in production and should

be commercially available in early 2015.

1.1.1 Structure

The recently introduced mercury-droplet capacitive pressure sensor has demon-

strated a change in capacitance of approximately 6.73 µF over a pressure range of 0

to 3 kPa. The sensitivity of this type of sensor is therefore 2.24 µF/kPa, substantially

higher than any of the known types of capacitive pressure sensors. The basic concept

of the new sensor is to mechanically deform a drop of mercury that is separated from

a flat aluminum electrode by a very thin layer of a dielectric material, so as to form

a parallel-plate capacitor where the electrode area is variable to a high degree. This

principle is illustrated in Figure 1.1 below.

The principle of the new device, therefore, is to create a capacitor with a variable

electrode area, rather than a variable interelectrode spacing as commonly done in the

1
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Figure 1.1: (a) A drop of mercury is flattened against an aluminum electrode that

is covered with a layer of a dielectric material. A parallel-plate capacitor with one

liquid electrode is formed. (b) Under zero pressure, the mercury drop returns to its

nearly spherical shape. The change in capacitance between the two configurations

(which is proportional to the change in the contact area of the liquid electrode) can

be several hundred fold.

devices shown in the literature. The detailed structure of the new sensor, together with

the test data, is given in the following sections. Table 1.1 below lists the four most

important parameters of the new sensor: sensitivity, linearity, pressure hysteresis, and

temperature hysteresis, as compared to the other known types of pressure sensors.

As the table shows, the sensitivity of the new sensor is substantially higher than

any of the known types of pressure sensors. The hysteresis error is also substan-

tially lower than that of other sensors. The drawback, however, is that the maximum

temperature-related error is slightly worse than that of the other capacitive pressure

sensors (due to the thermal expansion of the mercury droplet, particularly at high

temperatures), although it is still better than the temperature-related error offered by

piezoresistive sensors. Another important fact to mention is that while the sensor

is nonlinear (like most other capacitive sensors), the equation that relates the ca-

pacitance to the applied pressure is exactly known, as will be demonstrated in the

following sections.

The basic structure of the new sensor is shown in Figure 1.2. A drop of mercury of

a 3 mm diameter is placed on top of a flat aluminum electrode that is covered with a
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Patm

Corrugated Diaphragm Aluminum Ring

Mercury Drop

P
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Compression Disk

Aluminum Electrode

Terminals

IC Chip

Figure 1.2: Mechanical structure of the sensor.

1 µm thick layer of a ceramic material that has a very high dielectric constant (specif-

ically, BaSrTiO3, with a dielectric constant of 12,000–15,000). The drop is held in

place by means of an aluminum disk that serves as the compression mechanism. The

compression disk, in turn, is acted upon by means of a corrugated stainless steel

diaphragm, as shown (those corrugated diaphragms are available from a number of

industrial suppliers). The compression disk is given a slight curvature, as shown in

the figure, such that the spacing between the disk and the ceramic layer is exactly 3

mm at the center, but less than 3 mm everywhere else. In this manner, the mercury

drop will be forced to the center each time the stainless steel diaphragm retracts. The

diaphragm is held in place by means of a thin aluminum ring, as shown (conduc-

tive paste between the rim of the diaphragm and the ring allows an air-tight seal to

be formed). The entire assembly is mounted inside an open-cavity, 24-pin DIP IC

package. A photograph of the components of the sensor is shown in Figure 1.3.

Since the air that surrounds the mercury droplet must be allowed to exit from

the sensor and re-enter as the sensor is pressurized/depressurized, an atmospheric

pressure relief conduit is drilled in the IC package, as shown on the right hand side

of Figure 1.2. In most applications, that conduit will be connected to an atmospheric

pressure environment via, for example, an external tube to be connected to the sensor
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Figure 1.3: Components of the sensor. The sensor is totally mounted inside a stan-

dard 24-pin DIP IC package (dimensions: 30 mm × 14 mm).

(it will be advantageous to connect the pressure relief conduit to the ambient envi-

ronment through a moisture isolation chamber, in order to prevent moisture from

penetrating inside the sensor). In applications where it is desired to detect pressures

that are lower than the atmospheric pressure at sea level (like aircraft altitude appli-

cations, for example), then a suitable vacuum can be initially applied to the pressure

relief conduit (in which case the mercury drop will be initially flattened at sea level).

Concerning the 1 µm thick layer of BaSrTiO3, it is deposited on the surface

of the aluminum electrode by using the electrophoretic deposition technique [15].

Figure 1.4 shows a scanning electron microscope (SEM) picture of the ceramic layer

deposited on the surface of the electrode. The dielectric constant of the ceramic layer

was found to be approximately 12,000, as expected for this material [16, 17].

A word is now in order concerning the interface circuit used with the sensor. At

the present time, the interface circuit used is a 555 timer working in an oscillator

mode, essentially for converting the capacitance to frequency. Such a circuit is very

well known in the literature and is described in references such as [18]. The equa-

tion that characterizes the 555 oscillator is (1− exp[−1/2 f RC]) = 2/3 [18]. Given

a known resistance R, the value of the unknown capacitance C can be easily calcu-

lated from that equation by observing the frequency f of the resulting square wave.

The miniature, surface-mount 555 chip is integrated inside the open cavity package

shown in Figure 1.3 (the chip is mounted underneath the sensor and is not shown in

the photograph). It is to be pointed out that the interface circuit does not amplify or


